JP5330044B2 - Oxidation catalyst equipment for exhaust gas purification - Google Patents

Oxidation catalyst equipment for exhaust gas purification Download PDF

Info

Publication number
JP5330044B2
JP5330044B2 JP2009070203A JP2009070203A JP5330044B2 JP 5330044 B2 JP5330044 B2 JP 5330044B2 JP 2009070203 A JP2009070203 A JP 2009070203A JP 2009070203 A JP2009070203 A JP 2009070203A JP 5330044 B2 JP5330044 B2 JP 5330044B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
porous filter
oxidation catalyst
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070203A
Other languages
Japanese (ja)
Other versions
JP2010042396A (en
Inventor
祐二 磯谷
潔 田名網
啓太 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009070203A priority Critical patent/JP5330044B2/en
Priority to PCT/JP2009/001775 priority patent/WO2009130869A1/en
Priority to EP09734310A priority patent/EP2269731B1/en
Publication of JP2010042396A publication Critical patent/JP2010042396A/en
Application granted granted Critical
Publication of JP5330044B2 publication Critical patent/JP5330044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation catalyst device for purifying an exhaust gas which can oxidize and fire particulates in the exhaust gas under lower temperature and in a shorter time. <P>SOLUTION: The oxidation catalyst device 1 for purifying the exhaust gas is provided with a porous filter substrate 2 and a catalyst carried by the porous filter substrate 2 wherein the porous filter substrate 2 is equipped with an influent cell 4, effluent cell 5 and cell septum 6. The catalyst consists of a first catalyst layer 3a carried by the surface of the influent cell 4 side of the cell septum 6 and a second catalyst layer carried by the surface of the wall face of the pore 7 of the cell septum 6. The particulates in the exhaust gas are oxidized and purified by the catalyst. The catalyst is represented by general formula: Y<SB>1-x</SB>Ag<SB>x</SB>Mn<SB>1-y</SB>Ti<SB>y</SB>O<SB>3</SB>, and consists of a composite metal oxide wherein 0.01&le;x&le;0.30 and 0.005&le;y&le;0.30 and a porous material which is a mixture with zirconium oxide. The catalyst layers 3a, 3b are comprised of a porous material equipped with a pore of which the diameter is 0.01-3.0 &mu;m and the porosity of the whole of the porous filter substrate 2 and the catalyst layers 3a, 3b is 30-55 vol%. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、内燃機関の排ガスに含まれるパティキュレートを、複合金属酸化物からなる触媒を用いて酸化、燃焼して浄化する排ガス浄化用酸化触媒装置に関するものである。   The present invention relates to an oxidation catalyst device for exhaust gas purification that purifies particulates contained in exhaust gas of an internal combustion engine by oxidizing and burning them using a catalyst made of a composite metal oxide.

従来、内燃機関の排ガスに含まれるパティキュレートや炭化水素を酸化、燃焼して浄化するために、ペロブスカイト型複合金属酸化物からなる触媒を用いた排ガス浄化用酸化触媒装置が知られている。   Conventionally, an oxidation catalyst device for exhaust gas purification using a catalyst made of a perovskite-type composite metal oxide to oxidize, burn, and purify particulates and hydrocarbons contained in exhaust gas of an internal combustion engine is known.

前記排ガス浄化用酸化触媒装置として、一方の端部を排ガス流入部とし、他方の端部を排ガス流出部とするウォールフロー構造を有する多孔質フィルタ基材と、該多孔質フィルタ基材に担持された触媒とを備えるものがある(例えば、特許文献1参照)。   As the oxidation catalyst device for exhaust gas purification, a porous filter substrate having a wall flow structure in which one end portion is an exhaust gas inflow portion and the other end portion is an exhaust gas outflow portion, and is supported on the porous filter substrate. (For example, refer to Patent Document 1).

前記ウォールフロー構造を備える前記多孔質フィルタ基材は、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されるとともに排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されるとともに排ガス流出部が開放された複数の流出セルと、該流入セル及び該流出セルを隔てるセル隔壁とを備えるものである。一方、前記触媒は、前記セル隔壁の前記流入セル側の表面に担持された第1の触媒層と、前記多孔質フィルタ基材の気孔を形成する壁面表面に担持された第2の触媒層とからなる。   The porous filter base material having the wall flow structure includes a plurality of inflow cells in which an exhaust gas inflow portion is opened and an exhaust gas outflow portion is blocked among a plurality of through holes formed to penetrate in the axial direction. The exhaust gas inflow portions of the plurality of through holes are closed and the exhaust gas outflow portions are opened, and the inflow cells and the cell partition walls separating the outflow cells are provided. On the other hand, the catalyst includes a first catalyst layer supported on the surface of the cell partition wall on the inflow cell side, and a second catalyst layer supported on a wall surface forming pores of the porous filter substrate. Consists of.

前記排ガス浄化用酸化触媒装置によれば、前記排ガス流入部から流入する内燃機関の排ガスを前記セル隔壁を介して前記流出セルに流通させる間に、該排ガス中のパティキュレートを前記触媒により酸化、燃焼し、浄化された該排ガスを前記排ガス流出部から流出せしめる。   According to the oxidation catalyst device for exhaust gas purification, the particulate matter in the exhaust gas is oxidized by the catalyst while the exhaust gas of the internal combustion engine flowing in from the exhaust gas inflow portion is circulated to the outflow cell through the cell partition wall. The exhaust gas that has been burned and purified is discharged from the exhaust gas outlet.

前記従来の排ガス浄化用酸化触媒装置において、前記触媒としては、一般式AMOで表され、AサイトにはLa、Y、Dy、Nd等の1種以上と、Sr、Ba、Mg等の1種以上の金属が入り、MサイトにはMn、Fe、Co等の1種以上の金属が入るペロブスカイト型複合金属酸化物が用いられるとされている。前記ペロブスカイト型複合金属酸化物として、具体的には、La1−xSrFeO(0.1≦x≦0.65)、La1−xBaFeO(0.1≦x≦0.65)等が挙げられている。 In the conventional oxidation catalyst device for exhaust gas purification, the catalyst is represented by the general formula AMO 3 , and the A site has one or more of La, Y, Dy, Nd, etc., and 1 of Sr, Ba, Mg, etc. It is said that perovskite type composite metal oxides containing at least one kind of metal and at least one kind of metal such as Mn, Fe, Co and the like at the M site are used. Specific examples of the perovskite-type composite metal oxide include La 1-x Sr x FeO 3 (0.1 ≦ x ≦ 0.65) and La 1-x Ba x FeO 3 (0.1 ≦ x ≦ 0). .65) and the like.

また、本発明者らにより、前記触媒として、一般式Y1−xAgMn1−yで表され、AはTi、Nb、Ta、Ruからなる群から選択される1種の金属であり、0.01≦x≦0.15かつ0.005≦y≦0.2であるペロブスカイト型複合金属酸化物が提案されている(特許文献2参照)。 Further, the present inventors, as the catalyst, represented by general formula Y 1-x Ag x Mn 1 -y A y O 3, A is one selected Ti, Nb, Ta, from the group consisting of Ru A perovskite-type composite metal oxide satisfying 0.01 ≦ x ≦ 0.15 and 0.005 ≦ y ≦ 0.2 has been proposed (see Patent Document 2).

前記ペロブスカイト型複合金属酸化物を備える排ガス浄化用酸化触媒装置によれば、前記パティキュレートの燃焼温度を低下させることができるが、該燃焼温度をさらに低下させることができ、且つ短時間で燃焼することができる排ガス浄化用酸化触媒装置が望まれる。   According to the oxidation catalyst device for exhaust gas purification provided with the perovskite-type composite metal oxide, the combustion temperature of the particulates can be lowered, but the combustion temperature can be further lowered, and combustion is performed in a short time. An oxidation catalyst device for exhaust gas purification that can be used is desired.

特開2007−237012号公報Japanese Patent Laid-Open No. 2007-237012 特開2008−100184号公報JP 2008-1000018 A

本発明は、内燃機関の排ガス中のパティキュレートをより低温且つ短時間で酸化、燃焼することができる排ガス浄化用酸化触媒装置を提供することを目的とする。   An object of the present invention is to provide an oxidation catalyst device for purifying exhaust gas that can oxidize and burn particulates in exhaust gas of an internal combustion engine at a lower temperature and in a shorter time.

かかる目的を達成するために、本発明は、一方の端部を排ガス流入部とし、他方の端部を排ガス流出部とするウォールフロー構造を有する多孔質フィルタ基材と、該多孔質フィルタ基材に担持された触媒とを備え、該多孔質フィルタ基材は、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されるとともに排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されるとともに排ガス流出部が開放された複数の流出セルと、該流入セル及び該流出セルを隔てるセル隔壁とを備え、該触媒は、該セル隔壁の少なくとも該流入セル側の表面に担持された第1の触媒層と、該セル隔壁を形成する該多孔質フィルタ基材の気孔の壁面表面に担持された第2の触媒層とからなり、該排ガス流入部から流入する内燃機関の排ガスを該セル隔壁を介して該流出セルに流通させる間に、該排ガス中のパティキュレートを前記触媒により酸化し、浄化された該排ガスを該排ガス流出部から流出せしめる排ガス浄化用酸化触媒装置において、該触媒は、一般式Y1−xAgMn1−yTiで表され、0.01≦x≦0.30かつ0.005≦y≦0.30である複合金属酸化物と、酸化ジルコニウムとの混合物の多孔質体からなることを特徴とする。 In order to achieve this object, the present invention provides a porous filter base material having a wall flow structure in which one end portion is an exhaust gas inflow portion and the other end portion is an exhaust gas inflow portion, and the porous filter base material The porous filter base material includes a plurality of through holes formed so as to penetrate in the axial direction, and the exhaust gas inflow portion is opened and the exhaust gas outflow portion is closed. An inflow cell, a plurality of outflow cells in which the exhaust gas inflow portions of the plurality of through holes are closed and the exhaust gas outflow portions are opened, and a cell partition wall that separates the inflow cells and the outflow cells, A first catalyst layer supported on at least a surface of the cell partition wall on the inflow cell side, and a second catalyst layer supported on a pore wall surface of the porous filter substrate forming the cell partition wall. Flow from the exhaust gas inlet For exhaust gas purification by oxidizing the particulates in the exhaust gas by the catalyst and flowing the purified exhaust gas out of the exhaust gas outflow part while circulating the exhaust gas of the internal combustion engine through the cell partition wall to the outflow cell in the oxidation catalyst device, the catalyst is represented by the general formula Y 1-x Ag x Mn 1 -y Ti y O 3, is 0.01 ≦ x ≦ 0.30 and 0.005 ≦ y ≦ 0.30 It consists of the porous body of the mixture of a composite metal oxide and a zirconium oxide.

本発明の排ガス浄化用酸化触媒装置は、前記ウォールフロー構造を有する多孔質フィルタ基材のセル隔壁の少なくとも流入セル側の表面に担持された第1の触媒層と、該多孔質フィルタ基材の気孔を形成する壁面表面に担持された第2の触媒層とを形成する触媒を、一般式Y1−xAgMn1−yTiで表され、0.01≦x≦0.30かつ0.005≦y≦0.30である複合金属酸化物と、酸化ジルコニウムとの混合物の多孔質体とすることにより、内燃機関の排ガス中のパティキュレートを、より低温且つ短時間で燃焼させることができる。 The oxidation catalyst device for purifying exhaust gas according to the present invention comprises a first catalyst layer carried on at least the surface of the cell partition wall of the porous filter substrate having the wall flow structure, and the porous filter substrate. the catalyst to form the second catalyst layer supported on the wall surface forming the pores, is represented by the general formula Y 1-x Ag x Mn 1 -y Ti y O 3, 0.01 ≦ x ≦ 0. Combusting particulates in the exhaust gas of an internal combustion engine at a lower temperature and in a shorter time by using a porous body of a mixture of a complex metal oxide of 30 and 0.005 ≦ y ≦ 0.30 and zirconium oxide Can be made.

前記複合金属酸化物の一般式Y1−xAgMn1−yにおいて、xが0.01未満では、触媒活性を高める効果が不十分であり、xが0.30を超えると、酸化触媒の耐熱性が低下し十分な性能を得ることができない。また、yが0.005未満では、触媒活性を高める効果が不十分であり、yが0.30を超えると、酸化触媒の耐熱性が低下し十分な性能を得ることができない。 In the general formula Y 1-x Ag x Mn 1 -y A y O 3 of the complex metal oxide, the x is less than 0.01, the effect of enhancing the catalytic activity is insufficient, x is greater than 0.30 And the heat resistance of an oxidation catalyst falls and sufficient performance cannot be obtained. On the other hand, if y is less than 0.005, the effect of increasing the catalyst activity is insufficient, and if y exceeds 0.30, the heat resistance of the oxidation catalyst is lowered and sufficient performance cannot be obtained.

本発明の排ガス浄化用酸化触媒装置において、前記各触媒層は、直径が0.01〜3.0μmの範囲の気孔を備える多孔質体からなり、前記多孔質フィルタ基材及び該各触媒層全体の気孔率が、30〜55体積%の範囲であることが好ましい。本発明の排ガス浄化用酸化触媒装置は、前記各触媒層を形成する前記多孔質体の気孔の直径が、前記範囲内であるか、または、前記多孔質フィルタ基材及び該各触媒層全体の気孔率が、前記範囲内であることにより、内燃機関の排ガス中のパティキュレートの燃焼温度を、十分に低温にすることができる。   In the oxidation catalyst device for exhaust gas purification according to the present invention, each of the catalyst layers is made of a porous body having pores having a diameter in a range of 0.01 to 3.0 μm, and the porous filter substrate and the entire catalyst layers The porosity is preferably in the range of 30 to 55% by volume. In the oxidation catalyst device for exhaust gas purification of the present invention, the pore diameter of the porous body forming each catalyst layer is within the above range, or the porous filter base material and the entire catalyst layer When the porosity is within the above range, the combustion temperature of the particulates in the exhaust gas of the internal combustion engine can be sufficiently lowered.

本発明の排ガス浄化用酸化触媒装置において、前記各触媒層を形成する前記多孔質体の気孔の直径が0.01μm未満である場合には、圧力損失が増大することがある。一方、前記各触媒層の前記気孔の直径が3.0μmを超える場合には、前記排ガス中の前記パティキュレートが該気孔の表面に十分に接触することができなくなり、該パティキュレートの燃焼温度を低下させる効果が十分に得られないことがある。   In the oxidation catalyst device for exhaust gas purification of the present invention, pressure loss may increase when the pore diameter of the porous body forming each catalyst layer is less than 0.01 μm. On the other hand, when the pore diameter of each catalyst layer exceeds 3.0 μm, the particulates in the exhaust gas cannot sufficiently contact the surface of the pores, and the combustion temperature of the particulates is reduced. The effect of lowering may not be obtained sufficiently.

また、本発明の排ガス浄化用酸化触媒装置において、前記多孔質フィルタ基材及び前記各触媒層全体の気孔率が30体積%未満である場合には、前記排ガスが前記気孔を通過する際に圧力損失が増大することがある。一方、前記多孔質フィルタ基材及び前記各触媒層全体の気孔率が55体積%を超える場合には、前記排ガスと該触媒層との接触確率が低下し、該パティキュレートの燃焼温度を低下させる効果が十分に得られないことがある。   Further, in the oxidation catalyst device for exhaust gas purification according to the present invention, when the porosity of the porous filter base material and each of the catalyst layers is less than 30% by volume, the pressure when the exhaust gas passes through the pores. Loss may increase. On the other hand, when the porosity of the entire porous filter substrate and each catalyst layer exceeds 55% by volume, the contact probability between the exhaust gas and the catalyst layer is lowered, and the combustion temperature of the particulates is lowered. The effect may not be obtained sufficiently.

本発明の排ガス浄化用酸化触媒装置の説明図であり、図1(a)は説明的断面図、図1(b)は図1(a)のA部の模式的拡大図。It is explanatory drawing of the oxidation catalyst apparatus for exhaust gas purification of this invention, Fig.1 (a) is explanatory sectional drawing, FIG.1 (b) is a typical enlarged view of the A section of Fig.1 (a). 実施例1の排ガス浄化用酸化触媒装置による排出ガスのCO濃度を示すグラフ。 2 is a graph showing the CO 2 concentration of exhaust gas by the exhaust gas purification oxidation catalyst device of Example 1. FIG. 実施例1の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。3 is a graph showing the pore diameters of the porous filter base material and each catalyst layer in the oxidation catalyst device for exhaust gas purification of Example 1. FIG. 実施例1の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層全体の気孔率を示すグラフ。3 is a graph showing the porosity of the porous filter base material and the entire catalyst layers in the oxidation catalyst device for exhaust gas purification of Example 1. FIG. 実施例1の排ガス浄化用酸化触媒装置のセル隔壁の断面画像であり、図5(a)は倍率50倍の断面画像、図5(b)は図5(a)のA部を拡大して示す倍率500倍の断面画像。FIG. 5A is a cross-sectional image of a cell partition wall of the oxidation catalyst device for exhaust gas purification of Example 1, FIG. 5A is a cross-sectional image at a magnification of 50 times, and FIG. 5B is an enlarged view of part A in FIG. A cross-sectional image with a magnification of 500 times shown. 触媒性能評価試験に用いられる触媒評価装置を示す説明図。Explanatory drawing which shows the catalyst evaluation apparatus used for a catalyst performance evaluation test. 実施例2−6の排ガス浄化用酸化触媒装置によるパティキュレート燃焼時間を示すグラフ。The graph which shows the particulate combustion time by the oxidation catalyst apparatus for exhaust gas purification of Example 2-6. 実施例2の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material and each catalyst layer in the oxidation catalyst apparatus for exhaust gas purification of Example 2. FIG. 実施例2−6の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層全体の気孔率を示すグラフ。The graph which shows the porosity of the porous filter base material in the oxidation catalyst apparatus for exhaust gas purification of Example 2-6 and each catalyst layer whole. 実施例3の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。6 is a graph showing the pore diameters of the porous filter base material and each catalyst layer in the oxidation catalyst device for exhaust gas purification of Example 3. FIG. 実施例4の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。6 is a graph showing the pore diameters of the porous filter base material and each catalyst layer in the oxidation catalyst device for exhaust gas purification of Example 4. FIG. 実施例5の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。7 is a graph showing the pore diameters of the porous filter base material and each catalyst layer in the oxidation catalyst device for exhaust gas purification of Example 5. FIG. 実施例6の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。7 is a graph showing pore diameters of a porous filter base material and each catalyst layer in an exhaust gas purification oxidation catalyst device of Example 6. FIG. 実施例7−10の排ガス浄化用酸化触媒装置によるパティキュレート燃焼時間を示すグラフ。The graph which shows the particulate combustion time by the oxidation catalyst apparatus for exhaust gas purification of Example 7-10. 実施例7の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。10 is a graph showing the pore diameters of the porous filter base material and each catalyst layer in the oxidation catalyst device for exhaust gas purification of Example 7. FIG. 実施例7−10の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層全体の気孔率を示すグラフ。The graph which shows the porosity of the porous filter base material in the oxidation catalyst apparatus for exhaust gas purification of Example 7-10 and each catalyst layer whole. 実施例8の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。9 is a graph showing pore diameters of a porous filter base material and each catalyst layer in an oxidation catalyst device for exhaust gas purification of Example 8. FIG. 実施例9の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material and each catalyst layer in the oxidation catalyst apparatus for exhaust gas purification of Example 9. FIG. 実施例10の排ガス浄化用酸化触媒装置における多孔質フィルタ基材及び各触媒層の気孔の直径を示すグラフ。The graph which shows the diameter of the pore of the porous filter base material and each catalyst layer in the oxidation catalyst apparatus for exhaust gas purification of Example 10. FIG.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1(a)に示すように、本実施形態の排ガス浄化用酸化触媒装置1は、一方の端部を排ガス流入部1aとし、他方の端部を排ガス流出部1bとするウォールフロー構造を有する多孔質フィルタ基材2と、多孔質フィルタ基材2に担持された触媒とを備えている。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. As shown in FIG. 1 (a), the exhaust gas purifying oxidation catalyst device 1 of this embodiment has a wall flow structure in which one end is an exhaust gas inflow portion 1a and the other end is an exhaust gas outflow portion 1b. A porous filter substrate 2 and a catalyst supported on the porous filter substrate 2 are provided.

多孔質フィルタ基材2は、例えばSiCからなる多孔質体であって、直径が20〜25μmの範囲の複数の気孔を備えると共に、それ自体55〜60体積%の範囲の気孔率を備えている。多孔質フィルタ基材2は、例えば直方体形状であり、軸方向に貫通する複数の貫通孔が断面格子状に配設されて、該貫通孔からなる複数の流入セル4と複数の流出セル5とを備えている。流入セル4は、排ガス流入部1a側の端部4aが開放されると共に排ガス流出部1b側の端部4bが閉塞されている。一方、流出セル5は、排ガス流入部1a側の端部5aが閉塞されると共に排ガス流出部1b側の端部5bが開放されている。流入セル4及び流出セル5は、断面市松格子状となるように交互に配設されていて、各セル4,5の境界部を形成するセル隔壁6により相互に隔てられている。   The porous filter substrate 2 is a porous body made of, for example, SiC, and includes a plurality of pores having a diameter in a range of 20 to 25 μm and a porosity in a range of 55 to 60% by volume. . The porous filter substrate 2 has, for example, a rectangular parallelepiped shape, and a plurality of through-holes penetrating in the axial direction are arranged in a cross-sectional lattice shape. It has. In the inflow cell 4, the end 4a on the exhaust gas inflow portion 1a side is opened, and the end 4b on the exhaust gas outflow portion 1b side is closed. On the other hand, in the outflow cell 5, the end portion 5a on the exhaust gas inflow portion 1a side is closed and the end portion 5b on the exhaust gas outflow portion 1b side is opened. The inflow cells 4 and the outflow cells 5 are alternately arranged so as to have a checkered cross section, and are separated from each other by cell partition walls 6 that form boundaries between the cells 4 and 5.

排ガス浄化用酸化触媒装置1は、触媒として、図1(a)に示すようにセル隔壁6の流入セル4側の表面に担持されている第1の触媒層3aと、図1(b)に示すようにセル隔壁6の気孔7の壁面表面に担持されている第2の触媒層3bとを備えている。各触媒層3a,3bは、直径が0.01〜3.0μmの範囲の気孔(図示せず)を備える多孔質体であって、一般式Y1−xAgMn1−yTiで表され、0.01≦x≦0.30かつ0.005≦y≦0.30である複合金属酸化物と、酸化ジルコニウムとの混合物からなる。また、多孔質フィルタ基材2及び各触媒層3a,3bは、両者を合わせた全体の気孔率が30〜55体積%の範囲となっている。尚、図示しないが、最外層のセル隔壁6の外周部には、排ガスの流出を規制する金属からなる規制部材が設けられている。 As shown in FIG. 1A, the exhaust gas purifying oxidation catalyst device 1 includes a first catalyst layer 3a supported on the surface of the cell partition wall 6 on the inflow cell 4 side, and a catalyst shown in FIG. As shown, a second catalyst layer 3b carried on the wall surface of the pore 7 of the cell partition wall 6 is provided. Each catalyst layer 3a, 3b is a porous body having pores (not shown) having a diameter in the range of 0.01 to 3.0 μm, and has a general formula Y 1-x Ag x Mn 1-y Ti y O 3 and composed of a mixture of a composite metal oxide of 0.01 ≦ x ≦ 0.30 and 0.005 ≦ y ≦ 0.30 and zirconium oxide. The porous filter base material 2 and the catalyst layers 3a and 3b have a total porosity in the range of 30 to 55% by volume. Although not shown, a regulating member made of metal that regulates the outflow of exhaust gas is provided on the outer peripheral portion of the outermost cell partition wall 6.

排ガス浄化用酸化触媒装置1においては、第1の触媒層3aは、セル隔壁6の流入セル4側の表面のみに担持されているが、流入セル4側の表面と流出セル5側の表面との両方に担持されていてもよい。また、多孔質フィルタ基材2として、SiCからなる多孔質体を用いているが、Si−SiCからなる多孔質体を用いてもよい。   In the oxidation catalyst device 1 for exhaust gas purification, the first catalyst layer 3a is supported only on the surface on the inflow cell 4 side of the cell partition wall 6, but the surface on the inflow cell 4 side and the surface on the outflow cell 5 side It may be carried on both. Moreover, although the porous body which consists of SiC is used as the porous filter base material 2, you may use the porous body which consists of Si-SiC.

次に、図1を参照して本実施形態の排ガス浄化用酸化触媒装置1の作動について説明する。まず、排ガス浄化用酸化触媒装置1を、排ガス流入部1aが内燃機関の排ガスの流路に対して上流側となるように設置する。このようにすると、流出セル5は端部5aが閉塞されているので、前記排ガスは、図1(a)に矢示するように、端部4aから流入セル4内へ導入される。   Next, the operation of the exhaust gas purifying oxidation catalyst device 1 of the present embodiment will be described with reference to FIG. First, the exhaust gas purifying oxidation catalyst device 1 is installed so that the exhaust gas inflow portion 1a is upstream of the exhaust gas flow path of the internal combustion engine. In this way, since the end portion 5a of the outflow cell 5 is closed, the exhaust gas is introduced into the inflow cell 4 from the end portion 4a as indicated by an arrow in FIG.

このとき、流入セル4は排ガス流出部1b側の端部が閉塞されているので、流入セル4内へ導入された前記排ガスは、セル隔壁6の気孔7を介して流出セル5内へ流通せしめられる。そして、前記流通せしめられる間に、前記排ガス中のパティキュレートが、セル隔壁6の表面に担持された第1の触媒層3aと、気孔7の壁面表面に担持された第2の触媒層3bとに接触し、各触媒層3a,3bの触媒の作用により酸化、燃焼され、除去される。   At this time, since the end portion of the inflow cell 4 on the exhaust gas outflow portion 1 b side is closed, the exhaust gas introduced into the inflow cell 4 is circulated into the outflow cell 5 through the pores 7 of the cell partition wall 6. It is done. During the circulation, the particulates in the exhaust gas are supported by the first catalyst layer 3 a supported on the surface of the cell partition wall 6 and the second catalyst layer 3 b supported on the wall surface of the pore 7. And is oxidized, burned and removed by the action of the catalyst of each catalyst layer 3a, 3b.

この結果、前記パティキュレートが燃焼除去された前記排ガスが、流出セル5の排ガス流出部1b側の端部5bから、外部に排出される。   As a result, the exhaust gas from which the particulates have been burned and removed is discharged to the outside from the end portion 5b of the outflow cell 5 on the exhaust gas outflow portion 1b side.

本実施形態の排ガス浄化用酸化触媒装置1によれば、第1の触媒層3a及び第2の触媒層3bを形成する触媒が、一般式Y1−xAgMn1−yTiで表され、0.01≦x≦0.30かつ0.005≦y≦0.30である複合金属酸化物と、酸化ジルコニウムとの混合物からなることにより、内燃機関の排ガス中のパティキュレートをより低温且つ短時間で酸化、燃焼し、浄化することができる。 According to the exhaust gas purifying oxidation catalyst device 1 of the present embodiment, the catalyst to form a first catalyst layer 3a and the second catalyst layer 3b has the general formula Y 1-x Ag x Mn 1 -y Ti y O 3 In the exhaust gas of the internal combustion engine, the particulates in the exhaust gas of the internal combustion engine are formed by a mixture of a composite metal oxide expressed by the following formula: 0.01 ≦ x ≦ 0.30 and 0.005 ≦ y ≦ 0.30. It can be oxidized, burned and purified at a lower temperature and in a shorter time.

また、本実施形態の排ガス浄化用酸化触媒装置1によれば、第1の触媒層3a及び第2の触媒層3bが多孔質体からなり、直径が0.01〜3.0μmの範囲の気孔7を備え、多孔質フィルタ基材2及び各触媒層3a,3bを合わせた全体が30〜55体積%の範囲の気孔率を備えている。この結果、前記排ガス中のパティキュレートと触媒層3a,3bとの接触確率を高めることができる。従って、本発明によれば、従来技術の排ガス浄化用酸化触媒装置と比較して、内燃機関の排ガス中のパティキュレートをさらに低温で酸化、燃焼し、浄化することができる。   Moreover, according to the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, the first catalyst layer 3a and the second catalyst layer 3b are made of a porous body, and pores having a diameter in the range of 0.01 to 3.0 μm. 7 and the whole of the porous filter substrate 2 and the catalyst layers 3a and 3b has a porosity in the range of 30 to 55% by volume. As a result, the contact probability between the particulates in the exhaust gas and the catalyst layers 3a and 3b can be increased. Therefore, according to the present invention, it is possible to oxidize, burn and purify the particulates in the exhaust gas of the internal combustion engine at a lower temperature as compared with the oxidation catalyst device for exhaust gas purification of the prior art.

次に、本発明の実施例及び比較例を示す。   Next, examples and comparative examples of the present invention are shown.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比で混合した混合物を、25℃の温度で15分間乳鉢で混合粉砕した後、400℃の温度に1時間保持して一次焼成を行った。次に、酸化ジルコニウム粉末を水に分散してなる水分散ジルコニアゾル(酸化ジルコニウム粉末の含有量が20質量%)を、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、15分間乳鉢で混合粉砕した後、回転式ボールミルを用いて100回転/分で5時間混合粉砕し、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.95: 0.05: 0. The mixture mixed at a molar ratio of 95: 0.05: 6: 40 was mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes, and then held at a temperature of 400 ° C. for 1 hour for primary firing. Next, a water-dispersed zirconia sol obtained by dispersing zirconium oxide powder in water (the content of zirconium oxide powder is 20% by mass), the content of zirconium oxide powder with respect to the resultant product obtained by the primary firing is as follows. The mixture was mixed so as to be 10% by mass, mixed and pulverized in a mortar for 15 minutes, and then mixed and pulverized at 100 rpm for 5 hours using a rotary ball mill to prepare a catalyst precursor slurry.

次に、軸方向に貫通する複数の貫通孔が断面格子状に配設された多孔質フィルタ基材2(日本碍子株式会社製SiC多孔質体、商品名:MSC14)を用意した。多孔質フィルタ基材2は、36×36×50mmの寸法を備える見かけ体積65000mmの直方体形状であり、気孔の平均直径が20〜25μmの範囲にある。 Next, a porous filter base material 2 (SiC porous body manufactured by Nippon Choshi Co., Ltd., trade name: MSC14) in which a plurality of through-holes penetrating in the axial direction was arranged in a lattice shape was prepared. The porous filter substrate 2 has a rectangular parallelepiped shape with an apparent volume of 65000 mm 3 having dimensions of 36 × 36 × 50 mm, and an average pore diameter is in the range of 20 to 25 μm.

次に、多孔質フィルタ基材2の前記貫通孔の一端部を一つ置きに(すなわち、断面市松格子状となるように)、シリカを主成分とするセラミックス接着剤にて閉塞することにより、流出セル5を形成した。次に、多孔質フィルタ基材2に、前記端部が閉塞されている側から前記スラリーを流し込むことにより、端部が閉塞されていない前記複数の貫通孔(すなわち、流出セル5以外のセル)内に該スラリーを流入させ、次いで、多孔質フィルタ基材2から過剰な前記スラリーを除去した。   Next, every other end of the through hole of the porous filter base material 2 (that is, so as to have a cross-sectional checkered cross section), and clogged with a ceramic adhesive mainly composed of silica, An outflow cell 5 was formed. Next, by pouring the slurry into the porous filter substrate 2 from the side where the end is closed, the plurality of through holes whose ends are not closed (that is, cells other than the outflow cell 5). The slurry was allowed to flow into the inside, and then the excess slurry was removed from the porous filter substrate 2.

次に、前記スラリーが付着された多孔質フィルタ基材2を、800℃の温度に1時間保持して二次焼成を行った。この結果、流出セル5以外のセルのセル隔壁6の表面に、化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物と、酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3aが形成されると共に、セル隔壁6の気孔7の壁面表面に該混合物の多孔質からなる第2の触媒層3bが形成された。触媒層3a,3bは、前記二次焼成により、直径が0.01〜3.0μmの範囲の気孔を備える多孔質体となっている。また、触媒層3a,3bは、多孔質フィルタ基材2の見かけ体積1Lあたりの担持量が合計80gとなっている。 Next, the porous filter base material 2 to which the slurry was adhered was held at a temperature of 800 ° C. for 1 hour for secondary firing. As a result, on the surface of the cell partition wall 6 of the cells other than the outflow cell 5, the composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 and zirconium oxide A first catalyst layer 3 a made of a porous mixture was formed, and a second catalyst layer 3 b made of the porous mixture was formed on the wall surfaces of the pores 7 of the cell partition walls 6. The catalyst layers 3a and 3b are porous bodies having pores having a diameter in the range of 0.01 to 3.0 μm by the secondary firing. The catalyst layers 3a and 3b have a total loading amount of 80 g per 1 L of apparent volume of the porous filter substrate 2.

次に、流出セル5以外のセルの前記端部が閉塞された側とは反対側の端部を、シリカを主成分とするセラミックス接着剤にて閉塞して、流入セル4を形成することにより、図1(a)に示す構成を備える排ガス浄化用酸化触媒装置1を製造した。排ガス浄化用酸化触媒装置1は、多孔質フィルタ基材2及び各触媒層3a,3bを合わせた全体が30〜55体積%の範囲の気孔率を備えている。   Next, by closing the end of the cell other than the outflow cell 5 on the side opposite to the side where the end is closed with a ceramic adhesive mainly composed of silica, the inflow cell 4 is formed. An exhaust gas purification oxidation catalyst device 1 having the configuration shown in FIG. The exhaust gas purifying oxidation catalyst device 1 has a porosity in the range of 30 to 55% by volume as a whole, including the porous filter substrate 2 and the catalyst layers 3a and 3b.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、次のようにして触媒性能評価試験を行った。まず、排ガス浄化用酸化触媒装置1を、エンジンベンチ内に設置した排気量が2.4Lであるディーゼルエンジンの排気系に搭載した。次に、前記ディーゼルエンジンを20分間運転することにより、排ガス浄化用酸化触媒装置1に、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり2gのパティキュレートを捕集させた。前記ディーゼルエンジンの運転条件は、排ガス浄化用酸化触媒装置1への流入ガス温度180℃、エンジン回転数1500回転/分、トルク70N/mであった。   Next, a catalyst performance evaluation test was performed on the oxidation catalyst device 1 for exhaust gas purification of this example as follows. First, the exhaust gas purification oxidation catalyst device 1 was mounted on an exhaust system of a diesel engine having a displacement of 2.4 L installed in an engine bench. Next, by operating the diesel engine for 20 minutes, the exhaust gas purification oxidation catalyst device 1 was allowed to collect 2 g of particulate per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1. The operating conditions of the diesel engine were an inflow gas temperature of 180 ° C. to the exhaust gas purification oxidation catalyst device 1, an engine speed of 1500 rpm, and a torque of 70 N / m.

次に、パティキュレートが捕集された排ガス浄化用酸化触媒装置1を前記排気系から取り出し、流通型昇温度装置内の石英管内に固定した。次に、前記石英管の一端部(供給口)から、酸素と窒素とを混合してなる雰囲気ガスを供給し、石英管の他端部(排出口)から排出させながら、排ガス浄化用酸化触媒装置1を加熱した。前記雰囲気ガスは、酸素と窒素との体積比が10:90であり、空間速度20000/時間で供給された。また、前記加熱は、前記流通型昇温度装置の管状マッフル炉により行われ、排ガス浄化用酸化触媒装置1を室温から700℃の温度まで3℃/分で昇温した。このとき、前記石英管からの排出ガスのCO濃度を質量分析計を用いて測定した。結果を図2に示す。尚、図2において、CO濃度のピークに対応する温度がパティキュレートの燃焼温度に相当する。 Next, the exhaust gas-purifying oxidation catalyst device 1 in which the particulates were collected was taken out from the exhaust system and fixed in a quartz tube in a flow-type temperature rising device. Next, an atmospheric gas formed by mixing oxygen and nitrogen is supplied from one end portion (supply port) of the quartz tube and discharged from the other end portion (discharge port) of the quartz tube, and the exhaust gas purification oxidation catalyst. Apparatus 1 was heated. The atmospheric gas was supplied at a space velocity of 20000 / hour with a volume ratio of oxygen and nitrogen of 10:90. Further, the heating was performed by a tubular muffle furnace of the flow-type temperature raising device, and the exhaust gas purification oxidation catalyst device 1 was heated from room temperature to a temperature of 700 ° C. at a rate of 3 ° C./min. At this time, the CO 2 concentration of the exhaust gas from the quartz tube was measured using a mass spectrometer. The results are shown in FIG. In FIG. 2, the temperature corresponding to the peak of the CO 2 concentration corresponds to the combustion temperature of the particulates.

次に、本実施例の排ガス浄化用酸化触媒装置1をダイヤモンドカッターにて切削することにより、5mm角の立方体を3個切り出した。   Next, three 5 mm square cubes were cut out by cutting the oxidation catalyst device 1 for exhaust gas purification of this example with a diamond cutter.

次に、1個目の立方体の排ガス浄化用酸化触媒装置1に対して、自動水銀ポロシメータを用いて、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図3に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図4に示す。   Next, for the first cubic exhaust gas purification oxidation catalyst device 1, using an automatic mercury porosimeter, the diameter of the pores of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a, 3b, The total porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b was measured. The measurement results of the diameter of the pores of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are shown in FIG. FIG. 4 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図3に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.01〜2.0μmの範囲にあると考えられる。また、図4に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は50.4体積%であることが明らかである。   As shown in FIG. 3, in the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.01 to 2.0 μm. It is done. Further, as shown in FIG. 4, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 50.4% by volume. Is clear.

次に、2個目の立方体の排ガス浄化用酸化触媒装置1に対して、透過型電子顕微鏡を用いて断面画像を撮影した。図5(a),(b)に排ガス浄化用酸化触媒装置1の断面画像を示す。図5(b)に示すように、本実施例の排ガス浄化用酸化触媒装置1には、セル隔壁6の気孔7の壁面表面に第2の触媒層3bが形成されていることが明らかである。   Next, the cross-sectional image was image | photographed using the transmission electron microscope with respect to the oxidation catalyst apparatus 1 for exhaust gas purification of the 2nd cube. FIGS. 5A and 5B show cross-sectional images of the oxidation catalyst device 1 for exhaust gas purification. As shown in FIG. 5 (b), it is clear that the second catalyst layer 3b is formed on the wall surface of the pore 7 of the cell partition wall 6 in the exhaust gas purification oxidation catalyst device 1 of the present embodiment. .

次に、3個目の立方体の排ガス浄化用酸化触媒装置1に対して、X線回折装置を用いて、触媒層3a,3bを構成する触媒の成分を評価した。触媒層3a,3bのX線回折の結果から、前記触媒は、複合金属酸化物であるYMO(Mは金属)に起因する結晶ピークと、2θ=31°前後にメインピークを有する酸化ジルコニウムに起因する結晶ピークとを備えている。 Next, the components of the catalyst constituting the catalyst layers 3a and 3b were evaluated with respect to the third cubic oxidation catalyst device 1 for exhaust gas purification using an X-ray diffractometer. From the results of X-ray diffraction of the catalyst layers 3a and 3b, the catalyst was converted into zirconium oxide having a crystal peak due to YMO 3 (M is a metal) which is a composite metal oxide and a main peak around 2θ = 31 °. Resulting crystal peaks.

従って、前記触媒は、化学式Y0.95Ag0.05Mn0.95Ti0.05で表される複合金属酸化物と、酸化ジルコニウムとの混合物からなることが明らかである。尚、前記酸化ジルコニウムは、複合金属酸化物であるY0.95Ag0.05Mn0.95Ti0.05中のイットリウムの一部が酸化ジルコニウム中に固溶して生成された立方晶イットリウム安定化ジルコニアである。
〔比較例1〕
本比較例では、触媒層3a,3bを全く形成しなかった以外は、実施例1と全く同一にして、排ガス浄化用酸化触媒装置を製造した。
Therefore, it is apparent that the catalyst is composed of a mixture of a complex metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 and zirconium oxide. In addition, the said zirconium oxide is a cubic formed by dissolving a part of yttrium in Y 0.95 Ag 0.05 Mn 0.95 Ti 0.05 O 3 , which is a composite metal oxide, in the zirconium oxide. Crystalline yttrium stabilized zirconia.
[Comparative Example 1]
In this comparative example, an exhaust gas purification oxidation catalyst device was manufactured in exactly the same manner as in Example 1 except that the catalyst layers 3a and 3b were not formed at all.

次に、本比較例の排ガス浄化用酸化触媒装置に対して、実施例1と全く同一にして、触媒性能評価試験を行った。結果を図2に示す。   Next, a catalyst performance evaluation test was performed on the oxidation catalyst device for exhaust gas purification of this comparative example in exactly the same manner as in Example 1. The results are shown in FIG.

図2から、実施例1の排ガス浄化用酸化触媒装置1によれば、本比較例の排ガス浄化用酸化触媒装置に比較して、内燃機関の排ガス中のパティキュレートをより低温で酸化、燃焼することができることが明らかである。   From FIG. 2, according to the oxidation catalyst device 1 for exhaust gas purification of Example 1, the particulates in the exhaust gas of the internal combustion engine are oxidized and burned at a lower temperature than the oxidation catalyst device for exhaust gas purification of this comparative example. Obviously it can be.

次に、本比較例の排ガス浄化用酸化触媒装置をダイヤモンドカッターにて切削することにより、5mm角の立方体を1個切り出した。   Next, by cutting the oxidation catalyst device for exhaust gas purification of this comparative example with a diamond cutter, one 5 mm square cube was cut out.

次に、前記立方体の排ガス浄化用酸化触媒装置に対して、自動水銀ポロシメータを用いて、多孔質フィルタ基材の気孔の直径を測定した。多孔質フィルタ基材の気孔の直径の測定結果を図3に示す。   Next, the pore diameter of the porous filter substrate was measured with respect to the cubic oxidation catalyst device for exhaust gas purification using an automatic mercury porosimeter. The measurement results of the pore diameter of the porous filter substrate are shown in FIG.

図3に示すように、本比較例の排ガス浄化用酸化触媒装置において、多孔質フィルタ基材の気孔は、平均直径が20〜25μmの範囲にあることが明らかである。
〔比較例2〕
本比較例では、まず、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、クエン酸と、水とを、1:1:6:40のモル比で混合した以外は、実施例1と全く同一にして、触媒前駆体スラリーを調製した。
As shown in FIG. 3, in the exhaust gas purifying oxidation catalyst device of this comparative example, it is apparent that the pores of the porous filter substrate have an average diameter in the range of 20 to 25 μm.
[Comparative Example 2]
In this comparative example, first, except that yttrium nitrate pentahydrate, manganese nitrate hexahydrate, citric acid, and water were mixed at a molar ratio of 1: 1: 6: 40, Example 1 A catalyst precursor slurry was prepared in exactly the same manner as in Example 1.

次に、本比較例で得られた触媒前駆体スラリーを用い、化学式YMnOで表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層及び第2の触媒層を形成した以外は、実施例1と全く同一にして、本比較例の排ガス浄化用酸化触媒装置を製造した。 Next, using the catalyst precursor slurry obtained in this comparative example, a first catalyst layer and a second catalyst layer made of a porous mixture of a composite metal oxide represented by the chemical formula YMnO 3 and zirconium oxide are used. Except that was formed, the oxidation catalyst device for exhaust gas purification of this comparative example was manufactured exactly the same as Example 1.

次に、本比較例の排ガス浄化用酸化触媒装置に対して、実施例1と全く同一にして、触媒性能評価試験を行った。結果を図2に示す。   Next, a catalyst performance evaluation test was performed on the oxidation catalyst device for exhaust gas purification of this comparative example in exactly the same manner as in Example 1. The results are shown in FIG.

図2から、実施例1の排ガス浄化用酸化触媒装置1によれば、本比較例の排ガス浄化用酸化触媒装置に比較して、内燃機関の排ガス中のパティキュレートをより低温で酸化、燃焼することができることが明らかである。   From FIG. 2, according to the oxidation catalyst device 1 for exhaust gas purification of Example 1, the particulates in the exhaust gas of the internal combustion engine are oxidized and burned at a lower temperature than the oxidation catalyst device for exhaust gas purification of this comparative example. Obviously it can be.

次に、本比較例の排ガス浄化用酸化触媒装置から、実施例1と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材の気孔の直径及び第1,第2の触媒層の気孔の直径と、多孔質フィルタ基材及び第1,第2の触媒層を合わせた全体の気孔率とを測定した。多孔質フィルタ基材の気孔の直径及び第1,第2の触媒層の気孔の直径の測定結果を図3に示す。多孔質フィルタ基材及び第1,第2の触媒層を合わせた全体の気孔率の測定結果を図4に示す。   Next, one 5 mm square cube was cut out from the oxidation catalyst device for exhaust gas purification of this comparative example exactly as in Example 1, and the pore diameter of the porous filter substrate and the first and second catalysts The pore diameter of the layer and the total porosity of the porous filter substrate and the first and second catalyst layers were measured. FIG. 3 shows the measurement results of the pore diameter of the porous filter substrate and the pore diameters of the first and second catalyst layers. FIG. 4 shows the measurement results of the entire porosity of the porous filter substrate and the first and second catalyst layers.

図3に示すように、本比較例の排ガス浄化用酸化触媒装置において、多孔質フィルタ基材の気孔の直径及び第1,第2の触媒層の気孔の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、第1,第2の触媒層の気孔の直径は0.20〜5.0μmの範囲にあると考えられる。また、図4に示すように、本比較例の排ガス浄化用酸化触媒装置において、多孔質フィルタ基材の気孔の直径及び第1,第2の触媒層を合わせた全体の気孔率は61.1体積%であることが明らかである。   As shown in FIG. 3, in the oxidation catalyst device for exhaust gas purification of this comparative example, the pore diameter of the porous filter substrate and the pore diameters of the first and second catalyst layers are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate is in the range of 20 to 25 μm, the diameter of the pores of the first and second catalyst layers is in the range of 0.20 to 5.0 μm. it is conceivable that. Further, as shown in FIG. 4, in the oxidation catalyst device for exhaust gas purification of this comparative example, the pore diameter of the porous filter substrate and the total porosity of the first and second catalyst layers are 61.1. It is clear that the volume is%.

本実施例では、まず、一次焼成の温度を350℃にした以外は、実施例1と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, a catalyst precursor slurry was prepared in the same manner as in Example 1 except that the temperature of the primary firing was 350 ° C.

次に、本実施例で得られた触媒前駆体スラリーを用いた以外は、実施例1と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。   Next, an oxidation catalyst device 1 for exhaust gas purification was manufactured in exactly the same manner as in Example 1 except that the catalyst precursor slurry obtained in this example was used.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、次のようにして触媒性能評価試験を行った。まず、排ガス浄化用酸化触媒装置1を、エンジンベンチ内に設置した排気量が2.2Lであるディーゼルエンジンの排気系に搭載した。次に、前記ディーゼルエンジンを運転することにより、排ガス浄化用酸化触媒装置1に、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.4gのパティキュレートを捕集させた。前記ディーゼルエンジンの運転条件は、排ガス浄化用酸化触媒装置1への流入ガス温度300℃、エンジン回転数1500回転/分、トルク80N/mであった。   Next, a catalyst performance evaluation test was performed on the oxidation catalyst device 1 for exhaust gas purification of this example as follows. First, the exhaust gas purification oxidation catalyst device 1 was mounted on an exhaust system of a diesel engine having an exhaust amount of 2.2 L installed in an engine bench. Next, by operating the diesel engine, the exhaust gas purification oxidation catalyst device 1 was allowed to collect 1.4 g of particulate per liter apparent volume of the exhaust gas purification oxidation catalyst device 1. The operating conditions of the diesel engine were an inflow gas temperature of 300 ° C. to the exhaust gas purification oxidation catalyst device 1, an engine speed of 1500 rpm, and a torque of 80 N / m.

次に、所定量のパティキュレートが捕集された排ガス浄化用酸化触媒装置1を前記排気系から取り出し、図6に示す触媒評価装置11の石英管12内に固定した。ここで、触媒評価装置11は、石英管12の周囲に加熱炉13を備えるとともに、石英管12の一端部12a側に複数のガスボンベ14,15,16を備えている。ガスボンベ14には一酸化窒素、ガスボンベ15には酸素、ガスボンベ16には窒素がそれぞれ収容されている。   Next, the exhaust gas-purifying oxidation catalyst device 1 in which a predetermined amount of particulates was collected was taken out of the exhaust system and fixed in the quartz tube 12 of the catalyst evaluation device 11 shown in FIG. Here, the catalyst evaluation apparatus 11 includes a heating furnace 13 around the quartz tube 12 and a plurality of gas cylinders 14, 15, and 16 on the one end 12 a side of the quartz tube 12. The gas cylinder 14 contains nitrogen monoxide, the gas cylinder 15 contains oxygen, and the gas cylinder 16 contains nitrogen.

次に、ガスボンベ16から供給した窒素ガスを、石英管12の一端部12a(供給口)から12.8L/分の流量で供給しながら、加熱炉13により排ガス浄化用酸化触媒装置1を室温から600℃の温度まで昇温した。   Next, the nitrogen gas supplied from the gas cylinder 16 is supplied from the one end portion 12a (supply port) of the quartz tube 12 at a flow rate of 12.8 L / min. The temperature was raised to 600 ° C.

次に、ガスボンベ14,15,16から一酸化窒素と酸素と窒素とを供給し、体積比が0.02:3.8:96.18である混合ガスを生成した。次に、前記混合ガスを、石英管12の一端部12aから13.5L/分の流量で供給した。そして、排ガス浄化用酸化触媒装置1に捕集されたパティキュレートの酸化、燃焼により生じた一酸化炭素及び二酸化炭素を、石英管12の他端部12b(排出口)に接続したガス分析装置(株式会社堀場製作所製、商品名:MEXA−7500D)17に導入した。次に、ガス分析装置17により、一酸化炭素及び二酸化炭素の濃度を測定し、排ガス浄化用酸化触媒装置1に捕集されたパティキュレートのうちの90質量%が燃焼されるまでに要した時間を計測した。結果を図7に示す。   Next, nitrogen monoxide, oxygen, and nitrogen were supplied from the gas cylinders 14, 15, and 16 to generate a mixed gas having a volume ratio of 0.02: 3.8: 96.18. Next, the mixed gas was supplied from the one end portion 12a of the quartz tube 12 at a flow rate of 13.5 L / min. And the gas analyzer (the exhaust gas purifying oxidation catalyst device 1) connected to the other end portion 12b (exhaust port) of the quartz tube 12 with the carbon monoxide and carbon dioxide generated by the oxidation and combustion of the particulates. The product was introduced to HORIBA, Ltd., trade name: MEXA-7500D) 17. Next, the gas analyzer 17 measures the concentrations of carbon monoxide and carbon dioxide, and the time required until 90% by mass of the particulates collected in the exhaust gas purification oxidation catalyst device 1 are burned. Was measured. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例1と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図8に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図9に示す。   Next, one 5 mm square cube is cut out from the oxidation catalyst device 1 for exhaust gas purification of this example in exactly the same manner as in Example 1, and the pore diameter and catalyst layers 3a, 3b of the porous filter substrate 2 are cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 8 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameters of the pores 7 of the catalyst layers 3a and 3b. FIG. 9 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図8に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.01〜2.0μmの範囲にあると考えられる。また、図9に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は41.5体積%であることが明らかである。   As shown in FIG. 8, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.01 to 2.0 μm. It is done. Moreover, as shown in FIG. 9, in the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 41.5% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.90:0.10:0.95:0.05:6:40のモル比で混合した以外は、実施例2と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were 0.90: 0.10: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 2 except that the mixture was mixed at a molar ratio of 95: 0.05: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.9Ag0.1Mn0.95Ti0.05で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例2と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.9 Ag 0.1 Mn 0.95 Ti 0.05 O 3 and zirconium oxide. Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 2, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.9gのパティキュレートを捕集させた以外は、実施例2と全く同一にして、触媒性能評価試験を行った。結果を図7に示す。   Next, exactly the same as Example 2 except that 1.9 g of particulates per 1 L of apparent volume of the exhaust gas purification oxidation catalyst device 1 was collected with respect to the exhaust gas purification oxidation catalyst device 1 of the present example. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例2と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図10に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図9に示す。   Next, one 5 mm square cube is cut out from the oxidation catalyst device 1 for exhaust gas purification of this example in exactly the same manner as in Example 2, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b are cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 10 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b. FIG. 9 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図10に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.02〜2.0μmの範囲にあると考えられる。また、図9に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は41.0体積%であることが明らかである。   As shown in FIG. 10, in the oxidation catalyst device 1 for exhaust gas purification according to the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.02 to 2.0 μm. It is done. Further, as shown in FIG. 9, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 41.0% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.85:0.15:0.95:0.05:6:40のモル比で混合した以外は、実施例2と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.85: 0.15: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 2 except that the mixture was mixed at a molar ratio of 95: 0.05: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.85Ag0.15Mn0.95Ti0.05で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例2と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.85 Ag 0.15 Mn 0.95 Ti 0.05 O 3 and zirconium oxide Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 2, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.8gのパティキュレートを捕集させた以外は、実施例2と全く同一にして、触媒性能評価試験を行った。結果を図7に示す。   Next, exactly the same as Example 2 except that 1.8 g of particulate per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 was collected with respect to the exhaust gas purification oxidation catalyst device 1 of this example. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例2と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図11に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図9に示す。   Next, one 5 mm square cube is cut out from the oxidation catalyst device 1 for exhaust gas purification of this example in exactly the same manner as in Example 2, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b are cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 11 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameters of the pores 7 of the catalyst layers 3a and 3b. FIG. 9 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図11に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.02〜3.0μmの範囲にあると考えられる。また、図9に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は42.0体積%であることが明らかである。   As shown in FIG. 11, in the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.02 to 3.0 μm. It is done. Moreover, as shown in FIG. 9, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 42.0% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.80:0.20:0.95:0.05:6:40のモル比で混合した以外は、実施例2と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.80: 0.20: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 2 except that the mixture was mixed at a molar ratio of 95: 0.05: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.8Ag0.2Mn0.95Ti0.05で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例2と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.95 Ti 0.05 O 3 and zirconium oxide. Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 2, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.8gのパティキュレートを捕集させた以外は、実施例2と全く同一にして、触媒性能評価試験を行った。結果を図7に示す。   Next, exactly the same as Example 2 except that 1.8 g of particulate per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 was collected with respect to the exhaust gas purification oxidation catalyst device 1 of this example. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例2と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図12に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図9に示す。   Next, one 5 mm square cube is cut out from the oxidation catalyst device 1 for exhaust gas purification of this example in exactly the same manner as in Example 2, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b are cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. The measurement results of the pore diameter of the porous filter substrate 2 and the diameters of the pores 7 of the catalyst layers 3a and 3b are shown in FIG. FIG. 9 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図12に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.02〜2.0μmの範囲にあると考えられる。また、図9に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は47.8体積%であることが明らかである。   As shown in FIG. 12, in the exhaust gas purifying oxidation catalyst device 1 of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.02 to 2.0 μm. It is done. Further, as shown in FIG. 9, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 47.8% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.70:0.30:0.95:0.05:6:40のモル比で混合した以外は、実施例2と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were 0.70: 0.30: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 2 except that the mixture was mixed at a molar ratio of 95: 0.05: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.7Ag0.3Mn0.95Ti0.05で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例2と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.7 Ag 0.3 Mn 0.95 Ti 0.05 O 3 and zirconium oxide. Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 2, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.7gのパティキュレートを捕集させた以外は、実施例2と全く同一にして、触媒性能評価試験を行った。結果を図7に示す。   Next, the exhaust gas purification oxidation catalyst device 1 of the present embodiment is exactly the same as the embodiment 2 except that 1.7 g of particulate per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 is collected. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

図7から、一般式Y1−xAgMn0.95Ti0.05(0.05≦x≦0.30)で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを備える実施例2〜6の排ガス浄化用酸化触媒装置1は、捕集されたパティキュレートのうちの90質量%が燃焼されるまでに要した時間がいずれも250秒未満であることが明らかである。したがって、実施例2〜6の排ガス浄化用酸化触媒装置1は、内燃機関の排ガス中のパティキュレートを短時間で酸化、燃焼することができることが明らかである。 From FIG. 7, the porosity of the mixture of the composite metal oxide represented by the general formula Y 1-x Ag x Mn 0.95 Ti 0.05 O 3 (0.05 ≦ x ≦ 0.30) and zirconium oxide In the oxidation catalyst device 1 for exhaust gas purification of Examples 2 to 6 including the first catalyst layer 3a and the second catalyst layer 3b made of 90% by mass of 90% by mass of the collected particulates. It is clear that all the time required is less than 250 seconds. Therefore, it is clear that the oxidation catalyst device 1 for exhaust gas purification of Examples 2 to 6 can oxidize and burn the particulates in the exhaust gas of the internal combustion engine in a short time.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例2と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図13に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図9に示す。   Next, one 5 mm square cube is cut out from the oxidation catalyst device 1 for exhaust gas purification of this example in exactly the same manner as in Example 2, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b are cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. The measurement results of the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are shown in FIG. FIG. 9 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図13に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.02〜2.0μmの範囲にあると考えられる。また、図9に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は41.3体積%であることが明らかである。   As shown in FIG. 13, in the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.02 to 2.0 μm. It is done. Further, as shown in FIG. 9, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 41.3% by volume. Is clear.

図7から、実施例2〜6の排ガス浄化用酸化触媒装置1のうち、化学式Y0.8Ag0.2Mn0.95Ti0.05で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを備える実施例5の排ガス浄化用酸化触媒装置1が、前記時間が最も短いことが明らかである。 From FIG. 7, among the oxidation catalyst devices 1 for exhaust gas purification of Examples 2 to 6, the composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.95 Ti 0.05 O 3 and zirconium oxide It is clear that the time for the oxidation catalyst device 1 for exhaust gas purification of Example 5 provided with the first catalyst layer 3a and the second catalyst layer 3b made of a porous mixture of the above and the like is the shortest.

そこで、本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.80:0.20:0.90:0.10:6:40のモル比で混合した以外は、実施例5と全く同一にして、触媒前駆体スラリーを調製した。   Therefore, in this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.80: 0.20: A catalyst precursor slurry was prepared in exactly the same manner as in Example 5 except that mixing was performed at a molar ratio of 0.90: 0.10: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.8Ag0.2Mn0.9Ti0.1で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例5と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.9 Ti 0.1 O 3 and zirconium oxide Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 5, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.4gのパティキュレートを捕集させた以外は、実施例5と全く同一にして、触媒性能評価試験を行った。結果を図14に示す。   Next, the exhaust gas purification oxidation catalyst device 1 of this example is exactly the same as Example 5 except that 1.4 g of particulates per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 were collected. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例5と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図15に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図16に示す。   Next, one 5 mm square cube was cut out from the oxidation catalyst device 1 for exhaust gas purification of this example exactly as in Example 5, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b were cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 15 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameters of the pores 7 of the catalyst layers 3a and 3b. FIG. 16 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図15に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.02〜2.0μmの範囲にあると考えられる。また、図16に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は48.6体積%であることが明らかである。   As shown in FIG. 15, in the exhaust gas purifying oxidation catalyst device 1 of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.02 to 2.0 μm. It is done. Moreover, as shown in FIG. 16, in the oxidation catalyst device 1 for exhaust gas purification of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 48.6% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.80:0.20:0.85:0.15:6:40のモル比で混合した以外は、実施例5と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.80: 0.20: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 5 except that the mixing was performed at a molar ratio of 85: 0.15: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.8Ag0.2Mn0.85Ti0.15で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例5と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.85 Ti 0.15 O 3 and zirconium oxide. Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 5, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.6gのパティキュレートを捕集させた以外は、実施例5と全く同一にして、触媒性能評価試験を行った。結果を図14に示す。   Next, exactly the same as Example 5 except that 1.6 g of particulate per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 was collected with respect to the exhaust gas purification oxidation catalyst device 1 of the present example. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例5と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図17に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図16に示す。   Next, one 5 mm square cube was cut out from the oxidation catalyst device 1 for exhaust gas purification of this example exactly as in Example 5, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b were cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 17 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameters of the pores 7 of the catalyst layers 3a and 3b. FIG. 16 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図17に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.01〜0.5μmの範囲にあると考えられる。また、図16に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は35.5体積%であることが明らかである。   As shown in FIG. 17, in the oxidation catalyst device 1 for exhaust gas purification according to the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.01 to 0.5 μm. It is done. Further, as shown in FIG. 16, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 35.5% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.80:0.20:0.80:0.20:6:40のモル比で混合した以外は、実施例5と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.80: 0.20: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 5 except that the mixing was performed at a molar ratio of 80: 0.20: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.8Ag0.2Mn0.8Ti0.2で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例5と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.8 Ti 0.2 O 3 and zirconium oxide. Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 5, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.4gのパティキュレートを捕集させた以外は、実施例5と全く同一にして、触媒性能評価試験を行った。結果を図14に示す。   Next, the exhaust gas purification oxidation catalyst device 1 of this example is exactly the same as Example 5 except that 1.4 g of particulates per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 were collected. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例5と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図18に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図16に示す。   Next, one 5 mm square cube was cut out from the oxidation catalyst device 1 for exhaust gas purification of this example exactly as in Example 5, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b were cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 18 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b. FIG. 16 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図18に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.20〜1.0μmの範囲にあると考えられる。また、図16に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は41.2体積%であることが明らかである。   As shown in FIG. 18, in the oxidation catalyst device 1 for exhaust gas purification of this example, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.20 to 1.0 μm. It is done. Further, as shown in FIG. 16, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 41.2% by volume. Is clear.

本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、アナターゼ型酸化チタンと、クエン酸と、水とを、0.80:0.20:0.70:0.30:6:40のモル比で混合した以外は、実施例5と全く同一にして、触媒前駆体スラリーを調製した。   In this example, first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, anatase-type titanium oxide, citric acid, and water were added at 0.80: 0.20: 0. A catalyst precursor slurry was prepared in exactly the same manner as in Example 5 except that mixing was performed at a molar ratio of 70: 0.30: 6: 40.

次に、本実施例で得られた触媒前駆体スラリーを用い、化学式Y0.8Ag0.2Mn0.7Ti0.3で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを形成した以外は、実施例5と全く同一にして、排ガス浄化用酸化触媒装置1を製造した。 Next, using the catalyst precursor slurry obtained in this example, a mixture of a composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.7 Ti 0.3 O 3 and zirconium oxide. Exhaust gas purification oxidation catalyst device 1 was manufactured in exactly the same manner as in Example 5, except that the first catalyst layer 3a and the second catalyst layer 3b made of the porous material were formed.

次に、本実施例の排ガス浄化用酸化触媒装置1に対して、排ガス浄化用酸化触媒装置1の見かけ体積1Lあたり1.5gのパティキュレートを捕集させた以外は、実施例5と全く同一にして、触媒性能評価試験を行った。結果を図14に示す。   Next, exactly the same as Example 5 except that 1.5 g of particulate per 1 L apparent volume of the exhaust gas purification oxidation catalyst device 1 was collected with respect to the exhaust gas purification oxidation catalyst device 1 of the present example. Thus, a catalyst performance evaluation test was conducted. The results are shown in FIG.

次に、本実施例の排ガス浄化用酸化触媒装置1から、実施例5と全く同一にして、5mm角の立方体を1個切り出し、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径と、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率とを測定した。多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径の測定結果を図19に示す。多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率の測定結果を図16に示す。   Next, one 5 mm square cube was cut out from the oxidation catalyst device 1 for exhaust gas purification of this example exactly as in Example 5, and the pore diameter of the porous filter substrate 2 and the catalyst layers 3a, 3b were cut out. The diameter of each of the pores 7 and the overall porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b were measured. FIG. 19 shows the measurement results of the pore diameter of the porous filter substrate 2 and the diameters of the pores 7 of the catalyst layers 3a and 3b. FIG. 16 shows the measurement results of the entire porosity of the porous filter substrate 2 and the catalyst layers 3a and 3b.

図19に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2の気孔の直径及び触媒層3a,3bの気孔7の直径は、0.01〜100μmの範囲にあった。ここで、多孔質フィルタ基材2の気孔の平均直径が20〜25μmの範囲にあることを考慮すると、触媒層3a,3bの気孔の直径は0.02〜2.0μmの範囲にあると考えられる。また、図16に示すように、本実施例の排ガス浄化用酸化触媒装置1において、多孔質フィルタ基材2及び触媒層3a,3bを合わせた全体の気孔率は43.3体積%であることが明らかである。   As shown in FIG. 19, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the pore diameter of the porous filter substrate 2 and the diameter of the pores 7 of the catalyst layers 3a and 3b are in the range of 0.01 to 100 μm. It was in. Here, considering that the average diameter of the pores of the porous filter substrate 2 is in the range of 20 to 25 μm, the diameter of the pores of the catalyst layers 3a and 3b is considered to be in the range of 0.02 to 2.0 μm. It is done. Moreover, as shown in FIG. 16, in the exhaust gas purification oxidation catalyst device 1 of the present embodiment, the total porosity of the porous filter base material 2 and the catalyst layers 3a and 3b is 43.3% by volume. Is clear.

図14から、一般式Y0.8Ag0.2Mn1−yTi(0.05≦y≦0.30)で表される複合金属酸化物と酸化ジルコニウムとの混合物の多孔質からなる第1の触媒層3a及び第2の触媒層3bを備える実施例5,7〜10の排ガス浄化用酸化触媒装置1は、捕集されたパティキュレートのうちの90質量%が燃焼されるまでに要した時間がいずれも130秒未満であることが明らかである。したがって、実施例5,7〜10の排ガス浄化用酸化触媒装置1は、実施例2〜4,6の排ガス浄化用酸化触媒装置1と比較して、内燃機関の排ガス中のパティキュレートをさらに短時間で酸化、燃焼することができることが明らかである。 From FIG. 14, the porosity of the mixture of the composite metal oxide represented by the general formula Y 0.8 Ag 0.2 Mn 1-y Ti y O 3 (0.05 ≦ y ≦ 0.30) and zirconium oxide. In the oxidation catalyst device 1 for exhaust gas purification of Examples 5 and 7 to 10 including the first catalyst layer 3a and the second catalyst layer 3b made of 90% of the collected particulates are burned. It is clear that all of the time required until is less than 130 seconds. Therefore, the oxidation catalyst device 1 for exhaust gas purification of Examples 5 and 7 to 10 has a shorter particulate matter in the exhaust gas of the internal combustion engine than the oxidation catalyst device 1 for exhaust gas purification of Examples 2 to 4 and 6. It is clear that it can oxidize and burn in time.

1…排ガス浄化用酸化触媒装置、 2…多孔質フィルタ基材、 3a…第1の触媒層、 3b…第2の触媒層、 4…流入セル、 5…流出セル、 6…セル隔壁、 7…気孔。   DESCRIPTION OF SYMBOLS 1 ... Oxidation catalyst apparatus for exhaust gas purification, 2 ... Porous filter base material, 3a ... 1st catalyst layer, 3b ... 2nd catalyst layer, 4 ... Inflow cell, 5 ... Outflow cell, 6 ... Cell partition, 7 ... Pores.

Claims (2)

一方の端部を排ガス流入部とし、他方の端部を排ガス流出部とするウォールフロー構造を有する多孔質フィルタ基材と、該多孔質フィルタ基材に担持された触媒とを備え、
該多孔質フィルタ基材は、軸方向に貫通して形成された複数の貫通孔のうち、排ガス流入部が開放されるとともに排ガス流出部が閉塞された複数の流入セルと、該複数の貫通孔の排ガス流入部が閉塞されるとともに排ガス流出部が開放された複数の流出セルと、該流入セル及び該流出セルを隔てるセル隔壁とを備え、
該触媒は、該セル隔壁の少なくとも該流入セル側の表面に担持された第1の触媒層と、該セル隔壁を形成する該多孔質フィルタ基材の気孔の壁面表面に担持された第2の触媒層とからなり、
該排ガス流入部から流入する内燃機関の排ガスを該セル隔壁を介して該流出セルに流通させる間に、該排ガス中のパティキュレートを前記触媒により酸化し、浄化された該排ガスを該排ガス流出部から流出せしめる排ガス浄化用酸化触媒装置において、
該触媒は、一般式Y1−xAgMn1−yTiで表され、0.01≦x≦0.30かつ0.005≦y≦0.30である複合金属酸化物と、酸化ジルコニウムとの混合物の多孔質体からなることを特徴とする排ガス浄化用酸化触媒装置。
A porous filter base material having a wall flow structure in which one end portion is an exhaust gas inflow portion and the other end portion is an exhaust gas outflow portion, and a catalyst supported on the porous filter base material,
The porous filter base material includes: a plurality of inflow cells in which an exhaust gas inflow portion is opened and an exhaust gas outflow portion is blocked, and the plurality of through holes among the plurality of through holes formed to penetrate in the axial direction A plurality of outflow cells in which the exhaust gas inflow portion is closed and the exhaust gas outflow portion is opened, and the inflow cell and a cell partition partitioning the outflow cell,
The catalyst includes a first catalyst layer supported on at least the surface of the cell partition wall on the inflow cell side, and a second catalyst layer supported on the pore wall surface of the porous filter base material forming the cell partition wall. Consisting of a catalyst layer,
While the exhaust gas of the internal combustion engine flowing in from the exhaust gas inflow part is circulated to the outflow cell through the cell partition wall, the particulates in the exhaust gas are oxidized by the catalyst, and the purified exhaust gas is converted into the exhaust gas outflow part. In the oxidation catalyst device for exhaust gas purification that flows out from
The catalyst is represented by the general formula Y 1-x Ag x Mn 1 -y Ti y O 3, and complex metal oxides is 0.01 ≦ x ≦ 0.30 and 0.005 ≦ y ≦ 0.30 An oxidation catalyst device for exhaust gas purification comprising a porous body of a mixture with zirconium oxide.
前記各触媒層は、直径が0.01〜3.0μmの範囲の気孔を備える多孔質体からなり、前記多孔質フィルタ基材及び該各触媒層全体の気孔率が、30〜55体積%の範囲であることを特徴とする請求項1記載の排ガス浄化用酸化触媒装置。   Each of the catalyst layers is made of a porous body having pores having a diameter in the range of 0.01 to 3.0 μm, and the porosity of the porous filter substrate and the entire catalyst layers is 30 to 55% by volume. The oxidation catalyst device for exhaust gas purification according to claim 1, wherein the oxidation catalyst device is in a range.
JP2009070203A 2008-04-22 2009-03-23 Oxidation catalyst equipment for exhaust gas purification Expired - Fee Related JP5330044B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009070203A JP5330044B2 (en) 2008-07-15 2009-03-23 Oxidation catalyst equipment for exhaust gas purification
PCT/JP2009/001775 WO2009130869A1 (en) 2008-04-22 2009-04-17 Oxidation catalyst and oxidation catalyst device for exhaust gas purification
EP09734310A EP2269731B1 (en) 2008-04-22 2009-04-17 Oxidation catalyst and oxidation catalyst device for exhaust gas purification

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008184105 2008-07-15
JP2008184105 2008-07-15
JP2009070203A JP5330044B2 (en) 2008-07-15 2009-03-23 Oxidation catalyst equipment for exhaust gas purification

Publications (2)

Publication Number Publication Date
JP2010042396A JP2010042396A (en) 2010-02-25
JP5330044B2 true JP5330044B2 (en) 2013-10-30

Family

ID=42014214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070203A Expired - Fee Related JP5330044B2 (en) 2008-04-22 2009-03-23 Oxidation catalyst equipment for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP5330044B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558867B2 (en) * 2010-03-05 2014-07-23 本田技研工業株式会社 Exhaust purification catalyst
EP2873817A4 (en) 2012-06-28 2016-05-25 Mitsui Mining & Smelting Co Diesel particulate filter and exhaust gas purification device
JP6771119B2 (en) 2018-03-30 2020-10-21 三井金属鉱業株式会社 Exhaust gas purification catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116519A (en) * 1993-10-20 1995-05-09 Toyota Central Res & Dev Lab Inc Exhaust gas purifying material and purifying method of exhaust gas
JP2002188435A (en) * 2000-10-12 2002-07-05 Toyota Motor Corp Exhaust gas purifying filter
JP4311918B2 (en) * 2002-07-09 2009-08-12 ダイハツ工業株式会社 Method for producing perovskite complex oxide
JP5233026B2 (en) * 2006-03-06 2013-07-10 Dowaエレクトロニクス株式会社 Manufacturing method of DPF
JP4611927B2 (en) * 2006-04-05 2011-01-12 本田技研工業株式会社 Oxidation catalyst for exhaust gas purification
JP4689574B2 (en) * 2006-10-20 2011-05-25 本田技研工業株式会社 Oxidation catalyst for exhaust gas purification

Also Published As

Publication number Publication date
JP2010042396A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4753209B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP5273446B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5773337B2 (en) Oxidation catalyst and diesel particulate filter
JP4835193B2 (en) Diesel particulate filter
JP5436060B2 (en) Oxidation catalyst equipment for exhaust gas purification
CN106794421A (en) Emission-control equipment
WO2009130869A1 (en) Oxidation catalyst and oxidation catalyst device for exhaust gas purification
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
JPWO2017051459A1 (en) Exhaust purification filter
JP5440339B2 (en) Exhaust gas purification filter
JP5095538B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP2009136787A (en) Method of manufacturing oxidation catalyst device for purification of exhaust gas
JP5330044B2 (en) Oxidation catalyst equipment for exhaust gas purification
JP5052401B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP2010227799A (en) Exhaust gas purifying catalyst
JP5041367B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP5434762B2 (en) Exhaust gas purification filter
JP4591959B2 (en) Diesel particulate filter
JP5610319B2 (en) Layered complex oxide, oxidation catalyst and diesel particulate filter
JP2009262102A (en) Oxidation catalyst device for purification of exhaust gas
JP4987794B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
JP5024794B2 (en) Manufacturing method of oxidation catalyst device for exhaust gas purification
EP2113303B1 (en) Production method of oxidation catalyst device for exhaust gas purification
JP5956496B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
JP4265445B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5330044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees