JP2009259801A - Conductive particulate and conductive connection structure - Google Patents

Conductive particulate and conductive connection structure Download PDF

Info

Publication number
JP2009259801A
JP2009259801A JP2009068695A JP2009068695A JP2009259801A JP 2009259801 A JP2009259801 A JP 2009259801A JP 2009068695 A JP2009068695 A JP 2009068695A JP 2009068695 A JP2009068695 A JP 2009068695A JP 2009259801 A JP2009259801 A JP 2009259801A
Authority
JP
Japan
Prior art keywords
fine particles
solder layer
conductive fine
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009068695A
Other languages
Japanese (ja)
Other versions
JP5328434B2 (en
Inventor
Hitonori Son
孫  仁徳
Kiyoto Matsushita
清人 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009068695A priority Critical patent/JP5328434B2/en
Publication of JP2009259801A publication Critical patent/JP2009259801A/en
Application granted granted Critical
Publication of JP5328434B2 publication Critical patent/JP5328434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive particulate used for a conductive connection between fine electrodes, excellent in adhesiveness to the electrode, hard to generate cracks in a solder layer because of a shock by a fall and the like, and disconnection by a breakage on the connection interface between the electrode and the conductive particle, and resistive to fatigue even through a repeated heating and cooling operation; and to provide a conductive connection structure using the conductive particulate. <P>SOLUTION: The conductive particle has a solder layer formed on the surface of a resinous particulate. At least one surface-attaching metal selected from a group of palladium, germanium, iron, cobalt and copper is contained in an incompletely covered condition on the surface of the solder layer. The percentage of the surface-attaching metal amounts to 0.001 to 2 wt.% over the total of the metal contained in the solder layer and the surface-attaching metal in the incompletely covered condition on the surface of the solder layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細な電極間の導電接続に用いられ、電極との密着性に優れ、落下等による衝撃でハンダ層の亀裂や、電極と該導電性微粒子との接続界面の破壊による断線が生じにくく、加熱と冷却とを繰返し受けても疲労しにくい導電性微粒子、及び、該導電性微粒子を用いてなる導電接続構造体に関する。 The present invention is used for conductive connection between fine electrodes, has excellent adhesion to the electrode, and cracks of the solder layer due to impact caused by dropping, etc., and breakage of the connection interface between the electrode and the conductive fine particles occur. The present invention relates to conductive fine particles that are difficult to be fatigued even when repeatedly subjected to heating and cooling, and a conductive connection structure using the conductive fine particles.

従来、電子回路基板において、ICやLSIは、電極をプリント基板にハンダ付けすることによって接続されていた。しかし、ハンダ付けでは、プリント基板と、ICやLSIとを効率的に接続することはできなかった。また、ハンダ付けでは、ICやLSIの実装密度を向上させることが困難であった。
これを解決するためにハンダを球状にした、いわゆる「ハンダボール」でICやLSIを基板に接続するBGA(ボールグリッドアレイ)が開発された。BGAを用いれば、チップ又は基板に実装されたハンダボールを高温で溶融させ基板とチップとを接続することができる。したがって、電子回路基板の生産効率が改善され、チップの実装密度が向上した電子回路基板を製造することができる。
Conventionally, in an electronic circuit board, ICs and LSIs are connected by soldering electrodes to a printed circuit board. However, soldering cannot efficiently connect the printed circuit board to the IC or LSI. In addition, it is difficult to improve the mounting density of ICs and LSIs by soldering.
In order to solve this problem, a BGA (ball grid array) has been developed in which the solder is made into a spherical shape, so-called “solder balls” that connect the IC or LSI to the substrate. If BGA is used, a solder ball mounted on a chip or a substrate can be melted at a high temperature to connect the substrate and the chip. Therefore, the production efficiency of the electronic circuit board is improved, and an electronic circuit board with an improved chip mounting density can be manufactured.

しかし、近年、基板の多層化が進み、多層基板は使用環境の影響を受けやすいことから、基板に歪みや伸縮が発生し、基板間の接続部に断線が発生するという問題があった。 However, in recent years, since the number of substrates has been increased and multilayer substrates are easily affected by the use environment, there has been a problem that distortion and expansion / contraction occur in the substrates and disconnection occurs in the connection portion between the substrates.

このような問題に対し、特許文献1には、樹脂微粒子の表面に、導電性の高い金属が含まれる金属層が形成され、さらに、金属層の表面にハンダ層が形成された導電性微粒子が開示されている。このような導電性微粒子を用いれば、柔軟な樹脂微粒子が導電性微粒子に加わる応力を緩和できる。導電性微粒子の最表面にハンダ層等の低融点金属層を形成することにより、電極間を容易に導電接続することができる。 For such a problem, Patent Document 1 discloses a conductive fine particle in which a metal layer containing a highly conductive metal is formed on the surface of a resin fine particle, and a solder layer is further formed on the surface of the metal layer. It is disclosed. If such conductive fine particles are used, the stress applied by the flexible resin fine particles to the conductive fine particles can be relaxed. By forming a low melting point metal layer such as a solder layer on the outermost surface of the conductive fine particles, the electrodes can be easily conductively connected.

しかしながら、樹脂微粒子の表面に、ハンダ層が形成された導電性微粒子が携帯電話等の電子機器に用いられると、落下等の衝撃によってハンダ層に亀裂ができたり、電極と導電性微粒子との接続界面が破壊されたりすることがあった。ハンダ層に亀裂ができたり、接続界面が破壊されたりすると、電極と導電性微粒子との接続が断線してしまうという問題があった。
また、電子機器は使用されると、電子部品の発熱によって、電子機器内部の温度が上がり、電子機器の使用後は、電子機器内部の温度が室温に戻るという加熱−冷却の繰返し、いわゆる「ヒートサイクル」が進行している。このヒートサイクルが繰返されると、ハンダ層の熱疲労が起こり、電極と導電性微粒子との接続界面が破壊され、断線することがあった。
However, when conductive fine particles with a solder layer formed on the surface of resin fine particles are used in electronic devices such as mobile phones, the solder layer can be cracked by impact such as dropping, or the connection between the electrode and conductive fine particles Sometimes the interface was destroyed. When the solder layer is cracked or the connection interface is broken, there is a problem that the connection between the electrode and the conductive fine particles is broken.
In addition, when an electronic device is used, the temperature inside the electronic device rises due to the heat generated by the electronic component. After the electronic device is used, the temperature inside the electronic device returns to room temperature. Cycle "is in progress. When this heat cycle was repeated, thermal fatigue of the solder layer occurred, and the connection interface between the electrode and the conductive fine particles was broken and sometimes disconnected.

特開2001−220691号公報JP 2001-220691 A

本発明は、微細な電極間の導電接続に用いられ、電極との密着性に優れ、落下等による衝撃でハンダ層の亀裂や、電極と該導電性微粒子との接続界面の破壊による断線が生じにくく、加熱と冷却とを繰返し受けても疲労しにくい導電性微粒子、及び、該導電性微粒子を用いてなる導電接続構造体を提供することを目的とする。 The present invention is used for conductive connection between fine electrodes, has excellent adhesion to the electrode, and cracks of the solder layer due to impact caused by dropping, etc., and breakage of the connection interface between the electrode and the conductive fine particles occur. It is an object of the present invention to provide conductive fine particles that are difficult to be fatigued even when subjected to repeated heating and cooling, and a conductive connection structure using the conductive fine particles.

本発明は、樹脂微粒子の表面に、ハンダ層が形成された導電性微粒子であって、パラジウム、ゲルマニウム、鉄、コバルト及び銅からなる群より選択される少なくとも1種の表面付着金属が、前記ハンダ層の表面を完全に被覆しない状態で存在しており、前記ハンダ層に含有される金属と、前記ハンダ層の表面を完全に被覆しない状態で存在している表面付着金属との合計に占める表面付着金属の割合が0.001〜2重量%である導電性微粒子である。
以下に本発明を詳述する。
The present invention provides conductive fine particles in which a solder layer is formed on the surface of resin fine particles, wherein at least one surface-attached metal selected from the group consisting of palladium, germanium, iron, cobalt, and copper is the solder. The surface which is present in a state where the surface of the layer is not completely covered, and occupies the total of the metal contained in the solder layer and the surface-attached metal which is present in a state where the surface of the solder layer is not completely covered It is the electroconductive fine particle whose ratio of an adhering metal is 0.001-2 weight%.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、樹脂微粒子の表面に、ハンダ層が形成された導電性微粒子において、該ハンダ層の表面にパラジウム、ゲルマニウム、鉄、コバルト及び銅からなる群より選択される少なくとも1種の表面付着金属を、ハンダ層の表面を完全に被覆しない状態で存在させるとともに、表面付着金属の量を所定の割合とすることにより、該導電性微粒子と電極とを導電接続させた際に、落下等による衝撃でハンダ層の亀裂や、電極と導電性微粒子との接続界面の破壊による断線が生じにくく、優れた耐熱疲労特性を有するということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention are selected from the group consisting of palladium, germanium, iron, cobalt, and copper on the surface of the solder layer in the conductive fine particles in which the solder layer is formed on the surface of the resin fine particles. At least one kind of surface-attached metal is present without completely covering the surface of the solder layer, and the conductive fine particles and the electrode are conductively connected by setting the amount of the surface-attached metal to a predetermined ratio. At the time, it was found that the solder layer was not easily cracked by an impact caused by dropping or the like, and the disconnection due to the breakage of the connection interface between the electrode and the conductive fine particles was hardly caused, and the present invention was completed. It was.

本発明の導電性微粒子は、樹脂微粒子の表面に、ハンダ層が形成されている。 In the conductive fine particles of the present invention, a solder layer is formed on the surface of the resin fine particles.

本発明の導電性微粒子は、樹脂微粒子の表面に、ハンダ層が形成されているため、導電性微粒子と電極とを導電接続させると、基板の歪みや伸縮が発生したとしても、柔軟な樹脂微粒子が導電性微粒子に加わる応力を緩和できる。
上記樹脂微粒子は特に限定されず、例えば、ポリオレフィン樹脂、アクリル樹脂、ポリアルキレンテレフタレート樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等で構成される樹脂微粒子が挙げられる。
上記ポリオレフィン樹脂は特に限定されず、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリイソブチレン樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂等が挙げられる。上記アクリル樹脂は特に限定されず、ポリメチルメタクリレート樹脂、ポリメチルアクリレート樹脂等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
Since the conductive fine particles of the present invention have a solder layer formed on the surface of the resin fine particles, if the conductive fine particles and the electrode are conductively connected, even if the substrate is distorted or stretched, the resin fine particles are flexible. Can relieve the stress applied to the conductive fine particles.
The resin fine particles are not particularly limited, and include, for example, polyolefin resin, acrylic resin, polyalkylene terephthalate resin, polysulfone resin, polycarbonate resin, polyamide resin, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, and the like. Resin fine particles.
The polyolefin resin is not particularly limited, and examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, polyisobutylene resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, and polytetrafluoroethylene resin. The acrylic resin is not particularly limited, and examples thereof include polymethyl methacrylate resin and polymethyl acrylate resin. These resins may be used alone or in combination of two or more.

上記樹脂微粒子の10%K値の好ましい下限は1000MPa、好ましい上限は15000MPaである。上記10%K値が1000MPa未満であると、樹脂微粒子を圧縮変形させると、樹脂微粒子が破壊されることがある。上記10%K値が15000MPaを超えると、導電性微粒子が電極を傷つけることがある。上記10%K値のより好ましい下限は2000MPa、より好ましい上限は10000MPaである。 The preferable lower limit of the 10% K value of the resin fine particles is 1000 MPa, and the preferable upper limit is 15000 MPa. If the 10% K value is less than 1000 MPa, the resin fine particles may be destroyed when the resin fine particles are compressed and deformed. When the 10% K value exceeds 15000 MPa, the conductive fine particles may damage the electrode. The more preferable lower limit of the 10% K value is 2000 MPa, and the more preferable upper limit is 10,000 MPa.

なお、上記10%K値は、微小圧縮試験器(例えば、島津製作所社製「PCT−200」)を用い、粒子を直径500μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度2.6mN/秒、最大試験荷重10gの条件下で圧縮した場合の圧縮変位(mm)を測定し、下記式により求めることができる。
K値(N/mm)=(3/√2)・F・S−3/2・R−1/2
F:粒子の10%圧縮変形における荷重値(N)
S:粒子の10%圧縮変形における圧縮変位(mm)
R:粒子の半径(mm)
The 10% K value is determined by using a micro compression tester (for example, “PCT-200” manufactured by Shimadzu Corporation), and using a smooth indenter end face of a diamond cylinder having a diameter of 500 μm and a compression speed of 2.6 mN / sec. The compression displacement (mm) when compressed under the condition of a maximum test load of 10 g can be measured and determined by the following formula.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of particles (N)
S: Compression displacement (mm) in 10% compression deformation of particles
R: radius of particle (mm)

上記樹脂微粒子は、平均粒子径の好ましい下限が1μm、好ましい上限が2000μmである。平均粒子径が1μm未満であると、樹脂微粒子が凝集しやすく、凝集した樹脂微粒子を用いて得られた導電性微粒子は隣接電極間を短絡させることがある。平均粒子径が2000μmを超えると、異方性導電材料に適した粒子径を越えてしまうことがある。上記平均粒子径のより好ましい下限は30μm、より好ましい上限は1500μmである。上記平均粒子径の更に好ましい下限は100μm、更に好ましい上限は1000μmである。
なお、上記樹脂微粒子の平均粒子径は、光学顕微鏡、又は、電子顕微鏡を用いて無作為に選んだ50個の樹脂微粒子を観察して得られた直径の平均値を意味する。
The resin fine particles have a preferable lower limit of the average particle diameter of 1 μm and a preferable upper limit of 2000 μm. When the average particle diameter is less than 1 μm, the resin fine particles are likely to aggregate, and the conductive fine particles obtained using the aggregated resin fine particles may short-circuit between adjacent electrodes. When the average particle diameter exceeds 2000 μm, the particle diameter suitable for the anisotropic conductive material may be exceeded. A more preferable lower limit of the average particle diameter is 30 μm, and a more preferable upper limit is 1500 μm. The more preferable lower limit of the average particle diameter is 100 μm, and the more preferable upper limit is 1000 μm.
The average particle diameter of the resin fine particles means an average value of diameters obtained by observing 50 resin fine particles randomly selected using an optical microscope or an electron microscope.

また、上記樹脂微粒子は、CV値の好ましい上限が15%である。CV値が15%を超えると、得られた導電性微粒子の接続信頼性が低下することがある。CV値のより好ましい上限は10%である。なお、CV値は、標準偏差を平均粒子径で割った値の百分率(%)で示される数値である。 The resin fine particles have a preferred upper limit of CV value of 15%. If the CV value exceeds 15%, the connection reliability of the obtained conductive fine particles may be lowered. A more preferable upper limit of the CV value is 10%. The CV value is a numerical value indicated by a percentage (%) of a value obtained by dividing the standard deviation by the average particle diameter.

上記樹脂微粒子を作製する方法は特に限定されず、例えば、重合法による方法、高分子保護剤を用いる方法、界面活性剤を用いる方法等が挙げられる。
上記重合法による方法は特に限定されず、乳化重合、懸濁重合、シード重合、分散重合、分散シード重合等の重合法による方法が挙げられる。
The method for producing the resin fine particles is not particularly limited, and examples thereof include a polymerization method, a method using a polymer protective agent, and a method using a surfactant.
The method by the said polymerization method is not specifically limited, The method by polymerization methods, such as emulsion polymerization, suspension polymerization, seed polymerization, dispersion polymerization, and dispersion seed polymerization, is mentioned.

本発明の導電性微粒子は、上記樹脂微粒子の表面に、ハンダ層が形成されている。上記ハンダ層は、リフロー工程により溶融して電極に接合し、ハンダ層と電極とが面接触するため、接続信頼性が高くなる。なお、上記リフロー工程は、「基板上の電子部品を接続する箇所に予め低融点の金属が含まれるハンダ層を設けた導電性微粒子を供給し、加熱するハンダ付けの工程」を意味する。
また、本発明では、上記ハンダ層は錫を必須金属として含有し、更に、銀、アンチモン、銅、ビスマス、インジウム、ゲルマニウム、アルミニウム、亜鉛、ニッケル等の金属を含有してもよい。上記ハンダ層を形成する金属は特に限定されないが、錫、錫−銀合金、錫−亜鉛合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金等が挙げられる。なお、上記ハンダ層に含有される金属として表面付着金属と同様の金属が含まれることがある。
特に、本発明では、ハンダ層の融点が低下し、ハンダ層の強度が向上することから、錫−銀合金を含有するハンダ層が好ましい。
In the conductive fine particles of the present invention, a solder layer is formed on the surface of the resin fine particles. Since the solder layer is melted and joined to the electrode by the reflow process, and the solder layer and the electrode are in surface contact, the connection reliability is increased. The reflow process means "a soldering process in which conductive fine particles provided with a solder layer containing a metal having a low melting point in advance are supplied to a location where an electronic component on a substrate is connected and heated."
In the present invention, the solder layer contains tin as an essential metal, and may further contain a metal such as silver, antimony, copper, bismuth, indium, germanium, aluminum, zinc, or nickel. Although the metal which forms the said solder layer is not specifically limited, Tin, a tin-silver alloy, a tin-zinc alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy etc. are mentioned. The metal contained in the solder layer may include the same metal as the surface-attached metal.
In particular, in the present invention, a solder layer containing a tin-silver alloy is preferable because the melting point of the solder layer is lowered and the strength of the solder layer is improved.

上記ハンダ層は銀を含有してもよい。上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している表面付着金属との合計に占める銀の割合は特に限定されないが、好ましい下限は0.5重量%、好ましい上限は10重量%である。上記銀の割合が0.5〜10重量%の範囲内であると、上記ハンダ層の融点が低下し、上記ハンダ層の強度が向上する。上記銀の割合のより好ましい下限は0.7重量%、より好ましい上限は5重量%である。 The solder layer may contain silver. The proportion of silver in the total of the metal contained in the solder layer and the surface-attached metal present in a state where the surface of the solder layer is not completely covered is not particularly limited, but the preferred lower limit is 0.5 weight. %, And a preferred upper limit is 10% by weight. When the silver ratio is in the range of 0.5 to 10% by weight, the melting point of the solder layer is lowered, and the strength of the solder layer is improved. A more preferable lower limit of the silver ratio is 0.7% by weight, and a more preferable upper limit is 5% by weight.

上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している表面付着金属との合計に占める錫の割合は特に限定されないが、錫以外の金属の割合の残部を錫の含有量とすることができる。上記ハンダ層に含有される金属と、上記ハンダ層の表面に付着している表面付着金属との合計に占める錫の割合の好ましい下限は88重量%、好ましい上限は99.499重量%である。また、上記ハンダ層の表面に付着している表面付着金属との合計に占める錫の割合のより好ましい下限は89重量%である。 The ratio of tin in the total of the metal contained in the solder layer and the surface-attached metal present in a state where the surface of the solder layer is not completely covered is not particularly limited, but the ratio of the metal other than tin The balance can be the tin content. The preferable lower limit of the ratio of tin in the total of the metal contained in the solder layer and the surface-attached metal attached to the surface of the solder layer is 88% by weight, and the preferable upper limit is 99.499% by weight. A more preferable lower limit of the ratio of tin in the total of the surface-attached metal adhering to the surface of the solder layer is 89% by weight.

上記ハンダ層の厚さは特に限定されないが、好ましい下限は1μm、好ましい上限は50μmである。上記ハンダ層の厚さが1μm未満であると、導電性微粒子を電極に接合できないことがある。上記ハンダ層の厚さが50μmを超えると、上記ハンダ層の形成時に導電性微粒子が凝集することがある。上記ハンダ層の厚さのより好ましい下限は3μm、より好ましい上限は40μmである。
なお、上記ハンダ層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均した厚さである。
Although the thickness of the said solder layer is not specifically limited, A preferable minimum is 1 micrometer and a preferable upper limit is 50 micrometers. When the thickness of the solder layer is less than 1 μm, the conductive fine particles may not be bonded to the electrode. When the thickness of the solder layer exceeds 50 μm, the conductive fine particles may agglomerate during the formation of the solder layer. The more preferable lower limit of the thickness of the solder layer is 3 μm, and the more preferable upper limit is 40 μm.
The thickness of the solder layer is a thickness obtained by observing and measuring a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and arithmetically averaging the measured values.

本発明の導電性微粒子は、パラジウム、ゲルマニウム、鉄、コバルト及び銅からなる群より選択される少なくとも1種の表面付着金属が、上記ハンダ層の表面を完全に被覆しない状態で存在している。
上記表面付着金属が上記ハンダ層の表面を完全に被覆しない状態で存在している導電性微粒子を、基板等の電極の接続に用いると、リフロー後に導電性微粒子と電極との接続界面に、微細な結晶組織を有する金属間化合物が形成される。結晶組織が大きい金属間化合物は硬くて脆いが、結晶組織が微細化されると、硬くて脆い性質が緩和される。したがって、導電性微粒子と電極との接続界面の接合強度が改善されるため、落下等による衝撃でハンダ層の亀裂や、接続界面の破壊が生じにくくなる。さらに、加熱と冷却とを繰返し受けても疲労しにくい導電性微粒子が得られる。
また、結晶組織が微細化された金属間化合物がアンカー効果を発揮することも考えられるため、落下等による衝撃でハンダ層の亀裂や、接続界面の破壊が生じにくくなる。
In the conductive fine particles of the present invention, at least one surface-attached metal selected from the group consisting of palladium, germanium, iron, cobalt, and copper is present in a state that does not completely cover the surface of the solder layer.
When conductive fine particles that exist in a state where the surface-adhering metal does not completely cover the surface of the solder layer are used for connecting electrodes such as substrates, fine particles are formed at the interface between the conductive fine particles and the electrodes after reflow. An intermetallic compound having a proper crystal structure is formed. An intermetallic compound having a large crystal structure is hard and brittle, but when the crystal structure is refined, the hard and brittle nature is relaxed. Accordingly, since the bonding strength of the connection interface between the conductive fine particles and the electrode is improved, the solder layer is hardly cracked or the connection interface is not easily broken by an impact caused by dropping or the like. Furthermore, conductive fine particles that are not easily fatigued even when subjected to repeated heating and cooling can be obtained.
In addition, it is conceivable that an intermetallic compound with a refined crystal structure exerts an anchor effect, so that it is difficult to cause cracks in the solder layer or breakage of the connection interface due to impact due to dropping or the like.

また、銅の表面に、ニッケル−リン層、金層が順次形成された電極に、錫を含有するハンダ層が最表面に形成された導電性微粒子を搭載し、リフローすると、導電性微粒子と電極との接続界面にCuSn、(Cu,Ni)Sn等の金属間化合物が形成される。CuSn、(Cu,Ni)Sn等の金属間化合物は結晶の対称性が低いため、接続界面に応力が発生したり、接続界面が加熱されたりすると、金属間化合物の結晶に歪が発生することがある。特に上記表面付着金属としてパラジウムを用いた場合は、パラジウムの原子半径(137pm)は、銅の原子半径(128pm)より大きく、錫の原子半径(141pm)より小さいため、CuSn、(Cu,Ni)Sn等の金属間化合物の格子サイトの一部の原子がパラジウムに置換されることがある。格子サイトの一部の原子がパラジウムに置換されると、金属間化合物の結晶の歪が発生しにくくなるため、導電性微粒子と電極との接続界面の接合強度が向上し、加熱と冷却とを繰返し受けても疲労しにくくなると考えられる。 In addition, when conductive fine particles having a solder layer containing tin formed on the outermost surface are mounted on an electrode in which a nickel-phosphorous layer and a gold layer are sequentially formed on the surface of copper and reflowed, the conductive fine particles and the electrode An intermetallic compound such as Cu 6 Sn 5 , (Cu, Ni) 6 Sn 5 is formed at the connection interface. Since intermetallic compounds such as Cu 6 Sn 5 and (Cu, Ni) 6 Sn 5 have low crystal symmetry, when stress is generated at the connection interface or when the connection interface is heated, the intermetallic compound crystal is formed. Distortion may occur. In particular, when palladium is used as the surface-attached metal, the atomic radius of palladium (137 pm) is larger than the atomic radius of copper (128 pm) and smaller than the atomic radius of tin (141 pm), so Cu 6 Sn 5 , (Cu , Ni) 6 Sn 5 , some atoms of lattice sites of intermetallic compounds may be substituted with palladium. When some atoms in the lattice sites are replaced with palladium, the intermetallic compound crystals are less likely to be distorted. Therefore, the bonding strength at the connection interface between the conductive fine particles and the electrode is improved, and heating and cooling are performed. It is considered that fatigue is less likely to occur repeatedly.

さらに、上記表面付着金属としてパラジウムを用いる場合は、上記ハンダ層の表面に、パラジウムが存在していることで、リフロー工程において、導電性微粒子と電極との接続界面に、パラジウムと錫との金属間化合物が優先的に形成される。その結果、上記パラジウムと錫との金属間化合物が、上記ニッケル−リン層由来のニッケルのハンダ層への拡散を抑制するため、導電性微粒子と電極との接続界面の接合強度を低下させると考えられる、リン濃縮層の形成が防止される。 Further, when palladium is used as the surface-attached metal, the presence of palladium on the surface of the solder layer allows the metal of palladium and tin to be connected to the connection interface between the conductive fine particles and the electrode in the reflow process. Intermetallic compounds are preferentially formed. As a result, the intermetallic compound of palladium and tin suppresses the diffusion strength of nickel derived from the nickel-phosphorous layer into the solder layer, and thus reduces the bonding strength of the connection interface between the conductive fine particles and the electrode. Formation of the phosphorus-enriched layer is prevented.

上記ハンダ層の表面に存在するパラジウムの量は、上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在しているパラジウムとの合計に占めるパラジウムの割合で定義される。上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在しているパラジウムとの合計に占めるパラジウムの割合の下限が0.001重量%、上限が2重量%である。パラジウムの割合が0.001重量%未満であると、落下等の衝撃による電極と導電性微粒子との接続界面の破壊を防ぐことができず、断線が生じる。パラジウムの割合が2重量%を超えると、上記導電性微粒子の柔軟性が損なわれたり、リフロー工程で、導電性微粒子を電極に実装することができなかったりする。パラジウムの割合の好ましい下限は0.005重量%、好ましい上限は1重量%、より好ましい上限は0.5重量%である。
なお、上記表面付着金属の割合は、蛍光X線分析装置(島津製作所社製「EDX−800HS」)、誘導結合プラズマ発光分析装置(セイコー電子工業社製「SPS4000」)等を用いて測定することができる。また、上記ハンダ層の表面を完全に被覆しない状態で表面付着金属が存在していることは、電界放射型走査電子顕微鏡FE−SEM(日立製作所社製「S−4100」)等で確認することができる。
The amount of palladium present on the surface of the solder layer is defined as the ratio of palladium in the total of the metal contained in the solder layer and palladium present in a state that does not completely cover the surface of the solder layer. Is done. The lower limit of the proportion of palladium in the total of the metal contained in the solder layer and palladium present in a state where the surface of the solder layer is not completely covered is 0.001 wt%, and the upper limit is 2 wt%. is there. When the ratio of palladium is less than 0.001% by weight, the connection interface between the electrode and the conductive fine particles due to impact such as dropping cannot be prevented, and disconnection occurs. If the proportion of palladium exceeds 2% by weight, the flexibility of the conductive fine particles is impaired, or the conductive fine particles cannot be mounted on the electrode in the reflow process. The preferable lower limit of the proportion of palladium is 0.005% by weight, the preferable upper limit is 1% by weight, and the more preferable upper limit is 0.5% by weight.
The ratio of the metal adhering to the surface should be measured using a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), an inductively coupled plasma emission analyzer (“SPS4000” manufactured by Seiko Denshi Kogyo Co., Ltd.), or the like. Can do. Also, confirm that the surface-attached metal exists without completely covering the surface of the solder layer with a field emission scanning electron microscope FE-SEM (“S-4100” manufactured by Hitachi, Ltd.). Can do.

また、本発明において、上記表面付着金属としてパラジウムを用いる場合は、さらに、上記ハンダ層の表面を完全に被覆しない状態でモリブデンを存在させてもよい。上記ハンダ層の表面に存在するモリブデンの量は特に限定されないが、上記パラジウムと上記モリブデンとの合計に占めるモリブデンの割合が、30重量%以下であることが好ましい。上記モリブデンの割合が、30重量%を超えると、導電性微粒子と電極との接続界面に微細な金属間化合物が形成されず、接続界面の接合強度が低下することがある。 In the present invention, when palladium is used as the surface-attached metal, molybdenum may be further present without completely covering the surface of the solder layer. The amount of molybdenum present on the surface of the solder layer is not particularly limited, but the proportion of molybdenum in the total of palladium and molybdenum is preferably 30% by weight or less. If the proportion of molybdenum exceeds 30% by weight, a fine intermetallic compound may not be formed at the connection interface between the conductive fine particles and the electrode, and the bonding strength at the connection interface may decrease.

本発明において、上記表面付着金属としてゲルマニウムを用いる場合、ゲルマニウムは、錫より酸化されやすいため、錫を含有するハンダ層の酸化を防止する効果があり、ハンダ層の濡れ性の向上が期待される。 In the present invention, when germanium is used as the surface-attached metal, germanium is more easily oxidized than tin, and therefore has an effect of preventing oxidation of the solder layer containing tin and is expected to improve the wettability of the solder layer. .

上記表面付着金属としてゲルマニウムを用いる場合、上記ハンダ層の表面に存在するゲルマニウムの量は、上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在しているゲルマニウムとの合計に占めるゲルマニウムの割合で定義される。上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在しているゲルマニウムとの合計に占めるゲルマニウムの割合の下限が0.001重量%、上限が2重量%である。ゲルマニウムの割合が0.001重量%未満であると、落下等の衝撃による電極と導電性微粒子との接続界面の破壊を防ぐことができず、断線が生じる。ゲルマニウムの割合が2重量%を超えると、上記導電性微粒子の柔軟性が損なわれたり、リフロー工程で、導電性微粒子を電極に実装することができなかったりする。ゲルマニウムの割合の好ましい下限は0.005重量%、好ましい上限は1重量%、より好ましい上限は0.5重量%である。 When germanium is used as the surface adhering metal, the amount of germanium present on the surface of the solder layer is such that the metal contained in the solder layer and germanium present in a state that does not completely cover the surface of the solder layer. And the ratio of germanium to the total. The lower limit of the ratio of germanium in the total of the metal contained in the solder layer and germanium present in a state where the surface of the solder layer is not completely covered is 0.001% by weight, and the upper limit is 2% by weight. is there. If the germanium ratio is less than 0.001% by weight, the connection interface between the electrode and the conductive fine particles due to impact such as dropping cannot be prevented, and disconnection occurs. When the ratio of germanium exceeds 2% by weight, the flexibility of the conductive fine particles is impaired, or the conductive fine particles cannot be mounted on the electrode in the reflow process. The preferable lower limit of the ratio of germanium is 0.005% by weight, the preferable upper limit is 1% by weight, and the more preferable upper limit is 0.5% by weight.

本発明において、上記表面付着金属として鉄を用いる場合、鉄は上記錫を含有するハンダ層の表面を完全に被覆しない状態で存在しているので、リフローの時にハンダ層に含有される錫と鉄とが、優先的に微細な金属間化合物の結晶組織を形成すると考えられる。特に、本発明の導電性微粒子を、最表面に向かって、ニッケル−リンメッキ層、置換金メッキ層が順次形成された電極に実装すると、リフロー時に、錫と鉄とが微細な金属間化合物の結晶組織を形成するため、ニッケル−リンメッキ層由来のニッケルが、ハンダ層へ拡散することを防止できる。ニッケル−リンメッキ層由来のニッケルの拡散が防止されることで、ハンダ層と電極との接続界面の強度を低下させると考えられる、リン濃縮層の形成を抑制することができる。 In the present invention, when iron is used as the surface-adhesive metal, iron exists in a state that does not completely cover the surface of the solder layer containing tin. Therefore, tin and iron contained in the solder layer at the time of reflow are used. And preferentially form a fine intermetallic compound crystal structure. In particular, when the conductive fine particles of the present invention are mounted on an electrode in which a nickel-phosphorous plating layer and a displacement gold plating layer are sequentially formed toward the outermost surface, the crystal structure of a fine intermetallic compound of tin and iron during reflow Therefore, nickel derived from the nickel-phosphorous plating layer can be prevented from diffusing into the solder layer. By preventing diffusion of nickel derived from the nickel-phosphorous plating layer, it is possible to suppress the formation of a phosphorus-enriched layer, which is considered to reduce the strength of the connection interface between the solder layer and the electrode.

上記表面付着金属として鉄を用いる場合、上記ハンダ層の表面に存在する鉄の量は、上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している鉄との合計に占める鉄の割合で定義される。上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している鉄との合計に占める鉄の割合の下限が0.001重量%、上限が2重量%である。鉄の割合が0.001重量%未満であると、落下等の衝撃による電極と導電性微粒子との接続界面の破壊を防ぐことができず、断線が生じる。鉄の割合が2重量%を超えると、上記導電性微粒子の柔軟性が損なわれたり、リフロー工程で、電極に実装することができなかったりする。鉄の割合の好ましい下限は0.005重量%、好ましい上限は1重量%、より好ましい上限は0.5重量%である。 When iron is used as the surface-attached metal, the amount of iron present on the surface of the solder layer is such that the metal contained in the solder layer and the iron present in a state that does not completely cover the surface of the solder layer. And defined as the ratio of iron to the total. The lower limit of the ratio of iron in the total of the metal contained in the solder layer and the iron existing in a state where the surface of the solder layer is not completely covered is 0.001% by weight, and the upper limit is 2% by weight. is there. When the ratio of iron is less than 0.001% by weight, the connection interface between the electrode and the conductive fine particles due to impact such as dropping cannot be prevented, and disconnection occurs. When the ratio of iron exceeds 2% by weight, the flexibility of the conductive fine particles is impaired, or it cannot be mounted on the electrode in the reflow process. The preferable lower limit of the ratio of iron is 0.005% by weight, the preferable upper limit is 1% by weight, and the more preferable upper limit is 0.5% by weight.

また、本発明において、上記表面付着金属として鉄を用いる場合、さらに、上記ハンダ層の表面を完全に被覆しない状態を存在させてもよい。上記ハンダ層の表面に存在する白金の量は特に限定されないが、上記鉄と上記白金との合計に占める白金の割合が、50重量%以下であることが好ましい。上記白金の割合が、50重量%を越えると、導電性微粒子と電極との接続界面に微細な金属間化合物が形成されず、接続界面の接合強度が低下することがある。 In the present invention, when iron is used as the surface-attached metal, there may be a state where the surface of the solder layer is not completely covered. The amount of platinum present on the surface of the solder layer is not particularly limited, but the proportion of platinum in the total of iron and platinum is preferably 50% by weight or less. When the proportion of platinum exceeds 50% by weight, a fine intermetallic compound is not formed at the connection interface between the conductive fine particles and the electrode, and the bonding strength at the connection interface may decrease.

本発明において、上記表面付着金属としてコバルトを用いる場合、上記ハンダ層の表面に存在するコバルトの量は、上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在しているコバルトとの合計に占めるコバルトの割合で定義される。上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在しているコバルトとの合計に占めるコバルトの割合の下限が0.001重量%、上限が2重量%である。コバルトの割合が0.001重量%未満であると、落下等の衝撃による電極と導電性微粒子との接続界面の破壊を防ぐことができず、断線が生じる。コバルトの割合が2重量%を超えると、上記導電性微粒子の柔軟性が損なわれたり、リフロー工程で、導電性微粒子を電極に実装することができなかったりする。また、ハンダ層と電極との接続界面に形成される金属間化合物が大きくなり、接合強度が低下することがある。コバルトの割合の好ましい下限は0.005重量%、好ましい上限は1重量%、より好ましい上限は0.5重量%である。 In the present invention, when cobalt is used as the surface adhering metal, the amount of cobalt present on the surface of the solder layer exists in a state where the metal contained in the solder layer and the surface of the solder layer are not completely covered. It is defined as the ratio of cobalt to the total of cobalt. The lower limit of the proportion of cobalt in the total of the metal contained in the solder layer and the cobalt present in a state where the surface of the solder layer is not completely covered is 0.001% by weight, and the upper limit is 2% by weight. is there. When the proportion of cobalt is less than 0.001% by weight, the connection interface between the electrode and the conductive fine particles due to impact such as dropping cannot be prevented, and disconnection occurs. When the proportion of cobalt exceeds 2% by weight, the flexibility of the conductive fine particles is impaired, or the conductive fine particles cannot be mounted on the electrode in the reflow process. In addition, the intermetallic compound formed at the connection interface between the solder layer and the electrode increases, and the bonding strength may decrease. The preferable lower limit of the proportion of cobalt is 0.005% by weight, the preferable upper limit is 1% by weight, and the more preferable upper limit is 0.5% by weight.

また、本発明において、上記表面付着金属としてコバルトを用いる場合は、さらに、上記ハンダ層の表面を完全に被覆しない状態でアンチモンを存在させてもよい。上記ハンダ層の表面に存在するアンチモンの量は特に限定されないが、上記コバルトと上記アンチモンとの合計に占めるアンチモンの割合が、50重量%以下であることが好ましい。上記アンチモンの割合が、50重量%を超えると、導電性微粒子と電極との接続界面に微細な金属間化合物が形成されず、接続界面の接合強度が低下することがある。 In the present invention, when cobalt is used as the surface-attached metal, antimony may be further present without completely covering the surface of the solder layer. The amount of antimony present on the surface of the solder layer is not particularly limited, but the proportion of antimony in the total of cobalt and antimony is preferably 50% by weight or less. When the proportion of antimony exceeds 50% by weight, a fine intermetallic compound may not be formed at the connection interface between the conductive fine particles and the electrode, and the bonding strength at the connection interface may decrease.

本発明において、上記表面付着金属として銅を用いる場合、銅が存在する導電性微粒子を、基板等の電極の接続に用いると、リフロー後に導電性微粒子と電極との接続界面に、錫と銅との金属間化合物層が形成される。錫と銅との金属間化合物層は表面が粗いため、導電性微粒子と電極との接続界面の接合強度が改善する。また、上記銅が存在する導電性微粒子を電極に実装すると、導電性微粒子と電極との接続界面に、最適な厚さの金属間化合物層が形成されると考えられる。金属間化合物層が薄すぎると接続界面の接合強度が充分ではなく、金属間化合物層が厚すぎると接続界面が硬くて脆くなる。したがって、本発明の導電性微粒子は、落下等による衝撃によっても導電性微粒子と電極との接続界面が破壊されにくく、且つ優れた耐熱疲労特性を有する。 In the present invention, when copper is used as the surface-attached metal, if the conductive fine particles containing copper are used for connection of electrodes such as a substrate, tin and copper are connected to the connection interface between the conductive fine particles and the electrode after reflow. The intermetallic compound layer is formed. Since the surface of the intermetallic compound layer of tin and copper is rough, the bonding strength at the connection interface between the conductive fine particles and the electrode is improved. Further, when the conductive fine particles containing copper are mounted on an electrode, it is considered that an intermetallic compound layer having an optimum thickness is formed at the connection interface between the conductive fine particles and the electrode. If the intermetallic compound layer is too thin, the bonding strength at the connection interface is not sufficient, and if the intermetallic compound layer is too thick, the connection interface is hard and brittle. Therefore, the conductive fine particles of the present invention are less likely to break the connection interface between the conductive fine particles and the electrode even by an impact caused by dropping or the like, and have excellent thermal fatigue characteristics.

上記表面付着金属として銅を用いる場合、上記ハンダ層の表面に存在する銅の量は、上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している銅との合計に占める銅の割合で定義される。上記ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している銅との合計に占める銅の割合の下限が0.001重量%、上限が2重量%である。銅の割合が0.001重量%未満であると、落下等の衝撃による電極と導電性微粒子との接続界面の破壊を防ぐことができず、断線が生じる。銅の割合が2重量%を超えると、上記導電性微粒子の柔軟性が損なわれたり、リフロー工程で、導電性微粒子を電極に実装することができなかったりする。銅の割合の好ましい下限は0.005重量%、好ましい上限は1重量%、より好ましい上限は0.5重量%である。 When copper is used as the surface adhering metal, the amount of copper present on the surface of the solder layer is equal to the metal contained in the solder layer and the copper present in a state that does not completely cover the surface of the solder layer. And defined as the ratio of copper to the total. The lower limit of the proportion of copper in the total of the metal contained in the solder layer and the copper present in a state where the surface of the solder layer is not completely covered is 0.001 wt%, and the upper limit is 2 wt%. is there. If the copper ratio is less than 0.001% by weight, the connection interface between the electrode and the conductive fine particles due to impact such as dropping cannot be prevented, and disconnection occurs. When the ratio of copper exceeds 2% by weight, the flexibility of the conductive fine particles is impaired, or the conductive fine particles cannot be mounted on the electrode in the reflow process. The preferable lower limit of the copper ratio is 0.005% by weight, the preferable upper limit is 1% by weight, and the more preferable upper limit is 0.5% by weight.

本発明において、上記表面付着金属として銅を用いる場合は、さらに、上記ハンダ層の表面を完全に被覆しない状態でモリブデンを存在させてもよい。上記ハンダ層の表面に存在するモリブデンの量は特に限定されないが、上記銅と上記モリブデンの合計に占めるモリブデンの割合が、50重量%以下であることが好ましい。上記モリブデンの割合が、50重量%を超えると、導電性微粒子と電極との接続界面に微細な金属間化合物が形成されず、接続界面の接合強度が低下することがある。 In the present invention, when copper is used as the surface-attached metal, molybdenum may be further present without completely covering the surface of the solder layer. The amount of molybdenum present on the surface of the solder layer is not particularly limited, but the ratio of molybdenum to the total of copper and molybdenum is preferably 50% by weight or less. If the molybdenum content exceeds 50% by weight, a fine intermetallic compound may not be formed at the connection interface between the conductive fine particles and the electrode, and the bonding strength at the connection interface may decrease.

また、本発明において、上記表面付着金属として銅を用いる場合は、さらに、上記ハンダ層の表面を完全に被覆しない状態でバナジウムを存在させてもよい。上記ハンダ層の表面に存在するバナジウムの量は特に限定されないが、上記銅と上記バナジウムとの合計に占めるバナジウムの割合が、50重量%以下であることが好ましい。上記バナジウムの割合が、50重量%を超えると、導電性微粒子と電極との接続界面に微細な金属間化合物が形成されず、接続界面の接合強度が低下することがある。 In the present invention, when copper is used as the surface-attached metal, vanadium may be present without completely covering the surface of the solder layer. The amount of vanadium present on the surface of the solder layer is not particularly limited, but the proportion of vanadium in the total of copper and vanadium is preferably 50% by weight or less. When the proportion of vanadium exceeds 50% by weight, a fine intermetallic compound is not formed at the connection interface between the conductive fine particles and the electrode, and the bonding strength at the connection interface may be lowered.

また、銅の表面に、ニッケル−リン層、金層が順次形成された電極に、錫を含有するハンダ層が最表面に形成された導電性微粒子を搭載し、リフローすると、導電性微粒子と電極との接続界面にCuSn、(Cu,Ni)Sn等の金属間化合物が形成される。CuSn、(Cu,Ni)Sn等の金属間化合物は結晶の対称性が低いため、接続界面に応力が発生したり、接続界面が加熱されたりすると、金属間化合物の結晶に歪が発生することがある。
モリブデンの原子半径(136pm)とバナジウムの原子半径(132pm)とは、銅の原子半径(128pm)より大きく、錫の原子半径(141pm)より小さいため、CuSn、(Cu,Ni)Sn等の金属間化合物の格子サイトの一部がモリブデン又はバナジウムに置換されることがある。格子サイトの一部がモリブデン又はバナジウムに置換されると、金属間化合物の結晶の歪が発生しにくくなる。その結果、導電性微粒子と電極との接続界面の接合強度が向上するため、加熱と冷却とを繰返し受けても疲労しにくくなると考えられる。
In addition, when conductive fine particles having a solder layer containing tin formed on the outermost surface are mounted on an electrode in which a nickel-phosphorous layer and a gold layer are sequentially formed on the surface of copper and reflowed, the conductive fine particles and the electrode An intermetallic compound such as Cu 6 Sn 5 , (Cu, Ni) 6 Sn 5 is formed at the connection interface. Since intermetallic compounds such as Cu 6 Sn 5 and (Cu, Ni) 6 Sn 5 have low crystal symmetry, when stress is generated at the connection interface or when the connection interface is heated, the intermetallic compound crystal is formed. Distortion may occur.
Since the atomic radius of molybdenum (136 pm) and the atomic radius of vanadium (132 pm) are larger than the atomic radius of copper (128 pm) and smaller than the atomic radius of tin (141 pm), Cu 6 Sn 5 , (Cu, Ni) 6 Some of lattice sites of intermetallic compounds such as Sn 5 may be substituted with molybdenum or vanadium. When a part of the lattice site is replaced with molybdenum or vanadium, distortion of crystals of the intermetallic compound hardly occurs. As a result, since the bonding strength at the connection interface between the conductive fine particles and the electrode is improved, it is considered that fatigue is less likely to be caused by repeated heating and cooling.

また、本発明の導電性微粒子は、上記樹脂微粒子と上記ハンダ層との間に、金属層が形成されていてもよい。 In the conductive fine particles of the present invention, a metal layer may be formed between the resin fine particles and the solder layer.

上記金属層は、本発明の導電性微粒子の接続信頼性を高めるために形成される。
上記金属層を形成する金属は特に限定されず、例えば、ニッケル、銅、パラジウム、金、銀、コバルト、チタン、モリブデン等が挙げられる。
本発明の導電性微粒子は、上記樹脂微粒子の表面に、ニッケル層、銅層、ハンダ層が順次形成されていることが好ましい。また、本発明の導電性微粒子は、上記銅層と上記ハンダ層との間に、ニッケル層が形成されていてもよい。
The metal layer is formed in order to improve the connection reliability of the conductive fine particles of the present invention.
The metal forming the metal layer is not particularly limited, and examples thereof include nickel, copper, palladium, gold, silver, cobalt, titanium, and molybdenum.
In the conductive fine particles of the present invention, it is preferable that a nickel layer, a copper layer, and a solder layer are sequentially formed on the surface of the resin fine particles. In the conductive fine particles of the present invention, a nickel layer may be formed between the copper layer and the solder layer.

上記金属層の厚さは特に限定されないが、好ましい下限は0.05μm、好ましい上限は70μmである。上記金属層の厚さが0.05μm未満であると、導電性が充分に得られないことがあり、70μmを超えると、導電性微粒子の柔軟性が損なわれることがある。上記金属層の厚さのより好ましい下限は0.1μm、より好ましい上限は50μmである。
なお、上記銅層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均した厚さである。
Although the thickness of the said metal layer is not specifically limited, A preferable minimum is 0.05 micrometer and a preferable upper limit is 70 micrometers. If the thickness of the metal layer is less than 0.05 μm, sufficient conductivity may not be obtained, and if it exceeds 70 μm, the flexibility of the conductive fine particles may be impaired. A more preferable lower limit of the thickness of the metal layer is 0.1 μm, and a more preferable upper limit is 50 μm.
The thickness of the copper layer is a thickness obtained by observing and measuring a section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM) and arithmetically averaging the measured values.

本発明の導電性微粒子の製造方法は特に限定されず、例えば、以下の方法により製造することができる。 The manufacturing method of the electroconductive fine particles of this invention is not specifically limited, For example, it can manufacture with the following method.

樹脂微粒子とハンダ層との間にハンダ層以外の金属層を形成させる場合は、まず、樹脂微粒子の表面に無電解メッキ、電解メッキ法等により金属層を形成させる。 When a metal layer other than the solder layer is formed between the resin fine particles and the solder layer, first, a metal layer is formed on the surface of the resin fine particles by electroless plating, electrolytic plating, or the like.

次に、金属層の表面に、錫を含有するハンダ層を形成させる。
上記ハンダ層を形成させる方法は特に限定されず、例えば、電解メッキ法、無電解メッキ法等による方法が挙げられる。
Next, a solder layer containing tin is formed on the surface of the metal layer.
The method for forming the solder layer is not particularly limited, and examples thereof include an electrolytic plating method and an electroless plating method.

次に、ハンダ層に含有される金属と、上記ハンダ層の表面を完全に被覆しない状態で存在している表面付着金属との合計に占める表面付着金属の割合が0.001〜2重量%となるように、ハンダ層の表面に表面付着金属を付着させることにより、上記ハンダ層の表面を完全に被覆しない状態で存在させる。
上記ハンダ層の表面に表面付着金属を付着させる方法は、上記ハンダ層が表面付着金属で完全に被覆されなければ特に限定されず、無電解メッキ法、電解メッキ法、スパッタリング法等により、ハンダ層の表面に部分的に表面付着金属を付着させる方法が挙げられる。
上記ハンダ層の表面に表面付着金属を付着させることにより、上記ハンダ層に表面付着金属の成分が含有されていなくとも、落下等による衝撃によっても電極と導電性微粒子との接続界面が破壊されることがなく、断線が生じない。
なお、上記ハンダ層の表面に付着した表面付着金属は、一部が上記ハンダ層中に拡散していてもよい。
Next, the ratio of the surface-attached metal in the total of the metal contained in the solder layer and the surface-attached metal present in a state where the surface of the solder layer is not completely covered is 0.001 to 2% by weight. As described above, the surface-attached metal is attached to the surface of the solder layer so that the surface of the solder layer is not completely covered.
The method of attaching the surface-attached metal to the surface of the solder layer is not particularly limited as long as the solder layer is not completely covered with the surface-attached metal, and the solder layer may be formed by electroless plating, electrolytic plating, sputtering, or the like. And a method of partially attaching a surface-attached metal to the surface of the substrate.
By attaching a surface-attached metal to the surface of the solder layer, the connection interface between the electrode and the conductive fine particles is destroyed by an impact caused by dropping or the like even if the solder layer does not contain a component of the surface-attached metal. There is no disconnection.
Note that a part of the surface-attached metal attached to the surface of the solder layer may be diffused in the solder layer.

上記ハンダ層の表面にパラジウムを付着させる方法としては、無電解メッキ法が好ましい。無電解メッキ法を用いると、無電解メッキ液の濃度、pH、反応温度、メッキ反応時間等を適宜設定することで、パラジウムの割合を制御することができる。 As a method for attaching palladium to the surface of the solder layer, an electroless plating method is preferable. When the electroless plating method is used, the proportion of palladium can be controlled by appropriately setting the concentration, pH, reaction temperature, plating reaction time, and the like of the electroless plating solution.

上記ハンダ層の表面にゲルマニウムを付着させる方法としては、電解メッキ法、スパッタリング法等により、ハンダ層の表面に部分的にゲルマニウムを付着させる方法が挙げられる。 Examples of the method of attaching germanium to the surface of the solder layer include a method of partially attaching germanium to the surface of the solder layer by an electrolytic plating method, a sputtering method, or the like.

上記ハンダ層の表面に鉄を付着させる方法としては、無電解メッキ法、電解メッキ法、スパッタリング法、上記ハンダ層の表面に、鉄のナノ粒子を付着させる方法等により、ハンダ層の表面に部分的に鉄を付着させる方法が挙げられる。 As a method of attaching iron to the surface of the solder layer, an electroless plating method, an electrolytic plating method, a sputtering method, a method of attaching iron nanoparticles to the surface of the solder layer, etc. In particular, there is a method of attaching iron.

上記ハンダ層の表面にコバルトを付着させる方法としては、無電解メッキ法、電解メッキ法、スパッタリング法、上記ハンダ層の表面に、コバルトのナノ粒子を付着させる方法等により、ハンダ層の表面に部分的にコバルトを付着させる方法が挙げられる。 Cobalt can be deposited on the surface of the solder layer by electroless plating, electrolytic plating, sputtering, or by depositing cobalt nanoparticles on the surface of the solder layer. For example, a method of depositing cobalt can be mentioned.

上記ハンダ層の表面に銅を付着させる方法としては、無電解メッキ法が好ましい。無電解メッキ法を用いると、無電解メッキ液の濃度、pH、反応温度、メッキ反応時間等を適宜設定することで、銅の付着量を制御することができる。 As a method of attaching copper to the surface of the solder layer, an electroless plating method is preferable. When the electroless plating method is used, the amount of copper deposited can be controlled by appropriately setting the concentration, pH, reaction temperature, plating reaction time, etc. of the electroless plating solution.

本発明の導電性微粒子は、銅の表面に、ニッケル層、金層が順次形成された電極の接続に用いることができ、特に、銅の表面に、ニッケル−リン層、金層が順次形成された電極の接続に用いることが好ましい。 The conductive fine particles of the present invention can be used for connection of electrodes in which a nickel layer and a gold layer are sequentially formed on the surface of copper, and in particular, a nickel-phosphorus layer and a gold layer are sequentially formed on the surface of copper. It is preferable to use it for connecting other electrodes.

また、本発明の導電性微粒子を用いてなる導電接続構造体もまた、本発明の1つである。 In addition, a conductive connection structure using the conductive fine particles of the present invention is also one aspect of the present invention.

本発明によれば、微細な電極間の導電接続に用いられ、電極との密着性に優れ、落下等による衝撃でハンダ層の亀裂や、電極と該導電性微粒子との接続界面の破壊による断線が生じにくく、加熱と冷却とを繰返し受けても疲労しにくい導電性微粒子、及び、該導電性微粒子を用いてなる導電接続構造体を提供することができる。 According to the present invention, it is used for conductive connection between fine electrodes, has excellent adhesion with the electrode, cracks in the solder layer due to impact due to dropping, etc., and disconnection due to breakage of the connection interface between the electrode and the conductive fine particles Therefore, it is possible to provide conductive fine particles that are less likely to cause fatigue due to repeated heating and cooling, and a conductive connection structure using the conductive fine particles.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)樹脂微粒子の作製
ジビニルベンゼン50重量部と、テトラメチロールメタンテトラアクリレート50重量部とを共重合させ、樹脂微粒子(平均粒子径240μm、CV値0.42%)を作製した。
(Example 1)
(1) Production of resin fine particles 50 parts by weight of divinylbenzene and 50 parts by weight of tetramethylolmethane tetraacrylate were copolymerized to produce resin fine particles (average particle size 240 μm, CV value 0.42%).

(2)ハンダ層の作製
得られた樹脂微粒子10gを無電解ニッケルメッキし、樹脂微粒子の表面に厚さ0.3μmの下地ニッケル層を形成させた。次いで、下地ニッケル層が形成された樹脂微粒子を電解銅メッキすることにより、厚さ10μmの銅層を形成させた。更に、電解メッキをすることにより、厚さ25μmの錫と銀とを含有するハンダ層を形成させた。次いで、電解メッキ液を濾過し、得られた粒子を水で洗浄し、50℃の真空乾燥機で乾燥させ、樹脂微粒子の表面に、下地ニッケル層、銅層、錫と銀とを含有するハンダ層が順次形成された導電性微粒子を作製した。
(2) Preparation of Solder Layer 10 g of the obtained resin fine particles were electroless nickel plated to form a base nickel layer having a thickness of 0.3 μm on the surface of the resin fine particles. Next, electrolytic fine copper plating was performed on the resin fine particles on which the base nickel layer was formed, thereby forming a copper layer having a thickness of 10 μm. Furthermore, a solder layer containing 25 μm thick tin and silver was formed by electrolytic plating. Next, the electrolytic plating solution is filtered, and the obtained particles are washed with water and dried with a vacuum dryer at 50 ° C., and the surface of the resin fine particles contains a base nickel layer, a copper layer, tin and silver. Conductive fine particles in which layers were sequentially formed were produced.

(3)パラジウムの付着
得られた導電性微粒子1.5gを、下記無電解パラジウムメッキ液(液温30℃)30mLに浸漬させ、攪拌した。導電性微粒子を無電解パラジウムメッキ液に浸漬させてから5分間(メッキ反応時間)経過した後、無電解パラジウムメッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面にパラジウムが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。
(3) Adhesion of palladium 1.5 g of the obtained conductive fine particles were immersed in 30 mL of the following electroless palladium plating solution (liquid temperature 30 ° C.) and stirred. After 5 minutes (plating reaction time) have passed since the conductive fine particles were immersed in the electroless palladium plating solution, the electroless palladium plating solution was filtered, and the resulting particles were washed with water and then vacuum dried at 50 ° C. It was dried with a machine. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which palladium adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

無電解パラジウムメッキ液組成
硫酸パラジウム :0.01mol/L
エチレンジアミン :0.05mol/L
クエン酸ナトリウム :0.05mol/L
Electroless palladium plating solution composition Palladium sulfate: 0.01 mol / L
Ethylenediamine: 0.05 mol / L
Sodium citrate: 0.05 mol / L

ハンダ層の表面にパラジウムが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したパラジウムとの合計に占める各金属の割合は、銀3.5重量%、パラジウム0.05重量%であり、残部は錫であった。
なお、下地ニッケル層、銅層、及びハンダ層の厚さは無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均することにより算出した。また、上記ハンダ層の表面にパラジウムが付着していることは、電界放射型走査電子顕微鏡FE−SEM(日立製作所社製「S−4100」)で確認した。以下、同様である。
Conductive fine particles with palladium attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the attached palladium was found. The proportion of each metal occupied was 3.5% by weight of silver, 0.05% by weight of palladium, and the balance was tin.
The thicknesses of the base nickel layer, the copper layer, and the solder layer are measured by observing a cross section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM), and the measured values are arithmetically averaged. Was calculated. Further, it was confirmed with a field emission scanning electron microscope FE-SEM (“S-4100” manufactured by Hitachi, Ltd.) that palladium was adhered to the surface of the solder layer. The same applies hereinafter.

(実施例2)
無電解パラジウムメッキ液の液温を40℃とし、メッキ反応時間を10分としたこと以外は実施例1と同様に、ハンダ層の表面にパラジウムが付着した導電性微粒子を作製した。
ハンダ層の表面にパラジウムが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したパラジウムとの合計に占める各金属の割合は、銀3.5重量%、パラジウム0.5重量%であり、残部は錫であった。
(Example 2)
Conductive fine particles having palladium adhered to the surface of the solder layer were prepared in the same manner as in Example 1 except that the temperature of the electroless palladium plating solution was 40 ° C. and the plating reaction time was 10 minutes.
Conductive fine particles with palladium attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the attached palladium was found. The proportion of each metal occupied was 3.5% by weight of silver, 0.5% by weight of palladium, and the balance was tin.

(実施例3)
無電解パラジウムメッキ液の液温を40℃とし、メッキ反応時間を15分としたこと以外は実施例1と同様に、ハンダ層の表面にパラジウムが付着した導電性微粒子を作製した。
ハンダ層の表面にパラジウムが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したパラジウムとの合計に占める各金属の割合は、銀3.5重量%、パラジウム1.0重量%であり、残部は錫であった。
(Example 3)
Conductive fine particles having palladium adhered to the surface of the solder layer were prepared in the same manner as in Example 1 except that the temperature of the electroless palladium plating solution was 40 ° C. and the plating reaction time was 15 minutes.
Conductive fine particles with palladium attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the attached palladium was found. The proportion of each metal occupied was 3.5% by weight of silver and 1.0% by weight of palladium, and the balance was tin.

(実施例4)
(1)樹脂微粒子の作製、(2)ハンダ層の作製
実施例1と同様の方法で、樹脂微粒子の表面に、下地ニッケル層、銅層、錫と銀とを含有するハンダ層が順次形成された導電性微粒子を作製した。
Example 4
(1) Preparation of resin fine particles, (2) Preparation of solder layer In the same manner as in Example 1, a base nickel layer, a copper layer, and a solder layer containing tin and silver are sequentially formed on the surface of the resin fine particles. Conductive fine particles were prepared.

(3)パラジウムの付着
得られた導電性微粒子1.5gを、下記無電解パラジウム−モリブデンメッキ液(液温35℃)30mLに浸漬させ、攪拌した。導電性微粒子を無電解パラジウム−モリブデンメッキ液に浸漬させてから10分間(メッキ反応時間)経過した後、無電解パラジウム−モリブデンメッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面にパラジウムとモリブデンとが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.02%であった。
(3) Palladium adhesion 1.5 g of the obtained conductive fine particles were immersed in 30 mL of the following electroless palladium-molybdenum plating solution (liquid temperature 35 ° C.) and stirred. After 10 minutes (plating reaction time) has elapsed since the conductive fine particles were immersed in the electroless palladium-molybdenum plating solution, the electroless palladium-molybdenum plating solution was filtered, and the resulting particles were washed with water, then 50 It dried with the vacuum dryer of degreeC. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which palladium and molybdenum were adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.02%.

無電解パラジウム−モリブデンメッキ液組成
硫酸パラジウム :0.01mol/L
次亜リン酸ナトリウム :0.3mol/L
ジエチルアミン :0.06mol/L
クエン酸ナトリウム :0.03mol/L
モリブデン酸ナトリウム :0.005mol/L
Electroless palladium-molybdenum plating solution composition Palladium sulfate: 0.01 mol / L
Sodium hypophosphite: 0.3 mol / L
Diethylamine: 0.06 mol / L
Sodium citrate: 0.03 mol / L
Sodium molybdate: 0.005 mol / L

ハンダ層の表面にパラジウムとモリブデンとが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と、付着したパラジウムとモリブデンとの合計に占める各金属の割合は、銀3.5重量%、パラジウム0.1重量%、モリブデン0.02重量%であり、残部は錫であった。 Conductive fine particles with palladium and molybdenum adhering to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The metal contained in the solder layer and the adhering palladium were analyzed. The proportion of each metal in the total of molybdenum and molybdenum was 3.5% by weight of silver, 0.1% by weight of palladium, 0.02% by weight of molybdenum, and the balance was tin.

(比較例1)
無電解パラジウムメッキを行わずに、ハンダ層の表面にパラジウムを付着させなかったこと以外は、実施例1と同様にして導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は0.81%であった。
(Comparative Example 1)
Conductive fine particles were produced in the same manner as in Example 1 except that electroless palladium plating was not performed and palladium was not attached to the surface of the solder layer. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 0.81%.

(比較例2)
錫、銀及び銅で構成されるハンダボール(千住金属工業社製「M705」平均粒子径300μm(錫:銀:銅=96.5重量%:3重量%:0.5重量%))を導電性微粒子として用いた。
(Comparative Example 2)
Conductive solder balls composed of tin, silver and copper (“M705” manufactured by Senju Metal Industry Co., Ltd., average particle size 300 μm (tin: silver: copper = 96.5 wt%: 3 wt%: 0.5 wt%)) Used as conductive fine particles.

(比較例3)
無電解パラジウムメッキ液の液温を40℃とし、メッキ反応時間を60分としたこと以外は実施例1と同様に、ハンダ層の表面にパラジウムが付着した導電性微粒子を作製した。
ハンダ層の表面にパラジウムが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したパラジウムとの合計に占める各金属の割合は、銀3.45重量%、パラジウム5.0重量%であり、残部は錫であった。
なお、比較例3で得られた導電性微粒子は電極に実装することができなかったため、落下強度試験及び温度サイクル試験は行わなかった。
(Comparative Example 3)
Conductive fine particles having palladium adhered to the surface of the solder layer were prepared in the same manner as in Example 1 except that the temperature of the electroless palladium plating solution was 40 ° C. and the plating reaction time was 60 minutes.
Conductive fine particles with palladium attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the attached palladium was found. The proportion of each metal occupied was 3.45% by weight of silver and 5.0% by weight of palladium, with the balance being tin.
In addition, since the conductive fine particles obtained in Comparative Example 3 could not be mounted on the electrode, the drop strength test and the temperature cycle test were not performed.

(実施例5)
(1)樹脂微粒子の作製、(2)ハンダ層の作製
実施例1と同様にして導電性微粒子を作製した。
(Example 5)
(1) Production of resin fine particles, (2) Production of solder layer Conductive fine particles were produced in the same manner as in Example 1.

(3)ゲルマニウムの付着
得られた導電性微粒子のハンダ層の表面にスパッタリング法によってゲルマニウムを付着させた。ハンダ層の表面にゲルマニウムが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したゲルマニウムとの合計に占める各金属の割合は、銀3.5重量%、ゲルマニウム0.005重量%であり、残部は錫であった。
なお、下地ニッケル層、銅層、及びハンダ層の厚さは無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均することにより算出した。また、上記ハンダ層の表面にゲルマニウムが付着していることは、電界放射型走査電子顕微鏡FE−SEM(日立製作所社製「S−4100」)で確認した。以下、同様である。
(3) Adhesion of germanium Germanium was adhered to the surface of the solder layer of the obtained conductive fine particles by a sputtering method. When the conductive fine particles having germanium adhered to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the total amount of the metal contained in the solder layer and the adhered germanium was calculated. The proportion of each metal occupied was 3.5% by weight of silver and 0.005% by weight of germanium, with the balance being tin.
The thicknesses of the base nickel layer, the copper layer, and the solder layer are measured by observing a cross section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM), and the measured values are arithmetically averaged. Was calculated. Further, it was confirmed with a field emission scanning electron microscope FE-SEM (“S-4100” manufactured by Hitachi, Ltd.) that germanium was adhered to the surface of the solder layer. The same applies hereinafter.

(実施例6)
スパッタリング法の条件を調整したこと以外は、実施例5と同様に導電性微粒子を作製した。ハンダ層に含有される金属と付着したゲルマニウムとの合計に占める各金属の割合は、銀3.5重量%、ゲルマニウム0.1重量%であり、残部は錫であった。
(Example 6)
Conductive fine particles were produced in the same manner as in Example 5 except that the conditions of the sputtering method were adjusted. The proportion of each metal in the total of the metal contained in the solder layer and the attached germanium was 3.5% by weight of silver, 0.1% by weight of germanium, and the balance was tin.

(実施例7)
スパッタリング法の条件を調整したこと以外は、実施例5と同様に導電性微粒子を作製した。ハンダ層に含有される金属と付着したゲルマニウムとの合計に占める各金属の割合は、銀3.5重量%、ゲルマニウム1.0重量%であり、残部は錫であった。
(Example 7)
Conductive fine particles were produced in the same manner as in Example 5 except that the conditions of the sputtering method were adjusted. The ratio of each metal to the total of the metal contained in the solder layer and the attached germanium was 3.5% by weight of silver and 1.0% by weight of germanium, and the balance was tin.

(比較例4)
スパッタリング法の条件を調整したこと以外は、実施例5と同様に導電性微粒子を作製した。ハンダ層に含有される金属と付着したゲルマニウムとの合計に占める各金属の割合は、銀3.5重量%、ゲルマニウム5.0重量%であり、残部は錫であった。
なお、比較例4で得られた導電性微粒子は電極に実装することができなかったため、落下強度試験は行わなかった。
(Comparative Example 4)
Conductive fine particles were produced in the same manner as in Example 5 except that the conditions of the sputtering method were adjusted. The ratio of each metal to the total of the metal contained in the solder layer and the attached germanium was 3.5% by weight of silver, 5.0% by weight of germanium, and the balance was tin.
In addition, since the electroconductive fine particles obtained in Comparative Example 4 could not be mounted on the electrode, the drop strength test was not performed.

(実施例8)
(1)樹脂微粒子の作製、(2)ハンダ層の作製
実施例1と同様にして導電性微粒子を作製した。
(Example 8)
(1) Production of resin fine particles, (2) Production of solder layer Conductive fine particles were produced in the same manner as in Example 1.

(3)鉄の付着
得られた導電性微粒子を、防錆処理された鉄粒子(体積平均粒子径3nm)が分散された分散液に浸漬させ、導電性微粒子の表面に、鉄粒子を付着させた。分散液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面に鉄が付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。
(3) Adhesion of iron The obtained conductive fine particles are immersed in a dispersion liquid in which iron particles (volume average particle diameter 3 nm) subjected to rust prevention are dispersed, and the iron particles are adhered to the surface of the conductive fine particles. It was. The dispersion was filtered, and the resulting particles were washed with water and then dried with a vacuum dryer at 50 ° C. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles having iron adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面に鉄が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した鉄との合計に占める各金属の割合は、銀3.5重量%、鉄0.005重量%であり、残部は錫であった。
なお、上記下地ニッケル層、銅層、及びハンダ層の厚さは無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均することにより算出した。また、上記ハンダ層の表面に鉄が付着していることは、電界放射型走査電子顕微鏡FE−SEM(日立製作所社製「S−4100」)で確認した。以下、同様である。
Conductive fine particles with iron attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The total of the metal contained in the solder layer and the attached iron The proportion of each metal occupied was 3.5% by weight of silver and 0.005% by weight of iron, with the balance being tin.
In addition, the thickness of the said nickel base layer, a copper layer, and a solder layer is measured by observing the cross section of 10 electroconductive fine particles selected at random with a scanning electron microscope (SEM), and a measured value is an arithmetic mean. It was calculated by doing. Moreover, it was confirmed with a field emission scanning electron microscope FE-SEM (“S-4100” manufactured by Hitachi, Ltd.) that iron was adhered to the surface of the solder layer. The same applies hereinafter.

(実施例9)
分散液の鉄粒子の濃度を調整したこと以外は、実施例8と同様に、ハンダ層の表面に鉄が付着した導電性微粒子を作製した。ハンダ層の表面に鉄が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した鉄との合計に占める各金属の割合は、銀3.5重量%、鉄0.1重量%であり、残部は錫であった。
Example 9
Except having adjusted the density | concentration of the iron particle of a dispersion liquid, the electroconductive fine particle which iron adhered to the surface of the solder layer similarly to Example 8 was produced. Conductive fine particles with iron attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The total of the metal contained in the solder layer and the attached iron The proportion of each metal occupied was 3.5% by weight of silver and 0.1% by weight of iron, with the balance being tin.

(実施例10)
分散液の鉄粒子の濃度を調整したこと以外は、実施例8と同様に、ハンダ層の表面に鉄が付着した導電性微粒子を作製した。ハンダ層の表面に鉄が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した鉄との合計に占める各金属の割合は、銀3.5重量%、鉄1.0重量%であり、残部は錫であった。
(Example 10)
Except having adjusted the density | concentration of the iron particle of a dispersion liquid, the electroconductive fine particle which iron adhered to the surface of the solder layer similarly to Example 8 was produced. Conductive fine particles with iron attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The total of the metal contained in the solder layer and the attached iron The proportion of each metal occupied was 3.5% by weight of silver and 1.0% by weight of iron, with the balance being tin.

(実施例11)
実施例1と同様の方法で、樹脂微粒子の表面に、下地ニッケル層、銅層、錫と銀とを含有するハンダ層が順次形成された導電性微粒子を作製した。
得られた導電性微粒子を、鉄−白金合金粒子(体積平均粒子径3nm)が分散された分散液に浸漬させ、導電性微粒子の表面に、鉄−白金合金粒子を付着させた。分散液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面に鉄と白金とが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。
Example 11
In the same manner as in Example 1, conductive fine particles were prepared in which a base nickel layer, a copper layer, and a solder layer containing tin and silver were sequentially formed on the surface of the resin fine particles.
The obtained conductive fine particles were immersed in a dispersion in which iron-platinum alloy particles (volume average particle diameter 3 nm) were dispersed, and the iron-platinum alloy particles were adhered to the surface of the conductive fine particles. The dispersion was filtered, and the resulting particles were washed with water and then dried with a vacuum dryer at 50 ° C. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which iron and platinum adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面に鉄と白金とが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した鉄と白金との合計に占める各金属の割合は、銀3.5重量%、鉄0.05重量%、白金0.01重量%であり、残部は錫であった。 When the conductive fine particles in which iron and platinum are adhered to the surface of the solder layer are analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the iron contained in the solder layer and the adhered iron The proportion of each metal in the total with platinum was 3.5% by weight of silver, 0.05% by weight of iron and 0.01% by weight of platinum, with the balance being tin.

(比較例5)
分散液の鉄粒子の濃度を調整したこと以外は、実施例8と同様に、ハンダ層の表面に鉄が付着した導電性微粒子を作製した。ハンダ層の表面に鉄が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した鉄との合計に占める各金属の割合は、銀3.5重量%、鉄5.0重量%であり、残部は錫であった。
なお、比較例5で得られた導電性微粒子は電極に実装することができなかったため、落下強度試験及び温度サイクル試験は行わなかった。
(Comparative Example 5)
Except having adjusted the density | concentration of the iron particle of a dispersion liquid, the electroconductive fine particle which iron adhered to the surface of the solder layer similarly to Example 8 was produced. Conductive fine particles with iron attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). The total of the metal contained in the solder layer and the attached iron The proportion of each metal occupied was 3.5% by weight of silver and 5.0% by weight of iron, with the balance being tin.
In addition, since the electroconductive fine particles obtained in Comparative Example 5 could not be mounted on the electrode, the drop strength test and the temperature cycle test were not performed.

(実施例12)
(1)樹脂微粒子の作製、(2)ハンダ層の作製
実施例1と同様にして導電性微粒子を作製した。
Example 12
(1) Production of resin fine particles, (2) Production of solder layer Conductive fine particles were produced in the same manner as in Example 1.

(3)コバルトの付着
得られた導電性微粒子を無電解コバルトメッキし、ハンダ層の表面に、コバルトを付着させた。無電解コバルトメッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面にコバルトが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。
(3) Adhesion of cobalt The electroconductive fine particles obtained were electrolessly cobalt-plated, and cobalt was adhered to the surface of the solder layer. The electroless cobalt plating solution was filtered, and the resulting particles were washed with water and then dried with a 50 ° C. vacuum dryer. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which cobalt adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面にコバルトが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したコバルトとの合計に占める各金属の割合は、銀3.5重量%、コバルト0.02重量%であり、残部は錫であった。
なお、下地ニッケル層、銅層、及び、ハンダ層の厚さは無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均することにより算出した。また、上記ハンダ層の表面にコバルトが付着していることは、電界放射型走査電子顕微鏡FE−SEM(日立製作所社製「S−4100」)で確認した。以下、同様である。
When the conductive fine particles with cobalt attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the total of the metal contained in the solder layer and the attached cobalt was obtained. The proportion of each metal occupied was 3.5% by weight of silver and 0.02% by weight of cobalt, with the balance being tin.
The thicknesses of the underlying nickel layer, copper layer, and solder layer were measured by observing a cross section of 10 randomly selected conductive fine particles with a scanning electron microscope (SEM), and the measured values were arithmetically averaged. It was calculated by doing. Moreover, it was confirmed with a field emission scanning electron microscope FE-SEM (“S-4100” manufactured by Hitachi, Ltd.) that cobalt was adhered to the surface of the solder layer. The same applies hereinafter.

(実施例13)
無電解コバルトメッキのメッキ反応時間を調整したこと以外は、実施例12と同様に、ハンダ層の表面にコバルトが付着した導電性微粒子を作製した。ハンダ層の表面にコバルトが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したコバルトとの合計に占める各金属の割合は、銀3.5重量%、コバルト0.5重量%であり、残部は錫であった。
(Example 13)
Except that the plating reaction time of electroless cobalt plating was adjusted, conductive fine particles having cobalt adhered to the surface of the solder layer were prepared in the same manner as in Example 12. When the conductive fine particles with cobalt attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the total of the metal contained in the solder layer and the attached cobalt was obtained. The proportion of each metal occupied was 3.5% by weight of silver and 0.5% by weight of cobalt, with the balance being tin.

(実施例14)
無電解コバルトメッキのメッキ反応時間を調整したこと以外は、実施例12と同様に、ハンダ層の表面にコバルトが付着した導電性微粒子を作製した。ハンダ層の表面にコバルトが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したコバルトとの合計に占める各金属の割合は、銀3.5重量%、コバルト2.0重量%であり、残部は錫であった。
(Example 14)
Except that the plating reaction time of electroless cobalt plating was adjusted, conductive fine particles having cobalt adhered to the surface of the solder layer were prepared in the same manner as in Example 12. When the conductive fine particles with cobalt attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the total of the metal contained in the solder layer and the attached cobalt was obtained. The proportion of each metal occupied was 3.5% by weight of silver and 2.0% by weight of cobalt, with the balance being tin.

(実施例15)
実施例1で得られた樹脂微粒子を無電解ニッケルメッキし、樹脂微粒子の表面に厚さ0.3μmの下地ニッケル層を形成させた。次いで、下地ニッケル層が形成された樹脂微粒子を電解銅メッキすることにより、厚さ10μmの銅層を形成させた。更に、電解メッキをすることにより、厚さ25μmの錫と銀とを含有するハンダ層を形成させた。次いで、電解メッキ液を濾過し、得られた粒子を水で洗浄し、50℃の真空乾燥機で乾燥させ、樹脂微粒子の表面に、下地ニッケル層、銅層、錫と銀とを含有するハンダ層が順次形成された導電性微粒子を作製した。
(Example 15)
The resin fine particles obtained in Example 1 were subjected to electroless nickel plating to form a base nickel layer having a thickness of 0.3 μm on the surface of the resin fine particles. Next, electrolytic fine copper plating was performed on the resin fine particles on which the base nickel layer was formed, thereby forming a copper layer having a thickness of 10 μm. Furthermore, a solder layer containing 25 μm thick tin and silver was formed by electrolytic plating. Next, the electrolytic plating solution is filtered, and the obtained particles are washed with water and dried with a vacuum dryer at 50 ° C., and the surface of the resin fine particles contains a base nickel layer, a copper layer, tin and silver. Conductive fine particles in which layers were sequentially formed were produced.

得られた導電性微粒子を電解メッキし、ハンダ層の表面に、コバルトとアンチモンとを付着させた。電解メッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面にコバルトとアンチモンとが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。 The obtained conductive fine particles were electrolytically plated to allow cobalt and antimony to adhere to the surface of the solder layer. The electrolytic plating solution was filtered, and the obtained particles were washed with water and then dried with a vacuum dryer at 50 ° C. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which cobalt and antimony adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面にコバルトとアンチモンとが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したコバルトとアンチモンとの合計に占める各金属の割合は、銀3.5重量%、コバルト0.05重量%、アンチモン0.05重量%であり、残部は錫であった。 When the conductive fine particles having cobalt and antimony adhered to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the metal contained in the solder layer and cobalt adhered The proportion of each metal in the total amount with antimony was 3.5% by weight of silver, 0.05% by weight of cobalt and 0.05% by weight of antimony, and the balance was tin.

(比較例6)
無電解コバルトメッキのメッキ反応時間を調整したこと以外は、実施例12と同様に、ハンダ層の表面にコバルトが付着した導電性微粒子を作製した。ハンダ層の表面にコバルトが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着したコバルトとの合計に占める各金属の割合は、銀3.5重量%、コバルト5.0重量%であり、残部は錫であった。
なお、比較例6で得られた導電性微粒子は電極に実装することができなかったため、落下強度試験は行わなかった。
(Comparative Example 6)
Except that the plating reaction time of electroless cobalt plating was adjusted, conductive fine particles having cobalt adhered to the surface of the solder layer were prepared in the same manner as in Example 12. When the conductive fine particles with cobalt attached to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the total of the metal contained in the solder layer and the attached cobalt was obtained. The proportion of each metal occupied was 3.5% by weight of silver and 5.0% by weight of cobalt, with the balance being tin.
In addition, since the electroconductive fine particles obtained in Comparative Example 6 could not be mounted on the electrode, the drop strength test was not performed.

(実施例16)
(1)樹脂微粒子の作製、(2)ハンダ層の作製
実施例1と同様にして導電性微粒子を作製した。
(Example 16)
(1) Production of resin fine particles, (2) Production of solder layer Conductive fine particles were produced in the same manner as in Example 1.

(3)銅の付着
得られた導電性微粒子を無電解銅メッキし、ハンダ層の表面に、銅を付着させた。無電解銅メッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面に銅が付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。
(3) Adhesion of copper The obtained electroconductive fine particles were subjected to electroless copper plating, and copper was adhered to the surface of the solder layer. The electroless copper plating solution was filtered, and the resulting particles were washed with water and then dried with a vacuum dryer at 50 ° C. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which copper adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面に銅が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した銅との合計に占める各金属の割合は、銀3.5重量%、銅0.005重量%であり、残部は錫であった。
なお、上記下地ニッケル層、銅層、及びハンダ層の厚さは無作為に選んだ10個の導電性微粒子の断面を走査型電子顕微鏡(SEM)により観察して測定し、測定値を算術平均することにより算出した。また、上記ハンダ層の表面に銅が付着していることは、電界放射型走査電子顕微鏡FE−SEM(日立製作所社製「S−4100」)で確認した。以下、同様である。
Conductive fine particles with copper adhering to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the adhering copper was found. The proportion of each metal occupied was 3.5% by weight of silver and 0.005% by weight of copper, with the balance being tin.
In addition, the thickness of the said nickel base layer, a copper layer, and a solder layer is measured by observing the cross section of 10 electroconductive fine particles selected at random with a scanning electron microscope (SEM), and a measured value is an arithmetic mean. It was calculated by doing. Moreover, it was confirmed with a field emission scanning electron microscope FE-SEM (“S-4100” manufactured by Hitachi, Ltd.) that copper was adhered to the surface of the solder layer. The same applies hereinafter.

(実施例17)
無電解銅メッキのメッキ反応時間を調整したこと以外は、実施例16と同様に、ハンダ層の表面に銅が付着した導電性微粒子を作製した。ハンダ層の表面に銅が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した銅との合計に占める各金属の割合は、銀3.5重量%、銅0.1重量%であり、残部は錫であった。
(Example 17)
Except for adjusting the plating reaction time of electroless copper plating, conductive fine particles having copper adhered to the surface of the solder layer were prepared in the same manner as in Example 16. Conductive fine particles with copper adhering to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the adhering copper was found. The proportion of each metal occupied was 3.5% by weight of silver and 0.1% by weight of copper, and the balance was tin.

(実施例18)
無電解銅メッキのメッキ反応時間を調整したこと以外は、実施例16と同様に、ハンダ層の表面に銅が付着した導電性微粒子を作製した。ハンダ層の表面に銅が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した銅との合計に占める各金属の割合は、銀3.5重量%、銅2.0重量%であり、残部は錫であった。
(Example 18)
Except for adjusting the plating reaction time of electroless copper plating, conductive fine particles having copper adhered to the surface of the solder layer were prepared in the same manner as in Example 16. Conductive fine particles with copper adhering to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the adhering copper was found. The proportion of each metal occupied was 3.5% by weight of silver and 2.0% by weight of copper, and the balance was tin.

(実施例19)
実施例1で得られた樹脂微粒子を無電解ニッケルメッキし、樹脂微粒子の表面に厚さ0.3μmの下地ニッケル層を形成させた。次いで、下地ニッケル層が形成された樹脂微粒子を電解銅メッキすることにより、厚さ10μmの銅層を形成させた。更に、電解メッキをすることにより、厚さ25μmの錫と銀とを含有するハンダ層を形成させた。次いで、電解メッキ液を濾過し、得られた粒子を水で洗浄し、50℃の真空乾燥機で乾燥させ、樹脂微粒子の表面に、下地ニッケル層、銅層、錫と銀とを含有するハンダ層が順次形成された導電性微粒子を作製した。
Example 19
The resin fine particles obtained in Example 1 were subjected to electroless nickel plating to form a base nickel layer having a thickness of 0.3 μm on the surface of the resin fine particles. Next, electrolytic fine copper plating was performed on the resin fine particles on which the base nickel layer was formed, thereby forming a copper layer having a thickness of 10 μm. Further, a solder layer containing tin and silver having a thickness of 25 μm was formed by electrolytic plating. Next, the electrolytic plating solution is filtered, and the obtained particles are washed with water and dried with a vacuum dryer at 50 ° C., and the surface of the resin fine particles contains a base nickel layer, a copper layer, tin and silver. Conductive fine particles in which layers were sequentially formed were produced.

得られた導電性微粒子を電解メッキし、ハンダ層の表面に、銅とモリブデンとを付着させた。電解メッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面に銅とモリブデンとが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。 The obtained conductive fine particles were electroplated to adhere copper and molybdenum to the surface of the solder layer. The electrolytic plating solution was filtered, and the obtained particles were washed with water and then dried with a vacuum dryer at 50 ° C. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which copper and molybdenum adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面に銅とモリブデンとが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した銅とモリブデンとの合計に占める各金属の割合は、銀3.5重量%、銅0.05重量%、モリブデン0.01重量%であり、残部は錫であった。 When the conductive fine particles having copper and molybdenum adhered to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the copper contained with the metal contained in the solder layer and The proportion of each metal in the total with molybdenum was 3.5% by weight of silver, 0.05% by weight of copper, 0.01% by weight of molybdenum, and the balance was tin.

(実施例20)
実施例1で得られた樹脂微粒子を無電解ニッケルメッキし、樹脂微粒子の表面に厚さ0.3μmの下地ニッケル層を形成させた。次いで、下地ニッケル層が形成された樹脂微粒子を電解銅メッキすることにより、厚さ10μmの銅層を形成させた。更に、電解メッキをすることにより、厚さ25μmの錫と銀とを含有するハンダ層を形成させた。次いで、電解メッキ液を濾過し、得られた粒子を水で洗浄し、50℃の真空乾燥機で乾燥させ、樹脂微粒子の表面に、下地ニッケル層、銅層、錫と銀とを含有するハンダ層が順次形成された導電性微粒子を作製した。
(Example 20)
The resin fine particles obtained in Example 1 were subjected to electroless nickel plating to form a base nickel layer having a thickness of 0.3 μm on the surface of the resin fine particles. Next, electrolytic fine copper plating was performed on the resin fine particles on which the base nickel layer was formed, thereby forming a copper layer having a thickness of 10 μm. Furthermore, a solder layer containing 25 μm thick tin and silver was formed by electrolytic plating. Next, the electrolytic plating solution is filtered, and the obtained particles are washed with water and dried with a vacuum dryer at 50 ° C., and the surface of the resin fine particles contains a base nickel layer, a copper layer, tin and silver. Conductive fine particles in which layers were sequentially formed were produced.

得られた導電性微粒子を電解メッキし、ハンダ層の表面に、銅とバナジウムとを付着させた。電解メッキ液を濾過し、得られた粒子を水で洗浄した後、50℃の真空乾燥機で乾燥させた。樹脂微粒子の表面に、下地ニッケル層、銅層、ハンダ層が順次形成され、ハンダ層の表面に銅とバナジウムとが付着した導電性微粒子を作製した。導電性微粒子の平均粒子径は310μm、CV値は1.0%であった。 The obtained conductive fine particles were electroplated, and copper and vanadium were adhered to the surface of the solder layer. The electrolytic plating solution was filtered, and the obtained particles were washed with water and then dried with a vacuum dryer at 50 ° C. A base nickel layer, a copper layer, and a solder layer were sequentially formed on the surface of the resin fine particles, and conductive fine particles in which copper and vanadium were adhered to the surface of the solder layer were produced. The average particle diameter of the conductive fine particles was 310 μm, and the CV value was 1.0%.

ハンダ層の表面に銅とバナジウムとが付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した銅とバナジウムとの合計に占める各金属の割合は、銀3.5重量%、銅0.05重量%、バナジウム0.01重量%であり、残部は錫であった。 When the conductive fine particles having copper and vanadium adhered to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), the metal contained in the solder layer and copper adhered The proportion of each metal in the total with vanadium was 3.5% by weight of silver, 0.05% by weight of copper and 0.01% by weight of vanadium, and the balance was tin.

(比較例7)
無電解銅メッキのメッキ反応時間を調整したこと以外は、実施例16と同様に、ハンダ層の表面に銅が付着した導電性微粒子を作製した。ハンダ層の表面に銅が付着した導電性微粒子を、蛍光X線分析装置(島津製作所社製「EDX−800HS」)で分析したところ、ハンダ層に含有される金属と付着した銅との合計に占める各金属の割合は、銀3.5重量%、銅5.0重量%であり、残部は錫であった。
(Comparative Example 7)
Except for adjusting the plating reaction time of electroless copper plating, conductive fine particles having copper adhered to the surface of the solder layer were prepared in the same manner as in Example 16. Conductive fine particles with copper adhering to the surface of the solder layer were analyzed with a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation), and the total of the metal contained in the solder layer and the adhering copper was found. The proportion of each metal occupied was 3.5% by weight of silver and 5.0% by weight of copper, with the balance being tin.

<評価>
実施例及び比較例で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive fine particles obtained by the Example and the comparative example. The results are shown in Table 1.

(落下強度試験)
シリコンチップ(縦6mm×横6mm)上に0.5mmピッチで112個設けられた電極ランド(直径280μm)にフラックス(クックソンエレクトロニクス社製「WS−9160−M7」)を塗布した。すべての電極ランドに、得られた導電性微粒子を配置し、リフロー(加熱温度250℃、30秒間)し、導電性微粒子を電極ランドに実装した。
次いで、銅電極(直径305μm)が形成されたプリント基板にハンダペースト(千住金属工業社製「M705−GRN360−K2−V」)を塗布した。導電性微粒子が実装されたシリコンチップ15個を、プリント基板に配置し、リフロー(加熱温度250℃、30秒間)し、シリコンチップ15個をプリント基板に実装し、導電接続構造体を得た。
JEDEC規格JESD22−B111に従い、得られた導電接続構造体の落下強度試験を行った。
得られた導電接続構造体は、デイジーチェーン回路が形成されているため、1箇所の電極ランドの断線でも検出することができる。
15個のシリコンチップのすべてが断線する落下回数を測定した。
なお、電極ランドは、電極ランドの最表面に向かって、銅層、ニッケル−リン層、金層が順次形成されていた。以下、同様である。
落下強度試験は以下の基準で評価した。
○:15個のシリコンチップのすべてが断線する落下回数が100回以上であった。
×:15個のシリコンチップのすべてが断線する落下回数が100回未満であった。
(Drop strength test)
A flux (“WS-9160-M7” manufactured by Cookson Electronics Co., Ltd.) was applied to 112 electrode lands (diameter: 280 μm) provided at a pitch of 0.5 mm on a silicon chip (length: 6 mm × width: 6 mm). The obtained conductive fine particles were placed on all the electrode lands, reflowed (heating temperature 250 ° C., 30 seconds), and the conductive fine particles were mounted on the electrode lands.
Next, a solder paste (“M705-GRN360-K2-V” manufactured by Senju Metal Industry Co., Ltd.) was applied to the printed circuit board on which the copper electrode (diameter 305 μm) was formed. Fifteen silicon chips on which conductive fine particles were mounted were placed on a printed circuit board, reflowed (heating temperature 250 ° C., 30 seconds), and 15 silicon chips were mounted on the printed circuit board to obtain a conductive connection structure.
According to JEDEC standard JESD22-B111, a drop strength test of the obtained conductive connection structure was performed.
Since the obtained conductive connection structure is formed with a daisy chain circuit, it can be detected even if one electrode land is disconnected.
The number of drops at which all 15 silicon chips were disconnected was measured.
In the electrode land, a copper layer, a nickel-phosphorus layer, and a gold layer were sequentially formed toward the outermost surface of the electrode land. The same applies hereinafter.
The drop strength test was evaluated according to the following criteria.
A: The number of drops at which all 15 silicon chips were disconnected was 100 times or more.
X: The number of times of dropping of all 15 silicon chips was less than 100 times.

(温度サイクル試験)
シリコンチップ(縦6mm×横6mm)上に0.5mmピッチで112個設けられた電極ランド(直径280μm)にフラックス(クックソンエレクトロニクス社製「WS−9160−M7」)を塗布した。すべての電極ランドに、得られた導電性微粒子を配置し、リフロー(加熱温度250℃、30秒間)し、導電性微粒子を電極ランドに実装した。
次いで、銅電極(直径305μm)が形成されたプリント基板にハンダペースト(千住金属工業社製「M705−GRN360−K2−V」)を塗布した。導電性微粒子が実装されたシリコンチップ1個を、プリント基板に配置し、リフロー(加熱温度250℃、30秒間)し、シリコンチップ1個をプリント基板に実装し、導電接続構造体を得た。
得られた導電接続構造体は、デイジーチェーン回路が形成されているため、1箇所の電極ランドの断線でも検出することができる。
得られた導電接続構造体を用いて、−40℃〜125℃を1サイクルとする温度サイクル試験を行った。なお、温度サイクル試験のヒートプロファイルは、−40℃で10分間保持し、−40℃から125℃まで2分間で昇温させ、125℃で10分間保持し、125℃から−40℃まで2分間で降温させるヒートプロファイルであった。
温度サイクル試験は以下の基準で評価した。
○:導電接続構造体の断線が確認されるサイクル数が2000サイクル以上であった。
×:導電接続構造体の断線が確認されるサイクル数が2000サイクル未満であった。
(Temperature cycle test)
A flux (“WS-9160-M7” manufactured by Cookson Electronics Co., Ltd.) was applied to 112 electrode lands (diameter: 280 μm) provided at a pitch of 0.5 mm on a silicon chip (length: 6 mm × width: 6 mm). The obtained conductive fine particles were placed on all the electrode lands, reflowed (heating temperature 250 ° C., 30 seconds), and the conductive fine particles were mounted on the electrode lands.
Next, a solder paste (“M705-GRN360-K2-V” manufactured by Senju Metal Industry Co., Ltd.) was applied to the printed circuit board on which the copper electrode (diameter 305 μm) was formed. One silicon chip on which conductive fine particles were mounted was placed on a printed circuit board, reflowed (heating temperature 250 ° C., 30 seconds), and one silicon chip was mounted on the printed circuit board to obtain a conductive connection structure.
Since the obtained conductive connection structure is formed with a daisy chain circuit, it can be detected even if one electrode land is disconnected.
Using the obtained conductive connection structure, a temperature cycle test was performed with -40 ° C to 125 ° C as one cycle. The heat profile of the temperature cycle test was held at −40 ° C. for 10 minutes, raised from −40 ° C. to 125 ° C. for 2 minutes, held at 125 ° C. for 10 minutes, and then from 125 ° C. to −40 ° C. for 2 minutes. It was a heat profile that lowered the temperature.
The temperature cycle test was evaluated according to the following criteria.
(Circle): The cycle number by which the disconnection of a conductive connection structure is confirmed was 2000 cycles or more.
X: The number of cycles in which disconnection of the conductive connection structure was confirmed was less than 2000 cycles.

Figure 2009259801
Figure 2009259801

本発明によれば、微細な電極間の導電接続に用いられ、電極との密着性に優れ、落下等による衝撃でハンダ層の亀裂や、電極と該導電性微粒子との接続界面の破壊による断線が生じにくく、加熱と冷却とを繰返し受けても疲労しにくい導電性微粒子、及び、該導電性微粒子を用いてなる導電接続構造体を提供することができる。 According to the present invention, it is used for conductive connection between fine electrodes, has excellent adhesion with the electrode, cracks in the solder layer due to impact due to dropping, etc., and disconnection due to breakage of the connection interface between the electrode and the conductive fine particles Therefore, it is possible to provide conductive fine particles that are less likely to cause fatigue due to repeated heating and cooling, and a conductive connection structure using the conductive fine particles.

Claims (4)

樹脂微粒子の表面に、ハンダ層が形成された導電性微粒子であって、
パラジウム、ゲルマニウム、鉄、コバルト及び銅からなる群より選択される少なくとも1種の表面付着金属が、前記ハンダ層の表面を完全に被覆しない状態で存在しており、
前記ハンダ層に含有される金属と、前記ハンダ層の表面を完全に被覆しない状態で存在している表面付着金属との合計に占める表面付着金属の割合が0.001〜2重量%である
ことを特徴とする導電性微粒子。
Conductive fine particles in which a solder layer is formed on the surface of the resin fine particles,
At least one surface-attached metal selected from the group consisting of palladium, germanium, iron, cobalt, and copper is present without completely covering the surface of the solder layer;
The ratio of the surface-attached metal to the total of the metal contained in the solder layer and the surface-attached metal present in a state where the surface of the solder layer is not completely covered is 0.001 to 2% by weight. Conductive fine particles characterized by
ハンダ層に含有される金属と、前記ハンダ層の表面を完全に被覆しない状態で存在している表面付着金属との合計に占める表面付着金属の割合が0.001〜1重量%であることを特徴とする請求項1記載の導電性微粒子。 The ratio of the surface-attached metal to the total of the metal contained in the solder layer and the surface-attached metal present in a state where the surface of the solder layer is not completely covered is 0.001 to 1% by weight. The conductive fine particles according to claim 1, wherein 樹脂微粒子とハンダ層との間に、更に金属層が形成されていることを特徴とする請求項1又は2記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein a metal layer is further formed between the resin fine particles and the solder layer. 請求項1、2又は3記載の導電性微粒子を用いてなることを特徴とする導電接続構造体。
A conductive connection structure comprising the conductive fine particles according to claim 1, 2 or 3.
JP2009068695A 2008-03-19 2009-03-19 Conductive fine particles and conductive connection structure Active JP5328434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068695A JP5328434B2 (en) 2008-03-19 2009-03-19 Conductive fine particles and conductive connection structure

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2008071989 2008-03-19
JP2008071988 2008-03-19
JP2008071987 2008-03-19
JP2008071985 2008-03-19
JP2008071988 2008-03-19
JP2008071989 2008-03-19
JP2008071986 2008-03-19
JP2008071985 2008-03-19
JP2008071987 2008-03-19
JP2008071986 2008-03-19
JP2009068695A JP5328434B2 (en) 2008-03-19 2009-03-19 Conductive fine particles and conductive connection structure

Publications (2)

Publication Number Publication Date
JP2009259801A true JP2009259801A (en) 2009-11-05
JP5328434B2 JP5328434B2 (en) 2013-10-30

Family

ID=41386923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068695A Active JP5328434B2 (en) 2008-03-19 2009-03-19 Conductive fine particles and conductive connection structure

Country Status (1)

Country Link
JP (1) JP5328434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054572A1 (en) * 2012-10-02 2014-04-10 積水化学工業株式会社 Conductive particle, conductive material and connecting structure
JP2015130330A (en) * 2013-12-05 2015-07-16 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material and connection structure body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068145A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP2004273401A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Electrode connecting member, circuit module using it and manufacturing method therefor
JP2005005630A (en) * 2003-06-16 2005-01-06 Sharp Corp Conductive ball and external electrode forming method of electronic component using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068145A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP2004273401A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Electrode connecting member, circuit module using it and manufacturing method therefor
JP2005005630A (en) * 2003-06-16 2005-01-06 Sharp Corp Conductive ball and external electrode forming method of electronic component using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054572A1 (en) * 2012-10-02 2014-04-10 積水化学工業株式会社 Conductive particle, conductive material and connecting structure
JP5636118B2 (en) * 2012-10-02 2014-12-03 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
CN104471650A (en) * 2012-10-02 2015-03-25 积水化学工业株式会社 Conductive particle, conductive material and connecting structure
KR20150063962A (en) * 2012-10-02 2015-06-10 세키스이가가쿠 고교가부시키가이샤 Conductive particle, conductive material and connecting structure
CN110000372A (en) * 2012-10-02 2019-07-12 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies
KR102095823B1 (en) 2012-10-02 2020-04-01 세키스이가가쿠 고교가부시키가이샤 Conductive particle, conductive material and connecting structure
JP2015130330A (en) * 2013-12-05 2015-07-16 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material and connection structure body

Also Published As

Publication number Publication date
JP5328434B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP4413267B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4313836B2 (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
TWI381901B (en) Method for inhibiting formation of tin-nickel intermetallic in solder joints
JP5552958B2 (en) Terminal structure, printed wiring board, module substrate, and electronic device
JP2008282801A (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
KR20040030393A (en) Conductive fine particles, method for plating fine particles, and substrate structural body
JP6061369B2 (en) WIRING BOARD AND ITS MANUFACTURING METHOD, AND SOLDERED WIRING BOARD MANUFACTURING METHOD
JP5671225B2 (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
JP2010265540A5 (en)
JP5580954B1 (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5328434B2 (en) Conductive fine particles and conductive connection structure
TWI509638B (en) Conductive particles, anisotropic conductive materials and connecting structures
EP2139009B1 (en) Electroconductive fine particles, anisotropic electroconductive material, and electroconductive connection structure
JP5210236B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2013012739A (en) Electric joining terminal structure and method for preparing the same
JP5480576B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2005054267A (en) Electroless gold plating method
JP4313835B2 (en) Conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5534745B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2016031936A (en) Conductive fine particle, anisotropy conductive material, and conductive connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2008103343A (en) Conductive fine particulate, board constituent, and fine particulate soldering method
JP6186802B2 (en) Junction structure for electronic device and electronic device
JP2009224058A (en) Conductive fine particle, anisotropically conductive material and connection structure
JP2014096362A (en) Conductive fine particle, anisotropic conductive material and conductive connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R151 Written notification of patent or utility model registration

Ref document number: 5328434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151