JP2009259859A - 半導体放射線検出器および核医学診断装置 - Google Patents

半導体放射線検出器および核医学診断装置 Download PDF

Info

Publication number
JP2009259859A
JP2009259859A JP2008103662A JP2008103662A JP2009259859A JP 2009259859 A JP2009259859 A JP 2009259859A JP 2008103662 A JP2008103662 A JP 2008103662A JP 2008103662 A JP2008103662 A JP 2008103662A JP 2009259859 A JP2009259859 A JP 2009259859A
Authority
JP
Japan
Prior art keywords
detection
semiconductor radiation
radiation detector
electrode
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008103662A
Other languages
English (en)
Inventor
Shinya Kominami
信也 小南
Takaaki Ishizu
崇章 石津
Tomoyuki Kiyono
知之 清野
Norifumi Yanagida
憲史 柳田
Yuichiro Ueno
雄一郎 上野
Kensuke Amamiya
健介 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008103662A priority Critical patent/JP2009259859A/ja
Publication of JP2009259859A publication Critical patent/JP2009259859A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

【課題】複数チャンネルの検出感度を好適に一様化することができる半導体放射線検出器および核医学診断装置が得られる。
【解決手段】一つの検出素子に、チャンネルをなす検出部が一の方向に沿って三つ以上設けられた半導体放射線検出器であって、前記検出素子の端部に位置する検出部10a,10dは、その体積が、隣接する前記検出部10b,10cの体積よりも大きいことを特徴とする。前記検出素子を、テルル化カドミウム、テルル化カドミウム亜鉛、ガリウム砒素、臭化タリウムのうちの一つの単結晶で構成する。
【選択図】図1

Description

本発明は、半導体放射線検出器および核医学診断装置に関するものである。
近年、放射線計測技術を応用した放射線検出装置として核医学診断装置が広く普及してきている。その代表的な装置が陽電子放出型断層撮像装置(PET撮像装置)、単光子放射断層撮像装置(SPECT撮像装置)、ガンマカメラ装置などである。これらの装置で主として使用されている放射線検出器は、シンチレータと光電子増倍管とを組み合わせたものであるが、γ線等の放射線を検出する放射線検出器として、CdTe、CdZnTe、GaAs、TlBr等の半導体結晶によって構成された半導体放射線検出器を用いた技術が注目されている。
半導体放射線検出器は、放射線と半導体結晶との相互作用で生じた電荷を電気信号に変換する構成であるため、シンチレータを使用したものより電気信号への変換効率がよく、かつ小型化が可能である等、種々の特徴がある。
半導体放射線検出器は、前記の半導体結晶と、この半導体結晶の一面に形成されたバイアス印加電極と、半導体結晶を挟んでこのバイアス印加電極と対向する信号読出電極とを備えている。これらのバイアス印加電極と信号読出電極との間に直流高圧電圧を印加することにより、X線、γ線等の放射線が半導体結晶内に入射したときに生成される電荷を、前記信号読出電極から信号として取出すようにしている。
半導体結晶の一面に複数の信号読出電極を設置することにより、1つの検出素子に複数チャンネルの検出部を有する半導体放射線検出器を構成することが可能である(例えば、特許文献1参照)。
特開2006−319285号公報
しかしながら、1つの検出素子に複数チャンネルの検出部を有する半導体放射線検出器において、1チャンネル当たりの検出部の半導体結晶の体積を同一にした場合、検出素子の中央部に位置するチャンネルの感度に対して検出素子の端部に位置するチャンネルの感度が若干低下することが本発明者らの研究により新たに判明した。例えば、厚さ1.5mm寸法6.4mm×5.0mmの半導体結晶の一面に、寸法6.4mm×5.0mmのバイアス印加電極を設置し、半導体結晶を挟んで対向する面に、寸法1.5mm×5.0mmの信号読出電極4つを設置した半導体放射線検出器(半導体結晶の側面から端部の信号読出電極までの幅0.05mm、信号読出電極相互の隙間の幅0.1mm)を製作して、511keVのγ線に対する感度の測定試験を行ったところ、検出素子の端部の2つのチャンネルの感度が検出素子の中央部の2つのチャンネルの感度よりも約7%低い結果となった。
これは、放射線の入射による光電効果で半導体結晶中に生じた一次電子の一部は、バイアス印加電極および信号読出電極の設置されていない半導体結晶の側面から空気中へ飛び出すが、検出素子の端部のチャンネルでは、検出素子の中央部のチャンネルに比べて半導体結晶側面の面積が大きいため、空気中へ飛び出す一次電子の割合が多いためである。すなわち、検出素子の端部のチャンネルでは、入射する放射線に対して不感となる体積が大きいことになる。
例えば、前記したように、1つの検出素子に複数チャンネルの検出部を有する半導体放射線検出器を多数用いて核医学診断装置を構成した場合、チャンネルごとに感度不均一が生じてしまい、診断装置として放射性薬剤に対する検出感度の一様性を保つのが困難となる。
このような観点から、本発明は、複数チャンネルの検出感度を好適に一様化することができる半導体放射線検出器および核医学診断装置を提供することを課題とする。
前記した課題を解決するための手段として本発明の半導体放射線検出器は、一つの検出素子に、チャンネルをなす検出部が一の方向に沿って3つ以上設けられた半導体放射線検出器であって、前記検出素子の端部に位置する検出部は、その体積が、隣接する前記検出部の体積よりも大きい構成とした。この構成によれば、検出素子の端部に位置する検出部の感度を、隣接する検出部の感度と同等にすることができる。
本発明によれば、複数チャンネルの検出感度を好適に一様化することができる半導体放射線検出器および核医学診断装置が得られる。
以下、本発明の半導体放射線検出器の実施形態について図面を参照して詳細に説明する。
(第1実施形態)
本実施形態の半導体放射線検出器(以下では単に、検出器という)1は、図1(a)に示すように、1枚の半導体素子(検出素子)11と、半導体素子11の一方の面(上面)に配置されたアノード電極板12A、12B、および他方の面(下面)に配置されたカソード電極板13から構成されている。
半導体素子11は、図1(b)に示すように、平板状に形成された半導体結晶11aを備え、その一方の面(上面)には、薄い膜状の4つのアノード電極14A、14Bが形成され、他方の面(下面)の全面にわたって、薄い膜状のカソード電極15が形成されている。半導体結晶11aのアノード電極板12A,12Bが形成された面のうち、アノード電極14Aとアノード電極14Bとの間の領域には、電極を分割するための電極分割溝が形成されている。この電極分割溝は、例えば、深さ0.1mm程度の溝として形成されている。
本実施形態では、一つの半導体素子11に、アノード電極14Aとアノード電極14Bとで仕切られてチャンネルをなす検出部が、左右側面に直交する方向(一の方向;左右方向)に沿って、計四つ設けられている(検出部:この例では、図1(b)に示すように、符号10a〜10bで示される領域)。なお、チャンネルをなす検出部10a〜10bは、前記一の方向に沿って三つ以上設けられていればよい。
半導体結晶11aは、放射線(γ線等)と相互作用を及ぼして電荷を生成する領域をなしており、CdTe、CdZnTe、GaAs、TlBr等のいずれかの単結晶をスライスした後に、前記の電極分割溝を加工することによって形成されている。本実施形態では、半導体結晶11aの厚さを、例えば、1.5mm、アノード電極およびカソード電極を形成する面の寸法を、例えば、6.6mm×5.0mmの薄板状体としてある。
一方の信号読出電極としてのアノード電極14A,14Bは、In、Al、Ti、Pt、Auのいずれかを用いて形成されており、また、他方のバイアス印加電極としてのカソード電極15は、PtまたはAuのいずれかを用いて形成されている。アノード電極14Aの寸法は、例えば、1.5mm×5.0mm、アノード電極14Bの寸法は、例えば、1.6mm×5.0mm、また、カソード電極15の寸法は、例えば、6.6mm×5.0mmとしてある。
また、アノード電極板12Aがアノード電極14Aに接する部分の寸法は、例えば、1.5mm×5.0mmとしてあり、アノード電極板12Bが、アノード電極14Bに接する部分の寸法は、例えば、1.6mm×5.0mmとしてある。また、カソード電極板13がカソード電極15に接する部分の寸法は、例えば、6.6mm×5.0mmとしてある。
なお、前記した各寸法は、一例を示すものであり、前記各寸法に限定される趣旨ではない。
ここで、このようなアノード電極14A、14B、およびカソード電極15を備えた半導体素子11の製作工程を説明する。
はじめに、CdTe結晶の一方の面に電子ビーム蒸着法によって、Inを約100nm被着する。その後、他方の面に無電解メッキ法等によってPtを約50nm被着し、カソード電極15を形成する。
次に、ダイシングソーによって、前記した電極分割溝を形成し、Inを分割してアノード電極14Aおよびアノード電極14Bを形成する。また、この場合、CdTeの上面の一部にも電極分割溝が同時に形成されるように加工を行い、半導体結晶11aを作製する。
これによってInからなるアノード電極14Aおよびアノード電極14Bと、Ptからなるカソード電極15とを備えた半導体素子11が得られる。
このようにして得られた半導体素子11に、図1(c)に示すように、アノード電極14A、アノード電極14B、カソード電極15と、アノード電極板12A、アノード電極板12B、カソード電極板13を、それぞれ導電性接着剤によって接続することで、検出器1(図1(a)参照)が作製される。
ここで、アノード電極板12A、12B、およびカソード電極板13は、薄板状の部材であり、例えば、鉄−ニッケル合金、鉄−ニッケル−コバルト合金、クロム、タンタルのうち、少なくとも1つから構成される。導電性接着剤としては、例えば、金属粉(銀)などの導電性粒子を有機高分子材料からなる絶縁性の樹脂バインダ中に分散したものが用いられる。
次に、前記した検出器1を用いて構成される放射線検出装置30について説明する。
放射線検出装置30の検出器1は、図2に構造を簡略化して示すように、カソード電極板13側に、直流高圧電源16が接続され、アノード電極14Aおよびアノード電極14B側が抵抗を介して接地されるとともに、アナログ計測回路40に設けられた信号処理回路40Aあるいは信号処理回路40Bに接続されている。直流高圧電源16は、検出器1に電荷収集用の電圧として、−500〜−800Vを印加する。
アナログ計測回路40は、検出器1と接続されてこの検出器1から出力される放射線検出信号(γ線検出信号)を処理する信号処理回路40Aおよび信号処理回路40Bを有する。信号処理回路40Aは、検出器1のアノード電極14Aに、信号処理回路40Bは、アノード電極14Bにそれぞれ対応して設けられている。このような信号処理回路40Aおよび信号処理回路40Bは、検出器1の1つのチャンネルに対応して設けられている。
信号処理回路40Aは、γ線検出信号に基づきγ線の波高値を求めることを目的として、チャージアンプ(前置増幅器)41A、極性アンプ(線形増幅器)42A、バンドパスフィルタ43A、および波高分析回路44Aを備えている。そして、これらのチャージアンプ41A、極性アンプ42A、バンドパスフィルタ43A、および波高分析回路44Aが、この順に接続されている。この点は、40Bにおける、41B〜44Bも同じである。
検出器1のアノード電極14Aから出力されたγ線検出信号は、チャージアンプ41A、極性アンプ42Aで増幅される。増幅されたγ線検出信号は、バンドパスフィルタ43Aを経て波高分析回路44Aに入力される。波高分析回路44Aは、検出信号の最大値、つまり検出したγ線のエネルギーに比例したγ線検出信号の波高値を保持する。
信号処理回路40Aあるいは信号処理回路40Bの、波高分析回路44Aあるいは波高分析回路44Bから出力される信号は、アナログの波高値信号であり、ADC(アナログ・デジタル変換器)17でデジタル信号に変換される。ADC17は、変換した波高値のデジタル信号を、データ処理装置33に出力する。データ処理装置33は、入力された波高値ごとに波高値信号をカウントする。データ処理装置33は、例えば、波高値(γ線のエネルギー)に対するそのカウント数(γ線のカウント数)の情報等を作成し、記憶装置(図示せず)に記憶させる。データ処理装置33で作成された情報は表示装置34で表示される。
ここで、放射線検出装置30の作用について適宜図面を参照しながら説明する。図3(a)に示すように、γ線が検出器1(図1(a)参照、以下同じ)の半導体結晶11aに入射し光電効果によって一次電子Eを生じると、半導体結晶11aでは、一次電子Eと相互作用を及ぼし合うことによって、γ線が持つエネルギーに比例した数の正孔および電子が対になって生成される。アノード電極14Aとカソード電極15との間には、直流高圧電源16(図2参照)から、−500〜−800Vの電圧が印加されている。アノード電極14Bとカソード電極15との間も同じである。しかし、相互作用はアノード電極14Aの領域で行われている。このため、正孔はカソード電極15のカソード電極板13(図1(a)参照)側に移動し、電子はアノード電極14Aのアノード電極板12A(図1(a)参照)側に移動する。そして、検出器1は、アノード電極板12Aに収集された電子の量、つまり電荷の大きさによって、半導体結晶11aに入射したγ線のエネルギーの大きさを示すγ線検出信号を出力する。正孔・電子とも最短距離の電極に収集されるので、アノード電極14Aの領域で相互作用が生じると、アノード電極14Bに収集されることはない。これにより、合わせて4つのアノード電極板12Aおよび12Bのうち、どの電極板にγ線検出信号を出力するかによって、半導体結晶11a中のγ線が入射した位置の情報を得ることができる。
ここで、γ線の入射位置が、例えば、図3(b)(c)に示すように、半導体結晶11aの端部近傍である場合を考えると、γ線の入射による光電効果で生じた一次電子Eは、図3(b)に示すように、γ線が持つエネルギーに比例した数の正孔および電子を対にして生成する場合と、図3(c)に示すように、半導体結晶11a内でキャリアを生成する前に、半導体結晶11aの側面から空気中へ飛び出す場合がある。
半導体素子11の端部では、一次電子Eの空気中へ飛び出す割合が高くなる。すなわち、半導体素子11の端部では、入射する放射線に対して不感となる体積が大きいことになる。
例えば、511keVのγ線が、図1(a)に示すように、半導体結晶11aの寸法1.5mm×6.6mmの面に垂直な方向から入射する場合には、半導体結晶11aの側面となる5.0mm×1.5mmの面から深さ約0.1mmの深さまでの範囲が、不感になると計算できる。
そこで、前記した放射線検出装置30に搭載する検出器1の半導体結晶11aにおいて、図1(a)に示すように、アノード電極14Aに対応するチャンネルの検出部の体積は、5.0mm×1.5mm×(0.05mm+1.5mm+0.05mm)であるのに対して、アノード電極14Bに対応するチャンネルの検出部の体積は、5.0mm×1.5mm×(0.05mm+1.6mm+0.05mm)となる。すなわち、アノード電極14Bに対応するチャンネルの検出部の体積が、アノード電極14Aに対応するチャンネルの検出部の体積よりも、5.0mm×1.5mm×0.1mmだけ大きくなっている。
これによって、検出器1のうち、アノード電極14Aに対応するチャンネルの511keVγ線に対する感度と、アノード電極14Bに対応するチャンネルの511keVγ線に対する感度の差を小さくすることが可能になる。
前記したように、検出器1から出力されたγ線検出信号は、図2に示すように、アノード電極14Aに対応して、チャージアンプ41Aと、極性アンプ42Aとで増幅され、バンドパスフィルタ43Aを通過した後に波高分析回路44Aに入力される。波高分析回路44Aは、バンドパスフィルタ43Aを通過したγ線検出信号を分析することによって、アナログ波高値信号を生成する。このアナログの波高値信号は、ADC17でデジタルの波高値信号に変換され、データ処理装置33に出力される。
また、検出器1から出力されたγ線検出信号は、図2に示すように、アノード電極14Bに対応して、チャージアンプ41Bと、極性アンプ42Bとで増幅され、バンドパスフィルタ43Bを通過した後に波高分析回路44Bに入力される。波高分析回路44Bは、バンドパスフィルタ43Bを通過したγ線検出信号を分析することによって、アナログ波高値信号を生成する。このアナログの波高値信号は、ADC17でデジタルの波高値信号に変換され、データ処理装置33に出力される。
その後、データ処理装置33は、入力された波高値信号に基づいて、検出器1で受けたγ線のエネルギーの大きさを表わす波高値を演算し、波高値(γ線のエネルギー)に対するそのカウント数(γ線のカウント数)の情報(例えば、γ線スペクトルのグラフ)を作成する。データ処理装置33で作成された情報(γ線スペクトルのグラフ等)は表示装置34に表示される。
ここで、本発明者らは、前記の検出器1を256個用いて検出チャンネル数1024(=256×4)の放射線検出装置30を構成し、18F−FDG(フルオロデオキシグルコース)の511keVγ線を使用して、その特性を測定した。この場合、256個の検出器1から得た1024個の波高値信号に基づいて、エネルギー511keVのγ線スペクトルを1024個得ることができる。そして、得られたγ線スペクトルのエネルギー511keV±5%の範囲のカウント数を算出し、放射線検出装置としての感度のばらつきを検討した。
その結果、前記1024個の波高値信号の感度の標準偏差として平均値の1.5%以下という値を得ることができた。
これに対して、比較例として、次のような検出器を製作し、これを前記した放射線検出装置30に用いて、同様に特性を測定した。
比較例の検出器としては、半導体結晶の中央部に対応するチャンネルの検出部の体積と半導体結晶の端部に対応するチャンネルの検出部の体積を同じにしたものを使用した。つまり、図4に示すように、半導体放射線検出器(以下では単に、検出器という)101に用いた半導体結晶111aは、厚さが1.5mm、アノード電極およびカソード電極を形成する面の寸法が6.4mm×5.0mmの薄板状体とした。アノード電極114Aおよびアノード電極114Bの寸法は、ともに1.5mm×5.0mm、カソード電極115の寸法は、6.4mm×5.0mmとした。アノード電極板112Aがアノード電極114Aに接する部分の寸法、およびアノード電極板112Bがアノード電極114Bに接する部分の寸法は、ともに1.5mm×5.0mm、そしてカソード電極板113がカソード電極115に接する部分の寸法は、6.4mm×5.0mmとした。アノード電極114Aとアノード電極114Bに対応するチャンネルの検出部の体積は、ともに5.0mm×1.5mm×(0.05mm+1.5mm+0.05mm)とした。
この場合も、比較例の検出器101を256個用いてチャンネル数1024の放射線検出装置30(図3参照)を構成し、18F−FDGの511keVγ線を使用して、その特性を測定した。そして、得られた1024個のγ線スペクトルについて、エネルギー511keV±5%の範囲のカウント数を算出し、放射線検出装置としての感度のばらつきを検討した。
その結果、1024個の検出チャンネルのうち、アノード電極114Bに対応する512個のチャンネルの感度の平均値は、アノード電極114Aに対応する512個のチャンネルの感度の平均値に比べて約7%低く、1024個の全チャンネルの感度の標準偏差は平均値の約4%という結果になり、いずれも、本実施形態の前記結果を下回った。
以上説明した本実施形態の検出器1は、図5に示すように、核医学診断装置としてのPET撮像装置30’に適用することができる。このPET撮像装置30’は、中央部分に円柱状の計測空間(計測領域)31aを有する撮像装置31、被検体(被検診者)Hを支持して長手方向に移動可能なベッド32、データ処理装置(画像情報作成装置:コンピュータ等)33、および表示装置34を主として備えて構成される。
撮像装置31には、計測空間31aを取り囲むようにして、前記検出器1が配線基板に多数搭載されたプリント基板Pが配置されている。
このようなPET撮像装置30’では、前記した放射線検出装置30に用いられる直流高圧電源16、アナログ計測回路40、図示しないADC(アナログデジタル変換器)、データ処理回路(デジタルASIC)17等を備え、波高値、時刻、検出器1の検出チャンネルIDを有するパケットが作成され、この作成されたパケットがデータ処理装置33に入力されるようになっている。
検査時には、各検出器1のアノード電極14Aおよび14Bとカソード電極15との間に直流高圧電源16からの直流高電圧が印加され、被検体Hの体内から放射性薬剤に起因して放射されたγ線が、検出器1によって検出される。すなわち、PET用の放射性薬剤から放出された陽電子の消滅時に一対のγ線が約180°の反対方向に放出され、多数の検出器1のうちの別々の検出チャンネルで検出される。検出されたγ線検出信号は、該当するアナログ計測回路40からADCを介してデジタルASIC17に入力されて前記したように信号処理が行われ、γ線を検出した検出チャンネルの位置情報およびγ線の検出時刻情報がデータ処理装置33に入力される。そして、データ処理装置33によって、1つの陽電子の消滅により発生した一対のγ線を一個として計数(同時計測)し、その一対のγ線を検出した2つの検出チャンネルの位置をそれらの位置情報を基に特定する。また、データ処理装置33は、同時計測で得た計数値および検出チャンネルの位置情報を用いて、放射性薬剤の集積位置、すなわち悪性腫瘍位置での被検体Hの断層像情報(画像情報)を作成する。この断層像情報は表示装置34に表示される。
このようなPET撮像装置30’によれば、多数の検出器1の全検出チャンネルの感度のばらつきを小さくすることができる。それにより、放射性薬剤の計測位置ごとの感度を均一にし、放射性薬剤計測の定量性を向上することができる。
以下では、本実施形態において得られる効果を説明する。
検出器1を構成する半導体結晶11aにおいて、半導体素子11の端部のアノード電極14Bに対応するチャンネルの検出部の体積を、半導体素子11の隣接するアノード電極14Aに対応するチャンネルの検出部の体積よりも大きくしたので(横幅を広くしたので)、半導体素子11の端部のチャンネルにおいて、隣接するチャンネルに比べて半導体結晶11aの側面の面積が大きいために、空気中へ飛び出す一次電子の割合が多くなり、入射する放射線に対して不感となる体積が大きくなるが、検出部の体積自体が隣接するチャンネルよりも大きいので、その結果、半導体素子11の端部のチャンネルの感度と、隣接するチャンネルの感度の差を小さくすることができる。
つまり、一つの半導体結晶11aに、チャンネルをなす検出部が一の方向に沿って三つ以上設けられた検出器1において、チャンネルごとの感度を均一にすることができる。
したがって、本実施形態の検出器1を用いたPET撮像装置30’においては、多数の検出器1を有しながらも、全検出チャンネルの感度のばらつきを小さくすることができる。その結果、放射性薬剤の計測位置ごとの感度を均一にし、放射性薬剤計測の定量性を向上することができる。
(第2実施形態)
本発明の第2実施形態の検出器を説明する。本実施形態の検出器201は、図6(b)に示すように、複数チャンネルの検出部を有する半導体放射線検出器(以下では単に、検出器という)201を構成する半導体素子211が、奥行き方向に形状と寸法を異なるように形成した点が第1実施形態と異なっている。
すなわち、アノード電極214Aに対応する検出部の体積は、5.0mm×1.5mm×(0.05mm+1.5mm+0.05mm)であるのに対して、アノード電極214Bに対応する検出部の体積は、5.3mm×1.5mm×(0.05mm+1.5mm+0.05mm)としてある。つまり、アノード電極214Bに対応する検出部の体積を、アノード電極214Aに対応する検出部の体積よりも0.3mm×1.5mm×(0.05mm+1.5mm+0.05mm)だけ大きくしてある。
また、これに合わせて、アノード電極214Bの面積を、隣接するアノード電極214Aの面積よりも大きくしてある。
ここで、上記の半導体素子211の製作工程を説明する。
はじめに、厚さ1.5mm、寸法6.4mm×5.3mmのCdTe結晶の一方の面に電子ビーム蒸着法によってInを約100nm被着し、他方の面に無電解メッキ法によってPtを約50nm被着する。その後、水ジェットマイクロレーザ法によって、InおよびPtごとCdTe結晶を切断加工し、さらにダイシングソーによって前記のInの分割とCdTeへの電極分割溝の加工を行って、半導体素子211を作製する。
このような半導体素子211およびアノード電極板212A、212B、213を備えた検出器201は、前記の第1実施形態と同様、図6(b)に示すように、アノード電極214A、アノード電極214B、カソード電極215、アノード電極板212A、アノード電極板212B、カソード電極板213をそれぞれ導電性接着剤によって電気的に接続して構成される。
ここで、本発明者らは、前記の検出器201を256個用いて、図3に示す検出チャンネル数1024の放射線検出装置30を構成し、18F−FDG(フルオロデオキシグルコース)の511keVγ線を使用して、その特性を測定した。この場合、256個の検出器201から得た1024個の波高値信号に基づいて、エネルギー511keVのγ線スペクトルを1024個得ることができる。そして、得られたγ線スペクトルのエネルギー511keV±5%の範囲のカウント数を算出し、放射線検出装置としての感度のばらつきを検討した。
その結果、前記1024個の波高値信号の感度の標準偏差として平均値の1.5%以下という値を得ることができた。
本実施形態の検出器201によれば、半導体素子211が、奥行き方向に形状と寸法を異なるように形成した点が第1実施形態と異なっており、半導体素子211のアノード電極214Bに対応する検出部の体積が、アノード電極214Aに対応する検出部の体積よりも大きくしてあるので、チャンネルごとの感度を均一にすることができる。つまり、前記第1実施形態が横幅を広げて、相互作用する領域を横方向に広げたのに対し、本実施形態では、奥行き方向に相互作用する領域を長く形成して、チャンネルごとの感度が均一になるようにしてある。
以上説明した第1、第2実施形態の検出器1、201は、前記したPET撮像装置30’に限られることはなく、ガンマカメラ、SPECT撮像装置に対しても用いることができる。
このSPECT撮像装置50を、図7を参照して説明する。SPECT撮像装置50は、一対の放射線検出ブロック52,52、回転支持台(回転体)57、データ処理装置33、および表示装置34を備える。
放射線検出ブロック52,52は、回転支持台57に周方向に180°ずれた位置に配置される。具体的には、それぞれの放射線検出ブロック52,52の各ユニット支持部材56(一方のみ図示)が周方向に180°隔てた位置で回転支持台57に取り付けられる。結合基板53を含む複数の検出器ユニット53Aがユニット支持部材56に着脱可能に取り付けられる。検出器1(または201)は、コリメータ55で仕切られる領域Kに多段に複数配置される(不図示)。コリメータ55は、放射線遮蔽材(例えば、鉛、タングステン等)から形成され、放射線(例えば、γ線)を通過する多数の放射線通路を形成している。全結合基板53およびコリメータ55は回転支持台57に設置された遮光・電磁シールド54内に配置される。遮光・電磁シールド54はγ線以外の電磁波の検出器1(または201)等への影響を遮断している。
このようなSPECT撮像装置50では、放射性薬剤が投与された被検体Hが載っているベッド32が移動され、被検体Hは、一対の放射線検出ブロック52の間に移動される。回転支持台57が回転されることによって、各放射線検出ブロック52は被検体Hの周囲を旋回する。放射性薬剤が集積した被検体H内の集積部(例えば、患部)Dから放出されたγ線がコリメータ55の放射線通路を通って対応する検出器1(または201)に入射する。そして、検出器1(または201)は、γ線検出信号を出力し、このγ線検出信号は、前記したアナログ計測回路40(図3参照)等で処理され、その後、データ処理装置33で、波高値(γ線のエネルギー)に対するそのカウント数(γ線のカウント数)の情報等が作成されて、その情報等が表示装置34に表示される。
このような検出器1(201)を用いたSPECT撮像装置50においては、検出器1(201)のチャンネルごとの感度を均一にすることができ、その結果、放射性薬剤の計測位置ごとの感度を均一にし、放射性薬剤計測の定量性を向上することができる。
図8(a)(b)は、検出器の変形例を示す図である。図8(a)に示すように、検出器1は、チャンネルをなす三つの検出部10a〜10cを備えた点が異なっており、一の方向に沿って、端部の検出部10a,10cの体積が、中央の検出部10bの体積よりも大きくなっている。
また、図8(b)に示す検出器1では、前後方向にも分割されており、手前側にチャンネルをなす四つの検出部10a〜10dを備え、後ろ側にチャンネルをなす四つの検出部10a’〜10d’を備えている。この検出器では、端部の検出部10a,10d,10a’,10d’の体積が、中央の検出部10b,10c,10b’,10c’の体積よりも大きくなっている。
また、前記実施形態では、複数のアノード電極14A,14B(214A,214B)により複数のチャンネルの信号読出電極をそれぞれ構成するとともに、一つのカソード電極15(215)でバイアス印加電極を構成したが、これに限られることはなく、複数のカソード電極により複数のチャンネルの信号読出電極をそれぞれ構成するとともに、一つのアノード電極でバイアス印加電極を構成してもよい。
本発明の第1実施形態の半導体放射線検出器を模式的に示した図であり、(a)は斜視図、(b)は半導体放射線検出器を構成する半導体素子の端面図、(c)は分解斜視図である。 信号処理回路を示したブロック図である。 (a)〜(c)は半導体素子へのγ線の入射によるキャリアの生成を示す模式図である。 比較例の半導体放射線検出器を模式的に示した図であり、(a)は斜視図、(b)は半導体放射線検出器を構成する半導体素子の断面図である。 本発明の第1実施形態の半導体検出器を適用した陽電子放出型断層撮像装置を示した概略構成図である。 本発明の第2実施形態の半導体放射線検出器を模式的に示した図であり、(a)は斜視図、(b)は分解斜視図である。 本発明の第1、第2実施形態の半導体放射線検出器を適用した単光子放出断層撮像装置の概略構成図である。 (a)(b)は変形例を模式的に示した斜視図である。
符号の説明
1 検出器(半導体放射線検出器)
10a〜10d 検出部
11 半導体素子(検出素子)
12A アノード電極板
12B アノード電極板
13 カソード電極板
14A,14B アノード電極
15 カソード電極
16 直流高圧電源
30’ PET撮像装置
30 放射線検出装置
31 撮像装置
31a 計測空間(計測領域)
32 ベッド
33 データ処理装置(画像情報作成装置)
34 表示装置
40 アナログ計測回路
40B 信号処理回路
H 被検体
ID 検出チャンネル
K 領域
P プリント基板

Claims (9)

  1. 一つの検出素子に、チャンネルをなす検出部が一の方向に沿って三つ以上設けられた半導体放射線検出器であって、
    前記検出素子の端部に位置する検出部は、その体積が、隣接する前記検出部の体積よりも大きいことを特徴とする半導体放射線検出器。
  2. 複数のアノード電極により複数の前記チャンネルの信号読出電極をそれぞれ構成するとともに、一つのカソード電極でバイアス印加電極を構成したことを特徴とする請求項1に記載の半導体放射線検出器。
  3. 複数のカソード電極により複数の前記チャンネルの信号読出電極をそれぞれ構成するとともに、一つのアノード電極でバイアス印加電極を構成したことを特徴とする請求項1に記載の半導体放射線検出器。
  4. 複数の前記チャンネルの前記検出部に対応する複数の信号読出電極のうち、前記検出素子の端部に位置する前記検出部に対応する前記信号読出電極は、その面積が、隣接する前記検出部に対応する前記信号読出電極の面積よりも大きいことを特徴とする請求項1に記載の半導体放射線検出器。
  5. 前記検出素子を、テルル化カドミウム、テルル化カドミウム亜鉛、ガリウム砒素、臭化タリウムのうちの一つの単結晶で構成したことを特徴とする請求項1に記載の半導体放射線検出器。
  6. 前記検出素子を、テルル化カドミウムで構成し、前記アノード電極をインジウム、アルミニウム、チタンのうちの一つ、前記カソード電極を白金または金で構成したことを特徴とする請求項1に記載の半導体放射線検出器。
  7. 前記検出素子をテルル化カドミウムで構成し、前記アノード電極および前記カソード電極を、白金または金で構成したことを特徴とする請求項1に記載の半導体放射線検出器。
  8. 前記検出素子を臭化タリウムで構成し、前記アノード電極および前記カソード電極を金、白金、アルミニウムのうちの一つで構成したことを特徴とする請求項1に記載の半導体放射線検出器。
  9. 請求項1から請求項8のいずれか1項に記載の半導体放射線検出器を用いた核医学診断装置であって、
    複数の前記半導体放射線検出器が取り付けられた配線基板を有し、被検体を支持するベッドが挿入される計測領域を取り囲み、前記計測領域の周囲に配置された複数のプリント基板と、
    複数の前記半導体放射線検出器から出力された放射線検出信号を基に得られた情報を用いて画像を生成する画像情報作成装置と、を備えたことを特徴とする核医学診断装置。
JP2008103662A 2008-04-11 2008-04-11 半導体放射線検出器および核医学診断装置 Pending JP2009259859A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103662A JP2009259859A (ja) 2008-04-11 2008-04-11 半導体放射線検出器および核医学診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103662A JP2009259859A (ja) 2008-04-11 2008-04-11 半導体放射線検出器および核医学診断装置

Publications (1)

Publication Number Publication Date
JP2009259859A true JP2009259859A (ja) 2009-11-05

Family

ID=41386953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103662A Pending JP2009259859A (ja) 2008-04-11 2008-04-11 半導体放射線検出器および核医学診断装置

Country Status (1)

Country Link
JP (1) JP2009259859A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108277A1 (ja) * 2011-02-10 2012-08-16 株式会社日立製作所 放射線計測装置および核医学診断装置
CN113238277A (zh) * 2021-05-19 2021-08-10 山西医科大学第一医院 红外激励型高分辨率碲锌镉核辐射探测系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108277A1 (ja) * 2011-02-10 2012-08-16 株式会社日立製作所 放射線計測装置および核医学診断装置
US9223030B2 (en) 2011-02-10 2015-12-29 Hitachi, Ltd. Radiation detection equipment and nuclear medicine diagnosis device
CN113238277A (zh) * 2021-05-19 2021-08-10 山西医科大学第一医院 红外激励型高分辨率碲锌镉核辐射探测系统
CN113238277B (zh) * 2021-05-19 2022-08-19 山西医科大学第一医院 红外激励型高分辨率碲锌镉核辐射探测系统

Similar Documents

Publication Publication Date Title
US8063380B2 (en) Semiconductor crystal high resolution imager
US7297955B2 (en) Semiconductor radiation detector, positron emission tomography apparatus, semiconductor radiation detection apparatus, detector unit and nuclear medicine diagnostic apparatus
JP4909847B2 (ja) 核医学診断装置
JP5155808B2 (ja) 半導体放射線検出器および核医学診断装置
JP4247263B2 (ja) 半導体放射線検出器および放射線検出装置
US20020074505A1 (en) Detection of radiation and positron emission tomography
JP2007051896A (ja) 半導体放射線検出器、放射線検出モジュールおよび核医学診断装置
AU2002218600A1 (en) Detection of radiation and positron emission tomography
JP5493027B2 (ja) 撮像装置
JP2006242958A (ja) 放射線検出器,放射線検出素子及び放射線撮像装置
WO2009130782A1 (ja) 半導体検出器ブロック及びこれを用いた陽電子断層撮影装置
JP2009259859A (ja) 半導体放射線検出器および核医学診断装置
JP4464998B2 (ja) 半導体検出器モジュール、および該半導体検出器モジュールを用いた放射線検出装置または核医学診断装置
JP3818317B1 (ja) 核医学診断装置及び核医学診断装置における放射線検出器の識別方法
JP4452838B2 (ja) 半導体検出器ブロック及びこれを用いた陽電子断層撮影装置
JP3815468B2 (ja) 放射線検出器,放射線検出素子及び放射線撮像装置
JP3863890B2 (ja) 陽電子放出型断層撮影装置
Wang et al. Achieving sub-pixel position resolution and sub-millimeter depth resolution using a pixelated CdZnTe detector
JP7320556B2 (ja) ピクセルのサブセットからの光子相互作用特性
JP3863889B2 (ja) 陽電子放出型断層撮影装置
KR102025475B1 (ko) 마이크로패턴 검출기를 이용한 양전자단층촬영장치
Koike et al. A new gamma camera with a Gas Electron Multiplier
WO2015063665A1 (en) Radiation detector and detection method having reduced polarization
JP2005106807A (ja) 半導体放射線検出器、陽電子放出型断層撮影装置、半導体放射線検出装置、検出器ユニット、及び核医学診断装置
JP2005106804A (ja) 陽電子放出型断層撮影装置