JP2009257714A - Refrigerator and vacuum heat insulating material - Google Patents

Refrigerator and vacuum heat insulating material Download PDF

Info

Publication number
JP2009257714A
JP2009257714A JP2008110168A JP2008110168A JP2009257714A JP 2009257714 A JP2009257714 A JP 2009257714A JP 2008110168 A JP2008110168 A JP 2008110168A JP 2008110168 A JP2008110168 A JP 2008110168A JP 2009257714 A JP2009257714 A JP 2009257714A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
box
vacuum heat
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008110168A
Other languages
Japanese (ja)
Inventor
Takashi Izeki
崇 井関
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008110168A priority Critical patent/JP2009257714A/en
Publication of JP2009257714A publication Critical patent/JP2009257714A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat insulating performance and to secure long-term reliability while increasing an installation area of a vacuum heat insulating material in a refrigerator. <P>SOLUTION: This refrigerator 1 is provided with a heat insulating housing 20 constituted by disposing a core material, and the vacuum heat insulating material 50 formed by receiving an adsorbent in a shell material and vacuumed inside into the three-dimensional shape along a plurality of faces of an outer case 21 or an inner case 22, in a space formed by the outer case 21 and the inner case 22, and by charging foam insulating material 23 therein. The shell material of the vacuum heat insulating material 50 is formed by a resin shell material injection-molded into the three-dimensional shape along the plurality of faces of the outer case 21 or the inner case 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷蔵庫及び真空断熱材に関する。   The present invention relates to a refrigerator and a vacuum heat insulating material.

近年、地球温暖化防止の観点から省エネルギーが強く望まれており、家庭用電化製品についても省エネルギー化は緊急の課題となっている。特に、冷蔵庫では熱を効率的に利用するという観点から、優れた断熱性能を有する断熱箱体が求められている。   In recent years, energy saving is strongly desired from the viewpoint of preventing global warming, and energy saving is an urgent issue for household appliances. In particular, in a refrigerator, a heat insulating box body having excellent heat insulating performance is required from the viewpoint of efficiently using heat.

冷蔵庫の一般的な断熱箱体としては、外箱と内箱との間にポリウレタンフォームなどの発泡断熱材を充填した断熱箱体が広く用いられている。かかる断熱箱体において断熱能力を増大するために、発泡断熱材の厚さを増すことが考えられるが、冷蔵庫では省スペースや空間の有効利用が強く求められており、発泡断熱材を充填できる空間を増大することが困難であった。   As a general heat insulation box of a refrigerator, a heat insulation box in which a foam heat insulating material such as polyurethane foam is filled between an outer box and an inner box is widely used. In order to increase the heat insulation capacity in such a heat insulation box, it is conceivable to increase the thickness of the foam heat insulating material. However, in the refrigerator, space saving and effective use of the space are strongly demanded, and the space where the foam heat insulating material can be filled. It was difficult to increase.

そこで、高性能な断熱材である真空断熱材と発泡断熱材とを併用して断熱箱体とすることが提案されている。ここで用いられる真空断熱材は、スペーサの役割を持つ芯材を、ガスバリア性を有する外被材中に収納し、外被材の内部を真空にすると共に外被材の周縁部を封止した断熱材である。   Therefore, it has been proposed to use a vacuum heat insulating material, which is a high performance heat insulating material, and a foam heat insulating material in combination to form a heat insulating box. The vacuum heat insulating material used here houses the core material serving as a spacer in a jacket material having a gas barrier property, and the inside of the jacket material is evacuated and the peripheral portion of the jacket material is sealed. It is a heat insulating material.

最近の真空断熱材においては、その熱伝導率を大幅に低減すべく、繊維系を極細にしたグラスウール等の無機繊維集合体を用いることが主流となっている。例えば、特開平9−138058号公報(特許文献1)に開示された真空断熱材がある。この真空断熱材は、グラスウール等の無機繊維重合体を有機系バインダーで固め成形してなる芯材と、活性炭またはゼオライトからなる吸着剤と、芯材及び吸着剤を覆う金属箔の層を積層してなるラミネートフィルム(外被材)とを備え、このラミネートフィルムの内部を真空にすると共にラミネートフィルムの縁部を封止して構成したものである。   In recent vacuum heat insulating materials, in order to significantly reduce the thermal conductivity, it has become the mainstream to use an aggregate of inorganic fibers such as glass wool with an extremely fine fiber system. For example, there is a vacuum heat insulating material disclosed in JP-A-9-138058 (Patent Document 1). This vacuum heat insulating material is formed by laminating a core material formed by solidifying an inorganic fiber polymer such as glass wool with an organic binder, an adsorbent made of activated carbon or zeolite, and a metal foil layer covering the core material and the adsorbent. The laminate film is made by vacuuming the inside of the laminate film and sealing the edge of the laminate film.

しかし、かかる特許文献1の真空断熱材では、有機系バインダーから発生するガスにより外被材内の真空度が落ちて行き、真空断熱材の断熱性能が経時的に劣化していくことが考えられる。   However, in the vacuum heat insulating material of Patent Document 1, it is considered that the degree of vacuum in the outer cover material decreases due to the gas generated from the organic binder, and the heat insulating performance of the vacuum heat insulating material deteriorates over time. .

それに対応すべく、バインダーを用いずに無機繊維集合体を用いた真空断熱材も提案されている。例えば、特開2006−112438号公報(特許文献2)に開示された真空断熱材がある。この真空断熱材は、空気の流通がある芯材と、芯材の水分およびガス成分を吸着する吸着剤と、芯材と吸着剤とを収納する内袋と、この内袋を収納する外袋とから構成されている。そして、芯材の表面に設けられた切込み部内に吸着剤を充填し、該切込み開口部から吸着剤が出ないように内袋内を脱気すると共に、内袋と芯材を圧縮して切込み開口部入口を狭めるようにしている。これにより、長期信頼性にも優れた真空断熱材の提供が可能となったのである。   In response to this, a vacuum heat insulating material using an inorganic fiber aggregate without using a binder has also been proposed. For example, there exists a vacuum heat insulating material disclosed by Unexamined-Japanese-Patent No. 2006-112438 (patent document 2). The vacuum heat insulating material includes a core material with air circulation, an adsorbent that adsorbs moisture and gas components of the core material, an inner bag that stores the core material and the adsorbent, and an outer bag that stores the inner bag. It consists of and. Then, the adsorbent is filled in the cut portion provided on the surface of the core material, the inner bag is deaerated so that the adsorbent does not come out from the cut opening, and the inner bag and the core material are compressed and cut. The opening entrance is narrowed. As a result, it has become possible to provide a vacuum heat insulating material with excellent long-term reliability.

一方、樹脂外殻材を用いた真空断熱材の製造方法として、特開平5−331924号公報(特許文献3)が挙げられる。この真空断熱材の製造方法では、予め凹状のキャビティーを有するインモールドインジェクション用の成形金型の底面に金属箔または金属箔複合プラスチックを配置し、加熱溶融した合成樹脂を金型内に注入しインモールド成形を行い、金属箔または金属箔複合プラスチックフィルムを表面材の外面に熱接着し、次いでこの表面材の凹部内に断熱材を充填した後、この表面材を覆う裏面材を供給し、この裏面材の外周縁部を真空下で表面材に熱接着して密封するようにしている。   On the other hand, as a method for producing a vacuum heat insulating material using a resin outer shell material, JP-A-5-331924 (Patent Document 3) can be cited. In this vacuum insulation material manufacturing method, a metal foil or a metal foil composite plastic is placed on the bottom surface of an in-mold injection molding mold having a concave cavity in advance, and a heat-smelted synthetic resin is injected into the mold. Perform in-mold molding, heat-bond metal foil or metal foil composite plastic film to the outer surface of the surface material, and then fill the recess in the surface material with a heat insulating material, then supply the back material covering the surface material, The outer peripheral edge of the back material is thermally bonded to the surface material under vacuum to be sealed.

しかし、上述した真空断熱材は平板形状であるため、冷蔵庫の断熱箱体の複数の面に沿って真空断熱材を設置することができず、その設置場所が制約されるという課題があった。このため、真空断熱材の占有面積を大きくできず、断熱箱体の断熱性能の向上を阻害する要因となっていた。   However, since the vacuum heat insulating material described above has a flat plate shape, there is a problem that the vacuum heat insulating material cannot be installed along a plurality of surfaces of the heat insulating box of the refrigerator, and the installation place is restricted. For this reason, the occupation area of a vacuum heat insulating material cannot be enlarged, and it became a factor which hinders the improvement of the heat insulation performance of a heat insulation box.

そこで、例えば、特開2001−336691号公報(特許文献4)に開示された立体形状の真空断熱材が提案されている。この真空断熱材は、真空断熱材の芯材に予め溝を成形し、その溝を基点に真空断熱材自体を折り曲げて立体形状とすることにより、断熱箱体の複数の面に沿って設置することができるようにしている。   Therefore, for example, a three-dimensional vacuum heat insulating material disclosed in JP 2001-336691 A (Patent Document 4) has been proposed. The vacuum heat insulating material is installed along a plurality of surfaces of the heat insulating box by forming a groove in the core of the vacuum heat insulating material in advance and bending the vacuum heat insulating material itself with the groove as a base to form a three-dimensional shape. To be able to.

特開平9−138058号公報Japanese Patent Laid-Open No. 9-138058 特開2006−112438号公報JP 2006-112438 A 特開平5−331924号公報JP-A-5-331924 特開2001−336691号公報JP 2001-336691 A

しかし、特許文献4の真空断熱材では、折り曲げ部の近傍で外被材フィルムが引き伸ばされた状態になり、ガスバリア効果を有する金属層や金属蒸着層が分断され、その部分から水分やガスの侵入が起こり、ガスバリア性に欠けるという課題があった。また、真空断熱材に溝を成形するため、溝部の肉厚が極端に薄くなり、真空環境下では芯材が脆くなることから、空隙率が減少し熱伝導率の悪化に繋がるという問題があった。   However, in the vacuum heat insulating material of Patent Document 4, the outer cover material film is stretched in the vicinity of the bent portion, and the metal layer or metal vapor deposition layer having a gas barrier effect is divided, and moisture or gas enters from the portion. Occurred, and there was a problem of lacking gas barrier properties. In addition, since the groove is formed in the vacuum heat insulating material, the thickness of the groove portion becomes extremely thin, and the core material becomes brittle in a vacuum environment. Therefore, there is a problem that the porosity is reduced and the thermal conductivity is deteriorated. It was.

本発明の目的は、真空断熱材の設置面積を増大しつつ、断熱性能の向上及び長期信頼性確保を図ることができる冷蔵庫及びこれに用いる真空断熱材を提供することにある。   The objective of this invention is providing the refrigerator which can aim at the improvement of heat insulation performance and long-term reliability ensuring, and the vacuum heat insulating material used for this, increasing the installation area of a vacuum heat insulating material.

前述の目的を達成するための本発明の第1の態様では、外箱と内箱とによって形成される空間内に、芯材及び吸着剤を外被材に収納し内部を真空にした真空断熱材を前記外箱または前記内箱の複数の面に沿う立体形状に設置すると共に、発泡断熱材を充填して断熱箱体を構成した冷蔵庫において、前記外被材を前記外箱または前記内箱の複数の面に沿う立体形状に射出成形された樹脂外被材を用いて形成したことにある。   In the first aspect of the present invention for achieving the above-mentioned object, a vacuum insulation in which a core material and an adsorbent are housed in a jacket material and the inside is evacuated in a space formed by the outer box and the inner box. In a refrigerator in which a material is installed in a three-dimensional shape along a plurality of surfaces of the outer box or the inner box, and a heat insulating box body is formed by filling a foam heat insulating material, the outer jacket material is the outer box or the inner box This is because it is formed by using a resin jacket material injection-molded into a three-dimensional shape along a plurality of surfaces.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記樹脂外被材を、射出成形された複数の樹脂外被材の立上周縁部を互いに熱溶着した密閉容器で構成し、この密閉容器内に前記芯材及び前記吸着剤を収納したこと。
(2)前記樹脂外被材の内面に補強リブを複数条形成したこと。
(3)前記樹脂外被材の補強リブの空間占有率を40%以下にしたこと。
(4)前記2つの樹脂外被材の両方から突出する補強リブを形成し、前記2つの樹脂外被材の補強リブが互いに向き合ったリブ間距離を前記真空断熱材の厚みの30%以上にしたこと。
A more preferable specific configuration example in the first aspect of the present invention is as follows.
(1) The resin jacket material is constituted by a sealed container in which rising peripheral edges of a plurality of injection-molded resin jacket materials are thermally welded to each other, and the core material and the adsorbent are stored in the sealed container. What you did.
(2) A plurality of reinforcing ribs are formed on the inner surface of the resin jacket material.
(3) The space occupancy rate of the reinforcing ribs of the resin jacket material is 40% or less.
(4) Reinforcing ribs protruding from both of the two resin jacket materials are formed, and the distance between the ribs of the two resin jacket materials facing each other is 30% or more of the thickness of the vacuum heat insulating material. What you did.

また、本発明の第2の態様では、外箱と内箱とによって形成される空間内に発泡断熱材と共に前記外箱または前記内箱の複数の面に沿う立体形状に設置されて断熱箱体の一部を構成するものであり、無機繊維集合体からなる芯材と、水分やガス成分などを吸着する吸着剤と、前記芯材及び前記吸着剤を収納して内部を減圧した外被材とを備える真空断熱材において、前記外被材を前記外箱または前記内箱の複数の面に沿う立体形状に射出成形された樹脂外被材を用いて形成したことにある。   Moreover, in the 2nd aspect of this invention, it installs in the three-dimensional shape along the several surface of the said outer box or the said inner box with a foam heat insulating material in the space formed by an outer box and an inner box, and a heat insulating box body A core material composed of an inorganic fiber aggregate, an adsorbent that adsorbs moisture, gas components, and the like, and a jacket material that contains the core material and the adsorbent and decompresses the inside The outer sheath material is formed using a resin outer sheath material that is injection molded into a three-dimensional shape along a plurality of surfaces of the outer box or the inner box.

かかる本発明によれば、真空断熱材の設置面積を増大しつつ、断熱性能の向上及び長期信頼性確保を図ることができる冷蔵庫及びこれに用いる真空断熱材を実現できる。   According to this invention, the refrigerator which can aim at the improvement of heat insulation performance and long-term reliability ensuring, and the vacuum heat insulating material used for this can be implement | achieved, increasing the installation area of a vacuum heat insulating material.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

(第1実施形態)
本発明の第1実施形態の冷蔵庫を図1及び図2を用いて説明する。
(First embodiment)
The refrigerator of 1st Embodiment of this invention is demonstrated using FIG.1 and FIG.2.

まず、第1実施形態の冷蔵庫1の全体構成に関して図1を参照しながら説明する。図1は第1実施形態の冷蔵庫の縦断面図である。   First, the whole structure of the refrigerator 1 of 1st Embodiment is demonstrated, referring FIG. FIG. 1 is a longitudinal sectional view of the refrigerator according to the first embodiment.

冷蔵庫1は、断熱箱体20、断熱扉6〜9、冷凍サイクルを主要構成要素として備えている。この断熱箱体20は、前面を開口した箱型形状をしており、冷蔵室2、貯氷室3及び切替え室、冷凍室4、野菜室5を上からこの順に有している。   The refrigerator 1 is equipped with the heat insulation box 20, the heat insulation doors 6-9, and the refrigerating cycle as main components. The heat insulation box 20 has a box shape with an open front, and has a refrigerator compartment 2, an ice storage compartment 3, a switching compartment, a freezer compartment 4, and a vegetable compartment 5 in this order from the top.

断熱扉6〜9は、各室2〜5の前面開口部を閉塞する扉である。各室2〜5に対応して冷蔵室扉6、貯氷室扉7及び切替え室扉、冷凍室扉8、野菜室扉9が配置されている。冷蔵室扉6はヒンジを中心に回動する観音開き式扉であり、冷蔵室扉6以外の扉は全て引き出し式の扉である。これらの引き出し式扉7〜9を引き出すと、各室を構成する容器が扉と共に引き出されてくる。   The heat insulating doors 6 to 9 are doors that close the front opening portions of the respective chambers 2 to 5. A refrigerator compartment door 6, an ice storage compartment door 7, a switching compartment door, a freezer compartment door 8, and a vegetable compartment door 9 are arranged corresponding to each of the rooms 2-5. The refrigerating room door 6 is a double door that rotates around a hinge, and all the doors other than the refrigerating room door 6 are drawer type doors. When these drawer type doors 7 to 9 are pulled out, the containers constituting each chamber are pulled out together with the doors.

断熱箱体20は、金属製の外箱21と合成樹脂製の内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて各貯蔵室と外部とを断熱している。この外箱21または内箱22の内側に沿って真空断熱材50を配置し、真空断熱材50以外の空間に硬質ウレタンフォーム等の発泡断熱材23を充填することにより断熱部が構成されている。   The heat insulating box 20 includes a metal outer box 21 and a synthetic resin inner box 22, and a heat insulating portion is provided in a space formed by the outer box 21 and the inner box 22 to connect each storage chamber and the outside. Insulated. A heat insulating portion is configured by disposing the vacuum heat insulating material 50 along the inner side of the outer box 21 or the inner box 22 and filling a space other than the vacuum heat insulating material 50 with a foam heat insulating material 23 such as hard urethane foam. .

外箱21は、折り曲げられた鋼板または平坦な鋼板を溶接することにより、天面、底面、両側面及び背面からなる箱状に形成されている。内箱22は、合成樹脂板を成形することにより、天面、底面、両側面及び背面からなる箱状に形成されている。   The outer box 21 is formed in a box shape including a top surface, a bottom surface, both side surfaces, and a back surface by welding a folded steel plate or a flat steel plate. The inner box 22 is formed in a box shape including a top surface, a bottom surface, both side surfaces, and a back surface by molding a synthetic resin plate.

冷蔵室2、貯氷室3、切替え室、冷凍室4、野菜室5等の各室を所定の温度に冷却するために冷凍室4の背面側には冷却器28が備えられている。この冷却器28と圧縮機30と凝縮器31とキャピラリーチューブ(図示せず)とを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。   A cooler 28 is provided on the back side of the freezer compartment 4 in order to cool each room such as the refrigerator compartment 2, the ice storage compartment 3, the switching room, the freezer compartment 4, and the vegetable compartment 5 to a predetermined temperature. The cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown) are connected to constitute a refrigeration cycle. Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.

断熱箱体20の底面の後部に機械室15が左右全幅にわたって形成されている。この機械室15には圧縮機30及び凝縮器31が配置されている。圧縮機30、凝縮器31は発熱量の大きい自己発熱部品である。そこで、この機械室15から庫内への熱侵入を防止するため、1枚の立体形状の真空断熱材50が配置されている。この真空断熱材50は、外箱21の複数の面に沿う立体形状に設置され、具体的には、機械室15を形成する外箱21の2つの面に沿うL字状に形成されている。なお、実際には、外箱21または内箱22の他の部分に沿うように、立体形状または平板形状の真空断熱材が別に複数設置されているが、図1ではそれらを省略してある。   A machine room 15 is formed in the rear part of the bottom surface of the heat insulation box 20 over the entire width. A compressor 30 and a condenser 31 are disposed in the machine room 15. The compressor 30 and the condenser 31 are self-heating components that generate a large amount of heat. Therefore, in order to prevent heat from entering from the machine room 15 into the cabinet, a single three-dimensional vacuum heat insulating material 50 is disposed. The vacuum heat insulating material 50 is installed in a three-dimensional shape along a plurality of surfaces of the outer box 21. Specifically, the vacuum heat insulating material 50 is formed in an L shape along two surfaces of the outer box 21 forming the machine room 15. . Actually, a plurality of three-dimensional or flat-plate-shaped vacuum heat insulating materials are separately provided along other portions of the outer box 21 or the inner box 22, but they are omitted in FIG.

次に、図2を参照しながら、真空断熱材50について具体的に説明する。図2は図1の真空断熱材50の拡大断面図である。   Next, the vacuum heat insulating material 50 will be specifically described with reference to FIG. FIG. 2 is an enlarged cross-sectional view of the vacuum heat insulating material 50 of FIG.

真空断熱材50は、スペーサの役割を持つ芯材52と、水分やガス成分などを吸着する吸着剤53と、芯材52及び吸着剤53を収納して内部を真空にした外被材51とを備えている。芯材52は、繊維系を極細にしたグラスウール等の無機繊維集合体からなっており、バインダーなしで構成されている。従って、芯材52は、可撓性、柔軟性を有し、折り曲げ、圧縮可能である。吸着剤53は活性炭やゼオライト等で構成され、本実施形態ではモレキュラーシーブ13xからなっている。   The vacuum heat insulating material 50 includes a core material 52 that serves as a spacer, an adsorbent 53 that adsorbs moisture, gas components, and the like, and a jacket material 51 that houses the core material 52 and the adsorbent 53 and evacuates the inside. It has. The core material 52 is made of an inorganic fiber aggregate such as glass wool having an extremely fine fiber system, and is configured without a binder. Therefore, the core material 52 has flexibility and flexibility, and can be bent and compressed. The adsorbent 53 is made of activated carbon, zeolite, or the like, and in the present embodiment, is composed of a molecular sieve 13x.

外被材51は、設置場所の複数の面に沿う立体形状に射出成形された2つの樹脂外被材51a、51bからなっている。第1実施形態の外被材51は、機械室15を構成する外箱21の2つの面に沿う立体形状に射出成形されているが、外箱21の他の場所に沿うように射出成形されたものでよく、さらには内箱22の複数の面に沿う立体形状に射出成形されたものでもよい。なお、部品点数が増えても良い場合には、外被材51が3つ以上の樹脂外被材からなっていてもよい。また、第1実施形態で使用した金型は、2つの面に沿う立体成形用であるが、この形状に係らず、あらゆる3次元的な形状の立体形状が成形可能な金型を用いることができる。   The jacket material 51 includes two resin jacket materials 51a and 51b that are injection-molded into a three-dimensional shape along a plurality of surfaces at the installation location. The jacket material 51 of the first embodiment is injection-molded into a three-dimensional shape along the two surfaces of the outer box 21 constituting the machine room 15, but is injection-molded along other places of the outer box 21. Further, it may be injection molded into a three-dimensional shape along a plurality of surfaces of the inner box 22. When the number of parts may be increased, the jacket material 51 may be composed of three or more resin jacket materials. In addition, the mold used in the first embodiment is for three-dimensional molding along two surfaces. However, regardless of this shape, a mold capable of molding any three-dimensional shape can be used. it can.

上述のように設置場所の複数の面に沿う立体形状に射出成形された外被材51とすることにより、真空断熱材50の設置場所を拡大できると共に、大きな真空断熱材50を用いることができる。これによって、断熱箱体20における真空断熱材の占有面積を大きくでき、断熱箱体20の断熱性能の向上を図ることができる。   As described above, by using the jacket material 51 injection-molded into a three-dimensional shape along a plurality of surfaces of the installation location, the installation location of the vacuum heat insulating material 50 can be expanded and a large vacuum heat insulating material 50 can be used. . Thereby, the occupation area of the vacuum heat insulating material in the heat insulation box 20 can be enlarged, and the heat insulation performance of the heat insulation box 20 can be improved.

2つの樹脂外被材51a、51bは、その立上周縁部56が互いに熱溶着されて溶着部54を形成した密閉容器となっている。この密閉容器である外被材51内に芯材52及び吸着剤53が収納されている。芯材52及び吸着剤53の収納方法は、吸着剤53を内蔵した芯材51を一方の樹脂外被材51aの内側にその内側形状に沿うように折り曲げて装着した後、他方の樹脂外被材51bを被せ、所定の真空状態の中で両外被材51a、51bの立上周縁部56を熱溶着する。   The two resin jacket materials 51 a and 51 b are sealed containers in which the rising peripheral edge portions 56 are thermally welded to each other to form a welded portion 54. A core material 52 and an adsorbent 53 are accommodated in an envelope material 51 which is a sealed container. The core material 52 and the adsorbent 53 are stored in such a manner that the core material 51 containing the adsorbent 53 is attached to the inside of one resin jacket material 51a by being bent along the inner shape thereof, and then the other resin jacket. The material 51b is covered, and the rising peripheral edge portions 56 of the outer covering materials 51a and 51b are thermally welded in a predetermined vacuum state.

樹脂外被材51a、51bは、その内面から突出する補強リブ55が複数条形成されている。これによって、樹脂外被材51a、51bは、内部の真空状態に耐えうる強度を保持させることができる。本実施形態で使用した金型は立体成形用であり、図2の形状に係らず、あらゆる3次元的な形状が成形可能となるのである。この時、補強リブ55を図2のように成型し、補強リブ55同士を接触させないようにしている。樹脂外被材51a、51bの内面から突出する補強リブ55は、同じ幅で、同じ長さで互いに向き合うように突出されている。   The resin jacket materials 51a and 51b are formed with a plurality of reinforcing ribs 55 protruding from the inner surface. As a result, the resin jacket materials 51a and 51b can maintain strength sufficient to withstand the internal vacuum state. The mold used in this embodiment is for three-dimensional molding, and any three-dimensional shape can be molded regardless of the shape of FIG. At this time, the reinforcing ribs 55 are molded as shown in FIG. 2 so that the reinforcing ribs 55 are not brought into contact with each other. The reinforcing ribs 55 protruding from the inner surfaces of the resin jacket materials 51a and 51b are protruded so as to face each other with the same width and the same length.

次に、表1を参照しながら、かかる真空断熱材50の初期熱伝導率及び熱伝導率の経時劣化について従来例と比較して説明する。   Next, referring to Table 1, the initial thermal conductivity and the temporal deterioration of the thermal conductivity of the vacuum heat insulating material 50 will be described in comparison with the conventional example.

Figure 2009257714
表1の従来例の真空断熱材は、特許文献4の真空断熱材と同じ基本形状を有するものであり、ガスバリア性を有する金属層を有し、その他の樹脂層との多層ラミネートフィルムを用いて製袋された外被材1内に、無機繊維積層体からなる芯材2と、吸着剤3を挿入し、所定の真空度まで外被材1内を真空排気し、最終的に外被材1内の溶着層を熱溶着することで封止し作製したものである。外被材1は、内側に設けられた溶着用プラスチック層と外側に設けられた金属層や外部からの傷付きを防止する樹脂層等複数の層を有するラミネートフィルムで構成されている。外被材1の金属層はアルミ箔層で構成されている。吸着剤3は、合成ゼオライトであるモレキュラーシーブ13xで構成されている。
Figure 2009257714
The vacuum heat insulating material of the conventional example of Table 1 has the same basic shape as the vacuum heat insulating material of Patent Document 4, has a metal layer having gas barrier properties, and uses a multilayer laminate film with other resin layers. A core material 2 made of an inorganic fiber laminate and an adsorbent 3 are inserted into the envelope-formed jacket material 1, and the interior of the jacket material 1 is evacuated to a predetermined degree of vacuum, and finally the jacket material. 1 is formed by sealing the weld layer in 1 by heat welding. The jacket material 1 is composed of a laminate film having a plurality of layers such as a welding plastic layer provided on the inner side, a metal layer provided on the outer side, and a resin layer for preventing damage from the outside. The metal layer of the jacket material 1 is composed of an aluminum foil layer. The adsorbent 3 is composed of a molecular sieve 13x which is a synthetic zeolite.

従来例の真空断熱材及び第1実施形態の真空断熱材50の初期熱伝導率について確認したところ、表1に示すように、従来例の真空断熱材の初期熱伝導率を100とすると、第1実施形態の真空断熱材50の初期熱伝導率を75に大幅に改善できることがわかった。第1実施形態の真空断熱材50は、樹脂外被材51a、51bに補強リブ55を設けたものの互いに非接触としたため、両補強リブ55間の熱の移動が無く、熱伝導率の増加を抑制することができ、また、従来例とは異なり、無理の無い成形方法で作成したため、熱伝導率の増加を抑制することができたと考えられる。   When the initial thermal conductivity of the vacuum heat insulating material of the conventional example and the vacuum heat insulating material 50 of the first embodiment was confirmed, as shown in Table 1, assuming that the initial heat conductivity of the vacuum heat insulating material of the conventional example is 100, It was found that the initial thermal conductivity of the vacuum heat insulating material 50 of one embodiment can be significantly improved to 75. The vacuum heat insulating material 50 according to the first embodiment is provided with the reinforcing ribs 55 on the resin jacket materials 51a and 51b, but is not in contact with each other. Therefore, there is no heat transfer between the reinforcing ribs 55, and the thermal conductivity is increased. It can be suppressed, and unlike the conventional example, it was considered that the increase in thermal conductivity could be suppressed because it was created by a reasonable molding method.

また、従来例の真空断熱材及び第1実施形態の真空断熱材50の熱伝導率の経時劣化について確認した。まず、従来例の真空断熱材の作製時に初期の熱伝導率を測定し、その後、70℃に温度維持した恒温槽内にて所定時間(10年放置相当)放置し、恒温槽から取り出して熱伝導率を測定して、その劣化度を算出したところ、表1に示すように、初期熱伝導率に比較して175%の大幅な増加となった。そして、第1実施形態の真空断熱材50の作製時に初期の熱伝導率を測定し、その後、70℃に温度維持した恒温槽内にて所定時間(10年放置相当)放置し、恒温槽から取り出して熱伝導率を測定して、その劣化度を算出したところ、表1に示すように、初期熱伝導率に比較して130%の増加に抑えられ、従来例と比較して経時劣化の大幅な改善が図れることがわかった。   Moreover, it checked about the time-dependent deterioration of the heat conductivity of the vacuum heat insulating material of a prior art example, and the vacuum heat insulating material 50 of 1st Embodiment. First, the initial thermal conductivity was measured at the time of producing the vacuum insulation material of the conventional example, and then left in a constant temperature bath maintained at 70 ° C. for a predetermined time (equivalent to standing for 10 years). When the conductivity was measured and the degree of deterioration was calculated, as shown in Table 1, it was a large increase of 175% compared to the initial thermal conductivity. Then, the initial thermal conductivity is measured when the vacuum heat insulating material 50 of the first embodiment is manufactured, and then left for a predetermined time (equivalent to being left for 10 years) in a thermostat maintained at 70 ° C. From the thermostat Taking out and measuring the thermal conductivity and calculating the degree of deterioration, as shown in Table 1, it was suppressed to an increase of 130% compared to the initial thermal conductivity, the deterioration of the deterioration with time compared to the conventional example It was found that significant improvement could be achieved.

これらは、第1実施形態の真空断熱材50の外被材51を樹脂の射出成形としたことで、従来例の真空断熱材は、芯材に溝を付けて薄肉樹脂のラミネートフィルムごと強制的に曲げ加工したことにより、内部の空隙率低下やフィルム中のガスバリア層の破壊等が起こり、熱伝導率の悪化や長期の信頼性に乏しかった点を改善できたためである。   These are because the outer cover material 51 of the vacuum heat insulating material 50 of the first embodiment is made of resin injection molding, and the vacuum heat insulating material of the conventional example is compulsory together with the laminated film of the thin resin with a groove formed in the core material. This is because, by bending, the porosity of the inside decreased, the gas barrier layer in the film was broken, etc., and the deterioration of thermal conductivity and the lack of long-term reliability could be improved.

次に、表2を参照しながら、第1実施形態の外被材51の補強リブ55の空間占有率について従来例と比較して説明する。表2は、補強リブ55の占める量による断熱性能(初期熱伝導率)への影響を確認した結果を示す。   Next, with reference to Table 2, the space occupancy rate of the reinforcing ribs 55 of the jacket material 51 of the first embodiment will be described in comparison with a conventional example. Table 2 shows the result of confirming the influence on the heat insulation performance (initial thermal conductivity) by the amount occupied by the reinforcing rib 55.

Figure 2009257714
表2の従来例は、表1の従来例と同じものである。第1実施形態−1は補強リブ55の空間占有率を30%としたものであり、第1実施形態−2は補強リブ55の空間占有率を40%としたものである。ただし、第1実施形態−1と第1実施形態−2とは、補強リブ55以外の外被材51の形状や、芯材52の種類、目付け量、使用重量、吸着剤53の種類、使用重量、内部真空度を同じとしている。また、それぞれの初期熱伝導率相対値は、従来例による真空断熱材の初期熱伝導率を100とした時の相対値である。
Figure 2009257714
The conventional example in Table 2 is the same as the conventional example in Table 1. In the first embodiment-1, the space occupancy of the reinforcing rib 55 is 30%, and in the first embodiment-2, the space occupancy of the reinforcing rib 55 is 40%. However, in the first embodiment-1 and the first embodiment-2, the shape of the jacket material 51 other than the reinforcing rib 55, the type of the core material 52, the basis weight, the used weight, the type of the adsorbent 53, and the use Weight and internal vacuum are the same. Moreover, each initial heat conductivity relative value is a relative value when the initial heat conductivity of the vacuum heat insulating material by a prior art example is set to 100. FIG.

第1実施形態−1の補強リブ55の空間占有率が30%の時の初期熱伝導率は、従来例の初期熱伝導率との比率で85と大幅に改善できることがわかった。また、第1実施形態−2の補強リブ55の空間占有率が40%の時の初期熱伝導率は、従来例の初期熱伝導率との比率で93と改善できるものの、改善幅が小さくなっている。従って、補強リブ55の空間占有率を40%以下にすることが本発明を利用する上でより好ましいことがわかった。   It was found that the initial thermal conductivity when the space occupancy rate of the reinforcing ribs 55 of the first embodiment-1 is 30% can be greatly improved to 85 as a ratio with the initial thermal conductivity of the conventional example. Moreover, although the initial thermal conductivity when the space occupancy of the reinforcing rib 55 of the first embodiment-2 is 40% can be improved to 93 as a ratio to the initial thermal conductivity of the conventional example, the improvement width becomes small. ing. Accordingly, it has been found that the space occupancy rate of the reinforcing ribs 55 is preferably 40% or less in using the present invention.

次に、表3を参照しながら、第1実施形態の外被材51の補強リブ55のリブ間距離率について従来例と比較して説明する。表3は、補強リブ55のリブ間距離率による断熱性能(初期熱伝導率)への影響を確認した結果を示す。補強リブ55のリブ間距離率とは、真空断熱材50の厚み寸法に対する互いの補強リブ5間の距離寸法の比率である。   Next, the distance ratio between the ribs of the reinforcing rib 55 of the jacket material 51 of the first embodiment will be described in comparison with the conventional example with reference to Table 3. Table 3 shows the result of confirming the influence on the heat insulation performance (initial thermal conductivity) by the inter-rib distance ratio of the reinforcing rib 55. The inter-rib distance ratio of the reinforcing ribs 55 is the ratio of the distance dimension between the reinforcing ribs 5 to the thickness dimension of the vacuum heat insulating material 50.

Figure 2009257714
表3の従来例は、表1及び表2の従来例と同じものである。第1実施形態−3は補強リブ55の距離率を30%としたものであり、第1実施形態−4は補強リブ55の距離率を40%としたものである。ただし、第1実施形態−3と第1実施形態−4とは、補強リブ55以外の外被材51の形状や、芯材52の種類、目付け量、使用重量、吸着剤53の種類、使用重量、内部真空度を同じとしている。また、それぞれの初期熱伝導率相対値は、従来例による真空断熱材の初期熱伝導率を100とした時の相対値である。
Figure 2009257714
The conventional examples in Table 3 are the same as the conventional examples in Tables 1 and 2. In the first embodiment-3, the distance ratio of the reinforcing rib 55 is 30%, and in the first embodiment-4, the distance ratio of the reinforcing rib 55 is 40%. However, in the first embodiment-3 and the first embodiment-4, the shape of the jacket material 51 other than the reinforcing rib 55, the type of the core material 52, the basis weight, the used weight, the type of the adsorbent 53, and the use Weight and internal vacuum are the same. Moreover, each initial heat conductivity relative value is a relative value when the initial heat conductivity of the vacuum heat insulating material by a prior art example is set to 100. FIG.

第1実施形態−3の補強リブ55のリブ間距離率が35%の時の初期熱伝導率は、従来例の初期熱伝導率との比率で84と大幅に改善できることがわかった。また、第1実施形態−4の補強リブ55のリブ間距離率が30%の時の初期熱伝導率は、従来例の初期熱伝導率との比率で91と改善できるものの、改善幅が小さくなっている。従って、補強リブ55のリブ間距離率を30%以上することが本発明を利用する上でより好ましいことがわかった。   It has been found that the initial thermal conductivity when the inter-rib distance ratio of the reinforcing rib 55 of the first embodiment-3 is 35% can be greatly improved to 84 as a ratio to the initial thermal conductivity of the conventional example. Moreover, although the initial thermal conductivity when the inter-rib distance ratio of the reinforcing rib 55 of the first embodiment-4 is 30% can be improved to 91 in proportion to the initial thermal conductivity of the conventional example, the improvement width is small. It has become. Therefore, it has been found that the distance ratio between the ribs of the reinforcing rib 55 is preferably 30% or more in using the present invention.

表2及び表3における従来例と第1実施形態との初期熱伝導率の相違は、射出成形された樹脂外被材51a、51bと真空下における芯材52との熱伝導率の相違によるものであり、樹脂外被材51a、51bでの熱の移動量が真空下の芯材52の熱量より相対的に大きいためである。つまり、補強リブ55の面積が増えると、熱伝導率の低い空間の占有体積が減り、熱伝導率が大きい樹脂部分が増えるため、上下間の熱の移動が大きくなるためである。   The difference in the initial thermal conductivity between the conventional example and the first embodiment in Tables 2 and 3 is due to the difference in the thermal conductivity between the injection-molded resin jacket materials 51a and 51b and the core material 52 under vacuum. This is because the amount of heat transfer in the resin jacket materials 51a and 51b is relatively larger than the amount of heat of the core material 52 under vacuum. That is, when the area of the reinforcing rib 55 is increased, the occupied volume of the space having low thermal conductivity is reduced, and the resin portion having high thermal conductivity is increased, so that the movement of heat between the upper and lower sides is increased.

(第2実施形態)
次に、本発明の第2実施形態の冷蔵庫について図3を用いて説明する。図3は本発明の第2実施形態の冷蔵庫の真空断熱材50の要部断面図である。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
(Second Embodiment)
Next, the refrigerator of 2nd Embodiment of this invention is demonstrated using FIG. FIG. 3 is a cross-sectional view of a main part of the vacuum heat insulating material 50 of the refrigerator according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第2実施形態では、樹脂外被材51a、51bの補強リブ55の全てが上下対称または左右対称に、互いに向き合って設置されたものではなく、異なる場所、異なる形状、長さで設置されている。この第2実施形態によれば、第1実施形態と比較して補強リブ55間を通しての熱伝導を低減することができる。   In this second embodiment, not all of the reinforcing ribs 55 of the resin jacket materials 51a and 51b are installed vertically or symmetrically facing each other, but installed in different places, different shapes and lengths. Yes. According to the second embodiment, heat conduction through the reinforcing ribs 55 can be reduced as compared with the first embodiment.

本発明の第1実施形態の冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator of 1st Embodiment of this invention. 図1の真空断熱材の拡大断面図である。It is an expanded sectional view of the vacuum heat insulating material of FIG. 本発明の第2実施形態の冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…冷蔵庫、2…冷蔵室、3…貯氷室、4…冷凍室、5…野菜室、6…冷蔵室扉、7…貯氷室扉、8…冷凍室扉、9…野菜室扉、15…機械室、20…断熱箱体、21…外箱、22…内箱、23…発泡断熱材、27…送風機、28…冷却器、30…圧縮機、31…凝縮器、50…真空断熱材、51…外被材、52…芯材、53…吸着剤、54…溶着部、55…補強リブ、56…立上周縁部。   DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Cold room, 3 ... Ice storage room, 4 ... Freezer room, 5 ... Vegetable room, 6 ... Cold room door, 7 ... Ice storage door, 8 ... Freezer room door, 9 ... Vegetable room door, 15 ... Machine room, 20 ... heat insulation box, 21 ... outer box, 22 ... inner box, 23 ... foam insulation, 27 ... blower, 28 ... cooler, 30 ... compressor, 31 ... condenser, 50 ... vacuum insulation, 51 ... jacket material, 52 ... core material, 53 ... adsorbent, 54 ... welded portion, 55 ... reinforcing rib, 56 ... rising edge.

Claims (6)

外箱と内箱とによって形成される空間内に、芯材及び吸着剤を外被材に収納し内部を真空にした真空断熱材を前記外箱または前記内箱の複数の面に沿う立体形状に設置すると共に、発泡断熱材を充填して断熱箱体を構成した冷蔵庫において、
前記外被材を前記外箱または前記内箱の複数の面に沿う立体形状に射出成形された樹脂外被材を用いて形成した
ことを特徴とする冷蔵庫。
In a space formed by the outer box and the inner box, a three-dimensional shape along a plurality of surfaces of the outer box or the inner box is a vacuum heat insulating material in which the core material and the adsorbent are stored in the outer cover material and the inside is evacuated. In the refrigerator in which the heat insulation box is configured by filling with foam insulation,
The refrigerator is characterized in that the outer cover material is formed using a resin outer cover material that is injection-molded into a three-dimensional shape along a plurality of surfaces of the outer box or the inner box.
請求項1において、前記樹脂外被材を、射出成形された複数の樹脂外被材の立上周縁部を互いに熱溶着した密閉容器で構成し、この密閉容器内に前記芯材及び前記吸着剤を収納したことを特徴とする冷蔵庫。   2. The resin jacket material according to claim 1, wherein the resin jacket material is formed of a sealed container in which rising peripheral edges of a plurality of injection-molded resin jacket materials are thermally welded to each other, and the core material and the adsorbent are contained in the sealed container. Refrigerator characterized by storing. 請求項2において、前記樹脂外被材の内面に補強リブを複数条形成したことを特徴とする冷蔵庫。   The refrigerator according to claim 2, wherein a plurality of reinforcing ribs are formed on the inner surface of the resin jacket material. 請求項3において、前記樹脂外被材の補強リブの空間占有率を40%以下にしたことを特徴とする冷蔵庫。   4. The refrigerator according to claim 3, wherein the space occupancy ratio of the reinforcing ribs of the resin jacket material is 40% or less. 請求項3において、前記2つの樹脂外被材の両方から突出する補強リブを形成し、前記2つの樹脂外被材の補強リブが互いに向き合ったリブ間距離を前記真空断熱材の厚みの30%以上にしたことを特徴とする冷蔵庫。   In Claim 3, the reinforcing rib which protrudes from both of said two resin jacket materials is formed, and the distance between ribs where the reinforcing ribs of said two resin jacket materials face each other is 30% of the thickness of said vacuum heat insulating material. A refrigerator characterized by the above. 外箱と内箱とによって形成される空間内に発泡断熱材と共に前記外箱または前記内箱の複数の面に沿う立体形状に設置されて断熱箱体の一部を構成するものであり、
無機繊維集合体からなる芯材と、水分やガス成分などを吸着する吸着剤と、前記芯材及び前記吸着剤を収納して内部を減圧した外被材とを備える真空断熱材において、
前記外被材を前記外箱または前記内箱の複数の面に沿う立体形状に射出成形された樹脂外被材を用いて形成した
ことを特徴とする真空断熱材。
It is installed in a three-dimensional shape along a plurality of surfaces of the outer box or the inner box together with the foam heat insulating material in the space formed by the outer box and the inner box, and constitutes a part of the heat insulating box.
In a vacuum heat insulating material comprising a core material composed of an inorganic fiber aggregate, an adsorbent that adsorbs moisture, gas components, and the like, and a jacket material that contains the core material and the adsorbent and decompresses the inside thereof,
A vacuum heat insulating material, wherein the outer jacket material is formed using a resin outer shell material that is injection-molded into a three-dimensional shape along a plurality of surfaces of the outer box or the inner box.
JP2008110168A 2008-04-21 2008-04-21 Refrigerator and vacuum heat insulating material Withdrawn JP2009257714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110168A JP2009257714A (en) 2008-04-21 2008-04-21 Refrigerator and vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110168A JP2009257714A (en) 2008-04-21 2008-04-21 Refrigerator and vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2009257714A true JP2009257714A (en) 2009-11-05

Family

ID=41385360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110168A Withdrawn JP2009257714A (en) 2008-04-21 2008-04-21 Refrigerator and vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2009257714A (en)

Similar Documents

Publication Publication Date Title
US11384977B2 (en) Refrigerator comprising vacuum space
JP5903567B2 (en) refrigerator
JP5661175B2 (en) Refrigerator and vacuum insulation for refrigerator
JP5492685B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2009228917A (en) Refrigerator
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
CN104696669B (en) Vacuum heat-insulating plate
JP2011122739A (en) Refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2011149501A (en) Vacuum heat insulating material and refrigerator using the same
JP2015040634A (en) Vacuum heat insulation material and refrigerator
CN111503962B (en) Refrigerator and vacuum heat insulation plate
JP6634040B2 (en) Vacuum insulation material, method for manufacturing vacuum insulation material, and refrigerator
JP3488229B2 (en) Insulated box and refrigerator
JP5945708B2 (en) refrigerator
JP2016089963A (en) Vacuum heat insulation material and refrigeration using vacuum heat insulation material
JP2009257714A (en) Refrigerator and vacuum heat insulating material
JP2009257715A (en) Refrigerator and vacuum heat insulating material
JPH11159950A (en) Heat insulating box body for refrigerator
JP2013002485A (en) Vacuum thermal insulation material, and refrigerator using the same
JP6225324B2 (en) Heat insulation box
CN111503961B (en) Refrigerator and vacuum heat insulation plate
JP2013087806A (en) Heat insulating wall and heat insulating casing
JP2015197280A (en) refrigerator
JP2013242123A (en) Refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705