JP2009263762A - Vacuum deposition method and vacuum deposition apparatus - Google Patents

Vacuum deposition method and vacuum deposition apparatus Download PDF

Info

Publication number
JP2009263762A
JP2009263762A JP2008234043A JP2008234043A JP2009263762A JP 2009263762 A JP2009263762 A JP 2009263762A JP 2008234043 A JP2008234043 A JP 2008234043A JP 2008234043 A JP2008234043 A JP 2008234043A JP 2009263762 A JP2009263762 A JP 2009263762A
Authority
JP
Japan
Prior art keywords
rotation
film
gear
angle
rotation gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008234043A
Other languages
Japanese (ja)
Other versions
JP5199799B2 (en
Inventor
Hidenori Sakurai
秀紀 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2008234043A priority Critical patent/JP5199799B2/en
Publication of JP2009263762A publication Critical patent/JP2009263762A/en
Application granted granted Critical
Publication of JP5199799B2 publication Critical patent/JP5199799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum deposition apparatus which does not take a very long time in operations such as vacuuming or opening to atmosphere although a vacuum apparatus generally takes a very long time in such operations when a film is deposited on each of a plurality of surfaces of a work to be film-deposited or a thick film is deposited only on an arbitrary surface of the work to be film-deposited in a high vacuum environment. <P>SOLUTION: The vacuum deposition apparatus has two self-rotating mechanisms of a first self-rotating mechanism 9 and a second self-rotating mechanism 13. The first self-rotating mechanism 9 has a mechanism wherein self-rotation is performed by a fixed angle step in response to the angle between teeth of a first self-rotating gear 6 during revolution by a revolution mechanism, and the second self-rotating mechanism 13 has a mechanism wherein a second self-rotating gear 10 lacking one tooth to the first self-rotating gear 6 is used, self-rotation is performed by an angle step in response to the angle between teeth, and a work to be film-deposited is allowed to face an evaporation source 2 at a position where one tooth of the second self-rotating gear 10 is removed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は被成膜物が立体物であり、その主面及び側面に密着性の良い蒸着膜を成膜し、なおかつ任意面の膜厚を他の面に比べて厚くすることを真空槽の大気開放を行うことなく実施することが可能な真空蒸着方法および真空蒸着装置に関するものである。   In the present invention, the object to be deposited is a three-dimensional object, and a vapor deposition film having good adhesion is formed on the main surface and side surfaces of the vacuum tank, and the film thickness of an arbitrary surface is increased compared to other surfaces. The present invention relates to a vacuum deposition method and a vacuum deposition apparatus that can be carried out without opening to the atmosphere.

真空蒸着法は、真空中で薄膜を成す物質を加熱・蒸発させ、その蒸気を任意の基板上に付着・堆積させて薄膜を作り出す方法であり、比較的簡便に薄膜を成膜する事ができる方法であることから、広く使われている成膜方法である。この真空蒸着法ではプラネタリ型と呼ばれる図9に示すような構造が多く用いられている。図9は、従来の真空蒸着装置の略構成図である。   The vacuum evaporation method is a method that creates a thin film by heating and evaporating a material that forms a thin film in a vacuum, and depositing and depositing the vapor on an arbitrary substrate. Since it is a method, it is a widely used film forming method. In this vacuum deposition method, a structure called a planetary type as shown in FIG. 9 is often used. FIG. 9 is a schematic configuration diagram of a conventional vacuum vapor deposition apparatus.

プラネタリ型の真空蒸着装置は真空槽101内下部に蒸発源102が配置され、真空槽101内上部にドーム型の公転機構103を有し、この公転機構103により公転する蒸着治具104に被成膜物を取り付けて成膜を行う構造となっている。被成膜物は公転機構103により任意の速度で公転し、蒸発源102からの蒸発物を蒸発源102に対向した面に堆積させ、薄膜を形成する。さらに、被成膜物の複数面に成膜を行いたい場合には公転機構103に自転機構109を取り付けることにより、公転及び自転を行いながら、複数の面を蒸発源102に曝すことにより立体物である被成膜物各面に対して成膜を行うことができる。自転機構109は、所定の位置で自転カム107を自転シリンダ108で挿抜し、自転カム107で自転軸105に取り付けられた自転ギヤ106を作動させる。真空中での成膜装置としては他にスパッタリング法もあるが、スパッタリング装置は真空蒸着装置に比べ膜の密着性、膜厚分布等が良好である反面、装置価格が非常に高額であるという欠点がある。   The planetary vacuum deposition apparatus has an evaporation source 102 arranged in the lower part of the vacuum chamber 101, and has a dome-shaped revolution mechanism 103 in the upper part of the vacuum chamber 101, and is deposited on a deposition jig 104 that revolves by the revolution mechanism 103. A film is attached to form a film. The film formation object is revolved at an arbitrary speed by the revolving mechanism 103, and the evaporant from the evaporation source 102 is deposited on the surface facing the evaporation source 102 to form a thin film. Furthermore, when it is desired to form a film on a plurality of surfaces of the film to be deposited, a rotation mechanism 109 is attached to the revolution mechanism 103, thereby exposing the plurality of surfaces to the evaporation source 102 while performing the revolution and rotation. It is possible to form a film on each surface of the film formation object. The rotation mechanism 109 inserts and removes the rotation cam 107 with the rotation cylinder 108 at a predetermined position, and operates the rotation gear 106 attached to the rotation shaft 105 with the rotation cam 107. There are other sputtering methods as film forming devices in vacuum, but sputtering devices have better film adhesion, film thickness distribution, etc. than vacuum deposition devices, but the disadvantage is that the device price is very expensive. There is.

被成膜物として音叉型水晶振動子を例に挙げる。図2は、音叉型水晶振動子の模式図である。音叉型水晶振動子17の発振周波数は音叉枝の長さと音叉枝の幅によって定められているが、音叉枝先端の薄膜部は通常2種類の領域から構成されており、周波数調整時に粗い調整を行う粗調膜部14と、また、周波数の最終調整を行う前記粗調膜部14より薄い膜厚の微調膜部15である。音叉枝先端部に形成された粗調膜はレーザー等を用いて除去する方法が広く用いられている。粗調膜部14は概して大きな周波数変化量を得る領域であることより、密度の高い金属膜、例えば金が用いられ、更に1〜4μm程度の膜厚で成膜される。微調膜部15は水晶振動子の電極膜16の一部として形成されることが多く、その膜厚は最大でも3000Å程度であり、金や銀あるいはパラジウムといった貴金属類が用いられることが多い。   A tuning fork type crystal resonator is taken as an example of the film formation. FIG. 2 is a schematic diagram of a tuning fork type crystal resonator. The oscillation frequency of the tuning fork type crystal resonator 17 is determined by the length of the tuning fork branch and the width of the tuning fork branch. The thin film portion at the tip of the tuning fork branch is generally composed of two types of regions, and coarse adjustment is performed during frequency adjustment. A rough adjustment film portion 14 to be performed, and a fine adjustment film portion 15 having a film thickness thinner than that of the rough adjustment film portion 14 for final adjustment of the frequency. A method of removing the rough adjustment film formed at the tip of the tuning fork branch using a laser or the like is widely used. Since the coarse adjustment film portion 14 is generally a region for obtaining a large amount of change in frequency, a metal film having a high density, such as gold, is used, and is further formed with a film thickness of about 1 to 4 μm. The fine-tuning film portion 15 is often formed as a part of the electrode film 16 of the crystal resonator, and the film thickness is about 3000 mm at the maximum, and noble metals such as gold, silver or palladium are often used.

真空蒸着装置については以下のような文献が開示されている。
特開平4−329869号公報 特開2007−100123号公報
The following documents are disclosed about a vacuum evaporation system.
JP-A-4-329869 JP 2007-100123 A

音叉型水晶振動子の音叉枝先端部の様な略四辺形断面を持つ被成膜物において略四辺形の全面あるいは複数面に成膜を行う場合、1台の公転機構と複数の自転機構を有する従来の真空蒸着装置では1公転ごとに任意の回転角度で自転を行うことにより複数面にほぼ均一な厚さの膜を形成することができる。   When forming a film on the entire surface or a plurality of surfaces of a substantially quadrilateral shape, such as the tip of a tuning fork branch of a tuning fork crystal resonator, a single revolution mechanism and a plurality of rotation mechanisms are used. In the conventional vacuum vapor deposition apparatus, a film having a substantially uniform thickness can be formed on a plurality of surfaces by rotating at an arbitrary rotation angle for each revolution.

一方複数面への成膜を行うが、任意面の膜厚を厚く成膜したい場合、通常の成膜動作では公転及び自転を行い、複数面に所望の膜厚で成膜したのち、一度真空槽を大気開放し、作業者が被成膜物の厚い膜を付ける面を蒸発源に対向させ、自転は行わず公転のみの動作により成膜を行うという作業手順で成膜を行っていた。しかし真空蒸着装置の様な高真空環境下(例えば1E−3Pa以下)での成膜を行う場合、大気開放あるいは真空引きといった真空装置特有の動作において非常に時間がかかるという問題があった。例えば、真空槽内が高真空に到達するまでの真空引き時間として約20分、蒸着直後の蒸発源冷却の為の時間が約10分、更に成膜後真空槽内を大気開放させるために要する時間が約10分の合計40分程度が必要であった。そのため著しく生産性を悪化させる状況にあった。   On the other hand, film formation is performed on multiple surfaces, but if it is desired to increase the film thickness of an arbitrary surface, the normal film formation operation performs revolution and rotation, and after forming a film on multiple surfaces with the desired film thickness, once vacuum The tank was opened to the atmosphere, and the operator performed the film formation according to the operation procedure in which the surface on which the film to be deposited was to be deposited was opposed to the evaporation source, and the film was formed only by revolving without rotating. However, when a film is formed in a high vacuum environment (for example, 1E-3 Pa or less) like a vacuum vapor deposition apparatus, there is a problem that it takes a very long time to perform operations peculiar to the vacuum apparatus such as opening to the atmosphere or vacuuming. For example, the time required for evacuation to reach a high vacuum in the vacuum chamber is about 20 minutes, the time for cooling the evaporation source immediately after vapor deposition is about 10 minutes, and further, it is necessary to open the vacuum chamber to the atmosphere after film formation. A total of about 40 minutes was required for about 10 minutes. As a result, productivity was significantly deteriorated.

被成膜物が音叉型水晶振動子である場合を例に挙げる。図4は、従来の真空蒸着装置を用いて成膜した音叉型水晶振動子の要部で、図2のAA’断面図である。図5は、従来の蒸着マスクにより水晶振動子を挟み込んだ状態を説明する図である。図6は、従来の粗調膜部のみ開口した蒸着マスクにより水晶振動子を挟み込んだ状態を説明する図である。   A case where the film formation object is a tuning fork type crystal resonator will be described as an example. FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 2, showing a main part of a tuning fork type crystal resonator formed using a conventional vacuum deposition apparatus. FIG. 5 is a diagram for explaining a state in which a crystal resonator is sandwiched between conventional vapor deposition masks. FIG. 6 is a diagram for explaining a state in which a crystal resonator is sandwiched between vapor deposition masks in which only a conventional rough adjustment film portion is opened.

図4に示すように粗調膜部14主面の一部にのみ粗調膜を厚く成膜する場合、通常は図5に示すように、粗調膜部14のみを開口させたステンレス等からなる蒸着マスク18を用意し、蒸着マスク18で被成膜物である音叉型水晶振動子17を挟み込み、成膜を行う方法が一般的である。   As shown in FIG. 4, when thickly forming the coarse adjustment film only on a part of the main surface of the coarse adjustment film portion 14, usually, as shown in FIG. In general, a vapor deposition mask 18 is prepared, and a tuning fork crystal resonator 17 as a film formation object is sandwiched between the vapor deposition mask 18 to perform film formation.

一方、音叉型水晶振動子17の小型化に伴い、粗調膜部14は約400×100μm程度のわずかな面積となってきており、この寸法にて蒸着マスク18を設計した場合、蒸着マスク開口部19は図6に示すように、加工上の制限から必ずしも四角い形状と成らず楕円形状となってしまう。そのため、音叉型水晶子17の粗調膜部14を広く取り、周波数調整量を多くとりたい設計意図が満たせないことがある。さらに音叉型水晶振動子17の音叉枝寸法に対して粗調膜部14をできうる限り広く取ろうとした場合、前記蒸着マスク18により音叉型水晶振動子17を挟み込むと、蒸着マスク18重ね合わせの組立バラツキ、蒸着マスク18自体の加工寸法バラツキ等により、音叉型水晶振動子17の粗調膜部14の所定部位へ成膜することが困難となる。   On the other hand, with the miniaturization of the tuning fork type crystal resonator 17, the coarse adjustment film portion 14 has become a small area of about 400 × 100 μm. As shown in FIG. 6, the portion 19 does not necessarily have a square shape but has an elliptical shape due to processing limitations. For this reason, there is a case where the design intent that the coarse tuning film portion 14 of the tuning fork crystal 17 is wide and the frequency adjustment amount is large cannot be satisfied. Further, when the coarse tuning film portion 14 is intended to be as wide as possible with respect to the tuning fork branch size of the tuning fork crystal resonator 17, when the tuning fork crystal resonator 17 is sandwiched by the vapor deposition mask 18, the vapor deposition mask 18 is overlapped. It is difficult to form a film on a predetermined portion of the coarse tuning film portion 14 of the tuning fork crystal resonator 17 due to assembly variation, processing dimension variation of the vapor deposition mask 18 itself, and the like.

従って、蒸着マスク開口部19をスリット状とし、複数個の音叉型水晶振動子17が配置されたウエハーである場合に、複数個の音叉型水晶振動子17の粗調膜部14を蒸着マスク18のスリット部に位置決めをし、音叉型水晶振動子17の音叉枝先端部の略四辺形断面に対して成膜することとなる。しかし、このような成膜方法では音叉型水晶振動子17の音叉枝側面にも成膜することとなり、この側面に置ける膜密着性の弱さが後の工程で行うレーザー等による粗調膜除去の際に側面膜ハガレといった問題を引きおこすこととなる。   Accordingly, in the case of a wafer in which the vapor deposition mask opening 19 has a slit shape and a plurality of tuning fork crystal resonators 17 are arranged, the coarse adjustment film portions 14 of the plurality of tuning fork crystal resonators 17 are formed on the vapor deposition mask 18. The film is formed on the substantially quadrangular cross section of the tip of the tuning fork branch of the tuning fork crystal resonator 17. However, in such a film forming method, the film is also formed on the side surface of the tuning fork branch of the tuning fork crystal resonator 17, and the weak film adhesion on the side surface is caused by the rough film removal by a laser or the like performed in a later step. In this case, problems such as side film peeling are caused.

本発明では、被成膜物の任意面の膜厚を他面に比べて厚い膜厚の蒸着膜を形成することができるより生産性の高い真空蒸着方法および真空蒸着装置を提供することを目的とする。   An object of the present invention is to provide a highly productive vacuum vapor deposition method and vacuum vapor deposition apparatus capable of forming a vapor deposition film having a film thickness on an arbitrary surface of an object to be deposited thicker than that on the other surface. And

上記目的を達成するため、本発明の真空蒸着方法は、真空槽内にて公転機構と該公転機構に組み込まれた複数の自転軸に取り付けられた被成膜物を自転させる自転機構とを用いた真空蒸着方法であって、前記自転軸は第一自転ギヤと第二自転ギヤの2組の自転ギヤを直列に取り付けた構造であり、公転軌道上の任意の点において前記第一自転ギヤの歯間角度に応じた角度で自転させうる第一自転機構により被成膜物の複数面に成膜し、さらに前記第一自転ギヤの一歯を除いた歯車形状の前記第二自転ギヤを公転中に第二自転ギヤの歯間角度に応じた角度で自転させうる第二自転機構により前記被成膜物に成膜し、さらに前記第二自転機構による前記自転軸の自転により前記第二自転ギヤの一歯を除いた位置において、前記自転軸に取り付けられた前記被成膜物の任意の面が蒸発源に対して所定の角度に保持することにより、前記被成膜物の任意面のみに厚く成膜することを特徴とする。   In order to achieve the above object, the vacuum vapor deposition method of the present invention uses a revolution mechanism in a vacuum chamber and a rotation mechanism that rotates a film-forming object attached to a plurality of rotation shafts incorporated in the revolution mechanism. A vacuum evaporation method, wherein the rotation shaft has a structure in which two rotation gears, a first rotation gear and a second rotation gear, are attached in series, and the first rotation gear has an arbitrary point on a revolution track. The film is formed on a plurality of surfaces of the film by a first rotation mechanism that can rotate at an angle corresponding to the inter-tooth angle, and the second rotation gear having a gear shape excluding one tooth of the first rotation gear is revolved. The film is formed on the film by a second rotation mechanism capable of rotating at an angle corresponding to the inter-tooth angle of the second rotation gear, and the second rotation is performed by rotation of the rotation axis by the second rotation mechanism. At a position excluding one gear tooth, it is attached to the rotating shaft. Any surface of the deposition target object is by holding at a predetermined angle with respect to the evaporation source, characterized by thick film formation only on any surface of the deposition target was.

さらに本発明の真空蒸着方法は、前記第二自転ギヤの歯数をn2としたとき、前記自転軸を(n2)回公転することにより前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行った後、前記第一自転ギヤの歯数をn1としたとき、前記自転軸を(n1−1)回公転することにより前記第一自転機構と前記第一自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n1−1)回行った後、さらに前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行い、前記自転軸に取り付けられた前記被成膜物の蒸発源に対する角度を所定の角度に整列することができる。   Furthermore, the vacuum deposition method of the present invention is based on a combination of the second rotation mechanism and the second rotation gear by revolving the rotation shaft (n2) times when the number of teeth of the second rotation gear is n2. After performing the rotation operation of the film-forming object (n2) times, when the number of teeth of the first rotation gear is n1, the first rotation mechanism revolves the rotation axis (n1-1) times. And the first rotation gear in combination with the first rotation gear (n1-1), and then the film formation by the combination of the second rotation mechanism and the second rotation gear. This rotation operation can be performed (n2) times, and the angle of the film-forming object attached to the rotation shaft with respect to the evaporation source can be aligned to a predetermined angle.

上記目的を達成するため、本発明の真空蒸着装置は、真空槽内に公転機構と該公転機構に組み込まれた複数の自転軸に取り付けられた被成膜物を自転させる自転機構とを有する真空蒸着装置において、前記自転軸は第一自転ギヤと第二自転ギヤの2組の自転ギヤを直列に取り付けた構造であり、公転軌道上の任意の点において前記第一自転ギヤの歯間角度に応じた角度で自転させ被成膜物の複数面に成膜する第一自転機構と、前記第一自転ギヤの一歯を除いた歯車形状の前記第二自転ギヤを公転中に前記第二自転ギヤの歯間角度に応じた角度で自転させ前記被成膜物に成膜する第二自転機構とを備え、前記第二自転機構による前記自転軸の自転により前記第二自転ギヤの一歯を除いた位置において、前記自転軸に取り付けられた前記被成膜物の任意の面が蒸発源に対して所定の角度に保持することにより、前記被成膜物の任意面のみに厚く成膜することを特徴とする。   In order to achieve the above object, a vacuum vapor deposition apparatus according to the present invention includes a revolving mechanism in a vacuum chamber and a rotation mechanism that rotates a film-forming object attached to a plurality of rotation shafts incorporated in the revolving mechanism. In the vapor deposition apparatus, the rotation shaft has a structure in which two sets of rotation gears, a first rotation gear and a second rotation gear, are attached in series, and at an arbitrary point on the revolution track, the angle between the teeth of the first rotation gear is set. A first rotation mechanism that rotates at a corresponding angle to form a film on a plurality of surfaces of the film to be formed, and the second rotation gear having a gear shape excluding one tooth of the first rotation gear is rotated during the revolution. A second rotation mechanism that rotates the film at an angle corresponding to a gear tooth angle, and forms a film on the film to be formed, and the second rotation gear rotates one of the second rotation gears by rotation of the rotation shaft by the second rotation mechanism. In the removed position, the film deposition object attached to the rotation shaft Any plane by holding at a predetermined angle with respect to the evaporation source, characterized by thick film formation only on any surface of the deposition target object.

さらに本発明の真空蒸着装置は、前記第二自転ギヤの歯数をn2としたとき、前記自転軸を(n2)回公転することにより前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行った後、前記第一自転ギヤの歯数をn1としたとき、前記自転軸を(n1−1)回公転することにより前記第一自転機構と前記第一自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n1−1)回行った後、さらに前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行い、前記自転軸に取り付けられた前記被成膜物の蒸発源に対する角度を所定の角度に整列する整列機構を有することができる。   Furthermore, the vacuum evaporation apparatus of the present invention is based on a combination of the second rotation mechanism and the second rotation gear by revolving the rotation shaft (n2) times when the number of teeth of the second rotation gear is n2. After performing the rotation operation of the film-forming object (n2) times, when the number of teeth of the first rotation gear is n1, the first rotation mechanism revolves the rotation axis (n1-1) times. And the first rotation gear in combination with the first rotation gear (n1-1), and then the film formation by the combination of the second rotation mechanism and the second rotation gear. An alignment mechanism that aligns the angle of the film-mounted object attached to the rotation axis with respect to the evaporation source to a predetermined angle by performing the rotation operation of (n2) times.

本発明により、真空蒸着における略四辺形断面を有する被成膜物の複数面への成膜において、任意面の膜厚を他面に対して厚くしたい場合、真空槽の大気開放、作業者による真空槽内の自転機構に取り付けられた被成膜物の角度整列及び再度の真空引きといった煩雑な動作を行うことなく、真空環境下において被成膜物をあらかじめ設定した角度に整列させることができる真空蒸着方法および真空蒸着装置を提供し、生産性を向上させることができる。   According to the present invention, in film deposition on a plurality of surfaces having a substantially quadrilateral cross section in vacuum vapor deposition, when it is desired to increase the film thickness of an arbitrary surface relative to the other surface, the vacuum chamber is opened to the atmosphere, depending on the operator. It is possible to align the film formation object at a preset angle in a vacuum environment without performing complicated operations such as angle alignment of the film formation object attached to the rotation mechanism in the vacuum chamber and evacuation again. A vacuum deposition method and a vacuum deposition apparatus can be provided, and productivity can be improved.

さらに、第二自転機構13により生じる自転エラーを解消するために第一自転機構12と第二自転機構13との公転数あるいは被成膜物の自転数を設定することにより確実に、被成膜物をあらかじめ設定した角度に整列させることができる真空蒸着方法および真空蒸着装置を提供し、生産性を向上させることができる。   Furthermore, in order to eliminate the rotation error caused by the second rotation mechanism 13, the number of revolutions of the first rotation mechanism 12 and the second rotation mechanism 13 or the number of rotations of the film to be formed can be reliably set. A vacuum deposition method and a vacuum deposition apparatus capable of aligning objects at a preset angle can improve productivity.

回転数の設定は次のようになる。前記第一自転機構9の第一自転ギヤの歯数をn1、前記第二自転機構13の第二自転ギヤ10の歯数をn2とした場合、公転機構13による公転をn2回転し、第二自転機構13による自転動作をn2回行った後、第二自転機構が退避し、第一自転機構が挿入されると、公転機構13による公転を(n1−1)回転行い、第一自転機構による自転動作を(n1−1)回転行う。その後、第一自転機構が退避し、再度第二自転機構が挿入され、第二自転機構による公転をn2回、つまり第二自転機構による自転動作をn2回行うことにより、蒸着治具4は全て所定の位置に揃うことができる。   The rotation speed is set as follows. When the number of teeth of the first rotation gear of the first rotation mechanism 9 is n1, and the number of teeth of the second rotation gear 10 of the second rotation mechanism 13 is n2, the revolution by the revolution mechanism 13 is rotated n2 times, After the rotation operation by the rotation mechanism 13 is performed n2 times, when the second rotation mechanism is retracted and the first rotation mechanism is inserted, the rotation by the rotation mechanism 13 is (n1-1) rotation, and the first rotation mechanism The rotation operation is performed (n1-1). Thereafter, the first rotation mechanism is retracted, the second rotation mechanism is inserted again, the revolution by the second rotation mechanism is performed n2 times, that is, the rotation operation by the second rotation mechanism is performed n2 times. It can be aligned at a predetermined position.

本発明により、被成膜物の任意面の膜厚を他面に比べて厚い膜厚の蒸着膜を形成できる生産性の高い真空蒸着方法および真空蒸着装置を提供することが可能となる。   According to the present invention, it is possible to provide a highly productive vacuum vapor deposition method and vacuum vapor deposition apparatus capable of forming a vapor deposition film having a film thickness on an arbitrary surface of an object to be deposited, which is thicker than that on the other surface.

本発明における具体的な実施例を、音叉型水晶振動子が他数個配置されたウエハーへの成膜を例に図を参照しながら説明する。図1は、本実施例における真空蒸着装置の略構成図である。図3は、本実施例における真空蒸着装置を用いて成膜した音叉型水晶振動子の要部で、図2のAA’断面図である。図7は、本実施例における蒸着治具と自転ギヤの組立図である。図8は、本実施例における蒸着治具の自転模式図である。尚、各図においては説明を明瞭にするため構造体の一部は図示せず、更には寸法も一部は誇張してある。   A specific embodiment of the present invention will be described with reference to the drawings, taking as an example film formation on a wafer on which several other tuning fork crystal units are arranged. FIG. 1 is a schematic configuration diagram of a vacuum vapor deposition apparatus in the present embodiment. FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2, which is a main part of a tuning fork type crystal resonator formed using the vacuum vapor deposition apparatus in the present embodiment. FIG. 7 is an assembly diagram of the vapor deposition jig and the rotation gear in the present embodiment. FIG. 8 is a schematic diagram of rotation of the vapor deposition jig in this example. In each drawing, for the sake of clarity of explanation, a part of the structure is not shown, and some dimensions are exaggerated.

図7に示すように、被成膜物である音叉型水晶振動子が多数個配置されたウエハーを取り付けた蒸着治具4を取り付ける自転軸5は、略四辺形断面を持つ音叉型水晶振動子の枝断面の4辺を成膜するために90°ステップの自転を行うn1=4歯からなる第1自転ギヤ6と、n2=3歯の第2自転ギヤ10を直列に取り付けた構造となる。   As shown in FIG. 7, a rotating shaft 5 for attaching a vapor deposition jig 4 to which a wafer on which a large number of tuning fork type crystal resonators, which are film deposition objects, are arranged, is mounted on a tuning fork crystal resonator having a substantially quadrilateral cross section. The first rotation gear 6 having n1 = 4 teeth that rotate 90 ° in order to form the four sides of the branch cross section of the film and the second rotation gear 10 having n2 = 3 teeth are attached in series. .

本実施例における真空蒸着装置は従来の真空蒸着装置(図9参照)に対して、被成膜物を取り付ける蒸着治具4を自転させる第一自転ギヤとこれを動作させる第一自転機構9と、第二自転ギヤ10とこれを動作させる第二自転機構13とを有することが特徴である。自転軸5には、第一自転ギヤ6と第二自転ギヤ10とが取り付けられており、第一自転機構9は、第一自転カム7とこれを挿入/退避させる第一自転シリンダ8とを有し、第一自転ギヤ6のみを動作させる位置に取り付けられ、第二自転機構13は、第二自転カム11とこれを挿入/退避させる第二自転シリンダ12とを有し、第二自転ギヤ10のみを動作させる位置に取り付けられている。   The vacuum vapor deposition apparatus in the present embodiment is different from the conventional vacuum vapor deposition apparatus (see FIG. 9) in that a first rotation gear for rotating the vapor deposition jig 4 to which the film-forming object is attached and a first rotation mechanism 9 for operating the first rotation gear. The second rotation gear 10 and the second rotation mechanism 13 for operating the second rotation gear 10 are characteristic. A first rotation gear 6 and a second rotation gear 10 are attached to the rotation shaft 5, and a first rotation mechanism 9 includes a first rotation cam 7 and a first rotation cylinder 8 for inserting / retracting the first rotation cam 7. And the second rotation mechanism 13 has a second rotation cam 11 and a second rotation cylinder 12 for inserting / retracting the second rotation cam 11, and the second rotation gear 13. It is attached to the position where only 10 is operated.

蒸着治具4は、図7に示すように自転軸5に取り付けられており、この自転軸5には前記第一自転ギヤ6と前記第二自転ギヤ10が取り付けられている。真空蒸着装置に取り付けられた蒸着治具4は、図8に示す自転動作を行う。   The vapor deposition jig 4 is attached to a rotation shaft 5 as shown in FIG. 7, and the first rotation gear 6 and the second rotation gear 10 are attached to the rotation shaft 5. The vapor deposition jig 4 attached to the vacuum vapor deposition apparatus performs the rotation operation shown in FIG.

第一自転機構9と第一自転ギヤ6との組み合わせにおいて、図8(a)の状態にて蒸発源2に蒸着治具4のB面とC面が曝されており、A面とD面は蒸発源2に対して影となっている部分である。従って、この状態ではA面とD面への成膜は行われない。この状態において蒸着治具4は1公転を行う。一公転終了後、第一自転カム7において第一自転ギヤ6が作動し、蒸着治具4は図8(b)の状態に移行する。この状態においては蒸発源2にA面とB面が曝され、C面とD面は影となるためA面とB面にのみ成膜が行われる。この様に一公転毎に蒸着治具4は図8の(a)から(d)の状態を繰り返すこととなり、蒸着治具4のあらゆる面に成膜を行うことができる。   In the combination of the first rotation mechanism 9 and the first rotation gear 6, the B surface and the C surface of the vapor deposition jig 4 are exposed to the evaporation source 2 in the state of FIG. Is a shaded portion of the evaporation source 2. Therefore, no film is formed on the A and D surfaces in this state. In this state, the vapor deposition jig 4 performs one revolution. After the end of one revolution, the first rotation gear 6 operates in the first rotation cam 7, and the vapor deposition jig 4 shifts to the state shown in FIG. In this state, the A surface and the B surface are exposed to the evaporation source 2, and the C surface and the D surface become shadows, so that film formation is performed only on the A surface and the B surface. In this way, the deposition jig 4 repeats the states of (a) to (d) of FIG. 8 every revolution, and film formation can be performed on all surfaces of the deposition jig 4.

蒸着治具4の4面に任意膜厚の成膜が終了した時点で第二自転機構13が動作する。第一自転カム7が第一自転シリンダ8によって退避し、第二自転カム11が第二自転シリンダ12によって挿入される。自転軸5の軸長方向から見て第二自転ギヤ10は第一自転ギヤ6から45°回転させた位置に配置(図7参照)されている。例えば、図8(b)は図8(e)と同一の状態であり、蒸着治具4が一公転すると、第二自転カム11によって第二自転ギヤ10が作動し、蒸着治具4は図8(f)の状態に移行し、蒸発源2に対向する蒸着治具4の面を、第二自転機構13と第二自転ギヤ10との組み合わせにおける面に揃えることができる。以降第二自転カム11と第二自転ギヤ10により図8(h)まで蒸着治具4はn2=3回の自転を行い、図8(h)以降では第二自転ギヤ10が一歯無い為、第二自転カム11が空回りをし、蒸着治具4のC面が蒸発源2に対向する。以降蒸発源2に対向したC面にのみ成膜を行うことができる。   The second rotation mechanism 13 operates at the time when deposition of an arbitrary film thickness is completed on the four surfaces of the vapor deposition jig 4. The first rotation cam 7 is retracted by the first rotation cylinder 8, and the second rotation cam 11 is inserted by the second rotation cylinder 12. The second rotation gear 10 is disposed at a position rotated by 45 ° from the first rotation gear 6 as viewed from the axial direction of the rotation shaft 5 (see FIG. 7). For example, FIG. 8B is the same state as FIG. 8E, and when the vapor deposition jig 4 revolves once, the second rotation gear 10 is operated by the second rotation cam 11, and the vapor deposition jig 4 is shown in FIG. 8 (f), the surface of the vapor deposition jig 4 facing the evaporation source 2 can be aligned with the surface of the combination of the second rotation mechanism 13 and the second rotation gear 10. Thereafter, the vapor deposition jig 4 performs n2 = 3 rotations by the second rotation cam 11 and the second rotation gear 10 until FIG. 8H, and since the second rotation gear 10 does not have one tooth after FIG. 8H. The second rotating cam 11 runs idle, and the C surface of the vapor deposition jig 4 faces the evaporation source 2. Thereafter, film formation can be performed only on the C surface facing the evaporation source 2.

但し、本機構において図8(a)〜(d)にて自転エラーが生じた場合、図8(e)〜(h)の整列動作に当てはまらない図8(i)の状態が生じることがある。このような自転エラーが生じた場合、第二自転カム11では第二自転ギヤ10を作動させることが当然ながらできない。そのため第二自転カム11を一度退避させ、第一自転カム7を再度挿入することにより蒸着治具4は第一自転カム7と第一自転ギヤ6による自転を再び開始することとなる。本動作により蒸着治具4は再び図8(a)〜(e)の反転動作に入る。ここで第一自転機構9による動作を図8(c)まで、つまり(n1−1)=3公転を行い、第二自転ギヤ10と第二自転カム11が動作する位置に蒸着治具4を再度整列させる。その後第一自転カム7を退避させ、第二自転カム11を挿入し図8(e)からの動作を行うことで図8(i)の様な自転不良を発生させることなく蒸着治具4のC面を蒸発源2に対向させることが可能となる。   However, if a rotation error occurs in FIGS. 8A to 8D in this mechanism, the state shown in FIG. 8I may not be applied to the alignment operation in FIGS. 8E to 8H. . When such a rotation error occurs, the second rotation cam 11 cannot naturally operate the second rotation gear 10. Therefore, by retracting the second rotation cam 11 once and inserting the first rotation cam 7 again, the vapor deposition jig 4 starts rotation by the first rotation cam 7 and the first rotation gear 6 again. By this operation, the vapor deposition jig 4 again enters the reversing operation shown in FIGS. Here, the operation by the first rotation mechanism 9 is performed until FIG. 8C, that is, (n1-1) = 3 revolutions, and the vapor deposition jig 4 is placed at a position where the second rotation gear 10 and the second rotation cam 11 operate. Align again. Thereafter, the first rotation cam 7 is retracted, the second rotation cam 11 is inserted, and the operation from FIG. 8 (e) is performed, so that the rotation of the vapor deposition jig 4 does not occur as shown in FIG. 8 (i). It becomes possible to make the C surface face the evaporation source 2.

以上のような動作をまとめると回転数の設定は次のようになる。前記第一自転機構9の第一自転ギヤの歯数をn1、前記第二自転機構13の第二自転ギヤ10の歯数をn2とした場合、公転機構13による公転をn2回転し、第二自転機構13による自転動作をn2回行った後、第二自転機構が退避し、第一自転機構が挿入されると、公転機構13による公転を(n1−1)回転行い、第一自転機構による自転動作を(n1−1)回転行う。その後、第一自転機構が退避し、再度第二自転機構が挿入され、第二自転機構による公転をn2回、つまり第二自転機構による自転動作をn2回行うことにより、蒸着治具4は全て所定の位置に揃うことができる。 If the above operations are summarized, the rotation speed is set as follows. When the number of teeth of the first rotation gear of the first rotation mechanism 9 is n1, and the number of teeth of the second rotation gear 10 of the second rotation mechanism 13 is n2, the revolution by the revolution mechanism 13 is rotated n2 times, After performing the rotation operation by the rotation mechanism 13 n2 times, when the second rotation mechanism is retracted and the first rotation mechanism is inserted, the rotation by the rotation mechanism 13 is (n1-1) rotation, and the first rotation mechanism The rotation operation is performed (n1-1). Thereafter, the first rotation mechanism is retracted, the second rotation mechanism is inserted again, the revolution by the second rotation mechanism is performed n2 times, that is, the rotation operation by the second rotation mechanism is performed n2 times. It can be aligned at a predetermined position.

以上の機構により本実施例の真空蒸着装置は真空槽1の大気開放を行うことなく、蒸着治具4をあらかじめ設計により求められた方向に確実に整列させることが可能となる。   With the above mechanism, the vacuum vapor deposition apparatus of the present embodiment can reliably align the vapor deposition jig 4 in the direction determined in advance by design without opening the vacuum chamber 1 to the atmosphere.

本実施例の真空蒸着装置を用いて音叉型水晶振動子に成膜することで、生産性を向上しつつ、図3に示すように粗調膜成膜部主面の一部にのみ厚く成膜することが可能となる。   By forming a film on a tuning fork type crystal resonator using the vacuum vapor deposition apparatus of the present embodiment, the productivity is improved and a thick film is formed only on a part of the main surface of the coarse film forming part as shown in FIG. It becomes possible to form a film.

尚、本発明による真空蒸着装置を水晶振動子の粗調膜部成膜を例に挙げ説明をしたが、対象用途は水晶振動子に限定されるものではなく、更に本発明の要旨に則った範囲において種々の変更、改良が可能である。   Although the vacuum evaporation apparatus according to the present invention has been described by taking the rough-tuning film part film formation of the crystal resonator as an example, the intended application is not limited to the crystal resonator, and further according to the gist of the present invention. Various changes and improvements can be made in the range.

本実施例における真空蒸着装置の略構成図Schematic configuration diagram of a vacuum deposition apparatus in the present embodiment 水晶振動子の模式図Schematic diagram of crystal unit 本実施例における真空蒸着装置を用いて成膜した音叉型水晶振動子の要部で、図2のAA’断面図2 is a cross-sectional view taken along the line AA ′ of FIG. 2, showing a main part of a tuning fork type crystal resonator formed by using the vacuum vapor deposition apparatus in the present embodiment. 従来の真空蒸着装置を用いて成膜した音叉型水晶振動子の要部で、図2のAA’断面図2 is a cross-sectional view taken along the line AA 'in FIG. 従来の蒸着マスクにより水晶振動子を挟み込んだ状態図Phase diagram with a quartz crystal sandwiched between conventional vapor deposition masks 従来の粗調膜部のみ開口蒸着マスクにより水晶振動子を挟み込んだ状態図State diagram in which a quartz crystal unit is sandwiched by an aperture evaporation mask only in the conventional rough-tuning film part 本実施例における蒸着治具と自転ギヤの組立図Assembly drawing of vapor deposition jig and rotation gear in this example 本実施例における蒸着治具の自転模式図Rotation schematic diagram of vapor deposition jig in this example 従来の真空蒸着装置Conventional vacuum evaporation system

符号の説明Explanation of symbols

1 真空槽
2 蒸発源
3 公転機構
4 蒸着治具
5 自転軸
6 第一自転ギヤ
7 第一自転カム
8 第一自転シリンダ
9 第一自転機構
10 第二自転ギヤ
11 第二自転カム
12 第二自転シリンダ
13 第二自転機構
14 粗調膜部
15 微調膜部
16 電極膜
17 音叉型水晶振動子
18 蒸着マスク
19 蒸着マスク開口部
101 真空槽
102 蒸発源
103 公転機構
104 蒸着治具
105 自転軸
106 自転ギヤ
107 自転カム
108 自転シリンダ
109 自転機構
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation source 3 Revolution mechanism 4 Evaporation jig 5 Rotation shaft 6 First rotation gear 7 First rotation cam 8 First rotation cylinder 9 First rotation mechanism 10 Second rotation gear 11 Second rotation cam 12 Second rotation Cylinder 13 Second rotation mechanism 14 Coarse adjustment film portion 15 Fine adjustment film portion 16 Electrode film 17 Tuning fork type crystal resonator 18 Deposition mask 19 Deposition mask opening 101 Vacuum chamber 102 Evaporation source 103 Revolution mechanism 104 Deposition jig 105 Rotation shaft 106 Rotation Gear 107 Rotating cam 108 Rotating cylinder 109 Rotating mechanism

Claims (4)

真空槽内にて公転機構と該公転機構に組み込まれた複数の自転軸に取り付けられた被成膜物を自転させる自転機構とを用いた真空蒸着方法において、
前記自転軸は、第一自転ギヤと第二自転ギヤの2組の自転ギヤを直列に取り付けた構造であり、
公転軌道上の任意の点において第一自転ギヤの歯間角度に応じた角度で自転させうる第一自転機構により前記被成膜物の複数面に成膜し、
さらに前記第一自転ギヤの一歯を除いた歯車形状の前記第二自転ギヤを公転中に前記第二自転ギヤの歯間角度に応じた角度で自転させうる第二自転機構により前記被成膜物に成膜し、
さらに前記第二自転機構による前記自転軸の自転により前記第二自転ギヤの一歯を除いた位置において、前記自転軸に取り付けられた前記被成膜物の任意の面が蒸発源に対して所定の角度を保持することにより、前記被成膜物の任意面のみに厚く成膜することを特徴とする真空蒸着方法。
In a vacuum deposition method using a revolution mechanism in a vacuum chamber and a rotation mechanism that rotates a film-forming object attached to a plurality of rotation shafts incorporated in the revolution mechanism,
The rotation shaft has a structure in which two sets of rotation gears, a first rotation gear and a second rotation gear, are attached in series.
A film is formed on a plurality of surfaces of the film by a first rotation mechanism capable of rotating at an angle according to the inter-tooth angle of the first rotation gear at an arbitrary point on the revolution track,
Further, the film formation is performed by a second rotation mechanism capable of rotating the second rotation gear having a gear shape excluding one tooth of the first rotation gear at an angle corresponding to an inter-tooth angle of the second rotation gear during revolution. Film on the object,
Furthermore, an arbitrary surface of the film-attached object attached to the rotation shaft is predetermined with respect to the evaporation source at a position excluding one tooth of the second rotation gear due to rotation of the rotation shaft by the second rotation mechanism. By maintaining the angle, a thick film is formed only on an arbitrary surface of the film formation object.
前記第二自転ギヤの歯数をn2としたとき、前記自転軸を(n2)回公転することにより前記第二自転機構と前記第二自転ギヤとの組み合わせによる被成膜物の自転動作を(n2)回行った後、
前記第一自転ギヤの歯数をn1としたとき、前記自転軸を(n1−1)回公転することにより前記第一自転機構と前記第一自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n1−1)回行った後、
さらに前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行い、前記自転軸に取り付けられた前記被成膜物の蒸発源に対する角度を所定の角度に整列することを特徴とする請求項1記載の真空蒸着方法。
When the number of teeth of the second rotation gear is n2, the rotation operation of the film deposition by the combination of the second rotation mechanism and the second rotation gear is performed by revolving the rotation shaft (n2) times ( n2) After performing
When the number of teeth of the first rotation gear is n1, the film is rotated by a combination of the first rotation mechanism and the first rotation gear by revolving the rotation axis (n1-1) times. After performing the operation (n1-1) times,
Further, the film-forming object is rotated (n2) times by a combination of the second rotation mechanism and the second rotation gear, and the angle of the film-attached object attached to the rotation shaft with respect to the evaporation source is predetermined. The vacuum deposition method according to claim 1, wherein the vacuum deposition method is aligned at an angle of
真空槽内に公転機構と該公転機構に組み込まれた複数の自転軸に取り付けられた被成膜物を自転させる自転機構とを有する真空蒸着装置において、
前記自転軸は、第一自転ギヤと第二自転ギヤの2組の自転ギヤを直列に取り付けた構造であり、
公転軌道上の任意の点において前記第一自転ギヤの歯間角度に応じた角度で自転させ前記被成膜物の複数面に成膜する第一自転機構と、
前記第一自転ギヤの一歯を除いた歯車形状の前記第二自転ギヤを公転中に前記第二自転ギヤの歯間角度に応じた角度で自転させ前記被成膜物に成膜する第二自転機構とを備え、
前記第二自転機構による前記自転軸の自転により前記第二自転ギヤの一歯を除いた位置において、前記自転軸に取り付けられた前記被成膜物の任意の面が蒸発源に対して所定の角度を保持することにより、前記被成膜物の任意面のみに厚く成膜することを特徴とする真空蒸着装置。
In a vacuum vapor deposition apparatus having a revolution mechanism in a vacuum chamber and a rotation mechanism that rotates a film-forming object attached to a plurality of rotation shafts incorporated in the revolution mechanism,
The rotation shaft has a structure in which two sets of rotation gears, a first rotation gear and a second rotation gear, are attached in series.
A first rotation mechanism that rotates at an arbitrary point on the revolution track at an angle corresponding to the inter-tooth angle of the first rotation gear, and forms a film on a plurality of surfaces of the film formation;
The second rotation gear having a gear shape excluding one tooth of the first rotation gear is rotated at an angle corresponding to the inter-tooth angle of the second rotation gear during revolution, and the film is formed on the film to be deposited. With a rotation mechanism,
At a position excluding one tooth of the second rotation gear due to the rotation of the rotation shaft by the second rotation mechanism, an arbitrary surface of the film-attached object attached to the rotation shaft is predetermined with respect to the evaporation source. A vacuum deposition apparatus characterized in that a film is formed thickly only on an arbitrary surface of the deposition object by maintaining an angle.
前記第二自転ギヤの歯数をn2としたとき、前記自転軸を(n2)回公転することにより前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行った後、
前記第一自転ギヤの歯数をn1としたとき、前記自転軸を(n1−1)回公転することにより前記第一自転機構と前記第一自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n1−1)回行った後、
さらに前記第二自転機構と前記第二自転ギヤとの組み合わせによる前記被成膜物の自転動作を(n2)回行い、前記自転軸に取り付けられた前記被成膜物の蒸発源に対する角度を所定の角度に整列する整列機構を有することを特徴とする請求項3記載の真空蒸着装置。
When the number of teeth of the second rotation gear is n2, the rotation operation of the film formation by the combination of the second rotation mechanism and the second rotation gear is performed by revolving the rotation shaft (n2) times. After (n2) times,
When the number of teeth of the first rotation gear is n1, the film is rotated by a combination of the first rotation mechanism and the first rotation gear by revolving the rotation axis (n1-1) times. After performing the operation (n1-1) times,
Further, the film-forming object is rotated (n2) times by a combination of the second rotation mechanism and the second rotation gear, and the angle of the film-attached object attached to the rotation shaft with respect to the evaporation source is predetermined. The vacuum deposition apparatus according to claim 3, further comprising an alignment mechanism that aligns at a predetermined angle.
JP2008234043A 2008-03-31 2008-09-11 Vacuum deposition method and vacuum deposition apparatus Active JP5199799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234043A JP5199799B2 (en) 2008-03-31 2008-09-11 Vacuum deposition method and vacuum deposition apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008092123 2008-03-31
JP2008092123 2008-03-31
JP2008234043A JP5199799B2 (en) 2008-03-31 2008-09-11 Vacuum deposition method and vacuum deposition apparatus

Publications (2)

Publication Number Publication Date
JP2009263762A true JP2009263762A (en) 2009-11-12
JP5199799B2 JP5199799B2 (en) 2013-05-15

Family

ID=41389975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234043A Active JP5199799B2 (en) 2008-03-31 2008-09-11 Vacuum deposition method and vacuum deposition apparatus

Country Status (1)

Country Link
JP (1) JP5199799B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646698B1 (en) * 2015-02-25 2016-08-08 (주)보림시스템 Zig System for Revolving and Rotating in PVD coating machine
JP2017523305A (en) * 2014-06-18 2017-08-17 アシュ.エー.エフ Method for coating camshaft cam nose with DLC, camshaft obtained by the method, and equipment for implementing the method
JP2017190513A (en) * 2016-04-15 2017-10-19 株式会社昭和真空 Vapor deposition apparatus
JP2018135558A (en) * 2017-02-21 2018-08-30 株式会社神戸製鋼所 Workpiece rotation device and film deposition apparatus with the same
CN109989046A (en) * 2018-01-03 2019-07-09 宁波舜宇车载光学技术有限公司 Component filming equipment
CN115011930A (en) * 2022-05-31 2022-09-06 北海惠科半导体科技有限公司 Evaporation coating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329869A (en) * 1991-04-30 1992-11-18 Sony Corp Vapor deposition method
JPH10287976A (en) * 1997-04-15 1998-10-27 Toshiba Glass Co Ltd Vacuum deposition apparatus
JP2002195409A (en) * 2000-12-26 2002-07-10 Riken Corp Piston ring and its manufacturing method
JP2007100123A (en) * 2005-09-30 2007-04-19 Kyocera Kinseki Corp Vacuum vapor deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329869A (en) * 1991-04-30 1992-11-18 Sony Corp Vapor deposition method
JPH10287976A (en) * 1997-04-15 1998-10-27 Toshiba Glass Co Ltd Vacuum deposition apparatus
JP2002195409A (en) * 2000-12-26 2002-07-10 Riken Corp Piston ring and its manufacturing method
JP2007100123A (en) * 2005-09-30 2007-04-19 Kyocera Kinseki Corp Vacuum vapor deposition apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523305A (en) * 2014-06-18 2017-08-17 アシュ.エー.エフ Method for coating camshaft cam nose with DLC, camshaft obtained by the method, and equipment for implementing the method
US10683777B2 (en) 2014-06-18 2020-06-16 H.E.F. Method for coating the nose of the cams of a camshaft with DLC, camshaft obtained in this way and facility for implementing said method
KR101646698B1 (en) * 2015-02-25 2016-08-08 (주)보림시스템 Zig System for Revolving and Rotating in PVD coating machine
JP2017190513A (en) * 2016-04-15 2017-10-19 株式会社昭和真空 Vapor deposition apparatus
JP2018135558A (en) * 2017-02-21 2018-08-30 株式会社神戸製鋼所 Workpiece rotation device and film deposition apparatus with the same
CN109989046A (en) * 2018-01-03 2019-07-09 宁波舜宇车载光学技术有限公司 Component filming equipment
CN115011930A (en) * 2022-05-31 2022-09-06 北海惠科半导体科技有限公司 Evaporation coating device

Also Published As

Publication number Publication date
JP5199799B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5199799B2 (en) Vacuum deposition method and vacuum deposition apparatus
CN105745352B (en) Manufacturing method, the manufacturing device and manufacturing method of stretching device, organic semiconductor device of deposition mask
TWI503432B (en) Lift-off deposition system featuring a density optimized hula substrate holder in a conical deposition chamber
FR2867486A1 (en) METHOD FOR CONTROLLING A DOUBLE-LAYER SHUTTER FOR A MULTI-SPRAY SYSTEM
US20060032737A1 (en) Magnetron sputtering device, a cylindrical cathode and a method of coating thin multicomponent films on a substrate
CN110541153A (en) Method for preparing film by deposition and film coating machine
US20190103300A1 (en) Film formation apparatus
JP4321785B2 (en) Film forming apparatus and film forming method
JP4505032B2 (en) Sputtering equipment
WO2014156567A1 (en) Sputtering device
JP2010095745A (en) Film-forming method and film-forming apparatus
JP2008240105A (en) Substrate holder, film deposition apparatus, and film deposition method
WO2015072046A1 (en) Sputtering apparatus
JP2015110814A (en) Sputtering film deposition method, sputtering device, and method of manufacturing photomask blank and photomask blank
JP5005205B2 (en) Vacuum deposition equipment
JP5002532B2 (en) Sputtering method and sputtering apparatus
JP2010095735A (en) Film-forming apparatus, film-forming method and gas barrier film
JP3119563U (en) Sputtering equipment
JP2010049137A (en) Dimmer filter and film forming method and film forming device of dimmer filter
JP2009001889A (en) Film deposition method for neutral density filter, neutral density filter using the same, and image pick-up light quantity diaphragm device
CN110534429B (en) Superconducting film and preparation method thereof
JP2012046803A (en) Sheet-type film deposition apparatus and sheet-type film deposition method
JP2002043248A (en) Thin film forming method and electronic component manufactured by using the same
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JPH07226398A (en) Target sputtering method and target cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250