JP2009260057A - Silicon carbide semiconductor device, and manufacturing method thereof - Google Patents

Silicon carbide semiconductor device, and manufacturing method thereof Download PDF

Info

Publication number
JP2009260057A
JP2009260057A JP2008107750A JP2008107750A JP2009260057A JP 2009260057 A JP2009260057 A JP 2009260057A JP 2008107750 A JP2008107750 A JP 2008107750A JP 2008107750 A JP2008107750 A JP 2008107750A JP 2009260057 A JP2009260057 A JP 2009260057A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide semiconductor
semiconductor layer
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008107750A
Other languages
Japanese (ja)
Other versions
JP5169428B2 (en
Inventor
Shozo Shikama
省三 鹿間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008107750A priority Critical patent/JP5169428B2/en
Publication of JP2009260057A publication Critical patent/JP2009260057A/en
Application granted granted Critical
Publication of JP5169428B2 publication Critical patent/JP5169428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a silicon carbide semiconductor device capable of reducing backward leakage current and also suppressing reduction of forward current. <P>SOLUTION: The silicon carbide semiconductor device constituted of: an n-type semiconductor substrate 1; an n<SP>-</SP>type semiconductor layer 2 formed on the surface of the n-type semiconductor substrate 1 and with concentration of n-type impurity lower than that of the n-type semiconductor substrate 1; an n<SP>--</SP>type low impurity concentration layer 3 formed inside the n<SP>-</SP>type semiconductor layer 2 and with concentration of the n-type impurity lower than that of the n<SP>-</SP>type semiconductor layer 2; a p-type embedding area 4 formed by contacting the n<SP>--</SP>type low impurity concentration layer 3 inside the n<SP>-</SP>type semiconductor layer 2, arranged at a predetermined interval in the horizontal direction in the n<SP>-</SP>type semiconductor layer 2 and the whole surface of which is covered with the n<SP>--</SP>type impurity concentration layer 3; and a shot key electrode 5 formed on the surface of the n<SP>-</SP>type semiconductor layer 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、炭化珪素を材料とする半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device made of silicon carbide and a method for manufacturing the same.

従来、ショットキーバリアダイオードの逆方向リーク電流を抑制するための半導体装置として、ショットキーバリアダイオードを構成するショットキー電極下に複数個のp形半導体領域を形成してショットキーバリアダイオードの内部にpn接合部を設けたジャンクションバリアショットキーダイオードが知られている。このジャンクションバリアショットキーダイオードは、ショットキー電極下に形成されたp形半導体領域によってショットキー電極とn形半導体層との接合面積が減少するので、順方向電圧印加時の抵抗(オン抵抗)が増加するという問題があり、これを解消するため、ジャンクションバリアショットキーダイオードの内部にキャリア密度の低い低不純物濃度層を設け、この低不純物濃度層に接して前記p形半導体領域を設けることにより、逆方向電圧印加時にpn接合部に発生する空乏層を低不純物濃度層方向すなわち水平方向に広げて、逆方向リーク電流の通電路をピンチオフするシリコン半導体装置がある(例えば、特許文献1参照)。   Conventionally, as a semiconductor device for suppressing a reverse leakage current of a Schottky barrier diode, a plurality of p-type semiconductor regions are formed under the Schottky electrode constituting the Schottky barrier diode, and the inside of the Schottky barrier diode is formed. A junction barrier Schottky diode provided with a pn junction is known. In this junction barrier Schottky diode, since the junction area between the Schottky electrode and the n-type semiconductor layer is reduced by the p-type semiconductor region formed under the Schottky electrode, the resistance (on-resistance) when a forward voltage is applied is reduced. In order to solve this problem, a low impurity concentration layer having a low carrier density is provided inside the junction barrier Schottky diode, and the p-type semiconductor region is provided in contact with the low impurity concentration layer. There is a silicon semiconductor device in which a depletion layer generated at a pn junction when a reverse voltage is applied is expanded in a low impurity concentration layer direction, that is, in a horizontal direction to pinch-off a reverse leak current conduction path (see, for example, Patent Document 1).

特開平2−151067号公報(第1図)Japanese Patent Laid-Open No. 2-151067 (FIG. 1)

ところが、上記のようなシリコン半導体装置の構造をそのまま炭化珪素半導体装置に適用した場合、炭化珪素半導体はシリコン半導体よりもキャリア密度が高く空乏層がシリコン半導体に比べて広がりにくいので、炭化珪素半導体装置では空乏層の広がりによって逆方向リーク電流の通電路をピンチオフできないという問題がある。炭化珪素半導体装置において逆方向リーク電流の通電路を空乏層によってピンチオフするためには、シリコン半導体装置に比べてp形半導体領域の設置間隔を狭め、且つ設置個数を増加する必要があるが、このようにp形半導体領域の設置間隔を狭め且つ設置個数を増加すると、ショットキー電極とn形半導体層の接触面積が減少するため、オン抵抗が増加し、その結果順方向電流が低減して所望の特性を得ることができないという問題が生じる。特に、炭化珪素半導体は高温動作時に順方向電流が低減するという特性があるので、200℃以上で動作させる炭化珪素半導体装置においてはこの現象が顕著になる。   However, when the structure of the silicon semiconductor device as described above is applied to the silicon carbide semiconductor device as it is, the silicon carbide semiconductor has a carrier density higher than that of the silicon semiconductor and the depletion layer is less likely to spread than the silicon semiconductor. However, there is a problem that the reverse leakage current path cannot be pinched off due to the spread of the depletion layer. In order to pinch-off the current path of the reverse leakage current in the silicon carbide semiconductor device by the depletion layer, it is necessary to reduce the installation interval of the p-type semiconductor region and increase the number of installations compared to the silicon semiconductor device. Thus, if the interval between the p-type semiconductor regions is reduced and the number is increased, the contact area between the Schottky electrode and the n-type semiconductor layer decreases, so that the on-resistance increases, and as a result, the forward current decreases and the desired current decreases. This causes a problem that it is impossible to obtain the characteristics. In particular, since the silicon carbide semiconductor has a characteristic that the forward current is reduced during high-temperature operation, this phenomenon becomes significant in a silicon carbide semiconductor device operated at 200 ° C. or higher.

この発明は上記のような問題を解決するためになされたもので、逆方向リーク電流を低減し、順方向電流の低減も抑制できる炭化珪素半導体装置を得るものである。   The present invention has been made to solve the above problems, and provides a silicon carbide semiconductor device capable of reducing reverse leakage current and suppressing forward current reduction.

この発明に係る炭化珪素半導体装置は、第1導電型の不純物を有する第1導電型の炭化珪素半導体基板と、前記炭化珪素半導体基板の表面に形成され、前記炭化珪素半導体基板よりも第1導電型の不純物の濃度が低い第1導電型の炭化珪素半導体層と、前記炭化珪素半導体層の内部に形成され、前記炭化珪素半導体層よりも第1導電型の不純物の濃度が低い第1導電型の低不純物濃度炭化珪素層と、前記炭化珪素半導体層の内部に、前記低不純物濃度炭化珪素層と接して形成され、前記炭化珪素半導体層の水平方向に間隔をおいて配設された第2導電型の埋め込み領域と、前記炭化珪素半導体層の表面に形成されたショットキー電極とを備えた炭化珪素半導体装置であって、前記埋め込み領域の上面を前記炭化珪素半導体層または前記低不純物濃度炭化珪素層によって覆うことを特徴とするものである。   A silicon carbide semiconductor device according to the present invention is formed on a surface of a silicon carbide semiconductor substrate having a first conductivity type impurity having a first conductivity type impurity, and has a first conductivity higher than that of the silicon carbide semiconductor substrate. A first conductivity type silicon carbide semiconductor layer having a low impurity concentration and a first conductivity type formed inside the silicon carbide semiconductor layer and having a first conductivity type impurity concentration lower than that of the silicon carbide semiconductor layer A low impurity concentration silicon carbide layer and a second impurity silicon carbide layer formed in contact with the low impurity concentration silicon carbide layer and spaced apart in the horizontal direction of the silicon carbide semiconductor layer. A silicon carbide semiconductor device comprising a conductive type buried region and a Schottky electrode formed on a surface of the silicon carbide semiconductor layer, wherein the upper surface of the buried region is formed of the silicon carbide semiconductor layer or the low impurity It is characterized in that the covering by the concentration silicon carbide layer.

この発明に係る炭化珪素半導体装置によれば、第1導電型の炭化珪素半導体層の内部に、第1導電型の低不純物濃度炭化珪素層と接して形成され、前記炭化珪素半導体層の水平方向に間隔をおいて配設された第2導電型の埋め込み領域の上面を前記炭化珪素半導体層または前記低不純物濃度炭化珪素層によって覆うことにより、逆方向リーク電流を低減し、順方向電流の低下も抑制できる。   According to the silicon carbide semiconductor device of the present invention, the silicon carbide semiconductor device is formed in the first conductivity type silicon carbide semiconductor layer in contact with the first conductivity type low impurity concentration silicon carbide layer, and the horizontal direction of the silicon carbide semiconductor layer is By covering the upper surface of the buried region of the second conductivity type spaced apart from each other with the silicon carbide semiconductor layer or the low impurity concentration silicon carbide layer, the reverse leakage current is reduced and the forward current is reduced. Can also be suppressed.

実施の形態1.
図1は本発明の実施の形態1による炭化珪素半導体装置の構成を示す断面図であり、図2(a)〜(c)および図3(a)〜(b)は本実施の形態による炭化珪素半導体装置の製造工程を示す断面図である。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a configuration of a silicon carbide semiconductor device according to a first embodiment of the present invention. FIGS. 2 (a) to (c) and FIGS. 3 (a) to (b) are carbonizations according to the present embodiment. It is sectional drawing which shows the manufacturing process of a silicon semiconductor device.

図1において炭化珪素半導体装置は、n形半導体基板1と、このn形半導体基板1の表面に形成され、前記n形半導体基板1よりもn形不純物の濃度が低いn形半導体層2と、n形半導体層2の内部に形成され、前記n形半導体層2よりもn形不純物の濃度が低いn−−形低不純物濃度層3と、n形半導体層2の内部にn−−形低不純物濃度層3と接して形成され、n形半導体層2の水平方向に所定の間隔をおいて配設され、全面をn−−形低不純物濃度層3によって覆ったp形埋め込み領域4と、前記n形半導体層2の表面に形成されたショットキー電極5を備えている。また、n形半導体基板1の裏面にはオーミック電極6が形成され、前記n形半導体層2の表面には、半導体装置の耐圧を向上させるため、ショットキー電極5の端部を囲むようにp形終端部7が形成されている。 In FIG. 1, a silicon carbide semiconductor device includes an n-type semiconductor substrate 1, an n -type semiconductor layer 2 formed on the surface of the n-type semiconductor substrate 1 and having a lower n-type impurity concentration than the n-type semiconductor substrate 1. N -type low impurity concentration layer 3 formed inside n -type semiconductor layer 2 and having a lower n-type impurity concentration than n -type semiconductor layer 2, and n -type semiconductor layer 2 and n -type semiconductor layer 2. - formed in contact with the form low impurity concentration layer 3, n - are arranged at a predetermined distance in the horizontal direction form the semiconductor layer 2, the entire n - covered p-type by the shape low impurity concentration layer 3 A buried region 4 and a Schottky electrode 5 formed on the surface of the n − type semiconductor layer 2 are provided. In addition, an ohmic electrode 6 is formed on the back surface of the n-type semiconductor substrate 1, and the end surface of the Schottky electrode 5 is surrounded on the surface of the n -type semiconductor layer 2 in order to improve the breakdown voltage of the semiconductor device. A p-type termination 7 is formed.

ここで、n形(第1導電型)不純物の濃度とは、実際のn形不純物の濃度から実際のp形(第2導電型)不純物の濃度を差し引いた、実効的なn形不純物の濃度のことを指すものであり、p形不純物の濃度についても同様である。   Here, the n-type (first conductivity type) impurity concentration is an effective n-type impurity concentration obtained by subtracting the actual p-type (second conductivity type) impurity concentration from the actual n-type impurity concentration. This also applies to the concentration of the p-type impurity.

上記n形半導体基板1、n形半導体層2、n−−形低不純物濃度層3、p形埋め込み領域4、p形終端部7はいずれも炭化珪素半導体で形成されている。また、ショットキー電極5はチタン、ニッケル,モリブデン等の金属膜で形成され、n形半導体層2とショットキー接合を成している。一方、オーミック電極6はニッケル等の金属膜で形成され、n形半導体基板1とオーミック接合を成している。また、n形半導体基板1は約20mΩ・cm程度の抵抗率を有する炭化珪素基板であり、n形半導体層2およびn−−形低不純物濃度層3はそれぞれ例えば1×1016atoms/cm、1〜3×1015atoms/cmの不純物濃度で形成されている。また、p形埋め込み領域4とp形終端部7は1×1017atoms/cm以上の不純物濃度で形成されている。
なお、図1においてはp形埋め込み領域4の断面を矩形で構成しているが、断面形状は矩形に限られず、曲部を有していてもよい。また、図1には3個のp形埋め込み領域4を設けた例を示しているが、実際の素子では、半導体の大きさに応じた個数が配列される。
The n-type semiconductor substrate 1, the n -type semiconductor layer 2, the n −− -type low impurity concentration layer 3, the p-type buried region 4, and the p-type termination portion 7 are all formed of a silicon carbide semiconductor. The Schottky electrode 5 is formed of a metal film such as titanium, nickel, or molybdenum, and forms a Schottky junction with the n − type semiconductor layer 2. On the other hand, the ohmic electrode 6 is formed of a metal film such as nickel and forms an ohmic junction with the n-type semiconductor substrate 1. The n-type semiconductor substrate 1 is a silicon carbide substrate having a resistivity of about 20 mΩ · cm, and the n -type semiconductor layer 2 and the n −− -type low impurity concentration layer 3 are, for example, 1 × 10 16 atoms / cm, respectively. 3 and 1 to 3 × 10 15 atoms / cm 3 . The p-type buried region 4 and the p-type termination portion 7 are formed with an impurity concentration of 1 × 10 17 atoms / cm 3 or more.
In FIG. 1, the cross section of the p-type embedded region 4 is a rectangle, but the cross-sectional shape is not limited to a rectangle and may have a curved portion. FIG. 1 shows an example in which three p-type buried regions 4 are provided. In an actual element, a number corresponding to the size of the semiconductor is arranged.

次にこの炭化珪素半導体装置の製造方法について説明する。
まず、図2(a)に示すように、抵抗率が約20mΩ・cmであるn形半導体基板1上に不純物濃度が1×1016atoms/cmになるようにn形半導体層2aをエピタキシャル成長させる。そして、このn形半導体層2aのエピタキシャル成長の途中でn形不純物の導入量を減らし、n形不純物の濃度がn形半導体層2aよりも低い3×1015atoms/cmとなるように調整してn−−形低不純物濃度層3をn形半導体層2aの表面に形成する。そして再度不純物濃度が1×1016atoms/cmになるようにn形不純物の導入量を調整してn−−形低不純物濃度層3の表面上にn形半導体層2bを形成して、4層の炭化珪素半導体を製造する。
Next, a method for manufacturing this silicon carbide semiconductor device will be described.
First, as shown in FIG. 2A, an n − type semiconductor layer 2a is formed on an n type semiconductor substrate 1 having a resistivity of about 20 mΩ · cm so that the impurity concentration is 1 × 10 16 atoms / cm 3. Epitaxially grow. Then, the amount of n-type impurities introduced is reduced during the epitaxial growth of the n -type semiconductor layer 2a so that the concentration of the n-type impurities is 3 × 10 15 atoms / cm 3 lower than that of the n -type semiconductor layer 2a. The n -type low impurity concentration layer 3 is adjusted to be formed on the surface of the n -type semiconductor layer 2a. The impurity concentration again adjusted to n the introduction amount of n-type impurity to be 1 × 10 16 atoms / cm 3 - to form the shape semiconductor layer 2b - n on the surface of the form low impurity concentration layer 3 A four-layer silicon carbide semiconductor is manufactured.

次に、図2(b)に示すように、前記工程で形成したn形半導体層2b上に、フォトリソグラィにより所定の位置に開口部8a〜8cを有する注入用マスク8を形成する。そして、この注入用マスク8上からアルミニウムやホウ素等のp形不純物をイオン注入してn−−形低不純物濃度層3と接するp形埋め込み領域4を形成する。このとき、p形埋め込み領域4の全面がn−−形低不純物濃度層3によって覆われるように、p形不純物の注入エネルギーを設定する。この後、薬品を用いて注入用マスク8を除去する。 Next, as shown in FIG. 2B, an implantation mask 8 having openings 8a to 8c at predetermined positions is formed by photolithography on the n − type semiconductor layer 2b formed in the above step. Then, a p-type impurity such as aluminum or boron is ion-implanted from above the implantation mask 8 to form a p-type buried region 4 in contact with the n −− type low impurity concentration layer 3. At this time, the implantation energy of the p-type impurity is set so that the entire surface of the p-type buried region 4 is covered with the n −− type low impurity concentration layer 3. Thereafter, the implantation mask 8 is removed using a chemical.

そして、図2(c)に示すように、n形半導体層2bの表面に、開口部9a、9bを有する注入用マスク9を前記工程と同様にフォトリソグラフィにより形成する。そしてこの注入用マスク9上からアルミニウムやホウ素等のp形不純物を再度注入することにより、開口部9a、9bの下のn形半導体層2bの表面にp形終端部7を形成する。この後、薬品を用いて注入用マスク9を除去する。そして、アルゴン等の不活性ガス雰囲気中で1500〜1800℃の温度で熱処理してp形不純物を活性化させる。炭化珪素中の不純物は高温でもほとんど拡散しないので、熱処理の後にも微細な不純物濃度分布を維持することができる。
なお、イオン注入前の状態がn形半導体2であった領域とn−−形低不純物濃度層3であった領域とでp形不純物濃度に差異が生じるが、p形埋め込み領域4およびp形終端部7は不純物濃度が1×1017atoms/cm以上であればよいので、その影響はほとんどない。また、前記p形埋め込み領域4形成工程とp形終端部7形成工程はその順序を入れ替えてもよい。
Then, as shown in FIG. 2C, an implantation mask 9 having openings 9a and 9b is formed on the surface of the n -type semiconductor layer 2b by photolithography in the same manner as in the above step. Then, a p-type termination 7 is formed on the surface of the n -type semiconductor layer 2b under the openings 9a and 9b by re-implanting p-type impurities such as aluminum and boron from the implantation mask 9. Thereafter, the implantation mask 9 is removed using a chemical. And it heat-processes at the temperature of 1500-1800 degreeC in inert gas atmosphere, such as argon, and activates a p-type impurity. Since impurities in silicon carbide hardly diffuse even at high temperatures, a fine impurity concentration distribution can be maintained even after heat treatment.
It should be noted that there is a difference in the p-type impurity concentration between the region in which the state before the ion implantation was the n -type semiconductor 2 and the region in which the n −− -type low impurity concentration layer 3 was formed. Since the shape termination portion 7 only needs to have an impurity concentration of 1 × 10 17 atoms / cm 3 or more, there is almost no influence. The order of the p-type buried region 4 forming step and the p-type termination portion 7 forming step may be interchanged.

その後、図3(a)に示すように、n形半導体基板1の裏面にスパッタリング法によってニッケルの金属膜6aを成膜した後、アルゴン等の不活性ガス雰囲気中で1000℃に昇温して熱処理を行い、オーミック電極6を形成する。   Thereafter, as shown in FIG. 3A, after a nickel metal film 6a is formed on the back surface of the n-type semiconductor substrate 1 by sputtering, the temperature is raised to 1000 ° C. in an inert gas atmosphere such as argon. Heat treatment is performed to form the ohmic electrode 6.

そして、図3(b)に示すように、n形半導体層2bの表面上に、例えばチタン、ニッケル,モリブデン等の炭化珪素とショットキー接触を成す金属をスパッタリングや電子ビーム蒸着等の方法により成膜し、金属膜5aを形成する。その後、フォトレジストによって金属膜5a上にパターニングを実施し、酸などによって不要部分の金属を除去することによりショットキー電極5を形成する。
なお、このショットキー電極5の形成は、予め金属膜が不要となる部分にフォトレジストが残るようなパターニングを金属膜5aの成膜前に実施してから、金属膜5aをn形半導体層2bの表面に成膜した後、アセトン等の有機溶剤によりフォトレジストをその上に成膜された金属膜とともに除去し、電極として必要な部分のみに金属膜を残すリフトオフ法を用いて行ってもよい。
Then, as shown in FIG. 3B, on the surface of the n -type semiconductor layer 2b, for example, a metal that forms Schottky contact with silicon carbide such as titanium, nickel, or molybdenum is formed by a method such as sputtering or electron beam evaporation. A metal film 5a is formed by film formation. Thereafter, patterning is performed on the metal film 5a with a photoresist, and an unnecessary portion of the metal is removed with an acid or the like to form the Schottky electrode 5.
The Schottky electrode 5 is formed by performing patterning so that a photoresist remains in a portion where the metal film is unnecessary before forming the metal film 5a, and then forming the metal film 5a on the n -type semiconductor layer. After the film is formed on the surface of 2b, the photoresist may be removed together with the metal film formed thereon with an organic solvent such as acetone, and the lift-off method may be used to leave the metal film only in the necessary portions as electrodes. Good.

このように形成された炭化珪素半導体装置においては、ショットキー電極5とオーミック電極6との間に順方向電圧が印加された場合、順方向電流はショットキー電極5からn形半導体層2を通り、p形埋め込み領域4の間を通ってn形半導体基板1へ流れる。このとき、p形埋め込み領域4は全面がn−−形低不純物濃度層3によって覆われているので、ショットキー電極5とn形半導体層2の接触はp形埋め込み領域4によって妨げられない。このように、順方向電流はp形埋め込み領域4に遮られることなくショットキー電極5からn形半導体層2へ流れるので、オン抵抗を低減でき、その結果、順方向電流の低減を抑制できる。 In the silicon carbide semiconductor device thus formed, when a forward voltage is applied between Schottky electrode 5 and ohmic electrode 6, the forward current flows from Schottky electrode 5 to n -type semiconductor layer 2. And flows between the p-type buried regions 4 to the n-type semiconductor substrate 1. At this time, since the entire surface of the p-type buried region 4 is covered with the n -type low impurity concentration layer 3, the contact between the Schottky electrode 5 and the n -type semiconductor layer 2 is not hindered by the p-type buried region 4. . Thus, since the forward current flows from the Schottky electrode 5 to the n -type semiconductor layer 2 without being blocked by the p-type buried region 4, the on-resistance can be reduced, and as a result, the reduction of the forward current can be suppressed. .

一方、ショットキー電極5とオーミック電極6との間に逆方向電圧が印加された場合、p形埋め込み領域4とn−−形低不純物濃度層3の接触部から空乏層が広がる。ここで、n−−形低不純物濃度層3のn形不純物の濃度はn形半導体層2のn形不純物の濃度よりも小さいので、上記空乏層はn−−形低不純物濃度層3の方向に広がって形成されることになる。p形埋め込み領域4はn−−形低不純物濃度層3によって全面が覆われているので、前記空乏層は水平方向・垂直方向の両方に広がり、特に水平方向に広がった空乏層は隣接する空乏層と互いに連結するので、逆方向リーク電流の通電経路はピンチオフされ、逆方向リーク電流を抑制できる。 On the other hand, when a reverse voltage is applied between the Schottky electrode 5 and the ohmic electrode 6, the depletion layer spreads from the contact portion between the p-type buried region 4 and the n −− type low impurity concentration layer 3. Here, n - is smaller than the concentration of n-type impurities forms the semiconductor layer 2, the depletion layer n - - Shape concentration of the n-type impurity of low impurity concentration layer 3 is n-type low impurity concentration layer 3 of It will be formed spreading in the direction. Since the entire surface of the p-type buried region 4 is covered with the n −− type low impurity concentration layer 3, the depletion layer extends both in the horizontal direction and the vertical direction, and in particular, the depletion layer extending in the horizontal direction is adjacent to the depletion layer. Since the layers are connected to each other, the conduction path of the reverse leakage current is pinched off, and the reverse leakage current can be suppressed.

本実施の形態によれば、p形埋め込み領域4の全面をn−−形低不純物濃度層3で覆うことにより、順方向電流はp形埋め込み領域4に遮られることなくショットキー電極5からn形半導体層2へ流れるので、順方向電流の低減を抑制することができる。特に、炭化珪素半導体は高温動作時に順方向電流が低下するという特性があるので、200℃以上で動作させる炭化珪素半導体装置においてその効果が顕著になる。また、逆電圧印加時にはpn接合部の空乏層が水平方向のみならず垂直方向にも広がるので、逆方向リーク電流を効率的に抑制できる。 According to the present embodiment, by covering the entire surface of the p-type buried region 4 with the n −− type low impurity concentration layer 3, the forward current is not interrupted by the p-type buried region 4 but from the Schottky electrode 5. - since flows to form the semiconductor layer 2, it is possible to suppress the reduction of the forward current. In particular, since silicon carbide semiconductors have a characteristic that the forward current decreases during high-temperature operation, the effect is remarkable in a silicon carbide semiconductor device operated at 200 ° C. or higher. In addition, since a depletion layer at the pn junction extends not only in the horizontal direction but also in the vertical direction when a reverse voltage is applied, reverse leakage current can be efficiently suppressed.

なお、本実施の形態では、p形埋め込み領域4の全面をn−−形低不純物濃度層3によって覆っていたが、図4に示すように、p形埋め込み領域4の上下面をそれぞれn−−形低不純物濃度層3とn形半導体層2との境界面3a、3bと面一に形成してもよいし、上下面のいずれか一方を境界面3aまたは3bと面一に形成してもよい。また、図5に示すようにp形埋め込み領域4の上面がn−−形低不純物濃度層3とn形半導体層2との境界面3aからショットキー電極5側へ突出し、この上面をn形半導体層2に覆うようにしてもよいし、図6に示すように、p形埋め込み領域4の下面がn−−形低不純物濃度層3とn形半導体層2との境界面3bからn形半導体基板1側へ突出し、上面をn−−形低不純物濃度層3で、下面をn形半導体層2にそれぞれ覆うように構成してもよい。さらに、図7に示すように、p形埋め込み領域4がn−−形低不純物濃度層3とn形半導体層2との境界面3aおよび3bの両方を貫通し、その上面および下面を半導体層2で覆うようにすることもできる。これらの炭化珪素半導体装置は、実施の形態1と同様の工程で製造される。 In this embodiment, the entire surface of the p-type buried region 4 n - had covered by the shape low impurity concentration layer 3, as shown in FIG. 4, the upper and lower surfaces of the p-type buried region 4, respectively n - The − type low impurity concentration layer 3 and the n − type semiconductor layer 2 may be formed flush with the boundary surfaces 3a and 3b, or one of the upper and lower surfaces may be formed flush with the boundary surface 3a or 3b. May be. The upper surface of the p-type buried region 4 as shown in FIG. 5 is the n - type low impurity concentration layer 3 and the n - protrude from the boundary plane 3a of the -type semiconductor layer 2 to the Schottky electrode 5 side, the top n - may be covered in the form semiconductor layer 2, as shown in FIG. 6, the lower surface of the p-type buried region 4 is the n - type low impurity concentration layer 3 and the n - boundary surface 3b of the -type semiconductor layer 2 protrudes from the n-type semiconductor substrate 1 side, the upper surface of the n - in the form low impurity concentration layer 3, the lower surface n - may be configured so as to cover the respective -type semiconductor layer 2. Furthermore, as shown in FIG. 7, p form the buried region 4 the n - type low impurity concentration layer 3 and the n - through both of the boundary surfaces 3a and 3b of the form semiconductor layer 2, the semiconductor and the upper and lower surfaces It can also be covered with layer 2. These silicon carbide semiconductor devices are manufactured in the same process as in the first embodiment.

上記いずれの構成においても、p形埋め込み領域4の上面をn形半導体層2またはn−−形低不純物濃度層3で覆うことにより、順方向電流はp形埋め込み領域4に遮られることなく、ショットキー電極5からn形半導体層2へ流れ、順方向電流の低減を抑制できる。また、p形埋め込み領域4の全面をn−−形低不純物濃度層3によって覆わなくてもよいので、p形埋め込み領域4の形成位置に裕度を設けることができ、炭化珪素半導体装置の製造が容易になる。 In any of the above configurations, the forward current is not blocked by the p-type buried region 4 by covering the upper surface of the p-type buried region 4 with the n − type semiconductor layer 2 or the n −− type low impurity concentration layer 3. The current flows from the Schottky electrode 5 to the n -type semiconductor layer 2 and the reduction of the forward current can be suppressed. In addition, since it is not necessary to cover the entire surface of the p-type buried region 4 with the n −− type low impurity concentration layer 3, a margin can be provided at the position where the p-type buried region 4 is formed, and a silicon carbide semiconductor device is manufactured. Becomes easier.

実施の形態2.
図8(a)〜(c)および図9(a)〜(c)は本発明の実施の形態2による炭化珪素半導体装置製造工程を示す断面図である。実施の形態1に示した炭化珪素半導体装置は、本実施の形態に係る製造方法で製造することもできる。
まず、図8(a)に示すように、炭化珪素からなり抵抗率が20mΩ・cm程度のn形半導体基板1の上に、不純物濃度が例えば1×1016atoms/cmのn形半導体層2をエピタキシャル成長させる。
Embodiment 2. FIG.
8 (a) to 8 (c) and FIGS. 9 (a) to 9 (c) are cross-sectional views showing the steps for manufacturing the silicon carbide semiconductor device according to the second embodiment of the present invention. The silicon carbide semiconductor device shown in the first embodiment can also be manufactured by the manufacturing method according to the present embodiment.
First, as shown in FIG. 8 (a), on the resistivity consists of silicon carbide is n-type semiconductor substrate 1 of about 20 m [Omega · cm, the impurity concentration of, for example, 1 × 10 16 atoms / cm 3 n - -type semiconductor Layer 2 is grown epitaxially.

このように形成したn形半導体層2の表面に、図8(b)に示すように、開口部10a〜10dを有する注入用マスク10をフォトリソグラィにより形成する。そしてこの注入用マスク10の上からアルミニウムもしくはホウ素などのp形不純物をイオン注入して、注入用マスク10の開口部10a〜10d下のn形半導体層2にp形不純物を注入する。このとき、p形不純物の注入量は注入された領域がp形半導体とはならずに、例えば不純物濃度が1〜3×15atoms/cm程度のn形半導体となるように設定する。このようにしてn形半導体層2内にn−−形低不純物濃度層3を形成する。この後、薬品を用いて注入用マスク10を除去する。 As shown in FIG. 8B, an implantation mask 10 having openings 10a to 10d is formed on the surface of the n − type semiconductor layer 2 thus formed by photolithography. Then, a p-type impurity such as aluminum or boron is ion-implanted from above the implantation mask 10, and the p-type impurity is implanted into the n -type semiconductor layer 2 below the openings 10 a to 10 d of the implantation mask 10. At this time, the implantation amount of the p-type impurity is set so that the implanted region is not a p-type semiconductor, but an n-type semiconductor having an impurity concentration of about 1 to 3 × 15 atoms / cm 3 , for example. In this way, the n - -type semiconductor layer 2 n - to form the shape low impurity concentration layer 3. Thereafter, the implantation mask 10 is removed using a chemical.

次に、n形半導体層2の表面に、図8(c)に示すように、開口部11a〜11cを有する注入用マスク11を前記工程と同様にフォトリソグラフィにより形成する。そしてこの注入用マスク11の上からアルミニウムやホウ素等のp形不純物を再度注入して、開口部11a〜11c下のn形半導体層2内部に、上面をn形半導体層2によって覆うようにn−−形低不純物濃度層3と接するp形埋め込み領域4を形成する。この後、薬品を用いて注入用マスク11を除去する。 Next, as shown in FIG. 8C, an implantation mask 11 having openings 11a to 11c is formed on the surface of the n -type semiconductor layer 2 by photolithography in the same manner as in the above step. Then, a p-type impurity such as aluminum or boron is again implanted from above the implantation mask 11 so that the upper surface is covered with the n -type semiconductor layer 2 inside the n -type semiconductor layer 2 below the openings 11a to 11c. Then, a p-type buried region 4 in contact with the n −− type low impurity concentration layer 3 is formed. Thereafter, the implantation mask 11 is removed using a chemical.

そして、n形半導体基板1のn形半導体層2の表面に、図9(a)に示すように、開口部12a、12bを有する注入用マスク12を前記工程と同様にフォトリソグラフィにより形成する。そしてこの注入用マスク12の上からアルミニウムやホウ素等のp形不純物を再度注入することにより、開口部12a、12b下のn形半導体層2の表面にp形終端部7を形成する。この後、薬品を用いて注入用マスク12を除去する。そして、誘導加熱炉等を用いてアルゴンガス等の不活性ガス雰囲気中で1500〜1800℃程度の温度で熱処理を行うことにより注入したp形不純物を活性化させる。
なお、前記n−−形低不純物濃度層3形成工程、前記p形埋め込み領域4形成工程およびp形終端部7形成工程はその順序を入れ替えてもよい。
Then, as shown in FIG. 9A, an implantation mask 12 having openings 12a and 12b is formed on the surface of the n − type semiconductor layer 2 of the n type semiconductor substrate 1 by photolithography in the same manner as in the above step. . Then, a p-type termination 7 is formed on the surface of the n -type semiconductor layer 2 below the openings 12a and 12b by re-implanting p-type impurities such as aluminum and boron from above the implantation mask 12. Thereafter, the implantation mask 12 is removed using a chemical. Then, the implanted p-type impurity is activated by performing heat treatment at a temperature of about 1500 to 1800 ° C. in an inert gas atmosphere such as argon gas using an induction heating furnace or the like.
The order of the n −− type low impurity concentration layer 3 forming step, the p-type buried region 4 forming step and the p-type termination 7 forming step may be changed.

その後、図9(b)に示すように、n形半導体基板1の裏面に、スパッタリング等の方法によりニッケル等の金属膜6aを成膜させた後、アルゴンなどの不活性ガス雰囲気中で1000℃程度の熱処理を加えることにより、オーミック電極6を形成する。
そして、図9(c)に示すように、n形半導体基板1のn形半導体層2の表面にチタン等の炭化珪素とショットキー接触を形成する金属をスパッタリング等の方法により成膜し、フォトレジストによるパターニングを実施後、酸などにより不要となる金属を除去することによりショットキー電極5を形成する。
Thereafter, as shown in FIG. 9B, a metal film 6a such as nickel is formed on the back surface of the n-type semiconductor substrate 1 by a method such as sputtering, and then 1000 ° C. in an inert gas atmosphere such as argon. The ohmic electrode 6 is formed by applying a certain degree of heat treatment.
Then, as shown in FIG. 9C, a metal that forms Schottky contact with silicon carbide such as titanium is formed on the surface of the n − type semiconductor layer 2 of the n type semiconductor substrate 1 by a method such as sputtering, After patterning with a photoresist, the unnecessary metal is removed with an acid or the like to form the Schottky electrode 5.

本実施の形態によれば、n形半導体層2にp形不純物をイオン注入することによってn−−形低不純物濃度層3を形成するので、実施の形態1に示した製造方法と比べてエピタキシャル成長工程を簡略化することができる。 According to this embodiment, n - a p-type impurity to form the semiconductor layer 2 n by ion implantation - because it forms a form low impurity concentration layer 3, compared with the manufacturing method shown in Embodiment 1 The epitaxial growth process can be simplified.

本発明の実施の形態1における炭化珪素半導体装置を示す断面図である。It is sectional drawing which shows the silicon carbide semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における炭化珪素半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the silicon carbide semiconductor device in Embodiment 1 of this invention. 図2に続く本発明の実施の形態1における炭化珪素半導体装置の製造工程を示す図である。FIG. 3 is a diagram showing a manufacturing step of the silicon carbide semiconductor device in the first embodiment of the present invention following FIG. 2. 本発明の実施の形態1における炭化珪素半導体装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the silicon carbide semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における炭化珪素半導体装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the silicon carbide semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における炭化珪素半導体装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the silicon carbide semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における炭化珪素半導体装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the silicon carbide semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態2における炭化珪素半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the silicon carbide semiconductor device in Embodiment 2 of this invention. 図8に続く本発明の実施の形態2における炭化珪素半導体装置の製造工程を示す図である。FIG. 9 is a diagram showing a manufacturing step of the silicon carbide semiconductor device in the second embodiment of the present invention subsequent to FIG. 8.

符号の説明Explanation of symbols

1 n形半導体基板(第1導電型の炭化珪素半導体基板)、 2 n形半導体層(第1導電型の炭化珪素半導体層)、 3 n−−形低不純物濃度層(第1導電型の低不純物濃度炭化珪素層)、 3a,3b 境界面、 4 p形埋め込み領域(第2導電型の埋め込み領域)、 5 ショットキー電極。 1 n-type semiconductor substrate (first conductivity type silicon carbide semiconductor substrate), 2 n type semiconductor layer (first conductivity type silicon carbide semiconductor layer), 3 n −− type low impurity concentration layer (first conductivity type) (Low impurity concentration silicon carbide layer), 3a, 3b interface, 4 p-type buried region (second conductivity type buried region), 5 Schottky electrode.

Claims (7)

第1導電型の不純物を有する第1導電型の炭化珪素半導体基板と、
前記炭化珪素半導体基板の表面に形成され、前記炭化珪素半導体基板よりも第1導電型の不純物の濃度が低い第1導電型の炭化珪素半導体層と、
前記炭化珪素半導体層の内部に形成され、前記炭化珪素半導体層よりも第1導電型の不純物の濃度が低い第1導電型の低不純物濃度炭化珪素層と、
前記炭化珪素半導体層の内部に、前記低不純物濃度炭化珪素層と接して形成され、前記炭化珪素半導体層の水平方向に間隔をおいて配設された第2導電型の埋め込み領域と、
前記炭化珪素半導体層の表面に形成されたショットキー電極とを
備えた炭化珪素半導体装置において、
前記埋め込み領域の上面を前記炭化珪素半導体層または前記低不純物濃度炭化珪素層によって覆うことを特徴とする炭化珪素半導体装置。
A first conductivity type silicon carbide semiconductor substrate having a first conductivity type impurity;
A first conductivity type silicon carbide semiconductor layer formed on a surface of the silicon carbide semiconductor substrate and having a lower concentration of impurities of the first conductivity type than the silicon carbide semiconductor substrate;
A first conductivity type low impurity concentration silicon carbide layer formed inside the silicon carbide semiconductor layer and having a lower concentration of first conductivity type impurities than the silicon carbide semiconductor layer;
A buried region of a second conductivity type formed inside the silicon carbide semiconductor layer in contact with the low impurity concentration silicon carbide layer and spaced apart in the horizontal direction of the silicon carbide semiconductor layer;
In a silicon carbide semiconductor device comprising a Schottky electrode formed on the surface of the silicon carbide semiconductor layer,
An upper surface of the buried region is covered with the silicon carbide semiconductor layer or the low impurity concentration silicon carbide layer.
埋め込み領域の全面を低不純物濃度炭化珪素層によって覆うことを特徴とする請求項1に記載の炭化珪素半導体装置。   2. The silicon carbide semiconductor device according to claim 1, wherein the entire buried region is covered with a low impurity concentration silicon carbide layer. 埋め込み領域の上面および下面の少なくとも一方を、低不純物濃度炭化珪素層と炭化珪素半導体層の境界面と面一に形成することを特徴とする請求項1に記載の炭化珪素半導体装置。   2. The silicon carbide semiconductor device according to claim 1, wherein at least one of an upper surface and a lower surface of the buried region is formed flush with a boundary surface between the low impurity concentration silicon carbide layer and the silicon carbide semiconductor layer. 埋め込み領域の上面は、低不純物濃度炭化珪素層と炭化珪素半導体層の境界面からショットキー電極側に突出することを特徴とする請求項1に記載の炭化珪素半導体装置。   2. The silicon carbide semiconductor device according to claim 1, wherein an upper surface of the buried region protrudes toward a Schottky electrode from a boundary surface between the low impurity concentration silicon carbide layer and the silicon carbide semiconductor layer. 埋め込み領域の下面は、低不純物濃度炭化珪素層と炭化珪素半導体層の境界面から炭化珪素半導体基板側に突出することを特徴とする請求項1または請求項4に記載の炭化珪素半導体装置。   5. The silicon carbide semiconductor device according to claim 1, wherein a lower surface of the buried region protrudes from a boundary surface between the low impurity concentration silicon carbide layer and the silicon carbide semiconductor layer toward the silicon carbide semiconductor substrate. 第1導電型の不純物を有する第1導電型の炭化珪素半導体基板の表面に、前記炭化珪素半導体基板よりも第1導電型の不純物の濃度が低い第1導電型の炭化珪素半導体層を形成する工程と、
前記炭化珪素半導体層の表面に、前記炭化珪素半導体層よりも第1導電型の不純物の濃度が低い第1導電型の低不純物濃度炭化珪素層を形成する工程と、
前記低不純物濃度炭化珪素層の表面に、前記炭化珪素半導体層と第1導電型の不純物の濃度が等しい第1導電型の炭化珪素半導体層を形成する工程と、
前記炭化珪素半導体層の内部に、前記低不純物濃度炭化珪素層と接して前記炭化珪素半導体層の水平方向に間隔をおいて配設され、上面が前記炭化珪素半導体層または前記低不純物濃度炭化珪素層によって覆われた第2導電型の埋め込み領域を、第2導電型の不純物を注入して形成する工程と、
前記炭化珪素半導体層の表面にショットキー電極を形成する工程と
を備えた炭化珪素半導体装置の製造方法。
A first conductivity type silicon carbide semiconductor layer having a first conductivity type impurity concentration lower than that of the silicon carbide semiconductor substrate is formed on a surface of the first conductivity type silicon carbide semiconductor substrate having the first conductivity type impurities. Process,
Forming a first conductivity type low impurity concentration silicon carbide layer having a lower concentration of first conductivity type impurities than the silicon carbide semiconductor layer on a surface of the silicon carbide semiconductor layer;
Forming on the surface of the low impurity concentration silicon carbide layer a first conductivity type silicon carbide semiconductor layer having the same concentration of the first conductivity type impurity as the silicon carbide semiconductor layer;
Inside the silicon carbide semiconductor layer, the silicon carbide semiconductor layer is disposed in contact with the low impurity concentration silicon carbide layer and spaced apart in the horizontal direction of the silicon carbide semiconductor layer, and the upper surface is the silicon carbide semiconductor layer or the low impurity concentration silicon carbide. Forming a second conductivity type buried region covered with a layer by implanting a second conductivity type impurity;
Forming a Schottky electrode on the surface of the silicon carbide semiconductor layer.
第1導電型の不純物を有する第1導電型の炭化珪素半導体基板の表面に、前記炭化珪素半導体基板よりも第1導電型の不純物の濃度が低い第1導電型の炭化珪素半導体層を形成する工程と、
第2導電型の不純物を注入することにより、前記炭化珪素半導体層よりも第1導電型の不純物濃度が低い第1導電型の低不純物濃度炭化珪素層を前記炭化珪素半導体層の内部に形成する工程と、
前記炭化珪素半導体層の内部に、前記低不純物濃度炭化珪素層と接して前記炭化珪素半導体層の水平方向に間隔をおいて配設され、上面が前記炭化珪素半導体層または前記低不純物濃度炭化珪素層によって覆われた第2導電型の埋め込み領域を、第2導電型の不純物を注入して形成する工程と、
前記炭化珪素半導体層の表面にショットキー電極を形成する工程と
を備えた炭化珪素半導体装置の製造方法。
A first conductivity type silicon carbide semiconductor layer having a first conductivity type impurity concentration lower than that of the silicon carbide semiconductor substrate is formed on a surface of the first conductivity type silicon carbide semiconductor substrate having the first conductivity type impurities. Process,
By implanting a second conductivity type impurity, a first conductivity type low impurity concentration silicon carbide layer having a first conductivity type impurity concentration lower than that of the silicon carbide semiconductor layer is formed inside the silicon carbide semiconductor layer. Process,
Inside the silicon carbide semiconductor layer, the silicon carbide semiconductor layer is disposed in contact with the low impurity concentration silicon carbide layer and spaced apart in the horizontal direction of the silicon carbide semiconductor layer, and the upper surface is the silicon carbide semiconductor layer or the low impurity concentration silicon carbide. Forming a second conductivity type buried region covered with a layer by implanting a second conductivity type impurity;
Forming a Schottky electrode on the surface of the silicon carbide semiconductor layer.
JP2008107750A 2008-04-17 2008-04-17 Silicon carbide semiconductor device and manufacturing method thereof Active JP5169428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107750A JP5169428B2 (en) 2008-04-17 2008-04-17 Silicon carbide semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107750A JP5169428B2 (en) 2008-04-17 2008-04-17 Silicon carbide semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009260057A true JP2009260057A (en) 2009-11-05
JP5169428B2 JP5169428B2 (en) 2013-03-27

Family

ID=41387107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107750A Active JP5169428B2 (en) 2008-04-17 2008-04-17 Silicon carbide semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5169428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090861A1 (en) * 2010-12-28 2012-07-05 三菱電機株式会社 Semiconductor device
JP2018521503A (en) * 2015-06-09 2018-08-02 アーベーベー・シュバイツ・アーゲー Method for manufacturing edge terminations of silicon carbide power semiconductor devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151067A (en) * 1988-12-02 1990-06-11 Toshiba Corp Semiconductor device
JPH03248563A (en) * 1990-02-27 1991-11-06 Shindengen Electric Mfg Co Ltd Schottky barrier semiconductor
JPH11330498A (en) * 1998-05-07 1999-11-30 Fuji Electric Co Ltd Schottky barrier diode and fabrication thereof
JP2005229070A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Schottky barrier diode and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151067A (en) * 1988-12-02 1990-06-11 Toshiba Corp Semiconductor device
JPH03248563A (en) * 1990-02-27 1991-11-06 Shindengen Electric Mfg Co Ltd Schottky barrier semiconductor
JPH11330498A (en) * 1998-05-07 1999-11-30 Fuji Electric Co Ltd Schottky barrier diode and fabrication thereof
JP2005229070A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Schottky barrier diode and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090861A1 (en) * 2010-12-28 2012-07-05 三菱電機株式会社 Semiconductor device
CN103443925A (en) * 2010-12-28 2013-12-11 三菱电机株式会社 Semiconductor device
US8963276B2 (en) 2010-12-28 2015-02-24 Mitsubishi Electric Corporation Semiconductor device including a cell array having first cells and second cells interspersed around the arrangement of the first cells
JP2018521503A (en) * 2015-06-09 2018-08-02 アーベーベー・シュバイツ・アーゲー Method for manufacturing edge terminations of silicon carbide power semiconductor devices

Also Published As

Publication number Publication date
JP5169428B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
CN106067415B (en) Method for manufacturing silicon carbide semiconductor device
KR100994185B1 (en) Semiconductor device
JP4683075B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2009044177A (en) SiC SEMICONDUCTOR DEVICE INCLUDING PN JUNCTION WITH VOLTAGE ABSORBING EDGE
JP2005191227A (en) Semiconductor device
JP6641488B2 (en) Semiconductor device
CN104380458A (en) Method and system for junction termination in gallium nitride materials using conductivity modulation
CN107683530B (en) Power semiconductor device
JP4006879B2 (en) Schottky barrier diode and manufacturing method thereof
JP4972090B2 (en) Semiconductor device and manufacturing method thereof
JPWO2015015808A1 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2003318413A (en) High breakdown voltage silicon carbide diode and manufacturing method therefor
CN105103295A (en) Lateral GaN JFET with vertical drift region
JP4186919B2 (en) Semiconductor device
JP2004528728A5 (en)
US20160276497A1 (en) Semiconductor device and manufacturing method thereof
US9257500B2 (en) Vertical gallium nitride power device with breakdown voltage control
JP7233256B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2006332199A (en) SiC SEMICONDUCTOR DEVICE
JP2008251925A (en) Diode
JP5169428B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2006186134A (en) Semiconductor device
CN115483104A (en) Manufacturing method of variable capacitance diode
JP4683141B2 (en) Horizontal junction field effect transistor
JP2006186040A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5169428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250