JP2009262015A - Passage forming body equipped with temperature sensor - Google Patents

Passage forming body equipped with temperature sensor Download PDF

Info

Publication number
JP2009262015A
JP2009262015A JP2008112099A JP2008112099A JP2009262015A JP 2009262015 A JP2009262015 A JP 2009262015A JP 2008112099 A JP2008112099 A JP 2008112099A JP 2008112099 A JP2008112099 A JP 2008112099A JP 2009262015 A JP2009262015 A JP 2009262015A
Authority
JP
Japan
Prior art keywords
temperature sensor
flow path
temperature
forming body
seal fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008112099A
Other languages
Japanese (ja)
Other versions
JP5004300B2 (en
Inventor
Masakazu Kuroda
政計 黒田
Masaru Yamana
勝 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Okazaki Manufacturing Co Ltd
Original Assignee
Toray Engineering Co Ltd
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd, Okazaki Manufacturing Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2008112099A priority Critical patent/JP5004300B2/en
Publication of JP2009262015A publication Critical patent/JP2009262015A/en
Application granted granted Critical
Publication of JP5004300B2 publication Critical patent/JP5004300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem associated with a device for reacting substances in a microspace such as a microdevice wherein accurate measurement of the temperature of a fluid flowing in its passage is required for the purpose of controlling the reaction temperature, and wherein the fluid flow is disturbed if its temperature sensor is disposed in the passage and the temperature in the passage cannot accurately be measured if the temperature sensor is disposed outside the passage. <P>SOLUTION: The passage forming body (1) equipped with a temperature sensor includes a seal metal-fitting (11), a temperature sensor (12) with a temperature measuring part (37) thereof bonded to the seal metal-fitting (11), and a heat-insulation member (13) that covers the seal metal-fitting (11) and the temperature sensor (12), whereby the heat generated in a passage (21) can accurately be detected without disturbing the fluid flow. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温度センサ付流路形成体に関する。   The present invention relates to a flow path forming body with a temperature sensor.

マイクロ化学プラントは、マイクロスケールの空間内での混合、化学反応、分離などを利用した生産設備である。そして、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備える。具体的には以下のような点が挙げられる。まず、複数の流体の混合や化学反応を短時間且つ微量の試料で行える点である。次に装置が小型であるため実験室レベルで生成物の製造技術を確立できればナンバリングアップを行うことで容易に量産用の設備化ができる点である。また、爆発などの危険が伴う反応にも適用可能である点、多品種少量生産を必要とする化合物の生成などにも素早く適応できる点、さらに需要量に合わせた生産量の調整が容易にできる点などが挙げられる。   A microchemical plant is a production facility that uses mixing, chemical reaction, separation, and the like in a microscale space. And it has many advantages compared with the conventional batch-type plant using a large tank etc. Specifically, the following points are mentioned. First, it is possible to mix a plurality of fluids and perform a chemical reaction with a small amount of sample in a short time. Next, since the equipment is small, if the production technology of the product can be established at the laboratory level, the equipment for mass production can be easily installed by numbering up. It can also be applied to reactions that involve dangers such as explosions, can be quickly adapted to the production of compounds that require high-mix low-volume production, and can easily adjust the production volume to meet demand. A point etc. are mentioned.

マイクロ化学プラントにおいては、流体の反応温度を制御することによって反応速度や生成物質の質を向上させることができる。反応温度を制御するには、反応路であるマイクロ流路を流れる流体の正確な温度測定が必要となる。マイクロ流路を流れる液体の温度を測定する技術はすでにいくつか開示されたものがある。例えば特許文献1には、マイクロ流路を形成するマイクロ反応本体部に温度センサ挿入口を設け、この中に挿入した温度センサにより、液相の温度を測定するように構成されたマイクロリアクタが開示されている。また、特許文献2には、マイクロ流路の内部に温度センサを設けたマイクロ流路デバイスが開示されている。
特開2004−321063号公報 特開2006−130599号公報
In microchemical plants, the reaction rate and the quality of the product can be improved by controlling the reaction temperature of the fluid. In order to control the reaction temperature, it is necessary to accurately measure the temperature of the fluid flowing through the micro flow path that is the reaction path. Several techniques for measuring the temperature of the liquid flowing through the microchannel have already been disclosed. For example, Patent Document 1 discloses a microreactor configured such that a temperature sensor insertion port is provided in a microreaction main body forming a microchannel, and a temperature of the liquid phase is measured by the temperature sensor inserted therein. ing. Patent Document 2 discloses a microchannel device in which a temperature sensor is provided inside the microchannel.
JP 2004-321063 A JP 2006-130599 A

特許文献1に記載のマイクロリアクタでは、温度センサは、マイクロ反応本体部を介して伝わった反応液の熱を測定するため、測定温度の正確性に劣るという問題があった。また、特許文献2に記載のマイクロ流路デバイスでは、マイクロ流路内に温度センサを設けるため、温度測定の正確性は良くなる。   In the microreactor described in Patent Document 1, since the temperature sensor measures the heat of the reaction solution transmitted through the microreaction main body, there is a problem that the measurement temperature is inaccurate. Moreover, in the microchannel device described in Patent Document 2, since the temperature sensor is provided in the microchannel, the accuracy of temperature measurement is improved.

しかし、液流れが温度センサにより妨げられ、流れが乱されるという問題があった。特に、マイクロ化学プラントで用いる流路は、断面積が数mm以下である。そして温度測定センサとして主に用いられる熱電対センサは一般に直径0.5mm(断面積にして0.785mm)以上ある。つまり、流路の断面積のかなりの部分を熱電対が塞ぐ。 However, there is a problem that the liquid flow is disturbed by the temperature sensor and the flow is disturbed. In particular, the flow path used in the microchemical plant has a cross-sectional area of several mm 2 or less. A thermocouple sensor mainly used as a temperature measuring sensor generally has a diameter of 0.5 mm (a cross-sectional area of 0.785 mm 2 ) or more. That is, a thermocouple blocks a considerable part of the cross-sectional area of the flow path.

従って、層流状態を保持した状態での流れが必要な場合は、特許文献2の技術を用いると、温度測定センサが障害となって乱流が生じる虞があった。   Therefore, when a flow in a state where a laminar flow state is maintained is required, there is a possibility that a turbulent flow may occur due to an obstacle of the temperature measurement sensor when the technique of Patent Document 2 is used.

本発明は、このような問題に鑑みてなされたものであり、流路を流れる流体の温度を正確に測定することができると共に、流れに乱れを生じさせないようにできる、温度センサ付流路形成体を提供することを目的とする。   The present invention has been made in view of such a problem, and is capable of accurately measuring the temperature of the fluid flowing through the flow path and forming a flow path with a temperature sensor that does not cause turbulence in the flow. The purpose is to provide a body.

上記目的を達成するため、本発明は、
シール金具(11)と、
前記シール金具(11)に接合された温度センサ(12)と、
前記シール金具(11)と前記温度センサ(12)を被覆する断熱部材(13)を有する温度センサ付流路形成体(1)を提供する。
In order to achieve the above object, the present invention provides:
A seal fitting (11);
A temperature sensor (12) joined to the seal fitting (11);
A temperature sensor-equipped flow path forming body (1) having a heat insulating member (13) covering the seal fitting (11) and the temperature sensor (12) is provided.

本発明の温度センサ付流路形成体には、液流が流れる流路をシール金具で形成し、温度センサをそのシール金具に接合する。そのため、流路となるシール金具を流れる流体の流れが温度センサの測温部により妨げられず、流れが乱されることがない。   In the flow channel forming body with temperature sensor of the present invention, a flow channel through which a liquid flow flows is formed with a seal fitting, and the temperature sensor is joined to the seal fitting. Therefore, the flow of the fluid flowing through the seal fitting serving as the flow path is not hindered by the temperature measuring unit of the temperature sensor, and the flow is not disturbed.

また、温度センサ(12)の測温部(37)は、シール金具で構成された流路(21)内を流れる流体からの熱をシール金具越しに得ることになる。このシール金具の厚みを極力薄くすることで熱伝導を良くし、流体の温度を正確に測定することができる。具体的には、このシール金具をニッケル合金(例えばハステロイ(登録商標)C276)で形成し、その厚みを0.35mm程度とすれば10MPa/200℃での使用に耐える構造となる。   Further, the temperature measuring section (37) of the temperature sensor (12) obtains heat from the fluid flowing in the flow path (21) constituted by the seal fitting through the seal fitting. By reducing the thickness of the seal fitting as much as possible, heat conduction can be improved and the temperature of the fluid can be accurately measured. Specifically, if this seal fitting is formed of a nickel alloy (for example, Hastelloy (registered trademark) C276) and its thickness is about 0.35 mm, the structure can withstand use at 10 MPa / 200 ° C.

また、シール金具(11)と温度センサ(12)の測温部(37)とを銀ろう(40)により接合することで、高い熱導電率を保持したままで測温部(37)を確実に固定することができる。特に本発明では、温度センサを流路となるシール金具に巻きつけ、銀ろうで接合するため、シール金具内部で発生した熱を正確に温度センサで検知することができる。   In addition, the temperature measuring part (37) is reliably maintained while maintaining high thermal conductivity by joining the metal fitting (11) and the temperature measuring part (37) of the temperature sensor (12) with the silver solder (40). Can be fixed to. In particular, in the present invention, since the temperature sensor is wound around the seal fitting serving as the flow path and joined with the silver brazing, the heat generated inside the seal fitting can be accurately detected by the temperature sensor.

温度センサ(12)は金属シース内部に絶縁材を介して熱電対要素を収容した構造とすることで、マイクロデバイスへの適用に好適となる。この構造を有する温度センサをシース熱電対型温度センサとも呼ぶ。   The temperature sensor (12) has a structure in which a thermocouple element is housed in an inside of a metal sheath via an insulating material, and thus is suitable for application to a micro device. A temperature sensor having this structure is also called a sheath thermocouple type temperature sensor.

温度センサを巻きつけたシール金具の周りにPPS樹脂またはフッ素樹脂等の合成樹脂で断熱部材(13)を配置することで、流路(21)内を流れる流体は、外部への放熱または外部からの銃熱の影響が非常に少なくなる。   By disposing the heat insulating member (13) with a synthetic resin such as PPS resin or fluorine resin around the seal fitting around which the temperature sensor is wound, the fluid flowing in the flow path (21) is radiated to the outside or from the outside. The effect of gun heat is very little.

なお、特許請求の範囲及び課題を解決するための手段の欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in the column of the means for solving a claim and a problem shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の温度センサ付流路形成体によると、流路を流れる流体の温度を正確に測定することができると共に、流れに乱れを生じさせないようにできる。   According to the flow path forming body with a temperature sensor of the present invention, the temperature of the fluid flowing through the flow path can be accurately measured, and the flow can be prevented from being disturbed.

以下、添付図面を参照して、本発明の実施形態について説明する。図1(a)は本発明の基本的構成を示す正面一部断面図である。図1(b)は、流路口側から見た図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1A is a partial front sectional view showing the basic configuration of the present invention. FIG.1 (b) is the figure seen from the flow-path opening side.

本発明の温度センサ付流路形成体1は、シール金具11、温度センサ12及び断熱部材13から構成される。これらの各構成要素について説明する。   The temperature sensor-equipped flow path forming body 1 of the present invention includes a seal fitting 11, a temperature sensor 12, and a heat insulating member 13. Each of these components will be described.

図2にシール金具11を示す。シール金具11は、流路21を構成する部材である。従って、両端が開放端となる筒状で構成される場合が多い。しかし、この形状に限定されることはなく、筒の途中に孔が形成されていてもよいし、片端若しくは両端が閉端であってもよい。流路21内ではさまざまな反応が生じるため、耐熱性、耐食性に優れ、且つ熱伝導性の高い材質で構成するのが好ましい。   FIG. 2 shows the seal fitting 11. The seal fitting 11 is a member constituting the flow path 21. Therefore, it is often configured in a cylindrical shape with both ends being open ends. However, it is not limited to this shape, and a hole may be formed in the middle of the cylinder, or one end or both ends may be closed ends. Since various reactions occur in the channel 21, it is preferable to use a material having excellent heat resistance and corrosion resistance and high thermal conductivity.

金属は一般的にこれらの条件を満たすものが多く、好適に利用できる。具体的には、ニッケルを主成分とする合金が好ましく、より具体的にはハステロイ(登録商標)鋼等の金属を材質とするのがよい。しかし、金属に限定されることはなく、例えば、ポリテトラフリオロエチレンまたは接着性フッ素樹脂等の合成樹脂などの樹脂であってもよい。   Many metals generally satisfy these conditions and can be suitably used. Specifically, an alloy containing nickel as a main component is preferable, and more specifically, a metal such as Hastelloy (registered trademark) steel is preferably used. However, it is not limited to metals, and may be a resin such as a synthetic resin such as polytetrafluoroethylene or an adhesive fluororesin.

断面形状は特に限定されず、円形や楕円形若しくは多角形など適宜用いることができる。しかし特に円形は、好適に利用できる。内部で発生した熱が、内壁に均等に内部の熱が伝わりやすいからである。   The cross-sectional shape is not particularly limited, and a circular shape, an oval shape, a polygonal shape, or the like can be used as appropriate. However, a circular shape can be preferably used. This is because the heat generated inside is easily transferred to the inner wall evenly.

シール金具11の肉厚22は薄いほど流路内で発生した熱が温度センサに伝わりやすくなる。すなわち、温度特性は向上する。一方で、肉厚22が、薄くなると流路内で発生する圧力に対する強度が低下する。そのため温度特性と耐圧性のバランスで材料と肉厚を選択し設計する必要がある。例えば、上記のハステロイ(登録商標)C276を用いて、内部圧力が10MPa/200℃までの耐圧性を確保する場合は、0.35mm程度の肉厚とする事が望ましい。なお、ここで「0.35mm程度」とは、上記の耐圧性を確保できる程度の肉厚の範囲を含む趣旨である。   The thinner the wall thickness 22 of the seal fitting 11, the easier the heat generated in the flow path is transferred to the temperature sensor. That is, the temperature characteristics are improved. On the other hand, when the thickness 22 is reduced, the strength against the pressure generated in the flow path is reduced. For this reason, it is necessary to select and design the material and wall thickness in a balance between temperature characteristics and pressure resistance. For example, when the above-mentioned Hastelloy (registered trademark) C276 is used to secure pressure resistance up to an internal pressure of 10 MPa / 200 ° C., it is desirable that the wall thickness is about 0.35 mm. Here, “about 0.35 mm” is intended to include a thickness range that can ensure the pressure resistance.

また、流路断面積は1mm乃至8mmであるのが好ましい。流路断面積が1mmより小さいと、温度センサと同程度の大きさになり正確な温度計測ができなくなるからである。また、流路断面積が8mmより大きいと流路内で発生した温度をシール金具11の外側で瞬時に検出しにくくなるからである。 The cross-sectional area of the flow path is preferably 1 mm 2 to 8 mm 2 . This is because if the cross-sectional area of the flow path is smaller than 1 mm 2 , it becomes as large as the temperature sensor and accurate temperature measurement cannot be performed. Further, if the cross-sectional area of the flow path is larger than 8 mm 2, it is difficult to instantaneously detect the temperature generated in the flow path outside the seal fitting 11.

図3に本発明に用いる温度センサ12の構成例を示す。この温度センサ12はシース熱電対型温度センサである。温度センサ12は、シース31、熱電対要素32、充填部材33を含む。また、アダプタ32及びリード線35などを備えてもよい。   FIG. 3 shows a configuration example of the temperature sensor 12 used in the present invention. This temperature sensor 12 is a sheath thermocouple type temperature sensor. The temperature sensor 12 includes a sheath 31, a thermocouple element 32, and a filling member 33. Moreover, you may provide the adapter 32, the lead wire 35, etc.

シース31は、一端が閉端であり、他端が開端である筒状をしている。材質は熱導電性が高い材料であれば特に限定されるものではない。具体的には銅、鉄、ニッケル、亜鉛、ステンレスなどが好適に利用できる。また大きさは小さい方がよい。例えば直径は0.5mm程度が望ましい。細い方が熱容量が小さく、測定には好ましいからである。   The sheath 31 has a cylindrical shape with one end being a closed end and the other end being an open end. The material is not particularly limited as long as the material has high thermal conductivity. Specifically, copper, iron, nickel, zinc, stainless steel and the like can be suitably used. The size should be small. For example, the diameter is preferably about 0.5 mm. This is because a thinner one has a smaller heat capacity and is preferable for measurement.

熱電対要素32は、互いに異なる種類の金属からなる2本の素線を接合されたものである。具体的には、クロメル素線及びアルメル素線のそれぞれの一端同士を接合点38で接合した熱電対要素が好適に用いられる。この熱電対は、シース31の中に配置される。   The thermocouple element 32 is formed by joining two strands made of different kinds of metals. Specifically, a thermocouple element in which one end of each of the chromel wire and the alumel wire is joined at a joint point 38 is preferably used. This thermocouple is disposed in the sheath 31.

充填材33は、アルミナといったセラミックスなどが利用できる。充填材33は、シース31の閉端と熱電対要素の接合点との間の熱的接触を十分に達成させ、且つシース内での熱電対要素の機械的保持を確実にするために、シースの内壁と熱電対要素の間の空間を埋めるように充填される。   As the filler 33, ceramics such as alumina can be used. Filler 33 is used to sufficiently achieve thermal contact between the closed end of sheath 31 and the junction of the thermocouple element and to ensure mechanical retention of the thermocouple element within the sheath. It is filled so as to fill the space between the inner wall and the thermocouple element.

熱電対要素32は、接合点38をシース31の閉端に配置され、シースの開端から両素線の端子が出る。この端子は、アダプタに入りリード線に接続される。リード線は測定器36と接続されて、両素線間の電位差から温度が測定される。なお、熱電対要素には、測温抵抗体を用いても良い。熱電対要素32はその接合点38の温度による熱起電力で温度を測定するものである。従って、接合点が配置されたシース31の閉端は熱を測定する部分となる。この部分を測温部37と呼ぶ。   In the thermocouple element 32, the junction point 38 is arranged at the closed end of the sheath 31, and the terminals of both the strands come out from the open end of the sheath. This terminal enters the adapter and is connected to the lead wire. The lead wire is connected to the measuring instrument 36, and the temperature is measured from the potential difference between the two strands. A resistance temperature detector may be used for the thermocouple element. The thermocouple element 32 measures the temperature by the thermoelectromotive force due to the temperature of the junction point 38. Therefore, the closed end of the sheath 31 on which the joining point is arranged becomes a part for measuring heat. This part is called a temperature measuring unit 37.

温度センサ12は、流路21の温度を忠実に測定することが要求される。そのためには、流路を構成するシール金具11の温度を瞬時に検知し、かつ外部からの熱の影響を受けないことが必要である。そのために本発明の温度センサ付流路形成体1では、温度センサ12をシール金具11に数回巻き付け、さらに側温部37を含むシースをろう材で接合する。   The temperature sensor 12 is required to faithfully measure the temperature of the flow path 21. For that purpose, it is necessary to instantaneously detect the temperature of the seal fitting 11 constituting the flow path and not to be affected by heat from the outside. Therefore, in the flow path forming body 1 with the temperature sensor of the present invention, the temperature sensor 12 is wound around the seal fitting 11 several times, and the sheath including the side temperature portion 37 is joined with a brazing material.

このようにすることで外部の熱影響を避けることが出来、また流路に熱的に十分接触させるという効果を得ることができる。また、側温部37をろう材でシール金具11に接合することで、流路21内で発生する温度を瞬時に検知できる。   By doing in this way, the influence of an external heat can be avoided and the effect that it is made to contact a flow path enough thermally can be acquired. Moreover, the temperature generated in the flow path 21 can be instantaneously detected by joining the side temperature portion 37 to the seal fitting 11 with a brazing material.

ここで温度センサの応答遅れは、温度センサの熱容量、表面の熱伝達率と表面積によってほぼ決まるため、温度センサは、許容できる最小外形の温度センサが望ましい。一般的に時定数と呼ばれる63.2%応答は(1)式で表現される。
τ=C/(α・A)・・・・・・(1)
C:物体の熱容量 Kcal/℃
α:平均熱伝達率 Kcal/(m・℃・s)
A:物体の表面積 m
Here, since the response delay of the temperature sensor is substantially determined by the heat capacity of the temperature sensor, the heat transfer coefficient and the surface area of the surface, it is desirable that the temperature sensor has a minimum allowable outer shape. A 63.2% response, generally called a time constant, is expressed by equation (1).
τ = C / (α · A) (1)
C: Heat capacity of the object Kcal / ° C
α: Average heat transfer coefficient Kcal / (m 2 · ° C · s)
A: Surface area of the object m 2

具体的に、シース31にはステンレスを用い、充填材33にマグネシア粉を用いた。直径0.5mmのシース熱電対型温度センサ単体の時定数は、室温から沸騰水中へ浸漬した条件で、0.23秒であった。   Specifically, stainless steel was used for the sheath 31 and magnesia powder was used for the filler 33. The time constant of the sheath thermocouple type temperature sensor alone having a diameter of 0.5 mm was 0.23 seconds under the condition of being immersed in boiling water from room temperature.

つぎに、流路形成体に取り付けた温度センサの流体温度に対する応答遅れは、主として温度センサ及びシール金具の熱容量、表面の熱伝達率と方面積によって決まり、熱伝達率は流速の影響を受ける。上述の時定数0.23秒のシース熱電対型温度センサを外径2.5mm、肉厚0.35mmのシール金具に2回巻きつけた流路形成体温度センサの時定数は、流速2.2m/s以上で、0.5秒以下であった。測定条件は、室温状態の流路形成体に60℃の水を流したものである。   Next, the response delay with respect to the fluid temperature of the temperature sensor attached to the flow path forming body is mainly determined by the heat capacity of the temperature sensor and the seal fitting, the heat transfer coefficient and the area of the surface, and the heat transfer coefficient is affected by the flow velocity. The time constant of the flow path forming body temperature sensor in which the sheath thermocouple type temperature sensor having a time constant of 0.23 seconds is wound twice around a seal fitting having an outer diameter of 2.5 mm and a wall thickness of 0.35 mm is a flow rate of 2. It was 2 m / s or more and 0.5 second or less. The measurement conditions are such that water at 60 ° C. is passed through the flow path forming body in the room temperature state.

図1を再度参照して、断熱部材13はPPS樹脂またはフッ素樹脂等の合成樹脂などが好適に利用できる。断熱材13は、シール金具11および温度センサ12を被覆するように設けられる。なお、温度センサ12のアダプタ34のリード線35側は、断熱部材13で被覆されていなくてもよい。断熱部材は、流路内で発生した熱を正確に測定するため、周囲からの熱や熱電対型温度センサの放熱を抑えるために配設される。   Referring to FIG. 1 again, the heat insulating member 13 is preferably made of a synthetic resin such as a PPS resin or a fluororesin. The heat insulating material 13 is provided so as to cover the seal fitting 11 and the temperature sensor 12. The lead wire 35 side of the adapter 34 of the temperature sensor 12 may not be covered with the heat insulating member 13. The heat insulating member is disposed to suppress heat from the surroundings and heat radiation of the thermocouple type temperature sensor in order to accurately measure the heat generated in the flow path.

また、シール金具11と温度センサ12を接合するろう材40は、銀ろうが好適に利用できる。銀ろうは銀を主体とするろう材であり、はんだより融点は高いがステンレスやニッケル合金に対しても濡れ性を有し、また熱導電率も高い。なお、シール金具11をポリテトラフリオロエチレンで構成した場合は、ろう材40は接着性フッ素樹脂等の合成樹脂などの樹脂材料が好適に利用できる。   Moreover, the brazing material 40 which joins the sealing metal fitting 11 and the temperature sensor 12 can use silver brazing suitably. Silver brazing is a brazing material mainly composed of silver, has a melting point higher than that of solder, but has wettability to stainless steel and nickel alloy, and also has high thermal conductivity. In the case where the seal metal fitting 11 is made of polytetrafluoroethylene, a resin material such as a synthetic resin such as an adhesive fluororesin can be suitably used for the brazing material 40.

次に、以上のような各構成要素を備える温度センサ付流路形成体1の組み立て方法について説明する。   Next, a method for assembling the temperature sensor-equipped flow path forming body 1 including the above-described components will be described.

図4を参照して、シール金具11の外周に温度センサ12を巻きつけ、ろう材40によって固定する。特に温度センサ12の測温部37は、シール金具11にろう材40によって確実に接合する。この温度センサ12が固定されたシール金具11を金型に収納し、樹脂で全体をモールドする。以上のようにして図1に示す温度センサ付流路形成体1を得る。   Referring to FIG. 4, temperature sensor 12 is wound around the outer periphery of seal fitting 11 and fixed by brazing material 40. In particular, the temperature measuring unit 37 of the temperature sensor 12 is reliably joined to the seal fitting 11 by the brazing material 40. The seal fitting 11 to which the temperature sensor 12 is fixed is housed in a mold, and the whole is molded with resin. In this way, the temperature sensor-attached flow path forming body 1 shown in FIG. 1 is obtained.

以上、本発明の実施の形態について説明を行ったが、上に開示した実施の形態は、あくまで例示であって、本発明の範囲はこの実施の形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、更に特許請求の範囲と均等の意味及び範囲内でのすべての変更を含むことが意図される。   As mentioned above, although embodiment of this invention was described, embodiment disclosed above is an illustration to the last, Comprising: The scope of the present invention is not limited to this embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、マイクロデバイスやマイクロプラントといった微小空間内で反応や合成を行わせる装置に好適に利用することができる。
INDUSTRIAL APPLICABILITY The present invention can be suitably used for an apparatus that performs reaction or synthesis in a micro space such as a micro device or a micro plant.

本発明に係る温度センサ付流路形成体の構成を例示する図である。It is a figure which illustrates the composition of the channel formation object with a temperature sensor concerning the present invention. シール金具を示す図である。It is a figure which shows a sealing metal fitting. 温度センサを示す図である。It is a figure which shows a temperature sensor. シール金具に温度センサを固定した状態を示す図である。It is a figure which shows the state which fixed the temperature sensor to the seal metal fitting.

符号の説明Explanation of symbols

1 温度センサ付流路形成体
11 シール金具
12 温度センサ
13 断熱部材
21 流路
22 シール金具の肉厚
31 シース
32 熱電対要素
33 充填部材
34 アダプタ
35 リード線
36 測定器
37 測温部
38 接合点
40 ろう材
DESCRIPTION OF SYMBOLS 1 Flow path formation body with temperature sensor 11 Seal metal fitting 12 Temperature sensor 13 Heat insulation member 21 Flow path 22 Thickness of seal metal fitting 31 Sheath 32 Thermocouple element 33 Filling member 34 Adapter 35 Lead wire 36 Measuring instrument 37 Temperature measuring part 38 Junction point 40 Brazing material

Claims (8)

シール金具(11)と、
前記シール金具(11)に接合された温度センサ(12)と、
前記シール金具(11)と前記温度センサ(12)を被覆する断熱部材(13)を有する温度センサ付流路形成体(1)。
A seal fitting (11);
A temperature sensor (12) joined to the seal fitting (11);
A flow path forming body with temperature sensor (1) having a heat insulating member (13) covering the seal fitting (11) and the temperature sensor (12).
前記温度センサ(12)は、
一方が閉端で他方が開端である筒状のシース(31)と、
前記シース(31)の中に接合部38が配置された熱電対要素(32)と、
前記シースの中に入れられた充填部材(33)を有する温度センサである請求項1に記載された温度センサ付流路形成体。
The temperature sensor (12)
A tubular sheath (31) with one closed end and the other open end;
A thermocouple element (32) having a joint 38 disposed in the sheath (31);
The flow path forming body with a temperature sensor according to claim 1, which is a temperature sensor having a filling member (33) placed in the sheath.
前記温度センサ(12)はさらに、
前記熱電対要素の端子とリード線を接続するアダプタ(34)を有する請求項2に記載された温度センサ付流路形成体。
The temperature sensor (12) further includes
The flow path forming body with a temperature sensor according to claim 2, further comprising an adapter (34) for connecting a terminal of the thermocouple element and a lead wire.
前記シール金具(11)の流路断面積は1mm乃至8mmである請求項1乃至3のいずれか1の請求項に記載された温度センサ付流路形成体。 The flow path forming body with a temperature sensor according to any one of claims 1 to 3, wherein a cross-sectional area of the flow path of the seal fitting (11) is 1 mm 2 to 8 mm 2 . 前記シール金具(11)はニッケル合金であって、流路肉厚は0.35mmである請求項1乃至4のいずれか1の請求項に記載された温度センサ付流路形成体。 The flow path forming body with a temperature sensor according to any one of claims 1 to 4, wherein the seal fitting (11) is made of a nickel alloy and has a flow path thickness of 0.35 mm. 前記温度センサ(12)は前記シール金具(11)に巻きつき、少なくとも前記温度センサの測温部(37)が前記シール金具(11)に接合されている請求項1乃至5のいずれか1の請求項に記載された温度センサ付流路形成体。 The temperature sensor (12) is wound around the seal fitting (11), and at least a temperature measuring part (37) of the temperature sensor is joined to the seal fitting (11). A flow path forming body with a temperature sensor according to claim. 前記接合はろう材(40)で接合されている請求項1乃至6のいずれか1の請求項に記載された温度センサ付流路成形体。 The flow path molded body with a temperature sensor according to any one of claims 1 to 6, wherein the joining is joined by a brazing material (40). 前記ろう材(40)が銀ろうである請求項7に記載された温度センサ付流路形成体。

The flow path forming body with a temperature sensor according to claim 7, wherein the brazing material (40) is silver brazing.

JP2008112099A 2008-04-23 2008-04-23 Flow path forming body with temperature sensor Active JP5004300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112099A JP5004300B2 (en) 2008-04-23 2008-04-23 Flow path forming body with temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112099A JP5004300B2 (en) 2008-04-23 2008-04-23 Flow path forming body with temperature sensor

Publications (2)

Publication Number Publication Date
JP2009262015A true JP2009262015A (en) 2009-11-12
JP5004300B2 JP5004300B2 (en) 2012-08-22

Family

ID=41388546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112099A Active JP5004300B2 (en) 2008-04-23 2008-04-23 Flow path forming body with temperature sensor

Country Status (1)

Country Link
JP (1) JP5004300B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133334U (en) * 1979-03-16 1980-09-20
CH624763A5 (en) * 1978-04-27 1981-08-14 Sulzer Ag Temperature-measuring device having a sheathed thermocouple, and method for producing the same
JPS59155731A (en) * 1983-02-25 1984-09-04 Mitsubishi Heavy Ind Ltd Method for mounting temperature measuring body
JPS63222233A (en) * 1987-03-12 1988-09-16 Toa Nenryo Kogyo Kk Method for measuring temperature in fluid treatment system
JPH01145537A (en) * 1987-12-02 1989-06-07 Mitsubishi Heavy Ind Ltd Thermocouple for measuring temperature
JPH04191626A (en) * 1990-11-26 1992-07-09 Mitsubishi Heavy Ind Ltd Surface temperature measuring sensor
JPH0712652A (en) * 1993-06-25 1995-01-17 Toshiba Corp Sheath type thermocouple
JPH07306097A (en) * 1994-05-12 1995-11-21 Tokyo Electron Ltd Temperature measurement device and method
JPH0854289A (en) * 1994-08-11 1996-02-27 Sokuon Kogyo:Kk Sensor mounting structure
JP2002095958A (en) * 2000-09-27 2002-04-02 Ymc Co Ltd Device for simultaneously synthesizing liquid phase
JP2005083831A (en) * 2003-09-05 2005-03-31 Nippon Flaekt Kk Thermometer for piping
JP2005527764A (en) * 2002-03-20 2005-09-15 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger and cooling system
JP2006223967A (en) * 2005-02-16 2006-08-31 Hitachi Ltd Reaction system
JP2007089529A (en) * 2005-09-30 2007-04-12 Toppan Printing Co Ltd Reaction vessel
JP2007144288A (en) * 2005-11-25 2007-06-14 Canon Inc Chemical device
JP2008051789A (en) * 2006-07-28 2008-03-06 Toray Eng Co Ltd Mounting structure for temperature sensor to flow path forming body

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH624763A5 (en) * 1978-04-27 1981-08-14 Sulzer Ag Temperature-measuring device having a sheathed thermocouple, and method for producing the same
JPS55133334U (en) * 1979-03-16 1980-09-20
JPS59155731A (en) * 1983-02-25 1984-09-04 Mitsubishi Heavy Ind Ltd Method for mounting temperature measuring body
JPS63222233A (en) * 1987-03-12 1988-09-16 Toa Nenryo Kogyo Kk Method for measuring temperature in fluid treatment system
JPH01145537A (en) * 1987-12-02 1989-06-07 Mitsubishi Heavy Ind Ltd Thermocouple for measuring temperature
JPH04191626A (en) * 1990-11-26 1992-07-09 Mitsubishi Heavy Ind Ltd Surface temperature measuring sensor
JPH0712652A (en) * 1993-06-25 1995-01-17 Toshiba Corp Sheath type thermocouple
JPH07306097A (en) * 1994-05-12 1995-11-21 Tokyo Electron Ltd Temperature measurement device and method
JPH0854289A (en) * 1994-08-11 1996-02-27 Sokuon Kogyo:Kk Sensor mounting structure
JP2002095958A (en) * 2000-09-27 2002-04-02 Ymc Co Ltd Device for simultaneously synthesizing liquid phase
JP2005527764A (en) * 2002-03-20 2005-09-15 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger and cooling system
JP2005083831A (en) * 2003-09-05 2005-03-31 Nippon Flaekt Kk Thermometer for piping
JP2006223967A (en) * 2005-02-16 2006-08-31 Hitachi Ltd Reaction system
JP2007089529A (en) * 2005-09-30 2007-04-12 Toppan Printing Co Ltd Reaction vessel
JP2007144288A (en) * 2005-11-25 2007-06-14 Canon Inc Chemical device
JP2008051789A (en) * 2006-07-28 2008-03-06 Toray Eng Co Ltd Mounting structure for temperature sensor to flow path forming body

Also Published As

Publication number Publication date
JP5004300B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP7005531B2 (en) Process fluid temperature measurement system with improved process invasion
RU2668354C1 (en) Filling liquid thermal regulation
US20090260431A1 (en) Mass flow meter with solder/braze-flow secured spacer
US9354121B2 (en) Corrosion resistant thermowells with thin wall tips
Reichmann et al. Reaction Calorimetry for Exothermic Reactions in Plate‐Type Microreactors Using Seebeck Elements
JP4695570B2 (en) Mounting structure of microreactor temperature sensor to microreactor channel formation body
EP2458358A1 (en) In-line contactless pressure sensors and methods of measuring pressure
US7650783B2 (en) Thermal mass flow meter
US9091599B2 (en) PTFE jacketed tantalum tipped thermowell
CN102252718A (en) Thermal mass flowmeter with a metal-encapsulated sensor system
US8118486B2 (en) Very high speed temperature probe
FI97321C (en) Electromagnetic flow meter
CN108369119B (en) Flow meter
JP5004300B2 (en) Flow path forming body with temperature sensor
Jimenez et al. A microfluidic strategy for accessing the thermal conductivity of liquids at different temperatures
RU2307330C1 (en) Temperature gage
US20230101179A1 (en) Heat flux temperature sensor probe for non-invasive process fluid temperature applications
JP2006337306A (en) Temperature sensor for liquid, and manufacturing method therefor
US9869595B2 (en) Device for thermokinetic property measurement
JP5097496B2 (en) Temperature measuring device
US11293792B2 (en) Device and system for fluid flow measurement
US9671265B2 (en) Thermal dispersion mass flow rate, material interface, and liquid level sensing transducer
JP2008051588A (en) Heat transfer performance measuring instrument
JP2000193529A (en) Sensor for measuring temperature within piping and the same with piping means
RU2736410C1 (en) Method of determining temperature characteristics in liquid metal medium and device for carrying out said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250