JP2009260336A - Carrying device for inspection device of solar battery - Google Patents

Carrying device for inspection device of solar battery Download PDF

Info

Publication number
JP2009260336A
JP2009260336A JP2009078636A JP2009078636A JP2009260336A JP 2009260336 A JP2009260336 A JP 2009260336A JP 2009078636 A JP2009078636 A JP 2009078636A JP 2009078636 A JP2009078636 A JP 2009078636A JP 2009260336 A JP2009260336 A JP 2009260336A
Authority
JP
Japan
Prior art keywords
solar cell
transport
measured
solar battery
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078636A
Other languages
Japanese (ja)
Other versions
JP5378854B2 (en
Inventor
Mitsuhiro Shimotomai
光博 下斗米
Fuminobu Baba
史伸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc filed Critical Nisshinbo Holdings Inc
Priority to JP2009078636A priority Critical patent/JP5378854B2/en
Publication of JP2009260336A publication Critical patent/JP2009260336A/en
Application granted granted Critical
Publication of JP5378854B2 publication Critical patent/JP5378854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrying device used for an inspection device to cause EL by passing a forward current in a solar battery, wherein no displacement of the constituent members of the solar battery which are objects to be measured is caused, when carrying the constituent members of the solar battery which are the objects to be measured before laminating treatment in a laminated state to the inspection device. <P>SOLUTION: In this inspection device having a darkroom 110 provided with a flat top face 111, a transparent plate 112 provided on the top face of the darkroom 110 to carry the solar battery forming an object 200 to be measured, and a camera 120 to photograph the image of the object to be measured, this carrying device is to carry the constituent members of the solar cell to the inspection device in the layered state before laminating treatment. A pair of carrying guide parts formed by connecting the transparent board and the like which are the constituent members of the solar battery to carry to a plurality of the carrying members having a wall part lower than the thickness of the board in an endless state are provided symmetrically with respect to the carrying direction (in two rows), and the transparent board and the like are carried while guiding them by the wall part. Thereby, the constituent members of the solar battery are prevented from being displaced while being carried. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽電池セル、太陽電池セルを直列に接続したストリング、ストリングを平行に複数配置した太陽電池パネルなど、太陽電池一般の性能を検査する装置に使用する搬送装置に関する。   The present invention relates to a transport device used for a device for inspecting general performance of a solar cell, such as a solar cell, a string in which solar cells are connected in series, and a solar cell panel in which a plurality of strings are arranged in parallel.

太陽エネルギーの利用方法として、シリコン型の太陽電池が知られている。太陽電池の製造においては、太陽電池が目的の発電能力を有しているかどうかの性能評価が重要である。性能評価には、通常、出力特性の測定がされる。   As a method of utilizing solar energy, a silicon type solar cell is known. In the production of solar cells, it is important to evaluate the performance of whether the solar cells have the desired power generation capability. In performance evaluation, output characteristics are usually measured.

出力特性は、光照射下において、太陽電池の電流電圧特性を測定する光電変換特性として行われる。光源としては、太陽光が望ましいのであるが、天候により照射強度が変化することから、ソーラシミュレータが使用されている。ソーラシミュレータでは、太陽光に代えてキセノンランプやメタルハライドランプ等を使用している。また、これらの光源を長時間点灯していると、温度上昇などにより光量が変化する。そこで、これらのランプのフラッシュ光を用い、横軸を電圧、縦軸を電流として、収集したデータをプロットすることにより太陽電池の出力特性曲線を得ている(例えば、特許文献1参照)。   The output characteristic is performed as a photoelectric conversion characteristic for measuring the current-voltage characteristic of the solar cell under light irradiation. Solar light is desirable as the light source, but a solar simulator is used because the irradiation intensity varies depending on the weather. In the solar simulator, a xenon lamp, a metal halide lamp, or the like is used instead of sunlight. Further, when these light sources are turned on for a long time, the light amount changes due to a temperature rise or the like. Therefore, the output characteristic curve of the solar cell is obtained by plotting the collected data using the flash light of these lamps with the horizontal axis representing voltage and the vertical axis representing current (see, for example, Patent Document 1).

ソーラシミュレータと異なる方法として、特許文献2では、シリコンの多結晶型の太陽電池素子に対して順方向に電圧を印加することで、エレクトロルミネッセンス(EL)を生じさせる方法を提案している。太陽電池素子から発光されるELを観察することによって、電流密度分布が分かり、電流密度分布の不均一から太陽電池素子の欠陥を知ることができる。すなわち、発光しない部分が欠陥部分と判断でき、この欠陥部分の面積が予め決められた量より少なければ、所定の発電能力を有するものと判断できることになる。   As a method different from the solar simulator, Patent Document 2 proposes a method of generating electroluminescence (EL) by applying a voltage in the forward direction to a polycrystalline silicon solar cell element. By observing the EL emitted from the solar cell element, the current density distribution can be understood, and the defect of the solar cell element can be known from the non-uniform current density distribution. That is, a portion that does not emit light can be determined as a defective portion, and if the area of the defective portion is less than a predetermined amount, it can be determined that it has a predetermined power generation capability.

図8は、特許文献2に記載された検査装置の構成を模式的に示す図である。検査装置10は、暗室11と、この暗室11の上部に設けられたCCDカメラ12と、暗室11の床面に載置された太陽電池セル13に電流を流す電源14と、CCDカメラ12からの画像信号を処理する画像処理装置15とから構成されている。   FIG. 8 is a diagram schematically showing the configuration of the inspection apparatus described in Patent Document 2. As shown in FIG. The inspection apparatus 10 includes a dark room 11, a CCD camera 12 provided above the dark room 11, a power supply 14 for supplying a current to the solar cells 13 placed on the floor of the dark room 11, And an image processing device 15 for processing an image signal.

暗室11には窓11aがあり、ここにCCDカメラ12のファインダー12aがあって、ここから肉眼で覗くことで、CCDカメラ12の撮影画像を確認することができる。画像処理装置15としては、パソコンを使用している。   The dark room 11 has a window 11a. A finder 12a of the CCD camera 12 is provided here, and a photographed image of the CCD camera 12 can be confirmed by looking into it with the naked eye. A personal computer is used as the image processing device 15.

特開2007−88419JP2007-88419 WO/2006/059615WO / 2006/059615

図8に示す検査装置10は、太陽電池セル13を下に置いて、上からカメラで撮影するのであるが、太陽電池セル13から発光されるELは、1,000nmから1,300nmの波長の微弱な光であり、暗室11でなければ検知できない。被測定物が1枚の太陽電池セルであれば、100mm平方程度なので、暗室11も小さいものでよい。   The inspection apparatus 10 shown in FIG. 8 places the solar battery cell 13 on the bottom and takes a picture with a camera from above. The EL emitted from the solar battery cell 13 has a wavelength of 1,000 nm to 1,300 nm. It is faint light and can only be detected in the dark room 11. If the object to be measured is a single solar battery cell, the dark room 11 may be small because it is about 100 mm square.

しかし、太陽電池になると、2m×1m程度の大きさとなり、暗室11もこれを収容できる大きさが必要となる。また、被測定物となる太陽電池は、暗室内に入れなければカメラ12で撮影できないので、暗室に太陽電池の出し入れができる扉を設けなければならない。検査装置をこのような暗室内に搬入する構成とすると、設置した扉が閉じた場合の遮光性も確保しなければならない。また検査装置に搬入された太陽電池の位置決め部材や搬送ガイド部材も暗室内に設ける必要がある。さらに、太陽電池に電流を通すための通電手段も暗室内に設ける必要がある。という具合に構造的に複雑になり、高価なものとなる。
またこのような検査装置を太陽電池の製造ラインの一装置として組み込む場合に以下のような要求がある。被測定物である太陽電池を構成する部材である透明基板・太陽電池セル(以下太陽電池セルという記載は、太陽電池セルを直列に接続したストリング、更にストリングを複数列接続したパネルも含む。)・充填材・裏面材を積み重ねラミネート処理する前に上記検査装置に搬送し検査したいという要求である。太陽電池は、大型化する傾向にあり2m×1m以上の大きさとなる。後述するがラミネート処理する前の被測定物は最上面の裏面材が最下面の透明基板・太陽電池セル・充填材を覆い透明基板よりも外側にはみ出して積み重ねられている。従って上記検査装置に搬送する際に裏面材が装置の構成部材に接触すると、積み重ねられた太陽電池の構成部材が相互に位置がずれることになる。またこのような搬送中のトラブルによりストリングや太陽電池パネルを構成するセルの相互の位置もずれてしまうことになり、太陽電池セルの正確な欠陥検査ができないことになり、後工程のラミネート処理にも支障をきたすことになる。
However, when it becomes a solar cell, it becomes a size of about 2 m × 1 m, and the dark room 11 needs to be large enough to accommodate it. Moreover, since the solar cell used as a to-be-measured object cannot be image | photographed with the camera 12 unless it puts into a dark room, you must provide the door which can take in and out a solar cell in a dark room. When the inspection apparatus is configured to be carried into such a dark room, it is necessary to ensure light shielding when the installed door is closed. Moreover, it is necessary to provide the positioning member and conveyance guide member of the solar cell carried in the inspection apparatus in the darkroom. Furthermore, it is necessary to provide an energizing means for passing a current through the solar cell in the darkroom. Such a structure is complicated and expensive.
Moreover, when incorporating such an inspection device as one device of a solar cell production line, there are the following requirements. A transparent substrate / solar battery cell which is a member constituting a solar battery as a measurement object (hereinafter referred to as a solar battery cell includes a string in which solar battery cells are connected in series, and a panel in which a plurality of strings are connected in series) -It is a request to transport and inspect the filler and back material to the inspection device before stacking and laminating. Solar cells tend to be larger and have a size of 2 m × 1 m or more. As will be described later, the object to be measured before laminating is stacked such that the uppermost back material covers the lowermost transparent substrate, solar battery cell, and filler and protrudes outward from the transparent substrate. Therefore, when the back material comes into contact with the constituent members of the device when transported to the inspection device, the stacked constituent members of the solar cells are displaced from each other. In addition, due to such trouble during transportation, the mutual positions of the cells constituting the string and the solar battery panel will also be shifted, and it will not be possible to accurately inspect the solar battery for defects, and in the subsequent laminating process Will also interfere.

本発明は、斯かる実情に鑑みてなされたもので、太陽電池に順方向の電流を流してEL発光させる検査装置であって、ラミネート処理前の被測定物である太陽電池の構成部材を積み重ねた状態で上記検査装置に搬送する際に被測定物である太陽電池の構成部材の位置ずれが発生しない搬送装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and is an inspection apparatus that causes EL light to flow by applying a forward current to a solar cell, and stacks constituent members of a solar cell that is an object to be measured before lamination processing. It is an object of the present invention to provide a transport device that does not cause displacement of the constituent members of the solar cell, which is the object to be measured, when transported to the inspection device in the above state.

上記問題を解決するための本発明の太陽電池の検査装置用搬送装置は、平らな上面を備えた暗室と、該暗室の前記上面に設けられ、被測定物となる太陽電池を載せる透明板と、被測定物の像を写すカメラとを有することを特徴とする太陽電池の検査装置において、太陽電池の構成部材をラミネート処理する前に積層した状態で前記検査装置に搬送する搬送装置であって、搬送する太陽電池の前記構成部材である透明基板等をその厚さ寸法よりも低い壁部を有する複数個の搬送部材をエンドレス状に接続した搬送ガイド部を、搬送方向に対して対称に1対(2列)設け、前記壁部で前記透明基板等をガイドして搬送することを特徴としている。   A transport device for a solar cell inspection apparatus according to the present invention for solving the above-mentioned problem is a dark room having a flat upper surface, and a transparent plate on the upper surface of the dark room, on which a solar cell to be measured is placed. A solar cell inspection apparatus having a camera that images an object to be measured, wherein the solar cell component is transported to the inspection apparatus in a stacked state before being laminated. A transport guide portion in which a plurality of transport members having wall portions lower than the thickness of the transparent substrate, which is the constituent member of the solar cell to be transported, are connected in an endless manner is symmetrically 1 with respect to the transport direction. A pair (two rows) is provided, and the transparent substrate or the like is guided and conveyed by the wall portion.

また搬送する太陽電池の前記構成部材である透明基板等をその厚さ寸法よりも低い壁部を有するエンドレス状の帯状部材を有する搬送ガイド部を搬送方向に対して対称に1対(2列)設け、前記壁部で前記透明基板等をガイドして搬送する構成とすることもできる。
またさらに搬送する太陽電池の構成部材である前記透明基板等の幅寸法に応じて前記搬送装置の搬送ガイド部の搬送部材または帯状部材の壁部の位置を変更可能とした構成とすることもできる。
Further, a pair of transport guide portions having endless strip members having walls lower than the thickness of the transparent substrate, which is the constituent member of the solar cell to be transported, are symmetrically paired with respect to the transport direction (two rows). The transparent substrate and the like may be guided and transported by the wall portion.
Further, the position of the transport member of the transport guide portion of the transport device or the wall portion of the belt-shaped member can be changed according to the width dimension of the transparent substrate or the like which is a constituent member of the solar cell to be transported. .

本発明の太陽電池の検査装置用搬送装置によれば、ラミネート処理する前の太陽電池の構成部材を積み重ねた状態で上記検査装置に搬送する際に、構成部材が搬送装置の他の部材に接触して相互の位置がずれることはない。   According to the transportation device for a solar cell inspection device of the present invention, when the solar cell components before lamination are stacked and transported to the inspection device, the structural members contact other members of the transport device. As a result, the mutual positions do not shift.

したがってラミネート処理前でも太陽電池セルの欠陥を正常に検査することができるとともに、後工程のラミネート処理に支障をきたすことがない。   Therefore, the solar cell can be normally inspected for defects even before the lamination process, and the subsequent lamination process is not hindered.

本発明の搬送装置を使用した太陽電池の検査装置を示す平面図である。It is a top view which shows the inspection apparatus of the solar cell which uses the conveying apparatus of this invention. 本発明の搬送装置を使用した太陽電池の検査装置を示す正面図である。It is a front view which shows the inspection apparatus of the solar cell which uses the conveying apparatus of this invention. 本発明の搬送装置を使用した太陽電池の検査装置を示す左側面図である。It is a left view which shows the inspection apparatus of the solar cell which uses the conveying apparatus of this invention. 本発明の搬送装置の第1の実施例の搬送方向から見た説明図である。It is explanatory drawing seen from the conveyance direction of 1st Example of the conveying apparatus of this invention. 本発明の搬送装置の第1の実施例の搬送方向と直角な方向から見た説明図である。It is explanatory drawing seen from the direction orthogonal to the conveyance direction of 1st Example of the conveying apparatus of this invention. 本発明の搬送装置の第2の実施例の搬送方向から見た説明図である。It is explanatory drawing seen from the conveyance direction of 2nd Example of the conveying apparatus of this invention. 本発明の検査装置にて測定する太陽電池の構成の説明図で、(a)は、太陽電池の内部の太陽電池セルが分かるように記載した平面図で、(b)はその搬送方向から見た断面図である。It is explanatory drawing of the structure of the solar cell measured with the inspection apparatus of this invention, (a) is the top view described so that the photovoltaic cell inside a solar cell might be understood, (b) was seen from the conveyance direction. FIG. 従来の太陽電池の検査装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the inspection apparatus of the conventional solar cell.

以下、本発明の実施例を添付の図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

<1>被測定物(太陽電池の構成部材を積み重ねた状態のもの)
まず本検査装置が扱う対象である被測定物200の例について説明する。図7は、本検査装置にて測定する太陽電池の構成の説明図で、(a)は、太陽電池の内部の太陽電池セルが分かるように記載した平面図で、(b)は(a)の断面図(搬送方向から見た)である。
<1> Object to be measured (stacked solar battery components)
First, an example of the DUT 200 that is an object handled by the inspection apparatus will be described. FIG. 7 is an explanatory diagram of the configuration of the solar cell measured by this inspection apparatus. FIG. 7A is a plan view illustrating the solar cells inside the solar cell, and FIG. It is sectional drawing (viewed from the conveyance direction).

図7(a)の平面図に示す様に、被測定物200である太陽電池は角型の太陽電池セル28がリード線29により複数個直列に接続されたストリング25を形成し、さらにそのストリングを複数列リード線29により接続した構成となっている。   As shown in the plan view of FIG. 7A, the solar cell as the device to be measured 200 forms a string 25 in which a plurality of square solar cells 28 are connected in series by lead wires 29, and further the string. Are connected by a plurality of rows of lead wires 29.

被測定物200である太陽電池セルとしては、太陽電池セル28が1枚のみのものでもよく、太陽電池セル28を複数個直列につないだストリング25の状態でもよく、ストリング25を平行に複数列並べ、太陽電池セル28がマトリックス状に配置された太陽電池パネル30でもよい。   The solar cell that is the device under test 200 may be a single solar cell 28 or a string 25 in which a plurality of solar cells 28 are connected in series. It may be a solar cell panel 30 in which the solar cells 28 are arranged in a matrix.

また被測定物の断面構造は、図7(b)に示す様に、上側に配置された裏面材22と下側に配置された透明基板21の間に、充填材23、24を介して複数列のストリング25を積み重ねた状態を示している。本検査装置では、このようにラミネート処理前の太陽電池を構成する部材を積み重ねた状態で太陽電池セルの欠陥を測定する。図7(b)に示したとおり、ラミネート処理前なので透明基板・太陽電池セル・充填材を覆う裏面材がそれらよりも外部に大きくはみ出した状態となっている。また本例の他に透明基板21、充填材23と太陽電池セル28(25または30)を積み重ねた状態で本検査装置にて検査を行い、その後裏面材22と充填材24を積層してもかまわない。   Further, as shown in FIG. 7B, the cross-sectional structure of the object to be measured is plural between the back material 22 arranged on the upper side and the transparent substrate 21 arranged on the lower side via the fillers 23 and 24. The state where the string 25 of the row | line | column was piled up is shown. In this test | inspection apparatus, the defect of a photovoltaic cell is measured in the state which accumulated the member which comprises the solar cell before a lamination process in this way. As shown in FIG. 7B, since the laminate processing is not performed, the back surface material covering the transparent substrate, the solar battery cell, and the filler is in a state of greatly protruding outside. Further, in addition to this example, the transparent substrate 21, the filler 23 and the solar battery cell 28 (25 or 30) are stacked and the inspection is performed by the inspection apparatus, and then the back surface material 22 and the filler 24 are laminated. It doesn't matter.

裏面材22は例えばPETあるいは、フッ素系樹脂などの材料が使用される。したがって透明基板から外部にはみ出した部分は垂れ下がった状態となる。充填材23、24には例えばEVA樹脂(エチレンビニルアセテート樹脂)などが使用される。ストリング25は、上記のように電極26、27の間に、太陽電池セル28をリード線29を介して接続した構成である。   For the back material 22, for example, a material such as PET or fluorine resin is used. Therefore, the portion that protrudes from the transparent substrate is in a state of sagging. For the fillers 23 and 24, for example, EVA resin (ethylene vinyl acetate resin) or the like is used. The string 25 has a configuration in which the solar cells 28 are connected via the lead wires 29 between the electrodes 26 and 27 as described above.

また被測定物200としては、一般に薄膜式と呼ばれる太陽電池を対象とすることができる。   Moreover, as the DUT 200, a solar cell generally called a thin film type can be targeted.

この薄膜式の代表的な構造例では、下側に配置された透明基板には、予め透明電極、半導体、裏面電極からなる発電素子が蒸着してある。そして、このような薄膜型太陽電池の透明基板を下向きに配置し、基板上の太陽電池素子の上に充填材を被せ、更に、充填材の上に裏面材を積み重ねた状態となっている。   In this typical thin-film structure example, a power generation element composed of a transparent electrode, a semiconductor, and a back electrode is previously deposited on a transparent substrate disposed on the lower side. And the transparent substrate of such a thin film type solar cell is arrange | positioned downward, the filler is covered on the solar cell element on a board | substrate, and also it has the state which accumulated the back material on the filler.

このように被測定物200としての薄膜式の太陽電池は、結晶系セルが蒸着された発電素子に変わるだけで、封止部材や裏面材は前記した結晶系セルの場合と同じである。   As described above, the thin-film solar cell as the DUT 200 is merely changed to the power generation element on which the crystal cell is deposited, and the sealing member and the back material are the same as those of the crystal cell described above.

<2>検査装置の全体構造
図1は検査装置の構成を示す平面図、図2は正面図、図3は左側面図である。これらの図に示す太陽電池の検査装置100は、四角の箱形の暗室110およびその平らな上面111に、アクリル樹脂などの合成樹脂製又はガラス製の透明板112が取り付けられている。暗室内には、被測定物200である太陽電池セル、ストリング、太陽電池パネルを検査測定するカメラ120が設けられている。図示していないが、カメラ120を移動させて使用する場合もあり、その場合は移動機構を設けることもできる。
<2> Overall Structure of Inspection Device FIG. 1 is a plan view showing the configuration of the inspection device, FIG. 2 is a front view, and FIG. 3 is a left side view. In the solar cell inspection device 100 shown in these drawings, a transparent box 112 made of synthetic resin such as acrylic resin or glass is attached to a square box-shaped dark room 110 and a flat upper surface 111 thereof. In the darkroom, a camera 120 for inspecting and measuring the solar cells, strings, and solar battery panels, which are the object to be measured 200, is provided. Although not shown, the camera 120 may be used while being moved. In that case, a moving mechanism may be provided.

暗室110は、上面111の透明板112以外は、暗室110内に光を入れないような遮光性の素材からなる構成にしている。もっとも、上面111に被測定物200として太陽電池の構成部品を載せた後、被測定物200を含む上面111の全体を、遮光手段にて覆うことにすれば、上面111全体を透明板にしてもよい。また、上面以外の4つの側面と底面は全て遮光性の部材としている。   Except for the transparent plate 112 on the upper surface 111, the dark room 110 is made of a light shielding material that prevents light from entering the dark room 110. However, after the solar cell components are placed on the upper surface 111 as the device under test 200, if the entire upper surface 111 including the device under test 200 is covered with light shielding means, the entire upper surface 111 is made transparent. Also good. The four side surfaces and the bottom surface other than the top surface are all light-shielding members.

<3>撮影用カメラ
被測定物200から発するEL発光は、1,000nmから1,300nmの波長の微弱な光であり、暗室内で発光させ、撮影用カメラ120でこの微弱な光を撮影する。このため、撮影用カメラ120としては微弱な光に対する感度の良いCCDカメラを用いる必要がある。
<3> Camera for Shooting EL light emitted from the DUT 200 is weak light having a wavelength of 1,000 nm to 1,300 nm, and is emitted in a dark room, and the camera 120 for photographing the weak light. . Therefore, it is necessary to use a CCD camera having high sensitivity to weak light as the photographing camera 120.

<4>被測定物の搬送および位置決め
上面111の上部には、被測定物200を本検査装置への搬入、前工程および後工程に受け渡しするために本発明の搬送装置220が設けられている。本搬送措置は、電気モータ起動のチェーンコンベアまたはベルトコンベアである。被測定物の太陽電池セルに順方向の電流を流し太陽電池セルからの微弱な発光をカメラで測定するため、搬送用のチェーンやベルトは被測定物の透明基板の両側の端を支持してガイドし搬送する構成となっている。
後述するが搬送装置には被測定物200の透明基板を搬送ガイドする機能を有する搬送部221R/Lが搬送方向に対称に1対(2列)設けられている。搬送部221R、221L間の距離は、被測定物200の透明基板等の幅寸法に合わせて変更可能な構成となっている。
<4> Conveyance and Positioning of Measured Object Above the upper surface 111, the conveying device 220 of the present invention is provided to carry the measured object 200 into the inspection apparatus and deliver it to the pre-process and post-process. . The transporting means is an electric motor activated chain conveyor or belt conveyor. A forward current is passed through the solar cell of the object to be measured, and the weak light emitted from the solar cell is measured by the camera. The transport chain and belt support the ends on both sides of the transparent substrate of the object to be measured. It is configured to guide and convey.
As will be described later, the transport device is provided with a pair (two rows) of transport sections 221R / L having a function of transporting and guiding the transparent substrate of the DUT 200 in the transport direction. The distance between the conveyance units 221R and 221L can be changed according to the width dimension of the transparent substrate or the like of the DUT 200.

検査装置の前工程から被測定物である太陽電池の構成部材が積み重ねられた状態で搬送されてくると、本検査装置の搬入コンベア210により図1の黒塗りの矢印方向に搬送され本検査装置の搬送部221R/Lに移載される。被測定物200は、搬送装置220により本検査装置に移動搬送される。したがって被測定物200を搬送中および測定中に下面の透明基板21が検査装置100の上面の透明板112に接触することはない。被測定物200は、本検査装置内を搬送され、以下のような方法により測定位置に位置決めされる。   When the components of the solar cell, which is the object to be measured, are conveyed from the previous process of the inspection apparatus in a stacked state, they are conveyed in the direction of the black arrow in FIG. 1 by the carry-in conveyor 210 of the inspection apparatus. The transfer unit 221R / L is transferred. The DUT 200 is moved and conveyed to the inspection apparatus by the conveying device 220. Therefore, the transparent substrate 21 on the lower surface does not come into contact with the transparent plate 112 on the upper surface of the inspection apparatus 100 while the object to be measured 200 is being conveyed and measured. The DUT 200 is transported through the inspection apparatus and positioned at the measurement position by the following method.

搬送装置220の側面には、アクチュエーター等により出し入れ可能な位置決め金具があり、搬送された被測定物200は、この位置決め金具を突出させることにより搬送方向の位置決めがされる。位置決め金具は、搬送装置の側面から出し入れする構成ではなく、搬送装置の上方から上下させる方法または搬送装置の上方から旋回下降させるなどの構成とすることも可能である。
位置決めが完了し搬送装置が停止し検査が開始される。検査方法は、後述する。検査が完了すると、搬送装置220が作動し被測定物200は搬出コンベア230に移載され(図1の黒塗り矢印方向に)次工程に搬送される。
On the side surface of the conveying device 220, there is a positioning fitting that can be taken in and out by an actuator or the like, and the object 200 to be measured is positioned in the conveying direction by projecting the positioning fitting. The positioning bracket is not configured to be taken in and out from the side surface of the transport device, but may be configured to move up and down from the top of the transport device or to be swung down from the top of the transport device.
Positioning is completed, the transport device is stopped, and inspection is started. The inspection method will be described later. When the inspection is completed, the conveyance device 220 is activated, and the object to be measured 200 is transferred to the carry-out conveyor 230 (in the direction of the black arrow in FIG. 1) and conveyed to the next process.

<5>本発明の搬送装置の実施例1
上記の機能を有する太陽電池の検査装置の搬送装置の第1の実施例を、図4及び図5により説明する。図4は搬送方向から見た正面図であり、図5は側面図である。搬送部221R/Lは、チェーン222、上部チェーンガイド223、下部チェーンガイド224、搬送ガイド225、搬送ガイド取り付け用のアタッチメント226から構成されている。搬送ガイドは、チェーンにアタッチメントを用いて複数個設けられていてチェーンを介してエンドレスに接続されている。それらチェーンは、搬送方向に設けられた上部チェーンガイドと下部チェーンガイドにより支持されている。このような搬送部が搬送方向に対して対称に1対(2列)けられている。図4に示すように搬送ガイド225に被測定物200が載置され搬送される。
<5> Embodiment 1 of the transfer device of the present invention
A first embodiment of the transfer device of the solar cell inspection device having the above function will be described with reference to FIGS. 4 is a front view as seen from the transport direction, and FIG. 5 is a side view. The conveyance unit 221R / L includes a chain 222, an upper chain guide 223, a lower chain guide 224, a conveyance guide 225, and an attachment 226 for attaching the conveyance guide. A plurality of conveyance guides are provided on the chain using attachments, and are connected endlessly via the chain. These chains are supported by an upper chain guide and a lower chain guide provided in the transport direction. One pair (two rows) of such transport units are symmetrically arranged with respect to the transport direction. As shown in FIG. 4, the DUT 200 is placed on the transport guide 225 and transported.

すでに述べたように搬送される被測定物は、ラミネート処理前なので、透明基板、太陽電池セル、充填材、裏面材が積み重ねられた状態である。したがって裏面材が、透明基板よりも大きく外側にはみ出している。そしてその裏面材がはみ出した部分が下方に垂れ下がる。この垂れ下り部分20が搬送装置の部材に接触することがないように搬送ガイド225には以下のような工夫をしている。搬送ガイド225の搬送方向から見た形状は、略L型をなしている。その壁部227にて透明基板21の端をガイドしている。その壁部の高さ寸法は、透明基板の厚み寸法よりも極力低くしている。また壁部の寸法を極力低くしても、裏面材が搬送装置の部材に接触することを防止できない場合は、搬送ガイドの厚み部228の寸法を調整することにより裏面材の垂れ下がり部が搬送装置の部材に接触することを防止することができる。
尚搬送ガイド225の透明基板の支持部229は、透明基板に対して端部の太陽電池セルの距離S(図7(a)参照)に応じて決定される。
Since the object to be measured conveyed before the lamination process as described above, the transparent substrate, the solar battery cell, the filler, and the back material are stacked. Therefore, the back surface material protrudes larger than the transparent substrate. And the part which the back material protruded droops below. The conveyance guide 225 is devised as follows so that the hanging portion 20 does not contact a member of the conveyance device. The shape of the conveyance guide 225 viewed from the conveyance direction is substantially L-shaped. The wall portion 227 guides the end of the transparent substrate 21. The height of the wall is made as low as possible than the thickness of the transparent substrate. Further, even when the wall portion is made as small as possible, if the back material cannot be prevented from coming into contact with the members of the transport device, the back material hangs down to the transport device by adjusting the thickness of the thickness portion 228 of the transport guide. It is possible to prevent contact with the members.
In addition, the support part 229 of the transparent substrate of the conveyance guide 225 is determined according to the distance S (refer FIG. 7A) of the photovoltaic cell of an edge part with respect to a transparent substrate.

さらに搬送部221R/Lは、その位置を太陽電池の透明基体の幅寸法に応じて位置変更が可能な構成となっている。方法は、搬送部221R/Lをそれぞれ単独に位置変更しても良いし、ねじ機構によりそれぞれ同時に均等に接近させたり離反させたりすることでもよい。   Further, the transport unit 221R / L is configured such that its position can be changed according to the width of the transparent base of the solar cell. As a method, the position of each of the transport units 221R / L may be changed individually, or may be made to approach or separate at the same time by a screw mechanism.

<6>本発明の搬送装置の実施例2
太陽電池の検査装置の搬送装置の第2の実施例は、図4及び図5におけるチェーンに設けた複数の搬送ガイドに代わり図6に示すように搬送ガイドを搬送ガイド225と同様な断面形状を有するエンドレスの帯状体322を使用している。
搬送部321R/Lは、エンドレスの帯状体322、上部ベルトサポート323、下部ベルトサポート324から構成されている。このような搬送部が搬送方向に対して対称に1対(2列)設けられている。帯状体322に、図6に示すように被測定物200が載置され搬送される。
<6> Second Embodiment of the Conveying Device of the Present Invention
In the second embodiment of the transport device of the solar cell inspection device, the transport guide has the same cross-sectional shape as the transport guide 225 as shown in FIG. 6 instead of the plurality of transport guides provided in the chain in FIGS. The endless belt 322 having the same is used.
The conveyance unit 321R / L includes an endless belt-like body 322, an upper belt support 323, and a lower belt support 324. One pair (two rows) of such transport units is provided symmetrically with respect to the transport direction. As shown in FIG. 6, the object to be measured 200 is placed on the belt-like body 322 and conveyed.

実施例1と同様に搬送される被測定物は、ラミネート処理前なので、透明基板、太陽電池セル、充填材、裏面材が積み重ねられた状態である。したがって裏面材が、透明基板よりも大きく外側にはみ出している。そしてその裏面材がはみ出した部分が下方に垂れ下がる。この垂れ下り部分20が搬送装置の部材に接触することがないように帯状体には以下のような工夫をしている。帯状体322を搬送方向から見た形状は、略L型をなしている。その壁部327にて透明基板21の端をガイドしている。その壁部の高さ寸法は、透明基板の厚み寸法よりも極力低くしている。また壁部の寸法を極力低くしても、裏面材が搬送装置の部材に接触することを防止できない場合は、帯状体の厚み部328の寸法を調整することにより裏面材の垂れ下がり部が搬送装置の部材に接触することを防止することができる。
尚帯状体の透明基板の支持部329は、透明基板に対して端部の太陽電池セルの距離S(図7(a)参照)に応じて決定される。
Since the object to be measured, which is transported in the same manner as in Example 1, is before the lamination process, the transparent substrate, the solar battery cell, the filler, and the back material are stacked. Therefore, the back surface material protrudes larger than the transparent substrate. And the part which the back material protruded droops below. The strips are devised in the following manner so that the hanging portion 20 does not come into contact with members of the transport device. The shape of the belt-like body 322 viewed from the conveyance direction is substantially L-shaped. The wall portion 327 guides the end of the transparent substrate 21. The height of the wall is made as low as possible than the thickness of the transparent substrate. If the back material cannot be prevented from coming into contact with the members of the transport device even if the wall portion is made as low as possible, the hanging portion of the back material can be adjusted by adjusting the size of the thickness portion 328 of the strip. It is possible to prevent contact with the members.
In addition, the support part 329 of the transparent substrate of a strip | belt-shaped body is determined according to the distance S (refer Fig.7 (a)) of the photovoltaic cell of an edge part with respect to a transparent substrate.

さらに搬送部321R/Lは、その位置を太陽電池の透明基体の幅寸法に応じて位置変更が可能な構成となっている。方法は、搬送部321R/Lをそれぞれ単独に位置変更しても良いし、ねじ機構によりそれぞれ同時に均等に接近させたり離反させたりすることでもよい。   Further, the transport unit 321R / L is configured such that its position can be changed according to the width of the transparent base of the solar cell. As a method, the position of each of the conveying units 321R / L may be changed individually, or may be simultaneously approached and separated by a screw mechanism.

<7>その他機器
上記の他に、図示を省略するが、図8の従来例で示した電源14やパソコンを利用した画像処理装置15が設けられている。これらは、図2の制御装置400に収納されている。さらに、パソコンを利用して、カメラ120の移動機構を制御し、被測定物200としての太陽電池パネル全体を1枚の写真に撮影したり、太陽電池セル28毎に撮影したりすることができる。
<7> Other devices In addition to the above, although not shown, the power supply 14 and the image processing device 15 using a personal computer shown in the conventional example of FIG. 8 are provided. These are stored in the control device 400 of FIG. Furthermore, by using a personal computer, the moving mechanism of the camera 120 can be controlled so that the entire solar battery panel as the device under test 200 can be taken as a single photograph or taken for each solar battery cell 28. .

<8>本検査装置および本発明の搬送装置の使用方法
被測定物200として太陽電池の構成部材を積み重ねた状態を例にして、太陽電池の検査装置用の搬送装置の使用方法を説明する。
<8> Method of Using the Inspection Device and the Conveying Device of the Present Invention The method of using the conveying device for the solar cell inspection device will be described by taking as an example a state in which the constituent members of the solar cell are stacked as the DUT 200.

被測定物200は、太陽電池の構成部材である透明基体、太陽電池セル、充填材および裏面材であり、ラミネート処理前に積み重ねられた状態である。被測定物は、搬入コンベア210により太陽電池の検査装置の前まで搬送される。搬送されてきた被測定物は、1対の搬送ガイド225、225の間または帯状体322、322の間で搬送ガイドされ暗室110の上に達する。その後搬送装置の側面にアクチュエーター等により出し入れ可能に設けられた位置決め金具を突出させることにより搬送方向の位置決めがされる。
尚搬送ガイドおよび帯状体を上述の通り工夫しているので、搬送中に被測定物の裏面材の垂れ下がり部20が搬送装置の構成部材に接触することが無いので、被測定物の各構成部材は相互の位置がずのない状態で本検査装置に搬送される。
The DUT 200 is a transparent base member, a solar battery cell, a filler, and a back material, which are constituent members of a solar battery, and is in a state of being stacked before laminating. The object to be measured is conveyed by the carry-in conveyor 210 to the front of the solar cell inspection apparatus. The object to be measured has been transported and guided between the pair of transport guides 225 and 225 or between the strips 322 and 322 and reaches the dark room 110. Thereafter, positioning in the transport direction is performed by projecting a positioning fitting provided on the side surface of the transport device so that it can be taken in and out by an actuator or the like.
In addition, since the conveyance guide and the belt-like body are devised as described above, since the hanging portion 20 of the back surface material of the object to be measured does not come into contact with the components of the conveying device during conveyance, each component of the object to be measured Are transported to the inspection apparatus in a state where the mutual positions are intact.

この後、遮光カバーなどによって、透明板112と被測定物200との間の隙間等から、光が暗室110内に入らないように遮光する。遮光カバーについては、後述する。   Thereafter, light is shielded by a light shielding cover or the like from a gap between the transparent plate 112 and the DUT 200 so that the light does not enter the dark room 110. The light shielding cover will be described later.

暗室110の所定の位置に到達した被測定物200は、透明基体を下に向けて暗室110の透明板112の上で停止し(図5の状態)、図示しない電源との間で接続がされる。被測定物200は、透明板112より小さいので、周囲から暗室内に光が入るから被測定物200の上から暗室110の上面全体を後述する遮光カバーなどで覆う。次に被測定物200の太陽電池セルに電源から順方向の電流を流す。これにより被測定物200がEL発光するので、カメラ120で撮影する。   The object to be measured 200 that has reached a predetermined position in the dark room 110 is stopped on the transparent plate 112 of the dark room 110 with the transparent substrate facing downward (state of FIG. 5), and is connected to a power source (not shown). The Since the DUT 200 is smaller than the transparent plate 112, light enters the dark room from the surroundings, and therefore, the entire upper surface of the dark room 110 is covered from above the DUT 200 with a light shielding cover or the like described later. Next, a forward current is supplied from the power source to the solar battery cell of the DUT 200. As a result, the DUT 200 emits EL, and the camera 120 takes a picture.

本検査装置100により被測定物200の全体を撮影し、その画像により検査する場合は、カメラの移動機構を設けることなく、または移動機構を使用することなくカメラ120を暗室110の底部のほぼ中央の位置に固定して撮影することができる。この場合の被測定物200としては、太陽電池セル28、太陽電池セルを複数個リード線で接続したストリング25、さらにストリング25を複数列リード線で接続したマトリックス状の太陽電池パネル30のいずれでもよい。   When the entire object to be measured 200 is photographed by the inspection apparatus 100 and inspected by the image, the camera 120 is placed at substantially the center of the bottom of the dark room 110 without providing a camera moving mechanism or using a moving mechanism. It is possible to shoot with fixed position. The measured object 200 in this case is any of the solar battery cell 28, a string 25 in which a plurality of solar cells are connected by lead wires, and a matrix-like solar battery panel 30 in which the strings 25 are connected by a plurality of column lead wires. Good.

本検査装置100により太陽電池パネル30にマトリックス状に配置された太陽電池セルを1枚ずつ撮影してその画像により検査する場合は、暗室内でカメラを移動できるように移動機構を設ける。   When the inspection apparatus 100 shoots the solar cells arranged in a matrix on the solar cell panel 30 one by one and inspects the image by the image, a moving mechanism is provided so that the camera can be moved in the dark room.

パソコンを利用した制御装置400によって、カメラ移動機構を駆動し、カメラ120は、太陽電池パネル30にマトリックス状に配置されている太陽電池セル28を1枚ずつ撮影し、パソコンなどからなる画像処理装置に画像データを送る。画像処理装置は、各太陽電池セルの画像から発光しない部分を取り出して分析し、太陽電池セル28ごとの合否を判断し、全ての太陽電池セルについての合否の結果から太陽電池パネル30全体としての合否を判断する。   The camera moving mechanism is driven by the control device 400 using a personal computer, and the camera 120 photographs the solar cells 28 arranged in a matrix on the solar cell panel 30 one by one, and is an image processing device including a personal computer. Send image data to. The image processing apparatus extracts and analyzes a portion that does not emit light from the image of each solar battery cell, determines pass / fail for each solar battery 28, and determines whether the solar battery panel 30 as a whole from the pass / fail result for all the solar battery cells. Judge pass / fail.

なお、カメラ120による撮影も、カメラを移動し太陽電池セル1枚ごとでもよいし、数枚ずつでもよく、カメラの移動をせずに固定し太陽電池パネル30全体としてもよい。   In addition, the photographing by the camera 120 may be performed by moving the camera for each one of the solar cells, or for each of the several solar cells, or may be fixed without moving the camera, and the entire solar cell panel 30 may be used.

上記遮光カバーは、暗室の上面111の上部全てを覆うものである。しかし太陽電池の場合、樹脂製の裏面材22は、不透明であり、遮光性が十分である。また、暗室110の上面111も、透明板112以外は遮光性の部材で構成されている。したがって暗室110と被測定物200との間の隙間部分のみを遮光部材でカバーすれば十分である。被測定物200が透明板112に密着し、かつ、透明板112より大きくて、透明板112の全体が被測定物200で覆われる場合には、遮光手段は不要である。
本実施例の場合は、図1、図2、図3に示す様に、暗室上面111と搬送部221R/Lさらに被測定物200を遮光性のあるカバー240により覆う構成としている。本検査装置の搬入コンベア210側と搬出コンベア230側に開閉式の扉241が設けられている。扉241の開閉は、エアーシリンダーなどにより自動開閉する構成でも良いし、また作業者が手動操作にて開閉するものでも良い。前工程から被測定物が搬送され、搬入コンベア上を移動し本検査装置の直前までくると、この入り口側の扉が開き被測定物が本検査装置内に搬送装置220により搬入完了し、またこの扉が閉じる構成となっている。また検査が完了すると出口側の扉が開き被測定物200が搬出される。このように検査中は、被測定物を搬出入する扉は閉じており被測定物が載置されている部分へは外部からの光が入ることは無い。
The light shielding cover covers the entire upper portion of the upper surface 111 of the dark room. However, in the case of a solar cell, the resin back material 22 is opaque and has sufficient light shielding properties. Further, the upper surface 111 of the dark room 110 is also made of a light-shielding member except for the transparent plate 112. Therefore, it is sufficient to cover only the gap between the dark room 110 and the DUT 200 with the light shielding member. When the DUT 200 is in close contact with the transparent plate 112 and is larger than the transparent plate 112, and the entire transparent plate 112 is covered with the DUT 200, the light shielding means is unnecessary.
In the case of the present embodiment, as shown in FIGS. 1, 2, and 3, the dark room upper surface 111, the transport unit 221 </ b> R / L, and the measurement object 200 are covered with a light-shielding cover 240. Openable / closable doors 241 are provided on the carry-in conveyor 210 side and the carry-out conveyor 230 side of the inspection apparatus. The door 241 may be opened and closed automatically by an air cylinder or the like, or may be opened and closed manually by an operator. When the object to be measured is transported from the previous process, moves on the carry-in conveyor and comes to just before the inspection apparatus, the door on the entrance side opens, and the object to be measured is completely carried into the inspection apparatus by the conveying apparatus 220. This door is configured to close. When the inspection is completed, the door on the outlet side opens and the object to be measured 200 is carried out. Thus, during the inspection, the door for carrying in / out the object to be measured is closed, and no light from the outside enters the portion where the object to be measured is placed.

本検査装置100では、被測定物200としての太陽電池を暗室の外側に載置すればよいので、暗室には被測定物200を出し入れするためのドアは不要となる。また、太陽電池に電流を流す電源や配線も暗室110の外でよく、暗室内には一切不要である。そのため、暗室110の構造を簡単にすることができる。   In this inspection apparatus 100, since the solar cell as the measured object 200 may be placed outside the dark room, a door for taking the measured object 200 in and out of the dark room becomes unnecessary. Further, the power source and wiring for supplying current to the solar cell may be outside the dark room 110 and is not required at all in the dark room. Therefore, the structure of the dark room 110 can be simplified.

本検査装置100および本発明の搬送装置の使用方法は、上記のとおりである。したがって被測定物である太陽電池の構成部材である透明基体、太陽電池セル、充填材、裏面材をラミネート処理する前に積み重ねた状態のものであり、本検査装置に本発明の搬送装置を使用することにより、太陽電池の構成部材が相互に位置ずれすることなく検査装置に搬送されるので、上記の検査方法により欠陥検査を正常に行うことができる。   The method of using the inspection apparatus 100 and the transport apparatus of the present invention is as described above. Therefore, the transparent substrate, solar battery cell, filler, and back material, which are the components of the solar cell that is the object to be measured, are stacked before being laminated, and the transport device of the present invention is used for this inspection device. By doing so, the constituent members of the solar cell are transported to the inspection apparatus without being displaced from each other, so that the defect inspection can be normally performed by the above inspection method.

28 太陽電池セル
30 太陽電池パネル
100 太陽電池の検査装置
110 暗室
111 上面
112 透明板
120 カメラ
200 被測定物
210 搬入コンベア
220 搬送装置
221、321 搬送部
222 チェーン
223 上部チェーンガイド
224 下部チェーンガイド
225 搬送ガイド
226 アタッチメント
227、327 壁部
228、328 厚み部
229、329 支持部
322 帯状体
323 上部ベルトサポート
324 下部ベルトサポート
230 搬出コンベア
240 遮光カバー
241 扉
400 制御装置























28 Solar cell 30 Solar panel 100 Solar cell inspection device 110 Dark room 111 Upper surface 112 Transparent plate 120 Camera 200 Measured object 210 Carry-in conveyor 220 Transport device 221, 321 Transport unit 222 Chain 223 Upper chain guide 224 Lower chain guide 225 Transport Guide 226 Attachment 227, 327 Wall portion 228, 328 Thickness portion 229, 329 Support portion 322 Strip body 323 Upper belt support 324 Lower belt support 230 Unloading conveyor 240 Light shielding cover 241 Door 400 Control device























Claims (3)

平らな上面を備えた暗室と、該暗室の前記上面に設けられ、被測定物となる太陽電池を載せる透明板と、被測定物の像を写すカメラとを有することを特徴とする太陽電池の検査装置において、太陽電池の構成部材をラミネート処理する前に積層した状態で前記検査装置に搬送する搬送装置であって、
搬送する太陽電池の前記構成部材である透明基板等をその厚さ寸法よりも低い壁部を有する複数個の搬送部材をエンドレス状に接続した搬送ガイド部を、搬送方向に対して対称に1対(2列)設け、前記壁部で前記透明基板等をガイドして搬送することを特徴とする太陽電池の検査装置用搬送装置。
A solar cell comprising: a dark room having a flat upper surface; a transparent plate provided on the upper surface of the dark room, on which a solar cell serving as a measurement object is placed; and a camera that captures an image of the measurement object. In the inspection device, a transport device that transports the constituent members of the solar cell to the inspection device in a laminated state before laminating,
A pair of transport guide portions in which a plurality of transport members having wall portions lower than the thickness of the transparent substrate or the like, which is the constituent member of the solar cell to be transported, are connected in an endless manner are symmetrical with respect to the transport direction. (2 rows) A transport device for an inspection device of a solar cell, characterized in that the transparent substrate or the like is guided and transported by the wall portion.
搬送する太陽電池の前記構成部材である透明基板等をその厚さ寸法よりも低い壁部を有するエンドレス状の帯状部材を有する搬送ガイド部を搬送方向に対して対称に1対(2列)設け、前記壁部で前記透明基板等をガイドして搬送することを特徴とする請求項1に記載の太陽電池の検査装置用搬送装置。   A pair of transport guides (two rows) symmetrically with respect to the transport direction is provided for the transparent substrate, which is the component of the solar cell to be transported, having an endless belt-shaped member having a wall portion lower than its thickness. The transport device for a solar cell inspection device according to claim 1, wherein the wall portion guides and transports the transparent substrate and the like. 搬送する太陽電池の構成部材である前記透明基板等の幅寸法に応じて前記搬送装置の搬送ガイド部の前記壁部の位置を変更可能にしたことを特徴とする請求項1または請求項2に記載の太陽電池の検査装置用搬送装置。








The position of the said wall part of the conveyance guide part of the said conveying apparatus can be changed according to the width dimensions, such as the said transparent substrate which is a structural member of the solar cell to convey, The Claim 1 or Claim 2 characterized by the above-mentioned. The solar cell inspection apparatus transport apparatus according to claim.








JP2009078636A 2008-04-17 2009-03-27 Conveyor device for solar cell inspection equipment Expired - Fee Related JP5378854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078636A JP5378854B2 (en) 2008-04-17 2009-03-27 Conveyor device for solar cell inspection equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008002452U JP3142922U (en) 2008-04-17 2008-04-17 Conveyor device for solar cell inspection equipment
JP2009078636A JP5378854B2 (en) 2008-04-17 2009-03-27 Conveyor device for solar cell inspection equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008002452U Continuation JP3142922U (en) 2008-04-17 2008-04-17 Conveyor device for solar cell inspection equipment

Publications (2)

Publication Number Publication Date
JP2009260336A true JP2009260336A (en) 2009-11-05
JP5378854B2 JP5378854B2 (en) 2013-12-25

Family

ID=43292896

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008002452U Ceased JP3142922U (en) 2008-04-17 2008-04-17 Conveyor device for solar cell inspection equipment
JP2009078636A Expired - Fee Related JP5378854B2 (en) 2008-04-17 2009-03-27 Conveyor device for solar cell inspection equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008002452U Ceased JP3142922U (en) 2008-04-17 2008-04-17 Conveyor device for solar cell inspection equipment

Country Status (1)

Country Link
JP (2) JP3142922U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154910A3 (en) * 2010-06-09 2012-02-02 Pasan Sa System and method for monitoring pv device
JP2013168477A (en) * 2012-02-15 2013-08-29 Npc Inc Alignment device and method, and manufacturing apparatus and method of solar cell module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007398B (en) * 2008-04-17 2012-08-22 日清纺控股株式会社 Solar cell examination apparatus and transfer device for examination devices
JP3143169U (en) * 2008-04-30 2008-07-10 日清紡績株式会社 Solar cell inspection equipment
JP2011082202A (en) * 2009-10-02 2011-04-21 Mitsubishi Heavy Ind Ltd Inspection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298081A (en) * 2002-04-04 2003-10-17 Toyama Kikai Kk Method and system for inspecting solar cell
WO2007125778A1 (en) * 2006-04-28 2007-11-08 Sharp Kabushiki Kaisha Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
WO2007129585A1 (en) * 2006-05-02 2007-11-15 National University Corporation NARA Institute of Science and Technology Method and device for evaluating solar cell and use of the solar cell
JP2008026113A (en) * 2006-07-20 2008-02-07 Japan Aerospace Exploration Agency Defect inspection device of solar cell and method for inspecting defect of solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298081A (en) * 2002-04-04 2003-10-17 Toyama Kikai Kk Method and system for inspecting solar cell
WO2007125778A1 (en) * 2006-04-28 2007-11-08 Sharp Kabushiki Kaisha Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
WO2007129585A1 (en) * 2006-05-02 2007-11-15 National University Corporation NARA Institute of Science and Technology Method and device for evaluating solar cell and use of the solar cell
JP2008026113A (en) * 2006-07-20 2008-02-07 Japan Aerospace Exploration Agency Defect inspection device of solar cell and method for inspecting defect of solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154910A3 (en) * 2010-06-09 2012-02-02 Pasan Sa System and method for monitoring pv device
JP2013168477A (en) * 2012-02-15 2013-08-29 Npc Inc Alignment device and method, and manufacturing apparatus and method of solar cell module

Also Published As

Publication number Publication date
JP5378854B2 (en) 2013-12-25
JP3142922U (en) 2008-07-03

Similar Documents

Publication Publication Date Title
WO2009136525A1 (en) Solar cell examination apparatus and transfer device for examination devices
JP4989672B2 (en) Solar cell inspection equipment
KR101454929B1 (en) Inspecting apparatus for photovoltaic devices
TWI432758B (en) Inspecting apparatus for photovoltaic devices
WO2011081114A1 (en) Inspection device for current-voltage output characteristics and defects of solar cells
JP5378854B2 (en) Conveyor device for solar cell inspection equipment
KR101518530B1 (en) Solar battery inspection device
CN101960612B (en) Solar battery inspecting apparatus and method for judging solar battery defect
JP2011082202A (en) Inspection device
JP5006229B2 (en) Solar cell inspection equipment
JP3141553U (en) Solar cell inspection equipment
JP2010073701A (en) Inspection device for solar cell, fixture for carrying solar cell to the inspection device, and carry-in method for solar cell using the fixture
JP2018050366A (en) Solar battery module inspection device and inspection method for solar battery module
JP2010021193A (en) Apparatus for inspecting solar battery
JP2012129366A (en) Inspection apparatus for solar cell
JP2017212834A (en) Solar battery module inspection system and pedestal
JP2014082352A (en) Inspection apparatus and method of solar cell
JP2012089759A (en) Power feeder for inspection apparatus
TWM517411U (en) Solar cell inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees