JP2009262102A - Oxidation catalyst device for purification of exhaust gas - Google Patents

Oxidation catalyst device for purification of exhaust gas Download PDF

Info

Publication number
JP2009262102A
JP2009262102A JP2008117149A JP2008117149A JP2009262102A JP 2009262102 A JP2009262102 A JP 2009262102A JP 2008117149 A JP2008117149 A JP 2008117149A JP 2008117149 A JP2008117149 A JP 2008117149A JP 2009262102 A JP2009262102 A JP 2009262102A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation catalyst
gas purification
catalyst
catalyst device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008117149A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tanaami
潔 田名網
Yuji Isotani
祐二 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008117149A priority Critical patent/JP2009262102A/en
Priority to EP09156695.0A priority patent/EP2113303B1/en
Priority to EP10163127A priority patent/EP2230013A1/en
Priority to US12/420,173 priority patent/US8168559B2/en
Publication of JP2009262102A publication Critical patent/JP2009262102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation catalyst device for purification of exhaust gas which enables oxidation purification of particulates in the exhaust gas of an internal engine at lower temperature. <P>SOLUTION: An oxidation catalyst device 1 for purification of exhaust gas includes: two or more inflow cells 4 in which an exhaust gas inflow portion 4a, among two or more through-holes penetrating in the axial direction, is opened and an exhaust gas outflow portion 4b is blocked; two or more outflow cells 5 in which the exhaust gas inflow portion 5a, among two or more through-holes, is blocked and the exhaust gas outflow portion 5b is opened; a porous filter substrate 2 which has a wall flow structure with the boundary between cells 4 and 5 formed by arranging inflow cells 4 and outflow cells 5 alternately and being served as a cell partition 6; a first catalyst layer 3a supported at least on the surface of the cell partition wall on the side of the inflow cell 4 of the cell partition 6 and made of a composite metal oxide; and a second catalyst layer 3b supported on the wall surface of pores 7 of the porous filter substrate 2 and made of a composite metal oxide. The catalyst layers 3a and 3b includes a porous material having fine pores. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排ガスに含まれるパティキュレートを、複合金属酸化物からなる触媒を用いて酸化して浄化する排ガス浄化用酸化触媒装置に関するものである。   The present invention relates to an oxidation catalyst device for purifying exhaust gas that oxidizes and purifies particulates contained in exhaust gas of an internal combustion engine by using a catalyst made of a composite metal oxide.

従来、内燃機関の排ガスに含まれるパティキュレートや炭化水素を酸化して浄化するために、ペロブスカイト型複合金属酸化物からなる触媒を用いた排ガス浄化用酸化触媒装置が知られている。   Conventionally, an oxidation catalyst device for exhaust gas purification using a catalyst made of a perovskite-type composite metal oxide for oxidizing and purifying particulates and hydrocarbons contained in exhaust gas of an internal combustion engine is known.

前記排ガス浄化用酸化触媒装置としては、多孔質フィルタ基材の表面に第1の触媒層を備えるとともに、該多孔質フィルタ基材の気孔を形成する壁面表面に第2の触媒層を備えものが提案されている(例えば特許文献1参照)。前記第1の触媒層及び前記第2の触媒層としては、一般式ABMOで表されるペロブスカイト型複合金属酸化物からなり、AはLa,Y,Dy,Ndのうち1種以上であり、BはSr,Ba,Mgのうち1種以上であり、MはMn,Fe,Coのうち1種以上のものが挙げられる。前記第1の触媒層及び前記第2の触媒層を備える前記排ガス浄化用酸化触媒装置によれば、前記パティキュレートの燃焼温度を低下させることができるとされている。 The exhaust gas purification oxidation catalyst device includes a first catalyst layer on the surface of a porous filter base material and a second catalyst layer on a wall surface forming pores of the porous filter base material. It has been proposed (see, for example, Patent Document 1). The first catalyst layer and the second catalyst layer are made of a perovskite-type composite metal oxide represented by the general formula ABMO 3 and A is one or more of La, Y, Dy, and Nd, B is at least one of Sr, Ba, and Mg, and M is at least one of Mn, Fe, and Co. According to the exhaust gas purifying oxidation catalyst device including the first catalyst layer and the second catalyst layer, the combustion temperature of the particulates can be lowered.

しかしながら、排ガス浄化用酸化触媒装置においては、前記パティキュレートの燃焼温度をさらに低下させることが望まれる。
特開2007−237012号公報
However, in the exhaust gas purification oxidation catalyst device, it is desired to further reduce the combustion temperature of the particulates.
Japanese Patent Laid-Open No. 2007-237012

本発明は、かかる不都合を解消して、内燃機関の排ガス中のパティキュレートをより低温で酸化し浄化することができる排ガス浄化用酸化触媒装置を提供することを目的とする。   An object of the present invention is to provide an oxidation catalyst device for exhaust gas purification that can eliminate such inconvenience and oxidize and purify particulates in exhaust gas of an internal combustion engine at a lower temperature.

かかる目的を達成するために、本発明は、内燃機関の排ガス中のパティキュレートを、複合金属酸化物からなる触媒を用いて酸化して浄化する排ガス浄化用酸化触媒装置であって、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されるとともに排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されるとともに排ガス流出部が開放された複数の流出セルとを備え、該流入セル及び該流出セルを交互に配設して各セルの境界部をセル隔壁とするウォールフロー構造を有する多孔質フィルタ基材と、該セル隔壁の少なくとも該流入セル側の表面に担持された該複合金属酸化物からなる第1の触媒層と、該多孔質フィルタ基材の気孔を形成する壁面表面に担持された該複合金属酸化物からなる第2の触媒層とを備え、各触媒層が多孔質体からなることを特徴とする。   In order to achieve such an object, the present invention provides an oxidation catalyst device for purifying exhaust gas that oxidizes and purifies particulates in exhaust gas of an internal combustion engine using a catalyst made of a composite metal oxide, in an axial direction. Among a plurality of through holes formed through, a plurality of inflow cells in which an exhaust gas inflow portion is opened and an exhaust gas outflow portion is blocked, and an exhaust gas inflow portion of the plurality of through holes is closed and an exhaust gas outflow A porous filter base material having a wall flow structure including a plurality of outflow cells opened at a portion, alternately arranging the inflow cells and the outflow cells, and using cell boundaries as cell partition walls, A first catalyst layer comprising the composite metal oxide supported on at least a surface of the cell partition wall on the inflow cell side; and the composite metal oxide supported on a wall surface forming pores of the porous filter substrate. Kara And a second catalyst layer, the catalyst layer is characterized by comprising a porous body.

本発明によれば、前記内燃機関の排ガスは、前記流入セルの前記排ガス流入部から該流入セル内へ導入される。前記流入セルは前記排ガス流出部が閉塞されているので、該流入セル内へ導入された前記排ガスは、前記セル隔壁を構成する前記多孔質フィルタ基材の気孔を通過して前記流出セル内へ移動する。このとき、前記排ガスは、前記セル隔壁の表面に担持された前記第1の触媒層と、前記気孔を形成する壁面表面に担持された第2の触媒層とに接触し、各触媒層の触媒の作用により燃焼除去される。   According to the present invention, the exhaust gas of the internal combustion engine is introduced into the inflow cell from the exhaust gas inflow portion of the inflow cell. Since the exhaust gas outflow portion of the inflow cell is blocked, the exhaust gas introduced into the inflow cell passes through the pores of the porous filter base material constituting the cell partition wall and enters the outflow cell. Moving. At this time, the exhaust gas comes into contact with the first catalyst layer supported on the surface of the cell partition wall and the second catalyst layer supported on the wall surface forming the pores, and the catalyst of each catalyst layer It is burned out by the action of.

本発明によれば、前記第1の触媒層及び前記第2の触媒層が多孔質体からなるので、前記排ガスが、該多孔質体の細孔を形成する壁面の表面を介して該触媒層に接触することにより、該排ガスと該触媒層との接触確率が高まることとなる。したがって、本発明によれば、従来技術の排ガス浄化用酸化触媒装置と比較して、内燃機関の排ガス中のパティキュレートをより低温で酸化し浄化することができる。   According to the present invention, since the first catalyst layer and the second catalyst layer are made of a porous body, the exhaust gas passes through the surface of the wall surface forming the pores of the porous body. Contact probability increases the contact probability between the exhaust gas and the catalyst layer. Therefore, according to the present invention, it is possible to oxidize and purify particulates in the exhaust gas of the internal combustion engine at a lower temperature as compared with the oxidation catalyst device for exhaust gas purification of the prior art.

また、本発明においては、前記各触媒層は、直径が0.01〜3.5μmの範囲である細孔を備える多孔質体からなり、前記多孔質フィルタ基材及び該各触媒層全体の気孔率が、45〜50体積%の範囲であることが好ましい。前記多孔質フィルタ基材の気孔の内部に前記第2の触媒層が担持されていることにより、該多孔質フィルタ基材及び該各触媒層全体の気孔率が前記範囲に構成されている。本発明によれば、前記構成により、前記パティキュレートを前記各触媒層に十分に接触させることができ、この結果、パティキュレートの燃焼温度を確実に低くすることができる。   Further, in the present invention, each catalyst layer is composed of a porous body having pores having a diameter in the range of 0.01 to 3.5 μm, and the pores of the porous filter substrate and the entire catalyst layers The rate is preferably in the range of 45-50% by volume. By supporting the second catalyst layer inside the pores of the porous filter base material, the porosity of the porous filter base material and each of the catalyst layers as a whole is configured in the above range. According to the present invention, according to the configuration, the particulates can be sufficiently brought into contact with the catalyst layers, and as a result, the combustion temperature of the particulates can be reliably lowered.

このとき、前記各触媒層の前記細孔の直径が0.01μm未満である場合には、圧力損失が増大することがある。一方、前記各触媒層の前記細孔の直径が3.5μmを超える場合には、前記排ガス中の前記パティキュレートが該細孔の表面に十分に接触することができなくなり、該パティキュレートの燃焼温度を低下させる効果が得られないことがある。   At this time, when the diameter of the pores of each catalyst layer is less than 0.01 μm, the pressure loss may increase. On the other hand, when the diameter of the pores of each catalyst layer exceeds 3.5 μm, the particulates in the exhaust gas cannot sufficiently contact the surface of the pores, and the particulates burn. The effect of lowering the temperature may not be obtained.

また、前記多孔質フィルタ基材及び前記各触媒層全体の気孔率が45%未満である場合には、前記排ガスが前記気孔を通過する際に圧力損失が増大することがある。一方、前記多孔質フィルタ基材及び前記各触媒層全体の気孔率が50%を超える場合には、前記排ガスと該触媒層との接触確率が低下し、該パティキュレートの燃焼温度を低下させる十分な効果が得られないことがある。   Further, when the porosity of the porous filter base material and each of the catalyst layers is less than 45%, pressure loss may increase when the exhaust gas passes through the pores. On the other hand, when the porosity of the porous filter base material and each of the catalyst layers exceeds 50%, the contact probability between the exhaust gas and the catalyst layer is lowered, and the combustion temperature of the particulates is sufficiently reduced. Effects may not be obtained.

本発明において、前記各触媒層は、例えば、一般式Y1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2である複合金属酸化物からなるものとすることができる。 In the present invention, each of the catalyst layer, for example, is represented by the general formula Y 1-x Ag x Mn 1 -y Ru y O 3, 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0. 2 or a composite metal oxide.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の排ガス浄化用酸化触媒装置の説明図であり、図1(a)は説明的断面図であり、図1(b)は図1(a)のA部の模式的拡大図である。図2,7,10,13,16,19,22は、実施例1〜7及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフである。図3は、実施例1〜7及び比較例の排ガス浄化用酸化触媒装置によるパティキュレート燃焼量を示すグラフである。図4,8,11,14,17,20,23,25は、実施例1〜7及び比較例の排ガス浄化用酸化触媒装置の断面画像である。図4,8,11,14,17,20,23,25の各図において、(a)は倍率100倍の断面画像であり、(b)は倍率10000倍の断面画像であって(a)のA部の拡大図である。図5,9,12,15,18,21,24は、実施例1〜7及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフである。図6は、実施例1〜7及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材及び各触媒層全体の気孔率を示すグラフである。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory view of an oxidation catalyst device for exhaust gas purification according to the present embodiment, FIG. 1 (a) is an explanatory sectional view, and FIG. 1 (b) is a schematic enlargement of a portion A in FIG. 1 (a). FIG. 2, 7, 10, 13, 16, 19, and 22 are graphs showing the CO 2 concentration of exhaust gas by the oxidation catalyst devices for exhaust gas purification of Examples 1 to 7 and Comparative Example. FIG. 3 is a graph showing particulate combustion amounts by the exhaust gas purifying oxidation catalyst devices of Examples 1 to 7 and Comparative Example. 4, 8, 11, 14, 17, 20, 23, and 25 are cross-sectional images of the oxidation catalyst devices for exhaust gas purification of Examples 1 to 7 and Comparative Example. 4, 8, 11, 14, 17, 20, 23, and 25, (a) is a cross-sectional image at a magnification of 100 times, and (b) is a cross-sectional image at a magnification of 10000 times (a). It is an enlarged view of the A section. 5, 9, 12, 15, 18, 21, and 24 are the diameters of the pores of the porous filter substrate and the pores of each catalyst layer according to the oxidation catalyst devices for exhaust gas purification of Examples 1 to 7 and Comparative Example. It is a graph which shows a diameter. FIG. 6 is a graph showing the porosity of the porous filter substrate and the entire catalyst layers according to the exhaust gas purification oxidation catalyst devices of Examples 1 to 7 and the comparative example.

本実施形態の排ガス浄化用酸化触媒装置1について説明する。図1(a)に示す排ガス浄化用酸化触媒装置1は、ウォールフロー構造を有する多孔質フィルタ基材2と、多孔質フィルタ基材2に担持された触媒層3とを備え、内燃機関の排ガスを流通させることにより、該排ガスに含まれるパティキュレートを酸化して浄化するものである。   The exhaust gas purifying oxidation catalyst device 1 of the present embodiment will be described. An exhaust gas purification oxidation catalyst device 1 shown in FIG. 1 (a) includes a porous filter base material 2 having a wall flow structure and a catalyst layer 3 supported on the porous filter base material 2, and is an exhaust gas of an internal combustion engine. By circulating the gas, the particulates contained in the exhaust gas are oxidized and purified.

多孔質フィルタ基材2は、軸方向に貫通する複数の貫通孔が断面格子状に配設された略直方体のSiC多孔質体からなり、該貫通孔からなる複数の流入セル4と複数の流出セル5とを備えている。多孔質フィルタ基材2は、直径が1〜100μmの範囲である複数の気孔7を備えていて、それ自体の気孔率が50〜60体積%の範囲となっている。流入セル4は、排ガス流入部4aが開放されるとともに排ガス流出部4bが閉塞されている。一方、流出セル5は、排ガス流入部5aが閉塞されるとともに排ガス流出部5bが開放されている。流入セル4及び流出セル5は、断面市松格子状となるように交互に配設されていて、各セル4,5の境界部をセル隔壁6とするウォールフロー構造を構成している。   The porous filter substrate 2 is composed of a substantially rectangular parallelepiped SiC porous body in which a plurality of through-holes penetrating in the axial direction are arranged in a cross-sectional lattice shape, and a plurality of inflow cells 4 and a plurality of outflows comprising the through-holes Cell 5. The porous filter substrate 2 includes a plurality of pores 7 having a diameter in the range of 1 to 100 μm, and its own porosity is in the range of 50 to 60% by volume. In the inflow cell 4, the exhaust gas inflow portion 4a is opened and the exhaust gas outflow portion 4b is closed. On the other hand, in the outflow cell 5, the exhaust gas inflow portion 5a is closed and the exhaust gas outflow portion 5b is opened. The inflow cells 4 and the outflow cells 5 are alternately arranged so as to have a checkered cross section, and constitute a wall flow structure in which the boundary portions of the cells 4 and 5 are the cell partition walls 6.

図1(a)に示すように、セル隔壁6の流入セル4側の表面には、触媒層3としての第1の触媒層3aが担持されている。また、図1(b)に示すように、セル隔壁6の気孔7すなわち多孔質フィルタ基材2の気孔7を形成する壁面の表面には、触媒層3としての第2の触媒層3bが担持されている。各触媒層3a,3bは、直径が0.01〜3.5μmの範囲である細孔(図示せず)を備える多孔質体であって、複合金属酸化物Y1−xAgMn1−yRu(ただし、0.01≦x≦0.15かつ0.005≦y≦0.2)からなる。また、多孔質フィルタ基材2及び各触媒層3a,3bは、両者を合わせた全体の気孔率が45〜50体積%の範囲となっている。また、図示しないが、最外層のセル隔壁6の外周部には、排ガスの流出を規制する金属からなる規制部材が設けられている。 As shown in FIG. 1A, the first catalyst layer 3 a as the catalyst layer 3 is supported on the surface of the cell partition wall 6 on the inflow cell 4 side. Further, as shown in FIG. 1B, the second catalyst layer 3b as the catalyst layer 3 is supported on the surface of the wall surface forming the pores 7 of the cell partition walls 6, that is, the pores 7 of the porous filter substrate 2. Has been. Each catalyst layer 3a, 3b is a porous body having pores (not shown) having a diameter in the range of 0.01 to 3.5 μm, and is a composite metal oxide Y 1-x Ag x Mn 1− y Ru y O 3 (where 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0.2). The porous filter base material 2 and each of the catalyst layers 3a and 3b have a total porosity in the range of 45 to 50% by volume. Although not shown, a regulating member made of a metal that regulates the outflow of exhaust gas is provided on the outer peripheral portion of the outermost cell partition wall 6.

排ガス浄化用酸化触媒装置1においては、第1の触媒層3aは、セル隔壁6の流入セル4側の表面のみに担持されているが、流入セル4側の表面と流出セル5側の表面との両方に担持されていてもよい。また、多孔質フィルタ基材2として、SiC多孔質体からなるものを用いているが、Si−SiC多孔質体からなるものを用いてもよい。   In the oxidation catalyst device 1 for exhaust gas purification, the first catalyst layer 3a is supported only on the surface on the inflow cell 4 side of the cell partition wall 6, but the surface on the inflow cell 4 side and the surface on the outflow cell 5 side It may be carried on both. Moreover, although what consists of a SiC porous body is used as the porous filter base material 2, you may use what consists of a Si-SiC porous body.

以上の構成を備えた排ガス浄化用酸化触媒装置1は、次のようにして製造することができる。まず、硝酸イットリウムと、硝酸銀と、硝酸マンガンと、硝酸ルテニウムと、クエン酸と、水とからなる混合物を、200〜400℃の範囲の温度で1〜10時間の範囲で一次焼成し、触媒前駆体を形成する。次に、得られた触媒前駆体と、水と、バインダーとを混合し粉砕して、スラリーを調製する。前記スラリーは、例えば、0.5〜10μmの範囲の粒子径分布を有する触媒前駆体を含有するとともに、2.0mPa・s以下、好ましくは1.3〜2.0mPa・sの範囲の粘度を有するように調製される。   The exhaust gas purifying oxidation catalyst device 1 having the above-described configuration can be manufactured as follows. First, a catalyst precursor is obtained by first firing a mixture of yttrium nitrate, silver nitrate, manganese nitrate, ruthenium nitrate, citric acid, and water at a temperature in the range of 200 to 400 ° C. for 1 to 10 hours. Form the body. Next, the obtained catalyst precursor, water, and a binder are mixed and pulverized to prepare a slurry. The slurry contains, for example, a catalyst precursor having a particle size distribution in the range of 0.5 to 10 μm and a viscosity of 2.0 mPa · s or less, preferably 1.3 to 2.0 mPa · s. It is prepared to have.

次に、軸方向に貫通する複数の貫通孔が断面格子状に配設された多孔質フィルタ基材2(日本碍子株式会社製SiC多孔質体、商品名MSC14、仕様を表1に示す)を用意する。   Next, a porous filter substrate 2 (SiC porous body manufactured by Nippon Choshi Co., Ltd., trade name MSC14, specifications are shown in Table 1) in which a plurality of through-holes penetrating in the axial direction are arranged in a cross-sectional lattice shape. prepare.

次に、多孔質フィルタ基材2の前記貫通孔の一端部を一つ置きに(すなわち、断面市松格子状となるように)、シリカを主成分とするセラミックス接着剤にて閉塞することにより、流出セル5を形成する。次に、多孔質フィルタ基材2に、前記端部が閉塞されている側から前記スラリーを流し込むことにより、端部が閉塞されていない前記複数の貫通孔(すなわち、流出セル5以外のセル)内に該スラリーを流通させる。このとき、スラリーが前記範囲の粘度を有するように調整されているので、該スラリーを吸引することなく、多孔質フィルタ基材2に流通させるだけで、該スラリーが多孔質フィルタ基材2の気孔の開口部を塞ぐことなく、該スラリーを気孔の内部に侵入させ付着させることができる。続いて、多孔質フィルタ基材2から過剰な前記スラリーを除去する。   Next, every other end of the through hole of the porous filter base material 2 (that is, so as to have a cross-sectional checkered cross section), and clogged with a ceramic adhesive mainly composed of silica, An outflow cell 5 is formed. Next, by pouring the slurry into the porous filter substrate 2 from the side where the end is closed, the plurality of through holes whose ends are not closed (that is, cells other than the outflow cell 5). The slurry is circulated inside. At this time, since the slurry is adjusted so as to have the viscosity in the above range, the slurry can be passed through the porous filter base material 2 without sucking the slurry, and the slurry can be pores of the porous filter base material 2. The slurry can enter and adhere to the inside of the pores without blocking the opening. Subsequently, the excess slurry is removed from the porous filter substrate 2.

次に、前記スラリーが付着された多孔質フィルタ基材2を、800〜1000℃の範囲の温度で1〜10時間の範囲の時間で二次焼成する。これにより、流出セル5以外のセルのセル隔壁6の表面に、複合金属酸化物Y1−xAgMn1−yRu(ただし、0.01≦x≦0.15かつ0.005≦y≦0.2)からなる第1の触媒層3aが形成されるとともに、セル隔壁6の気孔7を形成する壁面の表面に、該複合酸化物からなる第2の触媒層3bが形成される。触媒層3a,3bは、前記範囲の温度及び時間で二次焼成された結果、直径が0.01〜3.5μmの範囲である細孔(図示せず)を備える多孔質体として形成される。次に、流出セル5以外のセルの前記端部が閉塞された側とは反対側の端部を、シリカを主成分とするセラミックス接着剤にて閉塞することにより、流入セル4を形成する。以上により製造される排ガス浄化用酸化触媒装置1は、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の45〜50体積%の範囲の気孔率を備えている。 Next, the porous filter substrate 2 to which the slurry is attached is secondarily fired at a temperature in the range of 800 to 1000 ° C. for a time in the range of 1 to 10 hours. Thus, the composite metal oxide Y 1-x Ag x Mn 1-y Ru y O 3 (however, 0.01 ≦ x ≦ 0.15 and 0.001) is formed on the surface of the cell partition wall 6 of the cells other than the outflow cell 5. 005 ≦ y ≦ 0.2) is formed, and the second catalyst layer 3b made of the composite oxide is formed on the surface of the wall surface forming the pores 7 of the cell partition wall 6. Is done. The catalyst layers 3a and 3b are formed as a porous body having pores (not shown) having a diameter in the range of 0.01 to 3.5 μm as a result of secondary firing at the temperature and time in the above range. . Next, the inflow cell 4 is formed by closing the end of the cell other than the outflow cell 5 on the side opposite to the side where the end is closed with a ceramic adhesive mainly composed of silica. The exhaust gas purification oxidation catalyst device 1 manufactured as described above has a porosity in the range of 45 to 50% by volume of the total of the porous filter substrate 2 and the catalyst layers 3a and 3b.

次に、図1を参照して本実施形態の排ガス浄化用酸化触媒装置1の作動について説明する。まず、排ガス浄化用酸化触媒装置1を、流入セル4及び流出セル5の排ガス流入部4a,5aが内燃機関の排ガスの流路に対して上流側となるように設置する。前記排ガスは、図1(b)に矢示するように、流入セル4の排ガス流入部4aから流入セル4内へ導入される。   Next, the operation of the exhaust gas purifying oxidation catalyst device 1 of the present embodiment will be described with reference to FIG. First, the exhaust gas purifying oxidation catalyst device 1 is installed such that the exhaust gas inflow portions 4a and 5a of the inflow cell 4 and the outflow cell 5 are upstream of the exhaust gas flow path of the internal combustion engine. The exhaust gas is introduced into the inflow cell 4 from the exhaust gas inflow portion 4a of the inflow cell 4 as shown by an arrow in FIG.

このとき、流出セル5は排ガス流入部5aが閉塞されているので、流出セル5内へ前記排ガスが導入されることはない。また、流入セル4は排ガス流出部4bが閉塞されている。   At this time, since the exhaust gas inflow portion 5a of the outflow cell 5 is blocked, the exhaust gas is not introduced into the outflow cell 5. The inflow cell 4 is closed at the exhaust gas outflow portion 4b.

そこで、流入セル4内へ導入された前記排ガスは、セル隔壁6の気孔7を通過して流出セル5内へ移動する。このとき、前記排ガスは、セル隔壁6の表面に担持された第1の触媒層3aと、気孔7を形成する壁面表面に担持された第2の触媒層3bとに接触し、各触媒層3a,3bの触媒の作用により燃焼除去される。   Therefore, the exhaust gas introduced into the inflow cell 4 passes through the pores 7 of the cell partition wall 6 and moves into the outflow cell 5. At this time, the exhaust gas comes into contact with the first catalyst layer 3a supported on the surface of the cell partition wall 6 and the second catalyst layer 3b supported on the wall surface forming the pores 7, and each catalyst layer 3a. , 3b is burned and removed by the action of the catalyst.

この結果、前記パティキュレートが燃焼除去された前記排ガスが、流出セル5内に移動し、排ガス流出部5bから排出される。以上により、排ガス浄化用酸化触媒装置1は、内燃機関の排ガス中のパティキュレートを酸化し浄化することができる。   As a result, the exhaust gas from which the particulates have been burned and removed moves into the outflow cell 5 and is discharged from the exhaust gas outflow portion 5b. As described above, the exhaust gas purification oxidation catalyst device 1 can oxidize and purify the particulates in the exhaust gas of the internal combustion engine.

本実施形態の排ガス浄化用酸化触媒装置1によれば、第1の触媒層3a及び第2の触媒層3bが多孔質体からなるので、前記排ガスが、該多孔質体の細孔を形成する壁面の表面を介して触媒層3a,3bに接触することにより、該排ガスと該触媒層3a,3bとの接触確率が高まることとなる。したがって、本発明によれば、従来技術の排ガス浄化用酸化触媒装置と比較して、内燃機関の排ガス中のパティキュレートをより低温で酸化し浄化することができる。   According to the exhaust gas purification oxidation catalyst device 1 of the present embodiment, since the first catalyst layer 3a and the second catalyst layer 3b are made of a porous body, the exhaust gas forms pores of the porous body. By contacting the catalyst layers 3a and 3b through the surface of the wall surface, the contact probability between the exhaust gas and the catalyst layers 3a and 3b is increased. Therefore, according to the present invention, it is possible to oxidize and purify particulates in the exhaust gas of the internal combustion engine at a lower temperature as compared with the oxidation catalyst device for exhaust gas purification of the prior art.

また、本実施形態の排ガス浄化用酸化触媒装置1は、各触媒層3a,3bが、直径が0.01〜3.5μmの範囲である前記細孔を備え、多孔質フィルタ基材2及び各触媒層3a,3bを合わせた全体が45〜50体積%の範囲の気孔率を備えている。多孔質フィルタ基材2の気孔7の内部に第2の触媒層3bが担持されていることにより、多孔質フィルタ基材2及び各触媒層3a,3b全体の気孔率が前記範囲に構成されている。本実施形態の排ガス浄化用酸化触媒装置1によれば、前記構成により、前記パティキュレートを各触媒層3a,3bに十分に接触させることができ、この結果、パティキュレートの燃焼温度を確実に低くすることができる。   Further, in the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, each of the catalyst layers 3a and 3b includes the pores having a diameter in the range of 0.01 to 3.5 μm, and the porous filter substrate 2 and each The total of the catalyst layers 3a and 3b has a porosity in the range of 45 to 50% by volume. Since the second catalyst layer 3b is supported inside the pores 7 of the porous filter base material 2, the porosity of the porous filter base material 2 and each of the catalyst layers 3a and 3b is configured in the above range. Yes. According to the exhaust gas purifying oxidation catalyst device 1 of the present embodiment, with the above-described configuration, the particulates can be sufficiently brought into contact with the catalyst layers 3a and 3b, and as a result, the combustion temperature of the particulates can be reliably lowered. can do.

また、本実施形態の排ガス浄化用酸化触媒装置1においては、各触媒層3a,3bは、一般式Y1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2である複合金属酸化物からなる。前記複合金属酸化物は、一般式YMnOで表される複合金属酸化物において、第1の金属であるYの一部を第3の金属であるAgで置換するとともに、第2の金属であるMnの一部を第4の金属であるRuで置換したものである。したがって、排ガス浄化用酸化触媒装置1によれば、各触媒層3a,3bの触媒の作用により、前記排ガス中のパティキュレートを十分に燃焼除去することができる。 In the oxidation catalyst apparatus for purifying an exhaust gas 1 of the present embodiment, each catalyst layer 3a, 3b is represented by the general formula Y 1-x Ag x Mn 1 -y Ru y O 3, 0.01 ≦ x ≦ It consists of a composite metal oxide satisfying 0.15 and 0.005 ≦ y ≦ 0.2. In the composite metal oxide represented by the general formula YMnO 3 , the composite metal oxide is a second metal while substituting a part of Y as the first metal with Ag as the third metal. A part of Mn is substituted with Ru as the fourth metal. Therefore, according to the oxidation catalyst device 1 for exhaust gas purification, the particulates in the exhaust gas can be sufficiently burned and removed by the action of the catalysts of the catalyst layers 3a and 3b.

次に本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be shown.

本実施例では、まず、硝酸イットリウムと、硝酸銀と、硝酸マンガンと、硝酸ルテニウムと、クエン酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比となるように混合した。前記混合は、乳鉢を用いて25℃の温度で15分間行った。得られた混合物を、400℃の温度に1時間維持して一次焼成を行い、触媒前駆体を形成した。次に、得られた触媒前駆体と、水と、バインダーとしての市販の水分散ジルコニアゾルとを10:100:5の重量比となるように秤量し、回転式ボールミルにて100回転/分で5時間混合して粉砕し、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate, silver nitrate, manganese nitrate, ruthenium nitrate, citric acid, and water were mixed at 0.95: 0.05: 0.95: 0.05: 6: 40. It mixed so that it might become a molar ratio. The mixing was performed using a mortar at a temperature of 25 ° C. for 15 minutes. The obtained mixture was maintained at a temperature of 400 ° C. for 1 hour to perform primary firing to form a catalyst precursor. Next, the obtained catalyst precursor, water, and a commercially available water-dispersed zirconia sol as a binder are weighed so as to have a weight ratio of 10: 100: 5, and are rotated at 100 rpm with a rotary ball mill. The mixture was pulverized by mixing for 5 hours to prepare a catalyst precursor slurry.

次に、軸方向に貫通する複数の貫通孔が断面格子状に配設された、多孔質フィルタ基材2(日本碍子株式会社製SiC多孔質体、商品名MSC14、寸法36mm×36mm×50mm)を用意し、多孔質フィルタ基材2の該貫通孔の一端部を一つ置きに(すなわち、断面市松格子状となるように)、シリカを主成分とするセラミックス接着剤にて閉塞し、流出セル5を形成した。次に、多孔質フィルタ基材2に、前記端部が閉塞された側から前記触媒前駆体スラリーを流し込むことにより、端部が閉塞されていない前記複数の貫通孔(すなわち、流出セル5以外のセル)内に該スラリーを流通させた。続いて、多孔質フィルタ基材2から過剰な前記スラリーを除去した。   Next, a porous filter substrate 2 (SiC porous body manufactured by Nippon Choshi Co., Ltd., trade name MSC14, dimensions 36 mm × 36 mm × 50 mm) in which a plurality of through holes penetrating in the axial direction are arranged in a cross-sectional lattice shape The other end of the through-hole of the porous filter base material 2 is closed (that is, so as to have a checkered cross section), and is clogged with a ceramic adhesive mainly composed of silica. Cell 5 was formed. Next, by pouring the catalyst precursor slurry into the porous filter substrate 2 from the side where the end is closed, the plurality of through-holes whose ends are not closed (that is, other than the outflow cell 5) The slurry was circulated in the cell. Subsequently, the excess slurry was removed from the porous filter substrate 2.

次に、前記スラリーが付着された多孔質フィルタ基材2を800℃の温度に1時間維持して二次焼成を行い、前記端部が閉塞されていない前記貫通孔の表面に、見かけ体積1L当たりの担持量が100gとなるように、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる第1の触媒層3aを形成するとともに、セル隔壁6の気孔7を形成する壁面の表面に、該複合金属酸化物からなる第2の触媒層3bを形成した。次に、流出セル5以外のセルの前記端部が閉塞された側とは反対側の端部を、シリカを主成分とするセラミックス接着剤にて閉塞することにより、流入セル4を形成し、排ガス浄化用酸化触媒装置1を完成させた。 Next, the porous filter base material 2 to which the slurry is adhered is maintained at a temperature of 800 ° C. for 1 hour to perform secondary firing, and an apparent volume of 1 L is formed on the surface of the through hole where the end is not blocked. The first catalyst layer 3a made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 is formed so that the amount of support per unit is 100 g. A second catalyst layer 3b made of the composite metal oxide was formed on the surface of the wall surface forming the pores 7. Next, the inflow cell 4 is formed by closing the end of the cell other than the outflow cell 5 opposite to the side where the end is closed with a ceramic adhesive mainly composed of silica, The oxidation catalyst device 1 for exhaust gas purification was completed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、次のようにして触媒評価性能試験を行った。まず、排ガス浄化用酸化触媒装置1を、排気量が2.4Lであるディーゼルエンジンを搭載したエンジンベンチの排気系に搭載した。次に、パティキュレートを含む雰囲気ガス下において、該雰囲気ガスの排ガス浄化用酸化触媒装置1に対する流入温度180℃、エンジン回転数1500回転/分、トルク70N/mの条件で、前記ディーゼルエンジンを20分間運転した。以上により、排ガス浄化用酸化触媒装置1に、その見かけ体積1Lあたりパティキュレートを3g捕集させた。   Next, a catalyst evaluation performance test was performed on the oxidation catalyst device 1 for exhaust gas purification of this example as follows. First, the exhaust gas purification oxidation catalyst device 1 was mounted on an exhaust system of an engine bench equipped with a diesel engine having a displacement of 2.4 L. Next, in an atmosphere gas containing particulates, the diesel engine is operated under the conditions of an inflow temperature of the atmosphere gas to the exhaust gas purification oxidation catalyst device 1 of 180 ° C., an engine speed of 1500 rpm, and a torque of 70 N / m. Drove for a minute. As described above, 3 g of the particulate per 1 L of the apparent volume was collected by the oxidation catalyst device 1 for exhaust gas purification.

次に、パティキュレートが捕集された排ガス浄化用酸化触媒装置1を前記排気系から取り出し、流通型昇温度装置内の石英管内に固定した。次に、石英管の一端部(供給口)から、酸素と窒素との体積比が10:90である雰囲気ガスを空間速度20000/時間で供給し、石英管の他端部(排出口)から排出させながら、排ガス浄化用酸化触媒装置1を室温から700℃の温度まで3℃/分で加熱した。前記加熱には、流通型昇温度装置内の管状マッフル炉を用いた。このとき、石英管からの排出ガスのCO濃度を質量分析計を用いて測定した。結果を図2に示す。図2において、CO濃度のピークがパティキュレートの燃焼温度に相当する。次に、図2から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は2.3gであった。 Next, the exhaust gas-purifying oxidation catalyst device 1 in which the particulates were collected was taken out from the exhaust system and fixed in a quartz tube in a flow-type temperature rising device. Next, an atmospheric gas having a volume ratio of oxygen to nitrogen of 10:90 is supplied from one end (supply port) of the quartz tube at a space velocity of 20000 / hour, and from the other end (discharge port) of the quartz tube. While discharging, the oxidation catalyst device 1 for exhaust gas purification was heated from room temperature to a temperature of 700 ° C. at 3 ° C./min. For the heating, a tubular muffle furnace in a flow type temperature rising device was used. At this time, the CO 2 concentration of the exhaust gas from the quartz tube was measured using a mass spectrometer. The results are shown in FIG. In FIG. 2, the peak of CO 2 concentration corresponds to the combustion temperature of the particulates. Next, from FIG. 2, the mass of the particulates burned by the exhaust gas purification oxidation catalyst device 1 in the temperature range of 300 ° C. or less was calculated. The results are shown in FIG. As shown in FIG. 3, the amount burned out of 3 g of particulates collected per 1 L of apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 2.3 g.

次に、本実施例の排ガス浄化用酸化触媒装置1をダイヤモンドカッターにて切削することにより、5mm角の立方体を2個製作した。   Next, two 5 mm square cubes were manufactured by cutting the oxidation catalyst device 1 for exhaust gas purification of this example with a diamond cutter.

次に、1個目の立方体の排ガス浄化用酸化触媒装置1に対して、透過型電子顕微鏡を用いて断面画像を撮影した。図4(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図4(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the first cubic exhaust gas purification oxidation catalyst device 1 was taken using a transmission electron microscope. 4A and 4B show cross-sectional images of the oxidation catalyst device 1 for exhaust gas purification. As shown in FIG. 4B, it is clear that the second catalyst layer 3b is formed on the surface of the wall surface forming the pores 7 of the cell partition wall 6.

次に、2個目の立方体の排ガス浄化用酸化触媒装置1に対して、自動水銀ポロシメータを用いて、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図5及び図6に示す。図5に示すように、触媒層3a,3bの細孔の直径は0.01〜2.0μmの範囲であった。また、図6に示すように、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は49.0体積%であった。   Next, for the second cubic oxidation catalyst device 1 for exhaust gas purification, using an automatic mercury porosimeter, the pore diameter of the porous filter substrate 2 and the pore diameters of the catalyst layers 3a, 3b, The total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIGS. As shown in FIG. 5, the diameters of the pores of the catalyst layers 3a and 3b were in the range of 0.01 to 2.0 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 49.0% by volume.

本実施例では、見かけ体積1L当たりの担持量が30gとなるように触媒層3a,3bを形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を形成した。   In this example, the exhaust gas purification oxidation catalyst device 1 was formed in exactly the same way as in Example 1 except that the catalyst layers 3a and 3b were formed so that the loading amount per 1 L of apparent volume was 30 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図7に示す。次に、図7から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は1.2gであった。 Next, the exhaust gas purification oxidation catalyst device 1 of this example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1 to measure the CO 2 concentration of the exhaust gas. The results are shown in FIG. Next, from FIG. 7, the mass of the particulates burned by the exhaust gas purification oxidation catalyst device 1 in the temperature range of 300 ° C. or less was calculated. The results are shown in FIG. As shown in FIG. 3, the amount burned out of 3 g of particulates collected per 1 L of apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 1.2 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、断面画像を撮影した。図8(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図8(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the oxidation catalyst device 1 for exhaust gas purification of this example was taken in exactly the same way as in Example 1. 8A and 8B show cross-sectional images of the oxidation catalyst device 1 for exhaust gas purification. As shown in FIG. 8 (b), it is clear that the second catalyst layer 3 b is formed on the surface of the wall surface that forms the pores 7 of the cell partition wall 6.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図9及び図6に示す。図9に示すように、触媒層3a,3bの細孔の直径は0.05〜0.2μmの範囲であった。また、図6に示すように、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は48.6体積%であった。   Next, regarding the oxidation catalyst device 1 for exhaust gas purification of this example, exactly the same as in Example 1, the pore diameter of the porous filter substrate 2, the pore diameters of the catalyst layers 3a and 3b, and the porous The total porosity of the filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIGS. As shown in FIG. 9, the pore diameters of the catalyst layers 3a and 3b were in the range of 0.05 to 0.2 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 48.6% by volume.

本実施例では、見かけ体積1L当たりの担持量が50gとなるように触媒層3a,3bを形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を形成した。   In this example, the exhaust gas purification oxidation catalyst device 1 was formed in exactly the same way as in Example 1 except that the catalyst layers 3a and 3b were formed so that the loading amount per 1 L of apparent volume was 50 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図10に示す。次に、図10から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は2.1gであった。 Next, the exhaust gas purification oxidation catalyst device 1 of this example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1 to measure the CO 2 concentration of the exhaust gas. The results are shown in FIG. Next, from FIG. 10, the mass of the particulates burned by the exhaust gas purification oxidation catalyst device 1 in the temperature range of 300 ° C. or less was calculated. The results are shown in FIG. As shown in FIG. 3, the amount burned out of 3 g of particulates collected per apparent volume of 1 L of the exhaust gas purifying oxidation catalyst device 1 was 2.1 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、断面画像を撮影した。図11(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図11(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the oxidation catalyst device 1 for exhaust gas purification of this example was taken in exactly the same way as in Example 1. 11A and 11B show cross-sectional images of the exhaust gas purification oxidation catalyst device 1. FIG. As shown in FIG. 11 (b), it is clear that the second catalyst layer 3 b is formed on the surface of the wall surface forming the pores 7 of the cell partition 6.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図12及び図6に示す。図12に示すように、触媒層3a,3bの細孔の直径は0.01〜2.0μmの範囲であった。また、図6に示すように多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は48.3体積%であった。   Next, regarding the oxidation catalyst device 1 for exhaust gas purification of this example, exactly the same as in Example 1, the pore diameter of the porous filter substrate 2, the pore diameters of the catalyst layers 3a and 3b, and the porous The total porosity of the filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIGS. As shown in FIG. 12, the diameters of the pores of the catalyst layers 3a and 3b were in the range of 0.01 to 2.0 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 48.3% by volume.

本実施例では、見かけ体積1L当たりの担持量が80gとなるように触媒層3a,3bを形成した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を形成した。   In this example, the oxidation catalyst device 1 for exhaust gas purification was formed in exactly the same way as in Example 1 except that the catalyst layers 3a and 3b were formed so that the carrying amount per 1 L of apparent volume was 80 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図13に示す。次に、図13から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3により、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は2.4gであった。 Next, the exhaust gas purification oxidation catalyst device 1 of this example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1 to measure the CO 2 concentration of the exhaust gas. The results are shown in FIG. Next, from FIG. 13, the mass of the particulates burned by the exhaust gas purification oxidation catalyst device 1 in the temperature range of 300 ° C. or less was calculated. The results are shown in FIG. According to FIG. 3, the amount burned out of 3 g of particulates collected per 1 L of apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 2.4 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、断面画像を撮影した。図14(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図14(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the oxidation catalyst device 1 for exhaust gas purification of this example was taken in exactly the same way as in Example 1. 14A and 14B show cross-sectional images of the exhaust gas purification oxidation catalyst device 1. FIG. As shown in FIG. 14 (b), it is clear that the second catalyst layer 3 b is formed on the surface of the wall surface forming the pores 7 of the cell partition 6.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図15及び図6に示す。図15に示すように、触媒層3a,3bの細孔の直径は0.01〜2.0μmの範囲であった。また、図6に示すように多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は48.6体積%であった。   Next, regarding the oxidation catalyst device 1 for exhaust gas purification of this example, exactly the same as in Example 1, the pore diameter of the porous filter substrate 2, the pore diameters of the catalyst layers 3a and 3b, and the porous The total porosity of the filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIG. 15 and FIG. As shown in FIG. 15, the diameters of the pores of the catalyst layers 3a and 3b were in the range of 0.01 to 2.0 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 48.6% by volume.

本実施例では、まず、硝酸イットリウムと、硝酸銀と、硝酸マンガンと、硝酸ルテニウムを、0.95:0.05:0.95:0.05のモル比となるように混合した。前記混合は、乳鉢を用いて25℃の温度で15分間行った。得られた混合物を水に溶解させ、イットリウム濃度が0.1mol/Lである触媒原料溶液を調製した。   In this example, first, yttrium nitrate, silver nitrate, manganese nitrate, and ruthenium nitrate were mixed at a molar ratio of 0.95: 0.05: 0.95: 0.05. The mixing was performed using a mortar at a temperature of 25 ° C. for 15 minutes. The obtained mixture was dissolved in water to prepare a catalyst raw material solution having an yttrium concentration of 0.1 mol / L.

次に、前記触媒原料溶液を用いる点を除いて実施例1と全く同一にして、多孔質フィルタ基材2の端部が閉塞されていない前記複数の貫通孔内に該触媒原料溶液を流通させ、続いて、多孔質フィルタ基材2から過剰な該触媒原料溶液を除去した。   Next, except that the catalyst raw material solution is used, the catalyst raw material solution is circulated in the plurality of through holes in which the end portion of the porous filter base material 2 is not blocked, exactly the same as in Example 1. Subsequently, the excess catalyst raw material solution was removed from the porous filter substrate 2.

次に、多孔質フィルタ基材2を800℃の温度に1時間維持して二次焼成を行い、前記端部が閉塞されていない前記貫通孔の表面に、見かけ体積1L当たりの担持量が10gとなるように、セル隔壁6の流入セル4側の表面に、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる第1の触媒層3aを形成するとともに、セル隔壁6の気孔7を形成する壁面の表面に、該複合金属酸化物からなる第2の触媒層3bを形成した。 Next, the porous filter base material 2 is maintained at a temperature of 800 ° C. for 1 hour to perform secondary firing, and the loading amount per 1 L of apparent volume is 10 g on the surface of the through hole where the end is not blocked. The first catalyst layer 3a made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 is formed on the surface of the cell partition wall 6 on the inflow cell 4 side. At the same time, the second catalyst layer 3b made of the composite metal oxide was formed on the surface of the wall surface forming the pores 7 of the cell partition wall 6.

次に、硝酸イットリウムと、硝酸銀と、硝酸マンガンと、硝酸ルテニウムと、クエン酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比となるように混合した。前記混合は、乳鉢を用いて25℃の温度で15分間行った。得られた混合物を、400℃の温度に1時間維持して一次焼成を行い、触媒前駆体を形成した。次に、得られた触媒前駆体と、水と、バインダーとしての市販の水分散ジルコニアゾルとを10:100:5の重量比となるように秤量し、回転式ボールミルにて100回転/分で5時間混合して粉砕し、触媒前駆体スラリーを調製した。   Next, the molar ratio of yttrium nitrate, silver nitrate, manganese nitrate, ruthenium nitrate, citric acid, and water is 0.95: 0.05: 0.95: 0.05: 6: 40. Mixed. The mixing was performed using a mortar at a temperature of 25 ° C. for 15 minutes. The obtained mixture was maintained at a temperature of 400 ° C. for 1 hour to perform primary firing to form a catalyst precursor. Next, the obtained catalyst precursor, water, and a commercially available water-dispersed zirconia sol as a binder are weighed so as to have a weight ratio of 10: 100: 5, and are rotated at 100 rpm with a rotary ball mill. The mixture was pulverized by mixing for 5 hours to prepare a catalyst precursor slurry.

次に、見かけ体積1L当たりの担持量が10gである触媒層3a,3bが形成された多孔質フィルタ基材2を用いる点を除いて実施例1と全く同一にして、多孔質フィルタ基材2の端部が閉塞されていない前記複数の貫通孔内に前記触媒前駆体スラリーを流通させ、続いて、多孔質フィルタ基材2から過剰な該触媒前駆体スラリーを除去した。   Next, the porous filter base material 2 is exactly the same as that of Example 1 except that the porous filter base material 2 on which the catalyst layers 3a and 3b having an apparent loading amount of 1 g are formed is used. The catalyst precursor slurry was circulated through the plurality of through holes whose end portions were not closed, and then the excess catalyst precursor slurry was removed from the porous filter substrate 2.

次に、多孔質フィルタ基材2を800℃の温度に1時間維持して三次焼成を行い、前記端部が閉塞されていない前記貫通孔の表面に、見かけ体積1L当たりの担持量が50gとなるように、セル隔壁6の流入セル4側の表面に、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる第1の触媒層3aを形成するとともに、セル隔壁6の気孔7を形成する壁面の表面に、該複合金属酸化物からなる第2の触媒層3bを形成した。ここで、前記担持量50gは、前記二次焼成による担持量10gを含めた値である。次に、流出セル5以外のセルの前記端部が閉塞された側とは反対側の端部を、シリカを主成分とするセラミックス接着剤にて閉塞することにより、流入セル4を形成し、排ガス浄化用酸化触媒装置1を完成させた。 Next, the porous filter base material 2 is maintained at a temperature of 800 ° C. for 1 hour to perform the third firing, and the loading amount per apparent volume of 1 L is 50 g on the surface of the through hole where the end is not blocked. The first catalyst layer 3 a made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 is formed on the surface of the cell partition wall 6 on the inflow cell 4 side. The second catalyst layer 3b made of the composite metal oxide was formed on the surface of the wall surface forming the pores 7 of the cell partition wall 6. Here, the carrying amount 50 g is a value including the carrying amount 10 g by the secondary firing. Next, the inflow cell 4 is formed by closing the end of the cell other than the outflow cell 5 opposite to the side where the end is closed with a ceramic adhesive mainly composed of silica, The oxidation catalyst device 1 for exhaust gas purification was completed.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図16に示す。次に、図16から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は2.5gであった。 Next, the exhaust gas purification oxidation catalyst device 1 of this example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1 to measure the CO 2 concentration of the exhaust gas. The results are shown in FIG. Next, from FIG. 16, in the temperature range of 300 ° C. or less, the mass of the particulates burned by the exhaust gas purification oxidation catalyst device 1 was calculated. The results are shown in FIG. As shown in FIG. 3, the burned amount of 2.5 g of the particulates collected per 1 L of the apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 2.5 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、断面画像を撮影した。図17(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図17(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the oxidation catalyst device 1 for exhaust gas purification of this example was taken in exactly the same way as in Example 1. FIGS. 17A and 17B show cross-sectional images of the oxidation catalyst device 1 for exhaust gas purification. As shown in FIG. 17 (b), it is clear that the second catalyst layer 3 b is formed on the surface of the wall surface that forms the pores 7 of the cell partition 6.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図18及び図6に示す。図18に示すように、触媒層3a,3bの細孔の直径は0.03〜2.5μmの範囲であった。また、図6に示すように多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は49.0体積%であった。   Next, regarding the oxidation catalyst device 1 for exhaust gas purification of this example, exactly the same as in Example 1, the pore diameter of the porous filter substrate 2, the pore diameters of the catalyst layers 3a and 3b, and the porous The total porosity of the filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIGS. As shown in FIG. 18, the diameters of the pores of the catalyst layers 3a and 3b were in the range of 0.03 to 2.5 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 49.0% by volume.

本実施例では、3次焼成により見かけ体積1L当たりの担持量が80gとなるように触媒層3a,3bを形成した点を除いて実施例5と全く同一にして、排ガス浄化用酸化触媒装置1を形成した。   In this embodiment, the oxidation catalyst device 1 for exhaust gas purification is exactly the same as the embodiment 5 except that the catalyst layers 3a and 3b are formed so that the carrying amount per 1 L apparent volume is 80 g by the third firing. Formed.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図19に示す。次に、図29から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は2.2gであった。 Next, the exhaust gas purification oxidation catalyst device 1 of this example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1 to measure the CO 2 concentration of the exhaust gas. The results are shown in FIG. Next, from FIG. 29, the mass of the particulates burned by the exhaust gas purifying oxidation catalyst device 1 in the temperature range of 300 ° C. or less was calculated. The results are shown in FIG. As shown in FIG. 3, the amount burned out of 3 g of particulates collected per 1 L of apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 2.2 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、断面画像を撮影した。図20(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図20(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the oxidation catalyst device 1 for exhaust gas purification of this example was taken in exactly the same way as in Example 1. FIGS. 20A and 20B show cross-sectional images of the oxidation catalyst device 1 for exhaust gas purification. As shown in FIG. 20 (b), it is clear that the second catalyst layer 3 b is formed on the surface of the wall surface forming the pores 7 of the cell partition 6.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、多孔質フィルタ基材2の気孔7の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図21及び図6に示す。図21に示すように、触媒層3a,3bの細孔の直径は0.02〜3.5μmの範囲であった。また、図6に示すように多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は47.3体積%であった。   Next, regarding the oxidation catalyst device 1 for exhaust gas purification of this example, exactly the same as in Example 1, the diameter of the pores 7 of the porous filter substrate 2, the diameters of the pores of the catalyst layers 3a, 3b, and the porous The total porosity of the quality filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIG. 21 and FIG. As shown in FIG. 21, the diameters of the pores of the catalyst layers 3a and 3b were in the range of 0.02 to 3.5 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 47.3% by volume.

本実施例では、得られた前記触媒前駆体と、水と、バインダーとしての市販の水分散ジルコニアゾルとを10:70:5の重量比となるように秤量した点を除いて実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を形成した。   In this example, Example 1 except that the obtained catalyst precursor, water, and a commercially available water-dispersed zirconia sol as a binder were weighed to a weight ratio of 10: 70: 5. Exhaust gas purification oxidation catalyst device 1 was formed exactly the same.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図22に示す。次に、図22から、300℃以下の温度範囲において、排ガス浄化用酸化触媒装置1により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は1.52gであった。 Next, the exhaust gas purification oxidation catalyst device 1 of this example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1 to measure the CO 2 concentration of the exhaust gas. The results are shown in FIG. Next, from FIG. 22, in the temperature range of 300 ° C. or less, the mass of the particulate burned by the exhaust gas purification oxidation catalyst device 1 was calculated. The results are shown in FIG. As shown in FIG. 3, the amount burned out of 3 g of particulates collected per 1 L of apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 1.52 g.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、断面画像を撮影した。図23(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図23(b)に示すように、セル隔壁6の気孔7を形成する壁面の表面に第2の触媒層3bが形成されていることが明らかである。   Next, a cross-sectional image of the oxidation catalyst device 1 for exhaust gas purification of this example was taken in exactly the same way as in Example 1. FIGS. 23A and 23B show cross-sectional images of the oxidation catalyst device 1 for exhaust gas purification. As shown in FIG. 23 (b), it is clear that the second catalyst layer 3 b is formed on the surface of the wall surface that forms the pores 7 of the cell partition wall 6.

次に、本実施例の排ガス浄化用酸化触媒装置1について、実施例1と全く同一にして、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの細孔の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。結果を図24及び図6に示す。図24に示すように、触媒層3a,3bの細孔の直径は0.05〜2.0μmの範囲であった。また、図6に示すように多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は49.3体積%であった。
〔比較例〕
本比較例では、まず、硝酸イットリウムと、硝酸銀と、硝酸マンガンと、硝酸ルテニウムと、リンゴ酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比となるように混合した。前記混合は、乳鉢を用いて25℃の温度で15分間行った。得られた混合物を、350℃の温度に1時間維持して一次焼成を行い、触媒前駆体を形成した。次に、得られた触媒前駆体と、水と、バインダーとしての市販の水分散ジルコニアゾルとを10:100:10の重量比となるように秤量し、回転式ボールミルにて100回転/分で5時間混合して粉砕し、触媒前駆体スラリーを調製した。
Next, regarding the oxidation catalyst device 1 for exhaust gas purification of this example, exactly the same as in Example 1, the pore diameter of the porous filter substrate 2, the pore diameters of the catalyst layers 3a and 3b, and the porous The total porosity of the filter substrate 2 and the catalyst layers 3a and 3b was measured. The results are shown in FIGS. As shown in FIG. 24, the diameters of the pores of the catalyst layers 3a and 3b were in the range of 0.05 to 2.0 μm. Further, as shown in FIG. 6, the total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was 49.3% by volume.
[Comparative example]
In this comparative example, first, yttrium nitrate, silver nitrate, manganese nitrate, ruthenium nitrate, malic acid, and water were mixed at 0.95: 0.05: 0.95: 0.05: 6: 40. It mixed so that it might become a molar ratio. The mixing was performed using a mortar at a temperature of 25 ° C. for 15 minutes. The obtained mixture was maintained at a temperature of 350 ° C. for 1 hour to perform primary firing to form a catalyst precursor. Next, the obtained catalyst precursor, water, and a commercially available water-dispersed zirconia sol as a binder are weighed so as to have a weight ratio of 10: 100: 10, and are rotated at 100 rpm with a rotary ball mill. The mixture was pulverized by mixing for 5 hours to prepare a catalyst precursor slurry.

次に、前記スラリーが付着された前記多孔質フィルタ基材を800℃の温度に1時間維持して二次焼成を行い、前記端部が閉塞されていない前記貫通孔の表面に、見かけ体積1L当たりの担持量が100gとなるように、セル隔壁の流入セル側の表面に、複合金属酸化物Y0.95Ag0.05Mn0.95Ru0.05からなる第1の触媒層を形成した。このとき、セル隔壁の気孔を形成する壁面の表面には、第2の触媒層が形成されなかった。次に、実施例1と全く同一にして、流出セル以外のセルの前記端部が閉塞された側とは反対側の端部を、シリカを主成分とするセラミックス接着剤にて閉塞することにより、流入セルを形成し、排ガス浄化用酸化触媒装置を完成させた。 Next, the porous filter substrate to which the slurry is attached is maintained at a temperature of 800 ° C. for 1 hour to perform secondary firing, and an apparent volume of 1 L is formed on the surface of the through hole where the end is not blocked. The first catalyst layer made of the composite metal oxide Y 0.95 Ag 0.05 Mn 0.95 Ru 0.05 O 3 on the surface of the cell partition wall on the inflow cell side so that the supported amount per unit cell is 100 g Formed. At this time, the second catalyst layer was not formed on the surface of the wall surface forming the pores of the cell partition wall. Next, exactly the same as in Example 1, by closing the end of the cell other than the outflow cell opposite to the side where the end was closed with a ceramic adhesive mainly composed of silica. The inflow cell was formed, and the exhaust gas purification oxidation catalyst device was completed.

次に、本比較例の排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、触媒評価性能試験を行い排出ガスのCO濃度を測定した。結果を図2に示す。次に、図2から、300℃以下の温度範囲において、本比較例の排ガス浄化用酸化触媒装置により燃焼されたパティキュレートの質量を算出した。結果を図3に示す。図3に示すように、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたりに捕集されたパティキュレート3gのうち、燃焼された量は0.4gであった。 Next, the exhaust gas purification oxidation catalyst device of this comparative example was subjected to a catalyst evaluation performance test in exactly the same manner as in Example 1, and the CO 2 concentration of the exhaust gas was measured. The results are shown in FIG. Next, from FIG. 2, in the temperature range of 300 ° C. or less, the mass of the particulates burned by the exhaust gas purification oxidation catalyst device of this comparative example was calculated. The results are shown in FIG. As shown in FIG. 3, the amount burned out of 3 g of the particulates collected per 1 L of the apparent volume of the oxidation catalyst device 1 for exhaust gas purification was 0.4 g.

次に、本比較例の排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、断面画像を撮影した。図25(a),(b)に本比較例の排ガス浄化用酸化触媒装置の断面画像を示す。図25(b)に示すように、セル隔壁の気孔を形成する壁面の表面に第2の触媒層を備えていないことが明らかである。   Next, regarding the oxidation catalyst device for exhaust gas purification of this comparative example, a cross-sectional image was taken in exactly the same manner as in Example 1. 25 (a) and 25 (b) show cross-sectional images of the oxidation catalyst device for exhaust gas purification of this comparative example. As shown in FIG. 25 (b), it is clear that the second catalyst layer is not provided on the surface of the wall surface forming the pores of the cell partition wall.

次に、本比較例の排ガス浄化用酸化触媒装置について、実施例1と全く同一にして、多孔質フィルタ基材の気孔の直径及び第1の触媒層の細孔の直径と、多孔質フィルタ基材及び第1の触媒層の触媒層を合わせた全体の気孔率とを測定した。結果を図5及び図6に示す。図5に示すように、第1の触媒層の細孔の直径は0.02〜10μmの範囲であった。また、図6に示すように多孔質フィルタ基材及び第1の触媒層を合わせた全体の気孔率は52.5体積%であった。   Next, regarding the oxidation catalyst device for exhaust gas purification of this comparative example, exactly the same as in Example 1, the pore diameter of the porous filter substrate and the pore diameter of the first catalyst layer, and the porous filter base The total porosity of the material and the catalyst layer of the first catalyst layer was measured. The results are shown in FIGS. As shown in FIG. 5, the diameter of the pores of the first catalyst layer was in the range of 0.02 to 10 μm. Moreover, as shown in FIG. 6, the total porosity of the porous filter substrate and the first catalyst layer was 52.5% by volume.

図2,7,10,13,16,19,22から、実施例1〜7の排ガス浄化用酸化触媒装置1によれば、比較例の排ガス浄化用酸化触媒装置と比較して、パティキュレートをより低温で酸化(燃焼)できることが明らかである。   2, 7, 10, 13, 16, 19, 22, according to the oxidation catalyst device 1 for exhaust gas purification of Examples 1 to 7, the particulates are compared with the oxidation catalyst device for exhaust gas purification of the comparative example. It is clear that it can be oxidized (combusted) at lower temperatures.

これは、図4,8,11,14,17,20,23,25から明らかであるように、比較例の排ガス浄化用酸化触媒装置は、セル隔壁の表面に第1の触媒層が形成されているだけであるが、実施例1〜7の排ガス浄化用酸化触媒装置1は、第1の触媒層3aに加えて、セル隔壁6の気孔7を形成する壁面表面に第2の触媒層3bが形成されていることにより、前記排ガス中の前記パティキュレートの触媒層3a,3bへの接触確率が高まるためであると考えられる。   As is apparent from FIGS. 4, 8, 11, 14, 17, 20, 23, and 25, the oxidation catalyst device for exhaust gas purification of the comparative example has the first catalyst layer formed on the surface of the cell partition wall. However, in addition to the first catalyst layer 3a, the oxidation catalyst device 1 for exhaust gas purification of Examples 1 to 7 has the second catalyst layer 3b on the wall surface forming the pores 7 of the cell partition wall 6. This is considered to be because the probability of contact of the particulates in the exhaust gas with the catalyst layers 3a and 3b is increased.

本実施形態の排ガス浄化用酸化触媒装置の説明的断面図。Explanatory sectional drawing of the oxidation catalyst apparatus for exhaust gas purification of this embodiment. 実施例1及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 1 and Comparative Example. 実施例1〜7及び比較例の排ガス浄化用酸化触媒装置によるパティキュレート燃焼量を示すグラフ。The graph which shows the particulate combustion amount by the oxidation catalyst apparatus for exhaust gas purification of Examples 1-7 and a comparative example. 実施例1の排ガス浄化用酸化触媒装置の断面画像。1 is a cross-sectional image of an oxidation catalyst device for exhaust gas purification of Example 1. FIG. 実施例1及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material concerning the oxidation catalyst apparatus for exhaust gas purification of Example 1 and a comparative example, and the diameter of the pore of each catalyst layer. 実施例1〜7及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材及び各触媒層全体の気孔率を示すグラフ。The graph which shows the porosity of the porous filter base material which concerns on the oxidation catalyst apparatus for exhaust gas purification of Examples 1-7 and a comparative example, and each catalyst layer whole. 実施例2及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 2 and Comparative Example. 実施例2の排ガス浄化用酸化触媒装置の断面画像。Sectional image of the oxidation catalyst device for exhaust gas purification of Example 2. 実施例2及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material concerning the oxidation catalyst apparatus for exhaust gas purification of Example 2 and a comparative example, and the diameter of the pore of each catalyst layer. 実施例3及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 3 and Comparative Example. 実施例3の排ガス浄化用酸化触媒装置の断面画像。Sectional image of the oxidation catalyst device for exhaust gas purification of Example 3. 実施例3及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material which concerns on the oxidation catalyst apparatus for exhaust gas purification of Example 3 and a comparative example, and the diameter of the pore of each catalyst layer. 実施例4及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 4 and Comparative Example. 実施例4の排ガス浄化用酸化触媒装置の断面画像。Sectional image of the oxidation catalyst device for exhaust gas purification of Example 4. 実施例4及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material which concerns on the oxidation catalyst apparatus for exhaust gas purification of Example 4 and a comparative example, and the diameter of the pore of each catalyst layer. 実施例5及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 5 and Comparative Example. 実施例5の排ガス浄化用酸化触媒装置の断面画像。Sectional image of an oxidation catalyst device for exhaust gas purification of Example 5. 実施例5及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material which concerns on the oxidation catalyst apparatus for exhaust gas purification of Example 5 and a comparative example, and the diameter of the pore of each catalyst layer. 実施例6及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 6 and Comparative Example. 実施例6の排ガス浄化用酸化触媒装置の断面画像。Sectional image of the oxidation catalyst device for exhaust gas purification of Example 6. 実施例6及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material concerning the oxidation catalyst apparatus for exhaust gas purification of Example 6 and a comparative example, and the diameter of the pore of each catalyst layer. 実施例7及び比較例の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。Graph showing the CO 2 concentration in the exhaust gas by the oxidation catalyst apparatus for purifying an exhaust gas of Example 7 and Comparative Examples. 実施例7の排ガス浄化用酸化触媒装置の断面画像。Sectional image of the oxidation catalyst device for exhaust gas purification of Example 7. 実施例7及び比較例の排ガス浄化用酸化触媒装置に係る多孔質フィルタ基材の気孔の直径及び各触媒層の細孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material concerning the oxidation catalyst apparatus for exhaust gas purification of Example 7 and a comparative example, and the diameter of the pore of each catalyst layer. 比較例の排ガス浄化用酸化触媒装置の断面画像。The cross-sectional image of the oxidation catalyst apparatus for exhaust gas purification of a comparative example.

符号の説明Explanation of symbols

1…排ガス浄化用酸化触媒装置、 2…多孔質フィルタ基材、 3a…第1の触媒層、 3b…第2の触媒層、 4…流入セル、 4a…排ガス流入部、 4b…排ガス流出部、 5…流出セル、 5a…排ガス流出部、 5b…排ガス流入部、 6…セル隔壁、 7…気孔。   DESCRIPTION OF SYMBOLS 1 ... Oxidation catalyst apparatus for exhaust gas purification, 2 ... Porous filter base material, 3a ... 1st catalyst layer, 3b ... 2nd catalyst layer, 4 ... Inflow cell, 4a ... Exhaust gas inflow part, 4b ... Exhaust gas outflow part, 5 ... Outflow cell, 5a ... Exhaust gas outflow part, 5b ... Exhaust gas inflow part, 6 ... Cell partition, 7 ... Pore.

Claims (3)

内燃機関の排ガス中のパティキュレートを、複合金属酸化物からなる触媒を用いて酸化して浄化する排ガス浄化用酸化触媒装置であって、
軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されるとともに排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されるとともに排ガス流出部が開放された複数の流出セルとを備え、該流入セル及び該流出セルを交互に配設して各セルの境界部をセル隔壁とするウォールフロー構造を有する多孔質フィルタ基材と、
該セル隔壁の少なくとも該流入セル側の表面に担持された該複合金属酸化物からなる第1の触媒層と、
該多孔質フィルタ基材の気孔を形成する壁面表面に担持された該複合金属酸化物からなる第2の触媒層とを備え、
各触媒層が多孔質体からなることを特徴とする排ガス浄化用酸化触媒装置。
An oxidation catalyst device for exhaust gas purification that purifies particulates in exhaust gas of an internal combustion engine by oxidizing using a catalyst made of a composite metal oxide,
Among a plurality of through holes formed so as to penetrate in the axial direction, a plurality of inflow cells in which an exhaust gas inflow portion is opened and an exhaust gas outflow portion is blocked, and an exhaust gas inflow portion of the plurality of through holes are closed. And a plurality of outflow cells whose exhaust gas outflow portions are opened, and a porous filter base material having a wall flow structure in which the inflow cells and the outflow cells are alternately arranged and a boundary between each cell is a cell partition wall When,
A first catalyst layer comprising the composite metal oxide supported on at least the surface of the cell partition wall on the inflow cell side;
A second catalyst layer made of the composite metal oxide supported on the wall surface forming pores of the porous filter substrate,
An oxidation catalyst device for exhaust gas purification, wherein each catalyst layer is made of a porous material.
前記各触媒層は、直径が0.01〜3.5μmの範囲である細孔を備える多孔質体からなり、
前記多孔質フィルタ基材及び該各触媒層全体の気孔率が、45〜50体積%の範囲であることを特徴とする請求項1記載の排ガス浄化用酸化触媒装置。
Each catalyst layer is composed of a porous body having pores having a diameter in the range of 0.01 to 3.5 μm,
The oxidation catalyst device for exhaust gas purification according to claim 1, wherein the porosity of the porous filter substrate and each of the catalyst layers is in the range of 45 to 50% by volume.
前記各触媒層は、一般式Y1−xAgMn1−yRuで表され、0.01≦x≦0.15かつ0.005≦y≦0.2である複合金属酸化物からなることを特徴とする請求項1又は請求項2に記載の排ガス浄化用酸化触媒装置。 Wherein the catalyst layers is represented by general formula Y 1-x Ag x Mn 1 -y Ru y O 3, complex metal oxide is 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0.2 The oxidation catalyst device for exhaust gas purification according to claim 1 or 2, wherein the oxidation catalyst device comprises an object.
JP2008117149A 2008-04-25 2008-04-28 Oxidation catalyst device for purification of exhaust gas Pending JP2009262102A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008117149A JP2009262102A (en) 2008-04-28 2008-04-28 Oxidation catalyst device for purification of exhaust gas
EP09156695.0A EP2113303B1 (en) 2008-04-25 2009-03-30 Production method of oxidation catalyst device for exhaust gas purification
EP10163127A EP2230013A1 (en) 2008-04-25 2009-03-30 Production method of oxidation catalyst device for exhaust gas purificatiion
US12/420,173 US8168559B2 (en) 2008-04-25 2009-04-08 Production method of oxidation catalyst device for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117149A JP2009262102A (en) 2008-04-28 2008-04-28 Oxidation catalyst device for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JP2009262102A true JP2009262102A (en) 2009-11-12

Family

ID=41388627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117149A Pending JP2009262102A (en) 2008-04-25 2008-04-28 Oxidation catalyst device for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JP2009262102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131630A1 (en) * 2019-12-27 2021-07-01 株式会社キャタラー Exhaust gas purification catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300951A (en) * 2003-03-28 2004-10-28 Ngk Insulators Ltd Catalyst-carrying filter, exhaust emission control system using the same, and catalyst body
JP2005279436A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Process for producing catalyst for purifying exhaust gas
WO2007026844A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalytic structure, precoated support for producing honeycomb catalytic structure, and process for producing honeycomb catalytic structure
JP2007237012A (en) * 2006-03-06 2007-09-20 Dowa Holdings Co Ltd Dpf and its manufacturing method
EP1914000A1 (en) * 2006-10-20 2008-04-23 HONDA MOTOR CO., Ltd. Oxidation catalyst for purifying exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300951A (en) * 2003-03-28 2004-10-28 Ngk Insulators Ltd Catalyst-carrying filter, exhaust emission control system using the same, and catalyst body
JP2005279436A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Process for producing catalyst for purifying exhaust gas
WO2007026844A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalytic structure, precoated support for producing honeycomb catalytic structure, and process for producing honeycomb catalytic structure
JP2007237012A (en) * 2006-03-06 2007-09-20 Dowa Holdings Co Ltd Dpf and its manufacturing method
EP1914000A1 (en) * 2006-10-20 2008-04-23 HONDA MOTOR CO., Ltd. Oxidation catalyst for purifying exhaust gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131630A1 (en) * 2019-12-27 2021-07-01 株式会社キャタラー Exhaust gas purification catalyst
CN114845808A (en) * 2019-12-27 2022-08-02 株式会社科特拉 Catalyst for exhaust gas purification
JP7475138B2 (en) 2019-12-27 2024-04-26 株式会社キャタラー Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP4753209B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP4835193B2 (en) Diesel particulate filter
US10125649B2 (en) Exhaust gas purification catalyst
CN106794421A (en) Emission-control equipment
EP2022563A1 (en) Exhaust gas purification catalyst
JP2010284583A (en) Oxidation catalytic apparatus for cleaning exhaust gas
WO2009130869A1 (en) Oxidation catalyst and oxidation catalyst device for exhaust gas purification
JP2009136787A (en) Method of manufacturing oxidation catalyst device for purification of exhaust gas
EP3925681A1 (en) Particulate filter
JP5095538B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP5052401B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP2006314894A (en) Production method of catalyst for cleaning emission gas
JP5330044B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP5041367B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JPWO2020153309A1 (en) Exhaust gas purification catalyst
JP2009262102A (en) Oxidation catalyst device for purification of exhaust gas
US11904298B2 (en) Composite oxide catalyst, porous composite, and method of producing composite oxide catalyst
JP4987794B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
US11071937B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
JP4591959B2 (en) Diesel particulate filter
JP2007275874A (en) Catalyst and particulate filter type catalyst for cleaning exhaust gas
US20190299144A1 (en) Ceramic porous body and dust collecting filter
EP2113303B1 (en) Production method of oxidation catalyst device for exhaust gas purification
JP5024794B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703