JP2009261992A - Subcritical water treatment apparatus of electromagnetic induction heating type - Google Patents

Subcritical water treatment apparatus of electromagnetic induction heating type Download PDF

Info

Publication number
JP2009261992A
JP2009261992A JP2008110801A JP2008110801A JP2009261992A JP 2009261992 A JP2009261992 A JP 2009261992A JP 2008110801 A JP2008110801 A JP 2008110801A JP 2008110801 A JP2008110801 A JP 2008110801A JP 2009261992 A JP2009261992 A JP 2009261992A
Authority
JP
Japan
Prior art keywords
subcritical water
reaction kettle
induction heating
electromagnetic induction
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008110801A
Other languages
Japanese (ja)
Other versions
JP5473243B2 (en
Inventor
Osamu Harada
修 原田
Yasuharu Shimodoi
康晴 下土井
Tetsuo Takano
哲雄 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
New Industry Research Organization NIRO
MEIKO IND CORP Ltd
Meiko Sangyo Co Ltd
Original Assignee
Hyogo Prefectural Government
New Industry Research Organization NIRO
MEIKO IND CORP Ltd
Meiko Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government, New Industry Research Organization NIRO, MEIKO IND CORP Ltd, Meiko Sangyo Co Ltd filed Critical Hyogo Prefectural Government
Priority to JP2008110801A priority Critical patent/JP5473243B2/en
Publication of JP2009261992A publication Critical patent/JP2009261992A/en
Application granted granted Critical
Publication of JP5473243B2 publication Critical patent/JP5473243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a subcritical water treatment apparatus of an electromagnetic induction heating type which extracts useful substances in the living body in a short time by means of subcritical water of a predetermined temperature and pressure. <P>SOLUTION: A reaction oven 50 pressurizes and heats liquid water charged thereinto to change the water into a subcritical state and reacts the subcritical water with a raw material charged thereinto. A coil is wound twice or more around the reaction oven 50; the current passed through the coil is controlled by a current control section; and the inside of the reaction oven 50 is heated rapidly by electromagnetic induction heating control. The temperature and pressure of the subcritical water in the reaction oven 50 is adjusted with high precision, and a raw material and subcritical water charged in advance are allowed to react mutually in a short time, while the temperature, pressure and reaction time are controlled accurately, in order to extract useful ingredients. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、亜臨界水の温度と圧力を精度良く調整し、亜臨界水を用いて植物組織、動物組織などの素材を短時間に反応させる亜臨界水処理装置に関する。   The present invention relates to a subcritical water treatment apparatus that adjusts the temperature and pressure of subcritical water with high accuracy and reacts materials such as plant tissue and animal tissue in a short time using subcritical water.

植物組織や動物組織内には有用物質成分が多数含まれ、それら成分は様々な用途があり、様々な抽出方法が試みられている。例えば水、アルコール、油などの溶媒を用いて抽出したり、水蒸気蒸留により抽出したりする方法がある。   Many useful substance components are contained in plant tissues and animal tissues, and these components have various uses, and various extraction methods have been tried. For example, there are methods of extraction using a solvent such as water, alcohol, and oil, or extraction by steam distillation.

しかし、有用物質の多くは溶媒に浸漬するという簡単な方法ではほとんど抽出できない場合が多い。例えばヒバ等の木材組織に含まれているヒノキチオールは、水に対して溶解度を持つもののわずか1g/リットルである。木片組織内部のヒノキチオールは水抽出が難しく、また、濃縮する処理も大変である。   However, in many cases, many useful substances cannot be extracted by a simple method of immersing in a solvent. For example, hinokitiol contained in wood tissues such as hiba has a solubility in water of only 1 g / liter. The hinokitiol inside the wood chip tissue is difficult to extract with water, and the concentration process is also difficult.

植物組織や動物組織を分解する方法として、超臨界水または亜臨界水を用いる方法がある。
超臨界水とは、温度と圧力が臨界点(374℃、22.1MPa)を越えた状態の水で、気体の性質と液体の性質を合わせ持ち、超臨界水は有機物を強力に分解する性質があり、植物組織や動物組織のバイオマスの分解に適した流体である。
また亜臨界水は臨界点(374℃、22.1MPa)よりも少し下で、飽和蒸気圧曲線よりも上の状態とされ、例えば、250℃付近の亜臨界水は、タンパク質やセルロースといった高分子量の生体物質を高速で加水分解して、ペプチド、アミノ酸やオリゴ糖、単糖に分解し、さらに加水分解が進めば酢酸、プロピオン酸、乳酸などの有機酸に分解する性質を持っている。
As a method for decomposing plant tissue or animal tissue, there is a method using supercritical water or subcritical water.
Supercritical water is water in which the temperature and pressure exceed the critical point (374 ° C, 22.1 MPa). It has both the properties of gas and liquid, and supercritical water strongly decomposes organic substances. And is a fluid suitable for the decomposition of plant tissue and animal tissue biomass.
Subcritical water is slightly below the critical point (374 ° C., 22.1 MPa) and above the saturated vapor pressure curve. For example, subcritical water near 250 ° C. has high molecular weight such as protein and cellulose. The biomaterial is hydrolyzed at high speed to be decomposed into peptides, amino acids, oligosaccharides and monosaccharides, and further decomposed into organic acids such as acetic acid, propionic acid and lactic acid.

このように、超臨界水または亜臨界水が強力なバイオマス分解能を持つことに着目し、従来技術においては食物残渣などからタンパク質やセルロースといった高分子量の生体物質を高速で加水分解し、産業廃棄物処理装置などで活用が期待されている。   In this way, focusing on the fact that supercritical water or subcritical water has a strong biomass resolving power, the conventional technology hydrolyzes high-molecular-weight biological substances such as proteins and cellulose from food residues, etc., and industrial waste. Expected to be used in processing equipment.

特開2004−306021号公報JP 2004-306021 A 特開2006−255676号公報JP 2006-255676 A 特開2006−328304号公報JP 2006-328304 A

上記のように植物組織や動物組織のバイオマスを分解する方法として、超臨界水または亜臨界水を用いる技術が注目され、たんぱく質やセルロースなどの高分子量の生体物質をペプチド、アミノ酸などの低分子量の有機物に分解できるとされている。   As described above, as a method of degrading biomass of plant tissue or animal tissue, a technique using supercritical water or subcritical water has attracted attention, and high molecular weight biological materials such as protein and cellulose are converted to low molecular weight materials such as peptides and amino acids. It can be broken down into organic matter.

しかし、抽出したい植物組織や動物組織内の有用成分を従来の超臨界水または亜臨界水を用いる技術ではうまく抽出できない場合がある。植物組織や動物組織内の有用成分は生体内に存在しているものであり、熱に弱いものが多い。例えば、ヘミセルロースやセルロースの加水分解物はさらに高温にさらされると熱分解してしまう。また、ヒノキチオールは通常は加水分解はしないものの、より高温になると熱分解してしまう。   However, there are cases where useful components in the plant tissue or animal tissue to be extracted cannot be successfully extracted by the conventional technique using supercritical water or subcritical water. Useful components in plant tissues and animal tissues are present in the living body, and many are vulnerable to heat. For example, hemicellulose or cellulose hydrolyzate is thermally decomposed when exposed to higher temperatures. In addition, hinokitiol normally does not hydrolyze, but thermally decomposes at higher temperatures.

超臨界水や亜臨界水は、水を密閉した釜などで加熱していき、高温高圧状態にし、臨界点を超えて所定状態となるまで加熱して生成する。従来技術のように、食物残渣のタンパク質やセルロースを高速で加水分解して低分子量の有機物に分解する用途であれば、超臨界水や亜臨界水生成への加熱過程において食物残渣のタンパク質やセルロースが分解しても問題はないが、上記のようにヘミセルロースやセルロースの加水分解物、および、ヒノキチオールなどの有用物質は、熱に弱く、亜臨界水への加熱過程で多くが熱分解してしまう。さらに過酷な、超臨界状態まで至るとヘミセルロース、セルロース、ヒノキチオールなどの有用物質のほとんどは熱分解してしまう。   Supercritical water and subcritical water are produced by heating in a closed kettle, etc., bringing the water to a high temperature and high pressure state, and heating until reaching a predetermined state beyond the critical point. If the food residue protein or cellulose is hydrolyzed at high speed and decomposed into low molecular weight organic substances as in the prior art, the food residue protein or cellulose in the heating process to produce supercritical water or subcritical water Although there is no problem even if it decomposes, useful substances such as hemicellulose, cellulose hydrolyzate, and hinokitiol are vulnerable to heat, and many of them are thermally decomposed during heating to subcritical water. . Furthermore, when it reaches a severer supercritical state, most useful substances such as hemicellulose, cellulose, hinokitiol and the like are thermally decomposed.

このように、ヘミセルロースやセルロースの加水分解物、および、ヒノキチオールなどの生体内の有用物質の多くは高温状態では熱分解してしまうため、従来技術では亜臨界水において低温で長時間抽出する方法が模索されている。
本発明者は、バイオマスから有用物質を低コストで抽出する方法として、亜臨界水を用いつつ有用物質を分解させずに抽出処理できる条件を見いだし、当該抽出条件を可能とする処理装置の開発を行った。
As described above, since many of the useful substances in the living body such as hemicellulose and cellulose hydrolyzate and hinokitiol are thermally decomposed at high temperature, the conventional technique has a method of extracting at low temperature for a long time in subcritical water. Has been sought.
As a method for extracting useful substances from biomass at low cost, the present inventor has found out conditions that allow extraction processing without decomposing useful substances while using subcritical water, and has developed a processing apparatus that enables the extraction conditions. went.

上記問題点に鑑み、本発明は、決められた温度と圧力の亜臨界水にて短時間で生体内の有用物質を抽出する電磁誘導加熱式亜臨界水処理装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an electromagnetic induction heating type subcritical water treatment apparatus that extracts useful substances in a living body in a short time with subcritical water at a predetermined temperature and pressure. .

上記目的を達成するため、本発明の第1の電磁誘導加熱式亜臨界水処理装置は、
釜内に投入した液体を加圧加熱して亜臨界状態とし、前記釜内に投入した素材と前記亜臨界水とを反応させる反応釜と、
前記反応釜の周囲に複数回巻きつけたコイルと、
前記コイルに流す電流を制御する電流制御部を備え、
前記電流制御部により前記コイルに流す電流を制御し、電磁誘導加熱制御にて前記反応釜内の前記亜臨界水の温度と圧力を精度良く調整し、前記反応釜内の前記素材と前記亜臨界水を短時間に反応させることを特徴とするものである。
In order to achieve the above object, a first electromagnetic induction heating subcritical water treatment apparatus of the present invention comprises:
A reaction kettle that pressurizes and heats the liquid put into the kettle to a subcritical state, and reacts the material put into the kettle with the subcritical water;
A coil wound a plurality of times around the reaction kettle;
A current control unit for controlling a current flowing through the coil;
The current control unit controls the current flowing through the coil, and the temperature and pressure of the subcritical water in the reaction kettle are accurately adjusted by electromagnetic induction heating control, and the material in the reaction kettle and the subcritical water are controlled. It is characterized by reacting water in a short time.

上記構成により、電磁誘導加熱により反応釜内の液体を急速に加熱加圧して目標温度の亜臨界水状態を創出することができ、また、電磁誘導加熱制御により反応釜壁面における直接の発熱を精度良く制御し、反応釜内の亜臨界水の温度と圧力等の条件を最適に設定することができる。これは従来の亜臨界水処理装置では実現できなかったことである。   With the above configuration, the liquid in the reaction kettle can be rapidly heated and pressurized by electromagnetic induction heating to create a subcritical water state at the target temperature, and direct heat generation on the reaction kettle wall surface can be accurately performed by electromagnetic induction heating control. It can be controlled well and conditions such as temperature and pressure of subcritical water in the reaction kettle can be set optimally. This is not possible with conventional subcritical water treatment equipment.

上記目的を達成するため、本発明の第2の電磁誘導加熱式亜臨界水処理装置は、
亜臨界水を発生させる亜臨界水発生装置と、
前記亜臨界水発生装置から亜臨界状態に達した亜臨界水を取り出す導入管と、
前記導入管から前記亜臨界水を導入し、釜内に投入された素材と前記亜臨界水とを反応させる反応釜と、
前記反応釜の周囲に複数回巻きつけたコイルと、
前記コイルに流す電流を制御する電流制御部を備え、
前記電流制御部により前記コイルに流す電流を制御し、電磁誘導加熱制御にて前記反応釜内を流れる前記亜臨界水の温度と圧力を精度良く調整し、前記反応釜内の前記素材と前記亜臨界水を短時間に反応させることを特徴とするものである。
In order to achieve the above object, the second electromagnetic induction heating subcritical water treatment apparatus of the present invention comprises:
A subcritical water generator for generating subcritical water;
An introduction pipe for taking out subcritical water that has reached a subcritical state from the subcritical water generator;
A reaction kettle for introducing the subcritical water from the introduction pipe and reacting the material introduced into the kettle with the subcritical water;
A coil wound a plurality of times around the reaction kettle;
A current control unit for controlling a current flowing through the coil;
The current control unit controls the current flowing through the coil, and the temperature and pressure of the subcritical water flowing in the reaction kettle are accurately adjusted by electromagnetic induction heating control. It is characterized by reacting critical water in a short time.

上記構成により、連続処理において、液体を加熱加圧して亜臨界水状態を創出する工程と、素材から有用物質を抽出する抽出工程を分離し、所定温度と圧力の亜臨界水を即座に素材に適用することができるとともに、電磁誘導加熱制御により反応釜壁面における直接の発熱を精度良く制御し、反応釜内の亜臨界水の温度と圧力を精度良く維持・調整し、素材に適用する亜臨界水の温度、圧力、処理時間等の条件を最適に設定することができる。これは従来の亜臨界水処理装置では実現できなかったことである。   With the above configuration, in continuous processing, the process of heating and pressurizing the liquid to create a subcritical water state and the extraction process of extracting useful substances from the material are separated, and the subcritical water at a predetermined temperature and pressure is immediately converted into the material. Subcriticality that can be applied to the material by accurately controlling direct heat generation on the reaction vessel wall surface by electromagnetic induction heating control, maintaining and adjusting the temperature and pressure of subcritical water in the reaction vessel with high accuracy Conditions such as water temperature, pressure and treatment time can be set optimally. This is not possible with conventional subcritical water treatment equipment.

なお、上記本発明の第1および第2の電磁誘導加熱式亜臨界水処理装置において、下記の数々の工夫を加えることができる。   In the first and second electromagnetic induction heating subcritical water treatment apparatuses of the present invention, the following devices can be added.

第1の工夫は、前記反応釜の周囲に断熱体を巻きつけ、前記断熱体を挟んで前記反応釜の周囲に前記絶縁皮膜銅線をコイル状に巻きつける構成とし、熱緩衝材として前記絶縁皮膜銅線の焼き付きを防止せしめる工夫である。   The first device is a structure in which a heat insulator is wound around the reaction kettle, and the insulating coating copper wire is wound around the reaction kettle around the reaction kettle. This is a device that prevents seizure of the coated copper wire.

第2の工夫は、前記断熱体の外周表面に多数の溝構造の空隙を設け、前記溝構造の空隙に沿って冷却風を流す冷却ファン等の冷却手段を設け、前記反応釜は前記断熱体により保温しつつ前記断熱体の外側においてコイル状の前記絶縁皮膜銅線を冷却せしめる工夫である。
上記構成により、第1および第2の工夫により、断熱体を反応釜の周囲に巻くことにより反応釜の保温と同時に、断熱体の外側に設けた溝構造の空隙への通風により絶縁皮膜銅線を効果的に冷却して焼き付きを防止することができる。
The second device is provided with a plurality of groove structure voids on the outer peripheral surface of the heat insulator, and provided with cooling means such as a cooling fan for flowing cooling air along the groove structure voids. The coil-shaped insulating film copper wire is cooled on the outside of the heat insulator while keeping the temperature.
With the above-described configuration, the first and second devices are used to wrap the insulation around the reaction kettle to keep the temperature of the reaction kettle, and at the same time, ventilate the gaps in the groove structure provided on the outside of the heat insulation to make the insulation-coated copper wire. Can be effectively cooled to prevent seizure.

第3の工夫は、前記反応釜に設けられているボルト等の金属製突起物の周囲を磁性体で囲み、漏れ磁束を遮蔽して前記金属製突起物に生じる渦電流を低減させる工夫である。   A third device is a device that surrounds a metal projection such as a bolt provided in the reaction kettle with a magnetic material, shields leakage magnetic flux, and reduces eddy current generated in the metal projection. .

本発明では、反応釜自体に渦電流を発生させるため、反応釜において渦電流が局所的に発生しやすい箇所を少なくすることが望まれる。これにより部品の焼き付けなどの発生を防止することができる。
上記構成による本発明の第1および第2の電磁誘導加熱式亜臨界水処理装置では、電磁誘導加熱制御による反応釜内の亜臨界水の制御温度を50から400℃、圧力を当該温度の飽和水蒸気圧以上にて自在に維持・調整することができる。
In the present invention, since eddy current is generated in the reaction kettle itself, it is desirable to reduce the number of places where eddy current is likely to be locally generated in the reaction kettle. As a result, it is possible to prevent parts from being burned.
In the first and second electromagnetic induction heating type subcritical water treatment apparatuses of the present invention having the above-described configuration, the control temperature of the subcritical water in the reaction vessel by the electromagnetic induction heating control is 50 to 400 ° C., and the pressure is saturated at the temperature. It can be maintained and adjusted freely above the water vapor pressure.

次に、本発明の第2の電磁誘導加熱式亜臨界水処理装置において、前記導入管から分岐したバイパス管を別に設け、前記亜臨界水発生装置から導入する前記亜臨界水が所定温度範囲および所定圧力範囲にない場合は、前記バイパス管で逃がし、前記所定温度範囲および前記所定圧力範囲にある場合は前記導入管を介して前記反応釜に導入することが好ましい。   Next, in the second electromagnetic induction heating type subcritical water treatment apparatus of the present invention, a bypass pipe branched from the introduction pipe is separately provided, and the subcritical water introduced from the subcritical water generator has a predetermined temperature range and When the pressure is not within the predetermined pressure range, it is preferable to escape with the bypass pipe, and when the pressure is within the predetermined temperature range and the predetermined pressure range, the pressure is preferably introduced into the reaction kettle through the introduction pipe.

また、本発明の第2の電磁誘導加熱式亜臨界水処理装置において、前記導入管を介して前記亜臨界水発生装置から前記亜臨界水を前記反応釜内に導入する際に前記反応釜内の圧力を飽和水蒸気圧以上に保つためのガス圧力を前記反応釜内に印加できる加圧手段を備えた構成とすることが好ましい。加圧手段としては不活性ガスを供給するボンベと、当該ボンベからの不活性ガスを所定圧力にて反応釜内に印加する昇圧装置の組み合わせなどがある。
上記構成により、所定温度範囲および所定圧力範囲にある亜臨界水を安定して連続的に供給することができ、導入の際に反応釜の圧力が下がらないようにガス圧力をかけることもでき、反応釜内での亜臨界水を用いた素材からの成分の抽出処理を亜臨界条件下で連続的に実施することができる。
Further, in the second electromagnetic induction heating subcritical water treatment apparatus of the present invention, when the subcritical water is introduced into the reaction kettle from the subcritical water generator via the introduction pipe, It is preferable to provide a pressurizing means capable of applying a gas pressure for maintaining the pressure of the water vapor above the saturated water vapor pressure in the reaction kettle. As the pressurizing means, there is a combination of a cylinder for supplying an inert gas and a pressure increasing device for applying the inert gas from the cylinder to the reaction kettle at a predetermined pressure.
With the above configuration, subcritical water in a predetermined temperature range and a predetermined pressure range can be stably and continuously supplied, and a gas pressure can be applied so that the pressure in the reaction kettle does not drop during the introduction, Extraction of components from the material using subcritical water in the reaction kettle can be carried out continuously under subcritical conditions.

本発明にかかる第1の電磁誘導加熱式亜臨界水処理装置によれば、いわゆるバッチ処理方式の亜臨界水処理装置において、電磁誘導加熱制御により反応釜壁面からの直接発熱を精度良く制御し、反応釜内の亜臨界水の温度と圧力を精度良く維持・調整し、素材に適用する亜臨界水の温度、圧力、処理時間等の条件を最適に設定することができる。
また、本発明にかかる第2の電磁誘導加熱式亜臨界水処理装置によれば、いわゆる連続処理方式の亜臨界水処理装置において、所定温度範囲および所定圧力範囲にある亜臨界水を安定して連続的に供給することができ、導入の際に反応釜の圧力が下がらないようにガス圧力をかけることもでき、反応釜内での亜臨界水を用いた素材からの成分の抽出処理を亜臨界水条件下で連続的に実施することができる。
According to the first electromagnetic induction heating type subcritical water treatment apparatus according to the present invention, in the so-called batch processing type subcritical water treatment apparatus, the direct heat generation from the reaction vessel wall surface is accurately controlled by electromagnetic induction heating control, The temperature and pressure of the subcritical water in the reaction kettle can be maintained and adjusted with high accuracy, and the conditions such as the temperature, pressure and processing time applied to the material can be set optimally.
Further, according to the second electromagnetic induction heating type subcritical water treatment apparatus according to the present invention, in the so-called continuous treatment type subcritical water treatment apparatus, the subcritical water in the predetermined temperature range and the predetermined pressure range is stably stabilized. It can be continuously supplied, and gas pressure can be applied so that the pressure in the reaction kettle does not drop during the introduction, and the extraction process of components from the material using subcritical water in the reaction kettle is performed. It can be carried out continuously under critical water conditions.

以下、本発明の電磁誘導加熱式亜臨界水処理装置を添付図面に示す好適実施例に基づいて詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, an electromagnetic induction heating type subcritical water treatment apparatus of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings. The present invention is not limited to these examples.

以下、本発明に係る第1の電磁誘導加熱式亜臨界水処理装置の構成例を図面を参照しながら説明する。   Hereinafter, a configuration example of a first electromagnetic induction heating subcritical water treatment apparatus according to the present invention will be described with reference to the drawings.

第1の電磁誘導加熱式亜臨界水処理装置100は、いわゆるバッチ処理方式にて亜臨界水を素材に対して適応する装置である。
図1は、本発明の実施例1に係る電磁誘導加熱式亜臨界水処理装置100の一構成例を例示する概念図である。電磁誘導加熱式亜臨界水処理装置100は、反応釜50、冷却管70、抽出液タンク80、ニードルバルブ90を備えている。
The first electromagnetic induction heating type subcritical water treatment apparatus 100 is an apparatus that adapts subcritical water to a material by a so-called batch treatment method.
FIG. 1 is a conceptual diagram illustrating a configuration example of an electromagnetic induction heating subcritical water treatment apparatus 100 according to Embodiment 1 of the present invention. The electromagnetic induction heating type subcritical water treatment apparatus 100 includes a reaction kettle 50, a cooling pipe 70, an extract tank 80, and a needle valve 90.

反応釜50は、バイオマスなどの素材と液体をバッチにより投入した後、加熱加圧して液体を亜臨界水状態とし、釜内の温度と圧力を精度良く所望の圧力と温度に調整しつつ素材と亜臨界水を所望の時間だけ反応させて、ターゲットしている有用物質を抽出する部分である。   The reaction kettle 50 is a batch of raw materials such as biomass and liquid, and is heated and pressurized to bring the liquid into a subcritical water state. The temperature and pressure inside the kettle are accurately adjusted to the desired pressure and temperature. This is a part in which subcritical water is reacted for a desired time to extract a target useful substance.

なお、反応釜50は、導入された液体を急速かつ精度良く所望の圧力と所望の温度に調整・維持するために電磁誘導加熱機構51を備えている。電磁誘導加熱機構51であれば、応答性に優れているため、温度制御がやりやすいというメリットが得られる。   The reaction kettle 50 is provided with an electromagnetic induction heating mechanism 51 for adjusting and maintaining the introduced liquid at a desired pressure and a desired temperature quickly and accurately. If it is the electromagnetic induction heating mechanism 51, since it is excellent in responsiveness, the merit that temperature control is easy to be performed is acquired.

電磁誘導加熱機構51は金属体の周囲に磁束を発生させ、金属体の内部に渦電流を誘導し、金属体を直接発熱させるものである。この構成例では反応釜50の周囲に絶縁皮膜銅線であるコイル52を複数回コイル状に巻きつけた構成となっている。また、コイル52に流す電流を制御する電流制御部(図示省略)を備えている。
また、反応釜50の内部には高精度の温度センサおよび圧力センサが備えられている(図示省略)。
The electromagnetic induction heating mechanism 51 generates magnetic flux around the metal body, induces eddy currents inside the metal body, and directly heats the metal body. In this configuration example, a coil 52 which is an insulating film copper wire is wound around the reaction kettle 50 in a coil shape a plurality of times. Further, a current control unit (not shown) for controlling the current flowing through the coil 52 is provided.
The reaction kettle 50 is provided with a highly accurate temperature sensor and pressure sensor (not shown).

例えば、電磁誘導加熱機構51による反応釜50内の亜臨界水の制御温度は50から400℃の範囲、制御圧力が飽和水蒸気圧以上で調整する能力があることが好ましい。本発明の亜臨界水発生装置を用いてバイオマスから有用物質を分解させずに選択的に抽出処理できる条件としては、温度が100から250℃の範囲、圧力が当該温度における飽和水蒸気圧の1から3倍の範囲が好ましい。   For example, it is preferable that the control temperature of the subcritical water in the reaction vessel 50 by the electromagnetic induction heating mechanism 51 is in the range of 50 to 400 ° C. and the control pressure is adjusted to be equal to or higher than the saturated water vapor pressure. The conditions under which a useful substance can be selectively extracted from biomass without decomposing it using the subcritical water generator of the present invention are as follows: the temperature is in the range of 100 to 250 ° C., and the pressure is from 1 to the saturated water vapor pressure at that temperature. A range of 3 times is preferred.

本構成例では、絶縁皮膜銅線であるコイル52に流れる電流を電流制御部で制御し、電磁誘導加熱制御にて反応釜50内の亜臨界水の温度と圧力を精度良く調整し、反応釜50内の素材からバッチ処理にて短時間に成分を抽出する。なお、抽出ターゲットとなる有用物質に対する亜臨界水の温度と圧力と処理時間設定の実験例については後述する。   In this configuration example, the current flowing through the coil 52, which is an insulating film copper wire, is controlled by the current control unit, and the temperature and pressure of the subcritical water in the reaction kettle 50 are accurately adjusted by electromagnetic induction heating control. The components are extracted from the material in 50 in a short time by batch processing. In addition, the experimental example of the temperature and pressure of subcritical water with respect to the useful substance used as an extraction target, and processing time setting is mentioned later.

ニードルバルブ90は、反応釜50内で亜臨界水と素材の反応が終了した抽出液を反応釜50から取り出すバルブであり、抽出液はニードルバルブ90を開放すれば冷却管70に導かれる。   The needle valve 90 is a valve for taking out from the reaction vessel 50 the extracted liquid after the reaction between the subcritical water and the material in the reaction vessel 50, and the extracted liquid is guided to the cooling pipe 70 when the needle valve 90 is opened.

冷却管70は、反応釜50から取り出された抽出液はいまだ高温高圧の亜臨界水に包含された状態であるので、外界に安全に取り出せるように冷却する装置である。
抽出液タンク80は、冷却管70で冷却後の抽出液を貯蔵するタンクである。
The cooling pipe 70 is a device that cools the extraction liquid taken out from the reaction kettle 50 so that it can be safely taken out to the outside because it is still contained in the high-temperature and high-pressure subcritical water.
The extract tank 80 is a tank that stores the extract after being cooled by the cooling pipe 70.

上記構成の本発明の電磁誘導加熱式亜臨界水処理装置100を用いた有用物質の抽出例を示し、本発明の電磁誘導加熱式亜臨界水処理装置100による優れた精度の良い亜臨界水処理能力について示す。   An example of extraction of useful substances using the electromagnetic induction heating subcritical water treatment apparatus 100 of the present invention having the above configuration will be shown, and excellent and accurate subcritical water treatment by the electromagnetic induction heating subcritical water treatment apparatus 100 of the present invention. Show about ability.

(抽出実験)
図1に示した概念図の電磁誘導加熱式亜臨界水処理装置100を実際に製作し、抽出実験を行った。抽出実験における素材としては輪島産のヒバの乾燥木片を300gを用い、含有されているヒノキチオールをターゲット物質とした。なお、ヒバの乾燥木片300gには約300〜350mg程度のヒノキチオールが含有されているものと推定される。
(Extraction experiment)
The electromagnetic induction heating type subcritical water treatment apparatus 100 of the conceptual diagram shown in FIG. 1 was actually manufactured and an extraction experiment was performed. As a material in the extraction experiment, 300 g of dried pieces of hiba from Wajima were used, and the contained hinokitiol was used as a target substance. In addition, it is estimated that about 300 to 350 mg of hinokitiol is contained in 300 g of dried hiba wood pieces.

ヒノキチオールの抽出条件を調べるべく、亜臨界水の温度、圧力、亜臨界水とヒバとの反応時間を様々に設定して実験した。
亜臨界水の温度として、150℃、180℃、200℃、230℃、250℃の5つの温度で抽出実験1を行った。亜臨界水の圧力はいずれもその温度における飽和水蒸気圧をやや上回る圧力とした。液体を加熱加圧してゆき、それぞれ目標温度に達した時点でニードルバルブ90を開放して反応釜50外部へ取り出した。
In order to investigate the extraction conditions of hinokitiol, the temperature and pressure of subcritical water and the reaction time of subcritical water and hiba were set in various experiments.
The extraction experiment 1 was performed at five temperatures of 150 ° C., 180 ° C., 200 ° C., 230 ° C., and 250 ° C. as subcritical water temperatures. The pressure of subcritical water was set to be slightly higher than the saturated water vapor pressure at that temperature. The liquid was heated and pressurized, and when the target temperature was reached, the needle valve 90 was opened and taken out of the reaction vessel 50.

抽出実験1により抽出タンク80に溜まった抽出液を観察した。その観察した抽出液サンプルの色や臭いを表1にまとめた。

Figure 2009261992
The extraction liquid collected in the extraction tank 80 in the extraction experiment 1 was observed. The observed color and odor of the extract sample are summarized in Table 1.
Figure 2009261992

[表1]に示すように、抽出温度の上昇と共に着色が濃くなり、230℃を超えると焦げ臭が出てきた。抽出液の性状から200℃あたりが人間の五感にとりもっとも良好な状態で抽出されているようである。   As shown in [Table 1], the color became deeper as the extraction temperature increased, and a burnt odor appeared when the temperature exceeded 230 ° C. From the properties of the extract, it seems that around 200 ° C. is extracted in the best state for the human senses.

また、抽出処理後に反応釜50から取り出したヒバを観察すると、230℃を超えるとヒバが脆くなり内部組織が破壊され始めており、このことからヒバの木質成分の溶解が示唆された。   Further, when the hibera taken out from the reaction kettle 50 after the extraction treatment was observed, the hibera became brittle when the temperature exceeded 230 ° C., and the internal structure began to be destroyed. This suggested that the wood component of the hiba was dissolved.

つまり、亜臨界水が230℃を超えると、超臨界水や亜臨界水が持つ加水分解能力が強くなり、木質成分の分解や変質が進んでしまうことが分かる。一方、200℃以下では抽出液の中に含まれる木材由来成分の濃度は薄いようである。   That is, when subcritical water exceeds 230 degreeC, it turns out that the hydrolytic capability which supercritical water and subcritical water have becomes strong, and decomposition | disassembly and alteration of a wood component will advance. On the other hand, at 200 ° C. or lower, the concentration of wood-derived components contained in the extract seems to be thin.

実際に、各温度の亜臨界水処理の抽出液中に含まれているヒノキチオール濃度を測定した。抽出実験1の測定結果を図2に示す。図2に示すように、ヒノキチオール成分は、150℃、180℃、200℃、230℃と亜臨界水の温度が上がるほど抽出されるヒノキチオールが増加することが分かる。しかし、250℃の亜臨界水を用いると逆に抽出されるヒノキチオールが減少している。これは、ヒノキチオールの性質からヒノキチオールが熱分解してしまって減少したものと考えられる。   Actually, the concentration of hinokitiol contained in the subcritical water treatment extract at each temperature was measured. The measurement result of the extraction experiment 1 is shown in FIG. As shown in FIG. 2, the hinokitiol component increases as the subcritical water temperature rises to 150 ° C., 180 ° C., 200 ° C., and 230 ° C. However, when subcritical water at 250 ° C. is used, the amount of hinokitiol extracted conversely decreases. This is thought to be due to the degradation of hinokitiol due to thermal decomposition due to the properties of hinokitiol.

図2の測定結果からは230℃の亜臨界水を用いるとヒノキチオールが最も多く抽出されることが分かったが、表1に示したように、230℃では木質成分の溶解が始まっておりそのため細胞内深くに残存しているヒノキチオールがより多く抽出された結果と考えられる。なお、木質成分の溶解によりもっと多くのヒノキチオールが溶解する一方、図2の測定結果が示唆するように熱分解も始まっている可能性もある。   From the measurement results of FIG. 2, it was found that hinokitiol was extracted most when subcritical water at 230 ° C. was used. However, as shown in Table 1, the lysis of the wood component started at 230 ° C. This is thought to be the result of more extraction of hinokitiol remaining deep inside. While more hinokitiol dissolves due to dissolution of the wood component, thermal decomposition may start as suggested by the measurement results in FIG.

図2の抽出結果と表1の観察結果から、温度200℃、圧力が当該温度での飽和水蒸気圧をやや上回る圧力の亜臨界水を用いることが焦げ臭のない良好なヒノキチオールを得るために良い条件であることが分かる。   From the extraction results of FIG. 2 and the observation results of Table 1, it is good to obtain a good hinokitiol without a burning odor by using subcritical water at a temperature of 200 ° C. and a pressure slightly higher than the saturated water vapor pressure at that temperature. It turns out that it is a condition.

次に、反応時間を検証する。
200℃の亜臨界水と素材との抽出時間(亜臨界水の反応釜内の滞留時間)を変えて、即座に取り出し(0分)、5分維持してから取り出し、10分維持してから取り出しの3パターンで抽出実験2を行った。図3に抽出実験2の測定結果を示す。
Next, the reaction time is verified.
Change the extraction time of the subcritical water and the material at 200 ° C (residence time in the reaction kettle of the subcritical water), take it out immediately (0 minutes), keep it for 5 minutes, take it out for 10 minutes Extraction experiment 2 was performed with three patterns of removal. FIG. 3 shows the measurement results of extraction experiment 2.

図3に示すように、抽出時間が0分、5分、10分と長くなるにつれて抽出されるヒノキチオールの量が増えている。この実験結果から反応釜50に200℃で飽和水蒸気圧をやや上回る圧力の亜臨界水を投入して10分間の抽出時間を確保すれば良いことが分かる。ここで、10分以上の抽出時間が必要か否かを検討する。10分間の抽出時間をとった場合の抽出液に含まれているヒノキチオール量は336mgであり、投入した素材のヒバ300gにはヒノキチオールが300〜350mg程度含まれていることが推定されるので、既にほぼ全量のヒノキチオールが抽出されていることが分かる。そのため、10分以上の抽出時間をとれば充分かつ効果的であることが分かる。   As shown in FIG. 3, the amount of hinokitiol extracted increases as the extraction time increases to 0 minutes, 5 minutes, and 10 minutes. From this experimental result, it is understood that sub-critical water having a pressure slightly higher than the saturated water vapor pressure at 200 ° C. may be added to the reaction vessel 50 to ensure an extraction time of 10 minutes. Here, it is examined whether an extraction time of 10 minutes or more is necessary. The amount of hinokitiol contained in the extract when the extraction time of 10 minutes is taken is 336 mg, and it is estimated that about 300 to 350 mg of hinokitiol is contained in 300 g of the raw material hiba that has already been added. It can be seen that almost the entire amount of hinokitiol has been extracted. Therefore, it turns out that it is sufficient and effective if extraction time of 10 minutes or more is taken.

次に、抽出するターゲット物質の違いによって、抽出に用いる亜臨界水の温度、圧力、反応時間が異なることを実験により示す。
素材として抽出実験1、抽出実験2と同じく輪島産ヒバを用いて亜臨界水による抽出実験を行い、本抽出実験3では抽出液全体をそのまま蒸留して水分を除去し、抽出液に含まれるすべての残渣量を測った。
Next, experiments show that the temperature, pressure, and reaction time of subcritical water used for extraction differ depending on the target material to be extracted.
Extraction experiment with subcritical water is performed using Wajima hiba as the same as extraction experiment 1 and extraction experiment 2, and in this extraction experiment 3, the whole extract is distilled as it is to remove moisture, and all contained in the extract The amount of residue was measured.

本抽出実験3で抽出される成分としては、ヒノキチオールの他に、ヒバ油、リグニン分解物、セルロース分解物、ヘミセルロース分解物等が考えられる。
抽出実験3では、反応釜50を加熱してゆき、反応釜50内の液体が150℃、180℃、200℃、230℃、250℃の各温度の亜臨界状態に達した時点で即座にニードルバルブ90を開放して取り出し、それぞれの温度における抽出液の蒸留残渣量を測定した。
In addition to hinokitiol, components extracted in the main extraction experiment 3 include cypress oil, lignin degradation products, cellulose degradation products, hemicellulose degradation products, and the like.
In the extraction experiment 3, the reaction kettle 50 is heated, and when the liquid in the reaction kettle 50 reaches subcritical states of 150 ° C., 180 ° C., 200 ° C., 230 ° C., and 250 ° C., the needle is immediately used. The valve 90 was opened and taken out, and the distillation residue amount of the extract at each temperature was measured.

図4に抽出実験3の蒸留残渣量を示す。
図4に見るように、蒸留残渣の総量は亜臨界水が230℃を超えると急に多くなっている。
この230℃の亜臨界水により抽出された抽出液の蒸留残渣の性質を調べると、それらはエタノールやアセトンに溶解することが分かった。ヒバに含まれている物質でエタノールやアセトンに溶解するものはヒバ油やリグニン分解物で構成されていると考えられる。つまり、ヒバ油やリグニン分解物は200℃の亜臨界水ではあまり抽出されないが230℃を超える亜臨界水では抽出されることが分かる。
FIG. 4 shows the amount of distillation residue in extraction experiment 3.
As shown in FIG. 4, the total amount of distillation residue suddenly increases when subcritical water exceeds 230 ° C.
When the properties of the distillation residue of the extract extracted with the subcritical water at 230 ° C. were examined, it was found that they were dissolved in ethanol and acetone. Substances contained in hiba that dissolve in ethanol and acetone are considered to be composed of hiba oil and lignin degradation products. That is, it can be seen that Hiba oil and lignin degradation products are not extracted with subcritical water at 200 ° C., but are extracted with subcritical water above 230 ° C.

次に、250℃の亜臨界水により抽出された抽出液の蒸留残渣を調べると、蒸留残渣総量は250℃で減少している。これは250℃の高温になると抽出物の一部がさらに分解されて熱分解を受け低分子化したためと考えられる。ターゲット物質の抽出を目的とするならば熱分解物の発生は不都合であり、抽出温度は230℃以下が好ましいことが分かる。   Next, when the distillation residue of the extract extracted with subcritical water at 250 ° C. is examined, the total amount of distillation residue decreases at 250 ° C. This is presumably because part of the extract was further decomposed at a high temperature of 250 ° C., resulting in thermal decomposition and low molecular weight. If the purpose is to extract the target substance, generation of pyrolyzate is inconvenient, and it is understood that the extraction temperature is preferably 230 ° C. or lower.

図4から分かるように、ヒノキチオールをターゲット物質とする場合は200℃の亜臨界水を用いて抽出する方法が最も良いことが分かる。また、ヒバ油やリグニンをターゲット物質とする場合は230℃の亜臨界水を用いて抽出する方法が最も良いことが分かる。
このように、ターゲット物質が異なると最適な抽出温度が異なることが分かる。
As can be seen from FIG. 4, when hinokitiol is used as the target substance, the extraction method using subcritical water at 200 ° C. is the best. Further, it is understood that the extraction method using subcritical water at 230 ° C. is the best when Hiba oil or lignin is used as a target substance.
Thus, it can be seen that the optimum extraction temperature differs depending on the target material.

抽出実験1、2、3を通して分かったことを整理すると、素材の別、ターゲット物質の別により、それぞれ抽出に適した亜臨界水の温度、圧力、反応時間があり、当該条件を最適化して亜臨界水を素材に適用することが効果的である。   The results of extraction experiments 1, 2, and 3 can be summarized as follows: subcritical water temperature, pressure, and reaction time suitable for extraction, depending on the material and target material. It is effective to apply critical water to the material.

従来の亜臨界水の発生装置では、容積2Lものステンレス製反応釜50に1Lの水を入れた状態の反応釜50を数分間で200℃まで昇温することは困難であった。また、従来の亜臨界水の発生装置では、ステンレス製反応釜50内の亜臨界水の温度制御は難しく、変動幅が大きいものであった。つまり、ステンレス製反応釜50内の温度を目標温度にまで昇温した後にステンレス製反応釜50内の温度を当該目標温度にて一定に保つのは難しいものであった。
一方、本発明の電磁誘導加熱式亜臨界水処理装置100は、電磁誘導加熱方式によりステンレス製反応釜50の壁面を直接発熱させ、短時間に急速に昇温することができ、容積2Lのステンレス製反応釜50であっても200℃まで5〜6分程度で昇温することができた。また、250℃まで10分間程度で昇温することができた。また、その後も、電磁誘導加熱制御により反応釜50内の温度を細かく制御することにより、反応釜50内の温度を一定温度に精度良く制御できた。
In the conventional subcritical water generator, it is difficult to raise the temperature of the reaction kettle 50 in a state where 1 L of water is put into the stainless steel kettle 50 having a volume of 2 L to 200 ° C. in a few minutes. Moreover, in the conventional subcritical water generator, it is difficult to control the temperature of the subcritical water in the stainless steel reaction vessel 50, and the fluctuation range is large. That is, it is difficult to keep the temperature in the stainless steel reaction vessel 50 constant at the target temperature after the temperature in the stainless steel reaction vessel 50 is raised to the target temperature.
On the other hand, the electromagnetic induction heating type subcritical water treatment apparatus 100 of the present invention directly heats the wall surface of the stainless steel reaction kettle 50 by the electromagnetic induction heating method, and can rapidly raise the temperature in a short time. Even in the reaction kettle 50, the temperature could be raised to 200 ° C. in about 5 to 6 minutes. Further, the temperature could be raised to 250 ° C. in about 10 minutes. In addition, the temperature in the reaction kettle 50 was finely controlled by electromagnetic induction heating control, so that the temperature in the reaction kettle 50 could be accurately controlled to a constant temperature.

なお、上記実験では、ヒバからのヒノキチオール抽出実験であったが、本発明の電磁誘導加熱式亜臨界水処理装置は、植物系バイオマスからの有用物質の抽出のみならず、動物系バイオマスに対して適用することもできる。例えば、魚の鱗を分解し、アミノ酸を取り出すことも可能である。セリン、グルタミン酸、アスパラギン酸等の親水性アミノ酸をターゲット物質とする場合は200℃以下の亜臨界水を反応させれば取り出すことができた。なお、親水性アミノ酸の多くは熱分解を起こしやすく、200℃を超える亜臨界水と反応させると熱分解が起こった。イソロイシン、ロイシン、グリシン等の疎水性のアミノ酸をターゲット物質とする場合は250℃付近の亜臨界水を反応させても熱分解は起こらず取り出すことができた。   Although the above experiment was an extraction experiment of hinokitiol from hiba, the electromagnetic induction heating type subcritical water treatment apparatus of the present invention is not only useful for extracting useful substances from plant biomass, but also for animal biomass. It can also be applied. For example, it is possible to decompose fish scales and extract amino acids. When a hydrophilic amino acid such as serine, glutamic acid or aspartic acid was used as a target substance, it could be removed by reacting subcritical water at 200 ° C. or lower. Many hydrophilic amino acids are susceptible to thermal decomposition, and thermal decomposition occurred when reacted with subcritical water exceeding 200 ° C. When a hydrophobic amino acid such as isoleucine, leucine or glycine was used as a target substance, it could be removed without causing thermal decomposition even when subcritical water at around 250 ° C. was reacted.

また、本発明の電磁誘導加熱式亜臨界水処理装置は、バイオマス等の熱分解反応のみならず、他の様々な反応にも用いることができる。例えば、バイオマス等の加水分解、バイオマス等のガス化、無機粒子合成、酸化分解など様々な反応に用いることができる。これらの反応においても、合成(反応)生成物の性質によって精度良い温度調整が必要となるが、従来の亜臨界水処理装置では精度良い温度調節が難しいものであったが、本発明の電磁誘導加熱式亜臨界水処理装置では、精度良く亜臨界水反応温度を調節することができるので、バイオマス等の加水分解、バイオマス等のガス化、無機粒子合成、酸化分解など様々な反応にも適用することができる。   Moreover, the electromagnetic induction heating type subcritical water treatment apparatus of the present invention can be used not only for pyrolysis reaction of biomass or the like but also for various other reactions. For example, it can be used for various reactions such as hydrolysis of biomass and the like, gasification of biomass and the like, synthesis of inorganic particles, and oxidative decomposition. Even in these reactions, accurate temperature adjustment is required depending on the properties of the synthesis (reaction) product, but accurate temperature adjustment is difficult with the conventional subcritical water treatment apparatus. The heated subcritical water treatment device can adjust the subcritical water reaction temperature with high accuracy, so it can be applied to various reactions such as hydrolysis of biomass, gasification of biomass, synthesis of inorganic particles, and oxidative decomposition. be able to.

実施例2にかかる本発明の第2の電磁誘導加熱式亜臨界水処理装置を説明する。図5は、本発明の第2の電磁誘導加熱式亜臨界水処理装置100aの一構成例を例示する概念図である。電磁誘導加熱式亜臨界水処理装置100aは、蒸留水タンク10、高圧ポンプ20、亜臨界水発生装置30、導入管40、バイパス管41、反応釜50a、加圧装置60、冷却管70、抽出液タンク80、各種バルブ91〜94を備えている。この第2の電磁誘導加熱式亜臨界水処理装置100aは亜臨界水の供給に関して連続的な処理が可能な構成となっている。   The 2nd electromagnetic induction heating type subcritical water treatment apparatus of the present invention concerning Example 2 is explained. FIG. 5 is a conceptual diagram illustrating a configuration example of the second electromagnetic induction heating subcritical water treatment apparatus 100a of the present invention. The electromagnetic induction heating type subcritical water treatment apparatus 100a includes a distilled water tank 10, a high pressure pump 20, a subcritical water generation apparatus 30, an introduction pipe 40, a bypass pipe 41, a reaction vessel 50a, a pressurization apparatus 60, a cooling pipe 70, and an extraction. A liquid tank 80 and various valves 91 to 94 are provided. The second electromagnetic induction heating type subcritical water treatment apparatus 100a has a configuration capable of continuous treatment with respect to the supply of subcritical water.

蒸留水タンク10は、蒸留水を蓄えているタンクであり、高圧ポンプ20を介して蒸留水を亜臨界水発生装置30に供給する。   The distilled water tank 10 is a tank that stores distilled water, and supplies the distilled water to the subcritical water generator 30 via the high-pressure pump 20.

高圧ポンプ20は、蒸留水タンク10の蒸留水を亜臨界水発生装置30に対して送水するポンプである。   The high-pressure pump 20 is a pump that sends distilled water from the distilled water tank 10 to the subcritical water generator 30.

亜臨界水発生装置30は、高圧ポンプ20から投入された蒸留水を加熱加圧して亜臨界水を発生させる装置である。亜臨界水発生装置30は蒸留水を亜臨界状態にするために加熱機構(図示せず)を備えている。   The subcritical water generator 30 is an apparatus that generates subcritical water by heating and pressurizing distilled water supplied from the high-pressure pump 20. The subcritical water generator 30 includes a heating mechanism (not shown) in order to bring distilled water into a subcritical state.

この加熱機構は特に限定されず、電気炉加熱機構、電磁誘導加熱機構などが可能であるが、本実施例の構成では電磁誘導加熱機構となっている。電磁誘導加熱機構であれば、急速加熱が簡単なことと、加熱後の温度制御がやりやすいというメリットが得られる。後述するように、反応釜50aに亜臨界水を導入する時点において、反応釜50a内において即座に所望の温度、所望の圧力の亜臨界水状態として、所定の抽出反応時間にて素材を抽出しやすくなる。   The heating mechanism is not particularly limited, and an electric furnace heating mechanism, an electromagnetic induction heating mechanism, and the like are possible. However, the configuration of this embodiment is an electromagnetic induction heating mechanism. If it is an electromagnetic induction heating mechanism, the merit that quick heating is easy and the temperature control after a heating is easy to do is acquired. As will be described later, when subcritical water is introduced into the reaction vessel 50a, the material is immediately extracted in the reaction vessel 50a as a subcritical water state at a desired temperature and desired pressure within a predetermined extraction reaction time. It becomes easy.

導入管40は、亜臨界水発生装置30から亜臨界状態に達した亜臨界水を取り出して反応釜50aに導入する管である。   The introduction pipe 40 is a pipe that takes out the subcritical water that has reached the subcritical state from the subcritical water generator 30 and introduces it into the reaction vessel 50a.

バイパス管41は亜臨界水発生装置30に対して導入管40とは別に設けた流路であり、亜臨界水発生装置30から導入する亜臨界水が所定温度範囲および所定圧力範囲にない場合は、バイパス管41で逃がして反応釜50aには導入せず、亜臨界水が所定温度範囲および所定圧力範囲にある場合は導入管40を介してそのまま反応釜50aに導入するものである。   The bypass pipe 41 is a flow path provided separately from the introduction pipe 40 with respect to the subcritical water generator 30, and when the subcritical water introduced from the subcritical water generator 30 is not in the predetermined temperature range and the predetermined pressure range. In addition, when the subcritical water is in a predetermined temperature range and a predetermined pressure range, it is introduced into the reaction kettle 50a as it is through the introduction pipe 40 without being escaped by the bypass pipe 41 and introduced into the reaction kettle 50a.

所定温度範囲および所定圧力範囲にない亜臨界水が反応釜50aに入ってしまうと、反応釜50a内が反応温度、反応圧力ではない状態となってしまい、予定していた反応処理ができなくなってしまう。本発明では、反応温度と反応圧力を精度良く調整して素材と反応させて有用物質を抽出するので、このような状態は好ましくない。そこで、バイパス管41を設けておくことにより、所定温度範囲および所定圧力範囲にない亜臨界水は反応釜50aに入らないようにバイパス管41側に逃がし、亜臨界水発生装置30において所定温度範囲および所定圧力範囲に調整済みの亜臨界水のみ導入管40を介して導入すれば、後述する反応釜50aの電磁誘導加熱機構51により即座に反応温度と反応圧力に精度良く調整することができる。   If subcritical water not in the predetermined temperature range and the predetermined pressure range enters the reaction kettle 50a, the reaction kettle 50a is not in the reaction temperature and reaction pressure, and the planned reaction process cannot be performed. End up. In the present invention, the reaction temperature and the reaction pressure are adjusted with high accuracy and reacted with the raw material to extract useful substances, so such a state is not preferable. Therefore, by providing the bypass pipe 41, the subcritical water that is not in the predetermined temperature range and the predetermined pressure range is allowed to escape to the bypass pipe 41 side so as not to enter the reaction vessel 50a. If only the subcritical water adjusted to the predetermined pressure range is introduced through the introduction pipe 40, the reaction temperature and the reaction pressure can be immediately adjusted with high accuracy by the electromagnetic induction heating mechanism 51 of the reaction vessel 50a described later.

なお、導入管40とバイパス管41の切り替えのため、後述するようにニードルバルブ91、ニードルバルブ92を備えられており、また、ニードルバルブの開閉制御のために必要な各種センサも設けられている(図示省略)。   In order to switch between the introduction pipe 40 and the bypass pipe 41, a needle valve 91 and a needle valve 92 are provided as will be described later, and various sensors necessary for opening / closing control of the needle valve are also provided. (Not shown).

反応釜50aは、バイオマスなどの素材を投入し、亜臨界水発生装置30にて発生した亜臨界水を導入管40を介して導入し、亜臨界水を精度良く所望の圧力と所望の温度に調整しつつ素材と亜臨界水を所望の時間だけ反応させて、ターゲットとしている有用物質を抽出する部分である。なお、所定量の素材を投入するフィーダー装置を備えた構成としても良い。
また、本発明に係る電磁誘導加熱式亜臨界水処理装置の構成では、複数の反応釜を並列させ、切換え操作で抽出処理を行うこともできる。また、処理の目的に応じ反応釜を直列に配列することもできる。さらに、亜臨界水の導入口および排出口の位置は、反応釜の上部、下部、側部のいずれからも適宜選択することができる。
The reaction kettle 50a is charged with a material such as biomass and introduces the subcritical water generated by the subcritical water generator 30 through the introduction pipe 40, so that the subcritical water is accurately set to a desired pressure and a desired temperature. This is the part where the raw material and subcritical water are reacted for a desired time while adjusting to extract the target useful substance. In addition, it is good also as a structure provided with the feeder apparatus which throws in a predetermined amount of raw material.
Moreover, in the structure of the electromagnetic induction heating type subcritical water treatment apparatus according to the present invention, a plurality of reaction kettles can be arranged in parallel and the extraction process can be performed by a switching operation. In addition, reaction kettles can be arranged in series according to the purpose of the treatment. Furthermore, the positions of the inlet and outlet of the subcritical water can be appropriately selected from any of the upper part, the lower part, and the side part of the reaction kettle.

なお、反応釜50aは、実施例1と同様、亜臨界水発生装置30から導入された亜臨界水を精度良く所望の圧力と所望の温度に調整・維持するために電磁誘導加熱機構51を備えている。この構成例でも反応釜50aの周囲に絶縁皮膜銅線であるコイル52を複数回巻きつけた構成となっている。また、実施例1と同様、コイル52に流す電流を制御する電流制御部(図示省略)を備えている。
また、実施例1と同様、反応釜50aの内部にも高精度の温度センサおよび圧力センサが備えられている(図示せず)。
As in the first embodiment, the reaction vessel 50a includes an electromagnetic induction heating mechanism 51 for accurately adjusting and maintaining the subcritical water introduced from the subcritical water generator 30 at a desired pressure and a desired temperature. ing. In this configuration example, a coil 52, which is an insulating film copper wire, is wound around the reaction kettle 50a a plurality of times. Further, similarly to the first embodiment, a current control unit (not shown) for controlling the current flowing through the coil 52 is provided.
As in the first embodiment, a highly accurate temperature sensor and pressure sensor are also provided in the reaction kettle 50a (not shown).

実施例2においても、例えば、電磁誘導加熱機構51による反応釜50a内の亜臨界水の制御温度は50から400℃の範囲、制御圧力が飽和水蒸気圧以上で調整する能力があることが好ましい。   Also in the second embodiment, for example, it is preferable that the control temperature of the subcritical water in the reaction vessel 50a by the electromagnetic induction heating mechanism 51 is in the range of 50 to 400 ° C. and the control pressure is adjusted to be equal to or higher than the saturated water vapor pressure.

本実施例2の構成例では、亜臨界水発生装置30で亜臨界水を発生させ、反応釜50aに対して亜臨界水を連続的に流し込み、コイル52の電流を電流制御部で制御して電磁誘導加熱制御にて反応釜50a内を通過する亜臨界水の温度と圧力を精度良く調整し、素材と反応して得られた抽出液を連続的に流し出す。   In the configuration example of the second embodiment, subcritical water is generated by the subcritical water generator 30, the subcritical water is continuously flowed into the reaction vessel 50 a, and the current of the coil 52 is controlled by the current control unit. The temperature and pressure of the subcritical water passing through the reaction vessel 50a are adjusted with high accuracy by electromagnetic induction heating control, and the extract obtained by reacting with the raw material is continuously flowed out.

加圧装置60は、導入管40を介して亜臨界水発生装置30から亜臨界水を反応釜50a内に導入する際に反応釜50a内の圧力を飽和水蒸気圧以上に保つためのガス圧力を反応釜50a内に印加できる装置である。例えば、不活性ガス(窒素ガスなど)を供給するガスボンベと、当該ガスボンベからの不活性ガスを所定圧力にて反応釜内に印加する昇圧装置を備えている。亜臨界水状態を保つには飽和水蒸気圧以上の圧力が必要であるが、ガスボンベ圧力は最高圧でも10MPa程度であり、ガスボンベのみの圧力以上の高圧ガスを制御しながら供給するのは難しいので昇圧装置を備えていることが好ましい。   The pressurizing device 60 adjusts the gas pressure for maintaining the pressure in the reaction kettle 50a to be equal to or higher than the saturated water vapor pressure when the subcritical water is introduced into the reaction kettle 50a from the subcritical water generator 30 through the introduction pipe 40. It is a device that can be applied to the reaction vessel 50a. For example, a gas cylinder that supplies an inert gas (such as nitrogen gas) and a booster that applies the inert gas from the gas cylinder to the reaction kettle at a predetermined pressure are provided. In order to maintain the subcritical water state, a pressure higher than the saturated water vapor pressure is required, but the gas cylinder pressure is about 10 MPa even at the highest pressure, and it is difficult to supply high-pressure gas that exceeds the pressure of the gas cylinder alone. It is preferable to have an apparatus.

連続処理においても、反応釜50a内では、所定温度の所定圧力を維持する必要があるため、亜臨界水発生装置30で発生した亜臨界水を反応釜50aに導入する際に後述するニードルバルブ91を開放するが、圧力が飽和水蒸気圧以下に下がるおそれがある。この際に即座に反応釜50a内の圧力を飽和水蒸気圧以上に補正調節するために加圧装置60によりガス圧力を印加する。   Even in the continuous treatment, since it is necessary to maintain a predetermined pressure at a predetermined temperature in the reaction vessel 50a, a needle valve 91 which will be described later is introduced when the subcritical water generated in the subcritical water generator 30 is introduced into the reaction vessel 50a. However, the pressure may drop below the saturated water vapor pressure. At this time, a gas pressure is applied by the pressurizing device 60 in order to immediately correct and adjust the pressure in the reaction vessel 50a to the saturated water vapor pressure or higher.

冷却管70は、反応釜50から取り出された抽出液はいまだ高温高圧の亜臨界水に包含された状態であるので、冷却する装置である。
抽出液タンク80は、冷却管70で冷却後の抽出液を貯蔵するタンクである。
The cooling pipe 70 is a device for cooling because the extract taken out from the reaction kettle 50 is still contained in the high-temperature and high-pressure subcritical water.
The extract tank 80 is a tank that stores the extract after being cooled by the cooling pipe 70.

ニードルバルブ91は導入路40と反応釜50aの導通を制御するバルブである。ニードルバルブ92は導入路40とバイパス路41との導通を制御するバルブである。ニードルバルブ91近くの導入管40には高精度の温度センサおよび圧力センサが備えられ(図示せず)、バルブ開閉制御部(図示せず)によりニードルバルブ91およびニードルバルブ92の開閉が制御される。   The needle valve 91 is a valve that controls conduction between the introduction path 40 and the reaction vessel 50a. The needle valve 92 is a valve that controls conduction between the introduction path 40 and the bypass path 41. The introduction pipe 40 near the needle valve 91 is provided with a highly accurate temperature sensor and pressure sensor (not shown), and the opening / closing of the needle valve 91 and the needle valve 92 is controlled by a valve opening / closing control unit (not shown). .

導入管40の亜臨界水の温度および圧力が所定範囲である場合、ニードルバルブ91を開放状態としニードルバルブ92を閉鎖状態として亜臨界水発生装置30で発生した亜臨界水を反応釜50aに導く。導入管40の亜臨界水の温度および圧力が所定範囲にない場合、ニードルバルブ91を閉鎖状態としニードルバルブ92を開放状態とし亜臨界水発生装置30で発生した亜臨界水をバイパス管41から外部へ逃がす。   When the temperature and pressure of the subcritical water in the introduction pipe 40 are within a predetermined range, the needle valve 91 is opened and the needle valve 92 is closed, and the subcritical water generated in the subcritical water generator 30 is guided to the reaction kettle 50a. . When the temperature and pressure of the subcritical water in the introduction pipe 40 are not within the predetermined ranges, the needle valve 91 is closed and the needle valve 92 is opened, and the subcritical water generated by the subcritical water generator 30 is externally supplied from the bypass pipe 41. To escape.

ニードルバルブ93は、加圧装置60と反応釜50aの導通を制御するバルブであり、反応釜50a内の圧力を飽和水蒸気圧以上となるように即座に反応釜50a内の圧力を補正調節する。反応釜50a内の圧力センサ(図示せず)によりニードルバルブ91の開放に伴い反応釜50a内の圧力が飽和水蒸気圧以下に下がってしまった場合は亜臨界水が水蒸気になってしまうので、ニードルバルブ91の開放と連動してニードルバルブ93を開放して反応釜50a内の圧力が飽和水蒸気圧以上となるよう加圧ガスボンベ60から窒素ガスを印加し、亜臨界状態を維持する。   The needle valve 93 is a valve that controls conduction between the pressurizing device 60 and the reaction vessel 50a, and immediately corrects and adjusts the pressure in the reaction vessel 50a so that the pressure in the reaction vessel 50a becomes equal to or higher than the saturated water vapor pressure. If the pressure sensor (not shown) in the reaction vessel 50a causes the pressure in the reaction vessel 50a to fall below the saturated water vapor pressure as the needle valve 91 is opened, the subcritical water becomes water vapor. In conjunction with the opening of the valve 91, the needle valve 93 is opened, and nitrogen gas is applied from the pressurized gas cylinder 60 so that the pressure in the reaction vessel 50a becomes equal to or higher than the saturated water vapor pressure, and the subcritical state is maintained.

なお、実施例1ではニードルバルブ90が設けられており、バッチ処理が終了した抽出液の反応釜50からの取り出しを制御したが、実施例2は連続処理であり、ニードルバルブ90に相当するバルブは不要としても良い。本実施例2ではニードルバルブ90は設けていない構成例となっている。
その代わり、冷却管70の後方にコントロールバルブ94が設けられている。コントロールバルブ94があれば、全自動で圧力を一定にできるというメリットが得られる。例えば不溶成分の影響でバルブが詰まり気味になった場合(圧力が上がる)でも、コントロールバルブ94を自動開放して排出することができるため圧力を一定に保つことが可能となる。
In the first embodiment, the needle valve 90 is provided, and the extraction of the extracted liquid from the reaction kettle 50 after the batch processing is controlled. However, the second embodiment is a continuous processing and corresponds to the needle valve 90. May be unnecessary. In the second embodiment, the needle valve 90 is not provided.
Instead, a control valve 94 is provided behind the cooling pipe 70. If the control valve 94 is provided, a merit that the pressure can be made constant automatically is obtained. For example, even when the valve becomes clogged due to the influence of insoluble components (pressure increases), the control valve 94 can be automatically opened and discharged, so that the pressure can be kept constant.

以上、本発明の第2の電磁誘導加熱式亜臨界水処理装置によれば、いわゆる連続処理方式の亜臨界水処理装置において、所定温度範囲および所定圧力範囲にある亜臨界水を安定して連続的に供給することができ、導入の際に反応釜の圧力が下がらないようにガス圧力をかけることもでき、反応釜内での亜臨界水を用いた素材からの成分の抽出処理を連続処理とすることができる。   As described above, according to the second electromagnetic induction heating type subcritical water treatment apparatus of the present invention, in a so-called continuous treatment type subcritical water treatment apparatus, subcritical water in a predetermined temperature range and a predetermined pressure range is stably and continuously supplied. Gas can be applied so that the pressure in the reaction kettle does not drop during the introduction, and the component extraction process from the material using subcritical water in the reaction kettle is continuous. It can be.

実施例3の電磁誘導加熱式亜臨界水処理装置として、絶縁皮膜銅線であるコイルの焼き付きを有効に防止する工夫を盛り込んだ実施例を示す。
本実施例3では、反応釜の周囲に断熱体を巻きつけ、断熱体を挟んで反応釜の周囲に絶縁皮膜銅線をコイル状に巻きつける構成とし、熱緩衝材として絶縁皮膜銅線の焼き付きを防止せしめたものである。
実施例3にかかる電磁誘導加熱式亜臨界水処理装置の全体構成は実施例1に示した装置構成と同様で良いが、反応釜50bに工夫が施されている。
As an electromagnetic induction heating type subcritical water treatment apparatus of Example 3, an example incorporating a device for effectively preventing seizure of a coil which is an insulating film copper wire will be described.
In Example 3, a heat insulator is wound around the reaction kettle, and the insulation film copper wire is wound around the reaction kettle around the reaction kettle, and the insulation film copper wire is seized as a heat buffer. This is to prevent this.
The overall configuration of the electromagnetic induction heating subcritical water treatment apparatus according to the third embodiment may be the same as the apparatus configuration shown in the first embodiment, but the reaction kettle 50b is devised.

図6は反応釜50bの周囲の断熱体の形状を模式的に示す図である。
反応釜50bの周囲には断熱体53が巻かれている。この断熱体53は熱緩衝材として働き、抽出釜50自体の保温と同時に抽出釜から絶縁皮膜銅線52への熱伝導を防止するよう工夫している。さらに、この断熱材53はコイル状に巻かれる絶縁皮膜銅線52を抽出釜50の外面に接触させない機能も果たしている。
FIG. 6 is a diagram schematically showing the shape of the heat insulator around the reaction kettle 50b.
A heat insulator 53 is wound around the reaction kettle 50b. The heat insulator 53 functions as a heat buffer, and is designed to prevent heat conduction from the extraction pot to the insulating coating copper wire 52 at the same time as the temperature of the extraction pot 50 itself is kept. Further, the heat insulating material 53 also functions to prevent the insulating film copper wire 52 wound in a coil shape from coming into contact with the outer surface of the extraction pot 50.

また、本実施例3では断熱体53の外周表面に多数の溝構造54を設け、溝構造54に沿って冷却風を流す冷却ファン(図示せず)を設け、反応釜50bは断熱体53により保温しつつ断熱体53の外側においてコイル状の絶縁皮膜銅線52を冷却せしめる構造となっている。   In the third embodiment, a large number of groove structures 54 are provided on the outer peripheral surface of the heat insulating body 53, a cooling fan (not shown) for flowing cooling air is provided along the groove structure 54, and the reaction vessel 50 b is formed by the heat insulating body 53. The coil-shaped insulating film copper wire 52 is cooled outside the heat insulator 53 while keeping the temperature.

図6は断熱体53の外周表面に多数の溝構造54と絶縁皮膜銅線であるコイル52の関係が分かりやすいように模式的に示した横断面である。   FIG. 6 is a cross-sectional view schematically showing the relationship between the numerous groove structures 54 and the coil 52, which is an insulating film copper wire, on the outer peripheral surface of the heat insulator 53.

断熱体53の外周表面に溝構造54が設けられているので、絶縁皮膜銅線であるコイル52が断熱体53には密着せず空気が通る通り道が確保されている。この溝構造54の空隙に対して冷却ファンにより送風すると反応釜50bから伝導する熱を効果的に放熱することができ、絶縁皮膜が焼き付いたり焦げ付いたりすることがなくなる。   Since the groove structure 54 is provided on the outer peripheral surface of the heat insulator 53, the coil 52, which is an insulating film copper wire, does not adhere to the heat insulator 53 and a passage through which air passes is secured. When the cooling fan blows air to the gap of the groove structure 54, the heat conducted from the reaction kettle 50b can be effectively dissipated, and the insulating film will not be burned or burnt.

実施例4の電磁誘導加熱式亜臨界水処理装置として、反応釜に設けられているボルト等の金属製突起物の周囲を磁性体で囲み、漏れ磁束を遮蔽して金属製突起物に生じる渦電流を低減させる工夫を盛り込んだ実施例を示す。   As an electromagnetic induction heating type subcritical water treatment apparatus of Example 4, a vortex generated in a metal protrusion by surrounding a metal protrusion such as a bolt provided in a reaction kettle with a magnetic material and shielding leakage magnetic flux. An embodiment incorporating a device for reducing current will be described.

図7は、電磁誘導加熱式亜臨界水処理装置の反応釜50cのみを取り出して縦断面において示した縦断面図である。   FIG. 7 is a longitudinal sectional view showing only the reaction kettle 50c of the electromagnetic induction heating type subcritical water treatment apparatus taken out and shown in a longitudinal section.

絶縁皮膜銅線であるコイル52に電流が流れると磁界が発生し、磁束が漏れ磁束となり反応釜50cの壁面およびその周囲に磁束が通過する。ここで、反応釜50cには釜蓋を閉じる大きなボルト55があるが、このボルト55の先端には磁束が集中しやすく渦電流が発生しやすい。そのため、ボルト55の先端に焼き付きが発生しやすい。
そこで、本実施例4の電磁誘導加熱式亜臨界水処理装置では磁束が集中しやすく渦電流が発生しやすい金属製突起物の周囲を磁性体で囲み磁束の通過を防止し、渦電流の発生および過昇温を防止せしめたものである。
When a current flows through the coil 52, which is an insulating film copper wire, a magnetic field is generated, and the magnetic flux becomes a leakage flux, and the magnetic flux passes through and around the wall surface of the reaction vessel 50c. Here, the reaction kettle 50c has a large bolt 55 that closes the kettle lid, but magnetic flux tends to concentrate on the tip of the bolt 55, and eddy current tends to occur. Therefore, seizure is likely to occur at the tip of the bolt 55.
Therefore, in the electromagnetic induction heating type subcritical water treatment apparatus of the fourth embodiment, magnetic flux is easily concentrated and metal protrusions that are likely to generate eddy current are surrounded by a magnetic material to prevent the passage of magnetic flux, thereby generating eddy current. Further, overheating is prevented.

図7に示すように、ボルト55の先端を遮るように磁性体56が設けられている。例えば、フェライトコアなどで良い。   As shown in FIG. 7, a magnetic body 56 is provided so as to block the tip of the bolt 55. For example, a ferrite core may be used.

図7には磁力線は図示していないが、絶縁皮膜銅線であるコイル52に流れる電流から発生する磁力線はフェライトコアである磁性体56方向に収束し、金属製突起物であるボルト55には磁力線は通過せず、過剰な渦電流が発生することもない。   Although the magnetic lines of force are not shown in FIG. 7, the magnetic lines of force generated from the current flowing through the coil 52, which is an insulating film copper wire, converge in the direction of the magnetic body 56, which is a ferrite core. Magnetic field lines do not pass through and no excessive eddy currents are generated.

以上、本発明の電磁誘導加熱式亜臨界水処理装置の構成例における好ましい実施形態を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。   As mentioned above, although preferred embodiment in the example of composition of the electromagnetic induction heating type subcritical water treatment device of the present invention was illustrated and explained, various changes are possible without deviating from the technical scope of the present invention. Will be understood.

本発明の電磁誘導加熱式亜臨界水処理装置は、植物組織や動物組織などのバイオマスから有用物質を亜臨界水を用いて抽出するための亜臨界水処理装置に広く適用することができる。   The electromagnetic induction heating subcritical water treatment apparatus of the present invention can be widely applied to subcritical water treatment apparatuses for extracting useful substances from biomass such as plant tissues and animal tissues using subcritical water.

本発明の実施例1に係る電磁誘導加熱式亜臨界水処理装置100の一構成例を例示する概念図The conceptual diagram which illustrates one structural example of the electromagnetic induction heating type subcritical water processing apparatus 100 which concerns on Example 1 of this invention. 抽出実験1の測定結果を示す図The figure which shows the measurement result of extraction experiment 1 抽出実験2の測定結果を示す図The figure which shows the measurement result of the extraction experiment 2 抽出実験3の蒸発残渣量を示す図The figure which shows the evaporation residue amount of the extraction experiment 3 本発明の実施例2に係る電磁誘導加熱式亜臨界水処理装置100aの一構成例を例示する概念図The conceptual diagram which illustrates one structural example of the electromagnetic induction heating type subcritical water processing apparatus 100a which concerns on Example 2 of this invention. 反応釜50bの周囲の断熱体52およびその外周表面に設けられた溝構造53と絶縁皮膜銅線51を模式的に示した横断面Cross section schematically showing the heat insulator 52 around the reaction vessel 50b, the groove structure 53 provided on the outer peripheral surface thereof, and the insulating coating copper wire 51 反応釜50cのボルト55とそれを覆う磁性体56を模式的に示した縦断面Longitudinal cross section schematically showing bolt 55 of reaction kettle 50c and magnetic body 56 covering it

符号の説明Explanation of symbols

10 蒸留水タンク
20 高圧ポンプ
30 亜臨界水発生装置
40 導入管
41 バイパス管
50 反応釜
51 電磁誘導加熱機構
52 絶縁皮膜銅線
53 断熱体
54 溝構造
55 ボルト
56 磁性体
60 加圧ガスボンベ
70 冷却管
80 抽出液タンク
90,91,92,93 ニードルバルブ
94 コントロールバルブ
DESCRIPTION OF SYMBOLS 10 Distilled water tank 20 High pressure pump 30 Subcritical water generator 40 Introducing pipe 41 Bypass pipe 50 Reaction kettle 51 Electromagnetic induction heating mechanism 52 Insulation film copper wire 53 Insulation body 54 Groove structure 55 Bolt 56 Magnetic body 60 Pressurized gas cylinder 70 Cooling pipe 80 Extract liquid tank 90, 91, 92, 93 Needle valve 94 Control valve

Claims (8)

釜内に投入した液体を加圧加熱して亜臨界状態とし、前記釜内に投入した素材と前記亜臨界水とを反応させる反応釜と、
前記反応釜の周囲に複数回巻きつけたコイルと、
前記コイルに流す電流を制御する電流制御部を備え、
前記電流制御部により前記コイルに流す電流を制御し、電磁誘導加熱制御にて前記反応釜内の前記亜臨界水の温度と圧力を精度良く調整し、前記反応釜内の前記素材と前記亜臨界水を短時間に反応させることを特徴とする電磁誘導加熱式亜臨界水処理装置。
A reaction kettle that pressurizes and heats the liquid put into the kettle to a subcritical state, and reacts the material put into the kettle with the subcritical water;
A coil wound a plurality of times around the reaction kettle;
A current control unit for controlling a current flowing through the coil;
The current control unit controls the current flowing through the coil, and the temperature and pressure of the subcritical water in the reaction kettle are accurately adjusted by electromagnetic induction heating control, and the material in the reaction kettle and the subcritical water are controlled. An electromagnetic induction heating type subcritical water treatment apparatus characterized by reacting water in a short time.
亜臨界水を発生させる亜臨界水発生装置と、
前記亜臨界水発生装置から亜臨界状態に達した亜臨界水を取り出す導入管と、
前記導入管から前記亜臨界水を導入し、釜内に投入された素材と前記亜臨界水とを反応させる反応釜と、
前記反応釜の周囲に複数回巻きつけたコイルと、
前記コイルに流す電流を制御する電流制御部を備え、
前記電流制御部により前記コイルに流す電流を制御し、電磁誘導加熱制御にて前記反応釜内を流れる前記亜臨界水の温度と圧力を精度良く調整し、前記反応釜内の前記素材と前記亜臨界水を短時間に反応させることを特徴とする電磁誘導加熱式亜臨界水処理装置。
A subcritical water generator for generating subcritical water;
An introduction pipe for taking out subcritical water that has reached a subcritical state from the subcritical water generator;
A reaction kettle for introducing the subcritical water from the introduction pipe and reacting the material introduced into the kettle with the subcritical water;
A coil wound a plurality of times around the reaction kettle;
A current control unit for controlling a current flowing through the coil;
The current control unit controls the current flowing through the coil, and the temperature and pressure of the subcritical water flowing in the reaction kettle are accurately adjusted by electromagnetic induction heating control. An electromagnetic induction heating type subcritical water treatment apparatus characterized by reacting critical water in a short time.
前記反応釜の周囲に断熱体を巻きつけ、前記断熱体を挟んで前記反応釜の周囲に前記コイルを巻きつける構成とし、熱緩衝材として前記コイルの焼き付きを防止せしめたことを特徴とする請求項1または2に記載の電磁誘導加熱式亜臨界水処理装置。   A heat insulator is wound around the reaction kettle, and the coil is wound around the reaction kettle with the heat insulator sandwiched therebetween to prevent seizure of the coil as a heat buffer material. Item 3. The electromagnetic induction heating subcritical water treatment apparatus according to Item 1 or 2. 前記断熱体の外周表面に多数の溝構造を設け、前記溝構造に沿って冷却風を流す冷却手段を設け、前記反応釜は前記断熱体により保温しつつ前記断熱体の外側において前記コイルを冷却せしめる構造とした請求項1から3のいずれか1項に記載の電磁誘導加熱式亜臨界水処理装置。   A plurality of groove structures are provided on the outer peripheral surface of the heat insulator, cooling means for flowing cooling air along the groove structure is provided, and the reaction kettle cools the coil outside the heat insulator while keeping heat by the heat insulator. The electromagnetic induction heating type subcritical water treatment apparatus according to any one of claims 1 to 3, which has a caulking structure. 前記反応釜に設けられているボルト等の金属製突起物の周囲を磁性体で囲み、漏れ磁束を遮蔽して前記金属製突起物に生じる渦電流を低減させることを特徴とする請求項1から4のいずれか1項に記載の電磁誘導加熱式亜臨界水処理装置。   The metal protrusion such as a bolt provided in the reaction kettle is surrounded by a magnetic material to shield leakage magnetic flux and reduce eddy current generated in the metal protrusion. The electromagnetic induction heating type subcritical water treatment apparatus according to any one of 4. 前記電磁誘導加熱制御による前記反応釜内の前記亜臨界水の制御温度が50から400℃、制御圧力が飽和水蒸気圧以上とした請求項1から5のいずれか1項に記載の電磁誘導加熱式亜臨界水処理装置。   The electromagnetic induction heating method according to any one of claims 1 to 5, wherein a control temperature of the subcritical water in the reaction kettle by the electromagnetic induction heating control is 50 to 400 ° C, and a control pressure is equal to or higher than a saturated water vapor pressure. Subcritical water treatment equipment. 前記反応釜内での前記亜臨界水を用いた前記素材との反応処理を連続処理とし、前記亜臨界水発生装置に前記導入管とは別にバイパス管を設け、前記亜臨界水発生装置から導入する前記亜臨界水が所定温度範囲および所定圧力範囲にない場合は、前記バイパス管で逃がし、前記所定温度範囲および前記所定圧力範囲にある場合は前記導入管を介して前記反応釜に導入することを特徴とする請求項2に記載の電磁誘導加熱式亜臨界水処理装置。   The reaction process with the material using the subcritical water in the reaction kettle is a continuous process, and a bypass pipe is provided in the subcritical water generator separately from the introduction pipe, and introduced from the subcritical water generator. When the subcritical water is not in a predetermined temperature range and a predetermined pressure range, it is released by the bypass pipe, and when it is in the predetermined temperature range and the predetermined pressure range, it is introduced into the reaction kettle through the introduction pipe. The electromagnetic induction heating type subcritical water treatment apparatus according to claim 2. 前記導入管を介して前記亜臨界水発生装置から前記亜臨界水を前記反応釜内に導入する際に前記反応釜内の圧力を飽和水蒸気圧以上に保つためのガス圧力を前記反応釜内に印加できる加圧手段を備えた請求項7に記載の電磁誘導加熱式亜臨界水処理装置。   When introducing the subcritical water from the subcritical water generator into the reaction kettle through the introduction pipe, a gas pressure is maintained in the reaction kettle to keep the pressure in the reaction kettle above the saturated water vapor pressure. The electromagnetic induction heating type subcritical water treatment apparatus according to claim 7, further comprising a pressurizing means that can be applied.
JP2008110801A 2008-04-21 2008-04-21 Electromagnetic induction heating type subcritical water treatment equipment Expired - Fee Related JP5473243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110801A JP5473243B2 (en) 2008-04-21 2008-04-21 Electromagnetic induction heating type subcritical water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110801A JP5473243B2 (en) 2008-04-21 2008-04-21 Electromagnetic induction heating type subcritical water treatment equipment

Publications (2)

Publication Number Publication Date
JP2009261992A true JP2009261992A (en) 2009-11-12
JP5473243B2 JP5473243B2 (en) 2014-04-16

Family

ID=41388527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110801A Expired - Fee Related JP5473243B2 (en) 2008-04-21 2008-04-21 Electromagnetic induction heating type subcritical water treatment equipment

Country Status (1)

Country Link
JP (1) JP5473243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126097A1 (en) 2016-12-31 2018-07-05 George Stantchev Superheated water extraction with counterpressure system and method thereof
CN108339496A (en) * 2017-01-23 2018-07-31 赖泽民 A kind of biomass is subcritical or supercritical hydrolysis device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340261A (en) * 2002-05-29 2003-12-02 Japan Organo Co Ltd Batch hydrothermal reactor and hydrothermal reaction apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340261A (en) * 2002-05-29 2003-12-02 Japan Organo Co Ltd Batch hydrothermal reactor and hydrothermal reaction apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126097A1 (en) 2016-12-31 2018-07-05 George Stantchev Superheated water extraction with counterpressure system and method thereof
EP3562571A4 (en) * 2016-12-31 2020-12-30 George Stantchev Superheated water extraction with counterpressure system and method thereof
CN108339496A (en) * 2017-01-23 2018-07-31 赖泽民 A kind of biomass is subcritical or supercritical hydrolysis device and method

Also Published As

Publication number Publication date
JP5473243B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
Kittiphattanabawon et al. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: Antioxidant activity and its potential in model systems
KR101591031B1 (en) An apparatus and a method for continuous thermal hydrolysis of biological material
Wataniyakul et al. Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water
JP5473243B2 (en) Electromagnetic induction heating type subcritical water treatment equipment
KR101088095B1 (en) Equipment for decomposition of organic matter and method for decomposition of organic matter using the same
US10213517B2 (en) System for fluid sterilization
CY1112534T1 (en) METHOD AND APPLIANCE FOR THERMAL PROCESSING AT HIGH TEMPERATURE OF FUEL MATERIAL IN SPECIFIC WASTE
CN105476051A (en) High-quality fish meal processing device and application thereof
JP2008285456A (en) Extraction method and extraction apparatus of collagen, production method and production apparatus of hydroxyapatite, and collagen-containing aqueous extract and hydroxyapatite
Abdualrahman et al. Thermal and single frequency counter‐current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides
ATE359246T1 (en) METHOD AND DEVICE FOR PRODUCING CARBON PRODUCTS FROM CARBON PRECURSOR PRODUCTS
WO2004068033A1 (en) Superheated steam producing device
JP2010214093A (en) Apparatus for generating steam plasma, sterilization, and sterilization device
JP5267195B2 (en) Microwave extraction device for plant-derived essential oil
JP2010246509A (en) Method of antioxidation treatment using steam plasma
RU2006102381A (en) DEVICE AND METHOD FOR PLASMA POST-DISCHARGE STERILIZATION
KR20190104849A (en) Apparatus for waste treating facility
JP2006328304A (en) Method for extracting component contained in plant tissue
DE60206108D1 (en) Process and reactor for the treatment of animal meals and / or fats
JP2020110047A (en) Manufacturing method of broccoli processed food
DE50204915D1 (en) Process for drying an active part and apparatus for carrying out this process
JP2009119314A (en) Reaction vessel equipped with induction heater, and apparatus for carrying out high-temperature/high-pressure treatment
JP2004345998A (en) Method for rapidly producing amino acid
JP2019042647A (en) Thermal decomposition treatment deice of article to be processed and thermal decomposition treatment method of article to be processed
JP2007029821A (en) Apparatus and method for decomposition of organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees