JP2009255767A - Hybrid vehicle and its control method - Google Patents

Hybrid vehicle and its control method Download PDF

Info

Publication number
JP2009255767A
JP2009255767A JP2008108021A JP2008108021A JP2009255767A JP 2009255767 A JP2009255767 A JP 2009255767A JP 2008108021 A JP2008108021 A JP 2008108021A JP 2008108021 A JP2008108021 A JP 2008108021A JP 2009255767 A JP2009255767 A JP 2009255767A
Authority
JP
Japan
Prior art keywords
power
output
internal combustion
combustion engine
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008108021A
Other languages
Japanese (ja)
Other versions
JP4992810B2 (en
Inventor
Takanori Aoki
孝典 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008108021A priority Critical patent/JP4992810B2/en
Publication of JP2009255767A publication Critical patent/JP2009255767A/en
Application granted granted Critical
Publication of JP4992810B2 publication Critical patent/JP4992810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/25Road altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/40Altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To more properly manage a charge storage ratio that is a ratio of a power amount that is dischargeable from an electric storage device, such as, a secondary battery in a hybrid vehicle having an engine and two motors, and to further improve the energy efficiency of the vehicle. <P>SOLUTION: Request power Ped which is requested of the engine is set, based on request torque Tr* requested of a driving axle (S110); target power Pe* is set by multiplying the request power Ped by a correction coefficient kp, based on atmospheric pressure Pa, when the charge storage ratio SOC of the electric storage device is less than a lower limit threshold SL (S140, S160); the target power Pe* is set by multiplying the request power Ped by a correction coefficient kp set to a value of 1.0, regardless of the atmospheric pressure Pa, when the charge storage ratio SOC is the lower limit threshold value SL or above (S150, S160); and the engine and the two motors are controlled (S170-S220), such that the set target power Pe* is outputted from the engine, the request torque Tr* is outputted to the driving axle, and traveling is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッド車およびその制御方法に関する。   The present invention relates to a hybrid vehicle and a control method thereof.

従来、この種のハイブリッド車としては、エンジンと、エンジンからの動力を用いて発電する第1のモータと、車軸とエンジンの出力軸と第1のモータの回転軸とに接続された遊星歯車機構と、車軸に動力を出力する第2のモータと、第1および第2のモータと電力をやりとりするバッテリとを備えるものが提案されている(例えば、特許文献1参照)。このハイブリッド車では、車両に要求される要求パワーに大気圧に基づく補正係数を乗じてエンジンから出力すべき目標パワーを設定することにより、大気圧の変化によりエンジンから出力されるパワーが過不足することに基づくバッテリの過剰な電力による充放電を抑制している。
特開2007−216841号公報
Conventionally, this type of hybrid vehicle includes an engine, a first motor that generates power using power from the engine, and a planetary gear mechanism connected to the axle, the output shaft of the engine, and the rotation shaft of the first motor. And a second motor that outputs power to the axle and a battery that exchanges electric power with the first and second motors have been proposed (see, for example, Patent Document 1). In this hybrid vehicle, the target power to be output from the engine is set by multiplying the required power required for the vehicle by a correction coefficient based on the atmospheric pressure, so that the power output from the engine becomes excessive or insufficient due to a change in atmospheric pressure. The charging / discharging by the excessive electric power of the battery based on it is suppressed.
JP 2007-216841 A

ところで、上述のようなハイブリッド車が気圧の低い地域である高地を走行する際には、平地の走行時に比べて降坂路を走行する機会が一般に増加するものと予想され、降坂路では、第2のモータを回生制御することにより車両の運動エネルギを回収してバッテリを充電することが可能である。ただし、降坂路の走行に際してバッテリの充電が制限されていると、第2のモータを回生制御し得なくなり、ハイブリッド車のエネルギ効率を向上させることができなくなってしまう。   By the way, when a hybrid vehicle such as that described above travels on a highland where the atmospheric pressure is low, it is generally expected that the chance of traveling on a downhill road will increase as compared to when traveling on a flat ground. By regeneratively controlling the motor, the kinetic energy of the vehicle can be recovered and the battery can be charged. However, if charging of the battery is restricted during traveling on a downhill road, the second motor cannot be regeneratively controlled, and the energy efficiency of the hybrid vehicle cannot be improved.

本発明のハイブリッド車は、高地などの気圧の低い地域を走行する際に、二次電池などの蓄電装置から放電可能な電力量の割合である蓄電割合をより適正に管理して車両のエネルギ効率をより向上させることを主目的とする。   When the hybrid vehicle of the present invention travels in a low-pressure area such as a high altitude, the energy efficiency of the vehicle can be managed more appropriately by managing the power storage ratio, which is the ratio of the amount of power that can be discharged from a power storage device such as a secondary battery. The main purpose is to further improve

本発明のハイブリッド車およびその制御方法は、上述の主目的を達成するために以下の手段を採った。   The hybrid vehicle of the present invention and its control method employ the following means in order to achieve the main object described above.

本発明のハイブリッド車は、
内燃機関と、車軸に連結された駆動軸に接続されると共に前記駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力する電力動力入出力手段と、前記駆動軸に動力を入出力する電動機と、前記電力動力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備えるハイブリッド車であって、
大気圧を検出する大気圧検出手段と、
前記蓄電手段から放電可能な電力量の割合である蓄電割合を検出する蓄電割合検出手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記設定された要求駆動力に基づいて前記内燃機関から出力すべき要求パワーを設定する要求パワー設定手段と、
前記検出された蓄電割合が所定蓄電割合未満のときには前記設定された要求パワーに対して前記検出された大気圧による補正を施してなる補正要求パワーが前記内燃機関から出力されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御し、前記検出された蓄電割合が前記所定蓄電割合以上のときには前記設定された要求パワーが前記内燃機関から出力されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する制御手段と、
を備えることを要旨とする。
The hybrid vehicle of the present invention
Connected to an internal combustion engine and a drive shaft connected to an axle, and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, the drive shaft and the output with input and output of electric power and power An electric power input / output means for inputting / outputting power to / from the shaft, an electric motor for inputting / outputting power to / from the drive shaft, and a power storage means capable of exchanging electric power with the electric power / input / output means and the electric motor. A car,
Atmospheric pressure detection means for detecting atmospheric pressure;
A power storage ratio detection means for detecting a power storage ratio that is a ratio of the amount of power that can be discharged from the power storage means;
A required driving force setting means for setting a required driving force required for traveling;
Required power setting means for setting required power to be output from the internal combustion engine based on the set required driving force;
When the detected power storage ratio is less than a predetermined power storage ratio, a correction required power obtained by correcting the set required power by the detected atmospheric pressure is output from the internal combustion engine and the set The internal combustion engine, the electric power drive input / output means, and the electric motor are controlled to run with a driving force based on a required driving force, and when the detected power storage ratio is equal to or higher than the predetermined power storage ratio, the set required power is Control means for controlling the internal combustion engine, the power drive input / output means, and the electric motor so as to travel with a driving force output from the internal combustion engine and based on the set required driving force;
It is a summary to provide.

この本発明のハイブリッド車では、走行に要求される要求駆動力に基づいて内燃機関から出力すべき要求パワーを設定し、蓄電手段から放電可能な電力量の割合である蓄電割合が所定蓄電割合未満のときには設定した要求パワーに対して大気圧による補正を施してなる補正要求パワーが内燃機関から出力されると共に要求駆動力に基づく駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。これにより、気圧が低い地域の走行に際して蓄電割合が過剰に低下するのを抑制することができる。一方、蓄電割合が所定蓄電割合以上のときには設定した要求パワーが内燃機関から出力されると共に要求駆動力に基づく駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。即ち、蓄電割合が所定蓄電割合以上であるときには、内燃機関の要求パワーに対する大気圧による補正を実行することなく蓄電手段からの電力を積極的に利用して電動機から動力を出力することで内燃機関の出力パワーの低下を補うのである。これにより、降坂路を走行する機会が増加すると予想される高地での走行に際して、蓄電手段の許容充電容量を確保し、降坂路における電動機の回生を促進させることが可能となる。したがって、これらにより、蓄電装置から放電可能な電力量の割合である蓄電割合をより適正に管理して車両のエネルギ効率をより向上させることができる。   In the hybrid vehicle of the present invention, the required power to be output from the internal combustion engine is set based on the required driving force required for traveling, and the power storage ratio that is the ratio of the amount of power that can be discharged from the power storage means is less than the predetermined power storage ratio In such a case, the internal combustion engine, the power power input / output means, and the electric motor are driven so that the corrected required power obtained by correcting the set required power by the atmospheric pressure is output from the internal combustion engine and driven by the driving force based on the required driving force. To control. Thereby, it is possible to suppress an excessive decrease in the power storage ratio during traveling in a region where the atmospheric pressure is low. On the other hand, when the power storage ratio is equal to or higher than the predetermined power storage ratio, the set required power is output from the internal combustion engine, and the internal combustion engine, the power power input / output means, and the electric motor are controlled so as to travel with the driving force based on the required driving force. That is, when the power storage ratio is equal to or higher than the predetermined power storage ratio, the internal combustion engine is configured to output power from the motor by actively using the power from the power storage means without executing correction of the required power of the internal combustion engine by atmospheric pressure. This compensates for the decrease in output power. As a result, it is possible to secure an allowable charging capacity of the power storage means and promote regeneration of the motor on the downhill road when traveling on a highland where the chance of traveling on the downhill road is expected to increase. Therefore, the energy storage ratio, which is the ratio of the amount of power that can be discharged from the power storage device, can be more appropriately managed, and the energy efficiency of the vehicle can be further improved.

こうした本発明のハイブリッド車において、前記所定蓄電割合は、前記検出された大気圧が小さいほど小さい割合であるものとすることもできる。こうすれば、大気圧が小さいほど蓄電手段の許容充電容量を大きく確保することができるから、その後の降坂路において車両の運動エネルギをより多く回収することができ、車両のエネルギ効率をより向上させることができる。これは、大気圧が小さいほど、車両の走行する位置が高く、その後に降坂路が多くあると予想されることに基づく。   In the hybrid vehicle of the present invention, the predetermined power storage ratio may be a smaller ratio as the detected atmospheric pressure is smaller. In this way, the smaller the atmospheric pressure, the larger the allowable charging capacity of the power storage means can be secured, so that more kinetic energy of the vehicle can be recovered on the subsequent downhill road, and the energy efficiency of the vehicle is further improved. be able to. This is based on the fact that the lower the atmospheric pressure, the higher the position where the vehicle travels and the more descending slopes thereafter.

また、本発明のハイブリッド車において、前記補正要求パワーは、前記検出された大気圧が所定大気圧未満のときに、該検出された大気圧が小さいほど大きくなる傾向に補正が施されてなるパワーであるものとすることもできる。こうすれば、蓄電割合をより適正に管理することができる。   In the hybrid vehicle of the present invention, the correction required power is a power that is corrected to tend to increase as the detected atmospheric pressure decreases when the detected atmospheric pressure is less than a predetermined atmospheric pressure. It can also be assumed. In this way, the power storage ratio can be managed more appropriately.

さらに、本発明のハイブリッド車において、前記制御手段は、前記検出された蓄電割合が前記所定蓄電割合以上であっても前記設定された要求パワーが所定パワー未満のときには、前記補正要求パワーが前記内燃機関から出力されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する手段である、ものとすることもできる。   Furthermore, in the hybrid vehicle according to the present invention, the control means determines that the corrected required power is the internal combustion engine when the set required power is less than the predetermined power even when the detected power storage ratio is equal to or greater than the predetermined power storage ratio. It may be a means for controlling the internal combustion engine, the electric power drive input / output means, and the electric motor so as to run with a driving force that is output from the engine and based on the set required driving force.

あるいは、本発明のハイブリッド車において、前記電力動力入出力手段は、動力を入出力する発電機と、前記駆動軸と前記出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える手段である、ものとすることもできる。   Alternatively, in the hybrid vehicle of the present invention, the power power input / output means is connected to three shafts of a generator that inputs and outputs power, the drive shaft, the output shaft, and the rotating shaft of the generator. 3 axis type power input / output means for inputting / outputting power to / from the remaining shafts based on the power input / output to / from any two axes.

本発明のハイブリッド車の制御方法は、
内燃機関と、車軸に連結された駆動軸に接続されると共に前記駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力する電力動力入出力手段と、前記駆動軸に動力を入出力する電動機と、前記電力動力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備えるハイブリッド車の制御方法であって、
(a)走行に要求される要求駆動力に基づいて前記内燃機関から出力すべき要求パワーを設定し、
(b)前記蓄電手段から放電可能な電力量の割合である蓄電割合が所定蓄電割合未満のときには前記設定した要求パワーに対して大気圧による補正を施してなる補正要求パワーが前記内燃機関から出力されると共に前記要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御し、前記蓄電割合が前記所定蓄電割合以上のときには前記設定した要求パワーが前記内燃機関から出力されると共に前記要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する、
ことを特徴とする。
The hybrid vehicle control method of the present invention includes:
Connected to an internal combustion engine and a drive shaft connected to an axle, and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, the drive shaft and the output with input and output of electric power and power An electric power input / output means for inputting / outputting power to / from the shaft, an electric motor for inputting / outputting power to / from the drive shaft, and a power storage means capable of exchanging electric power with the electric power / input / output means and the electric motor. A vehicle control method,
(A) setting a required power to be output from the internal combustion engine based on a required driving force required for traveling;
(B) When the power storage ratio, which is the ratio of the amount of power that can be discharged from the power storage means, is less than a predetermined power storage ratio, a corrected required power obtained by correcting the set required power by atmospheric pressure is output from the internal combustion engine. And controlling the internal combustion engine, the power drive input / output means, and the electric motor so that the vehicle travels with a driving force based on the required driving force, and when the power storage ratio is equal to or higher than the predetermined power storage ratio, the set required power is Controlling the internal combustion engine, the power power input / output means, and the electric motor so as to travel with a driving force based on the required driving force and output from the internal combustion engine;
It is characterized by that.

この本発明のハイブリッド車の制御方法では、走行に要求される要求駆動力に基づいて内燃機関から出力すべき要求パワーを設定し、蓄電手段から放電可能な電力量の割合である蓄電割合が所定蓄電割合未満のときには設定した要求パワーに対して大気圧による補正を施してなる補正要求パワーが内燃機関から出力されると共に要求駆動力に基づく駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。これにより、気圧が低い地域の走行に際して蓄電割合が過剰に低下するのを抑制することができる。一方、蓄電割合が所定蓄電割合以上のときには設定した要求パワーが内燃機関から出力されると共に要求駆動力に基づく駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御する。即ち、蓄電割合が所定蓄電割合以上であるときには、内燃機関の要求パワーに対する大気圧による補正を実行することなく蓄電手段からの電力を積極的に利用して電動機から動力を出力することで内燃機関の出力パワーの低下を補うのである。これにより、降坂路を走行する機会が増加すると予想される高地での走行に際して、蓄電手段の許容充電容量を確保し、降坂路における電動機の回生を促進させることが可能となる。したがって、これらにより、蓄電装置から放電可能な電力量の割合である蓄電割合をより適正に管理して車両のエネルギ効率をより向上させることができる。   In this hybrid vehicle control method of the present invention, the required power to be output from the internal combustion engine is set based on the required driving force required for traveling, and the power storage ratio that is the ratio of the amount of power that can be discharged from the power storage means is predetermined. The internal combustion engine and the power drive input / output means so that the corrected required power obtained by correcting the set required power by the atmospheric pressure is output from the internal combustion engine and the vehicle is driven by the driving force based on the required driving force when the power storage ratio is less than And the motor. Thereby, it is possible to suppress an excessive decrease in the power storage ratio during traveling in a region where the atmospheric pressure is low. On the other hand, when the power storage ratio is equal to or higher than the predetermined power storage ratio, the set required power is output from the internal combustion engine, and the internal combustion engine, the power power input / output means, and the electric motor are controlled so as to travel with the driving force based on the required driving force. That is, when the power storage ratio is equal to or higher than the predetermined power storage ratio, the internal combustion engine is configured to output power from the motor by actively using the power from the power storage means without executing correction of the required power of the internal combustion engine by atmospheric pressure. This compensates for the decrease in output power. As a result, it is possible to secure an allowable charging capacity of the power storage means and promote regeneration of the motor on the downhill road when traveling on a highland where the chance of traveling on the downhill road is expected to increase. Therefore, the energy storage ratio, which is the ratio of the amount of power that can be discharged from the power storage device, can be more appropriately managed, and the energy efficiency of the vehicle can be further improved.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、車両全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire vehicle.

エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24には、エンジン22の運転状態を検出する各種センサからの信号、例えば、エンジン22のクランクシャフト26のクランク角を検出する図示しないクランクポジションセンサからのクランクポジションなどが入力されている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、エンジンECU24は、図示しないクランクポジションセンサからのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil. The engine electronic control unit (hereinafter referred to as engine ECU) 24 performs fuel injection control, ignition control, and intake air amount adjustment. Under control of operation such as control. The engine ECU 24 receives signals from various sensors that detect the operating state of the engine 22, for example, a crank position from a crank position sensor (not shown) that detects the crank angle of the crankshaft 26 of the engine 22. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and, if necessary, transmits data related to the operating state of the engine 22 to the hybrid electronic control. Output to unit 70. The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22, based on a crank position from a crank position sensor (not shown).

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、動力分配統合機構30は、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 arranged concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. The crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. The power distribution and integration mechanism 30 includes the motor MG1. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。   The motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that can be driven as generators and can be driven as motors, and exchange power with the battery 50 via inverters 41 and 42. The power line 54 connecting the inverters 41 and 42 and the battery 50 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42, and the electric power generated by one of the motors MG1 and MG2 It can be consumed by a motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 detects signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 to be applied is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 also calculates the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 based on signals from the rotational position detection sensors 43 and 44.

バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧,バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて、バッテリ50の満充電時の電力量に対する放電可能な電力量の割合である蓄電割合(残容量)SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電割合SOCに基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。   The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50, and a power line 54 connected to the output terminal of the battery 50. The charging / discharging current from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor 51 attached to the battery 50, and the like are input. Output to the control unit 70. In addition, the battery ECU 52 is a power storage ratio that is a ratio of the amount of power that can be discharged to the amount of power when the battery 50 is fully charged, based on the integrated value of the charge / discharge current detected by the current sensor to manage the battery 50. (Remaining capacity) The SOC is calculated, and the input / output limits Win and Wout that are the maximum allowable power that may charge / discharge the battery 50 are calculated based on the calculated storage ratio SOC and the battery temperature Tb. The input / output limits Win and Wout of the battery 50 are set to the basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limiting correction coefficient and the input limiting limit are set based on the storage ratio SOC of the battery 50. It can be set by setting a correction coefficient and multiplying the basic value of the set input / output limits Win and Wout by the correction coefficient.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,大気圧センサ89からの大気圧Paなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72, and in addition to the CPU 72, a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port and communication not shown. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. The accelerator opening Acc from the vehicle, the brake pedal position BP from the brake pedal position sensor 86 that detects the amount of depression of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, the atmospheric pressure Pa from the atmospheric pressure sensor 89, etc. Is entered through. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that the power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled so as to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特に高地などの気圧が低い地域を走行するときの動作について説明する。図2はハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。   Next, the operation of the hybrid vehicle 20 of the embodiment configured as described above, particularly the operation when traveling in a low-pressure area such as a high altitude will be described. FIG. 2 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70. This routine is repeatedly executed every predetermined time (for example, every several msec).

駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の蓄電割合SOC,バッテリ50の出力制限Wout,大気圧センサ89からの大気圧Paなど制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、モータMG1,MG2の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。また、バッテリ50の蓄電割合SOCと出力制限Woutとは、バッテリ50の充放電電流の積算値に基づいて設定されたものとバッテリ50の電池温度Tbと蓄電割合SOCとに基づいて演算されたものとをそれぞれバッテリECU52から通信により入力するものとした。   When the drive control routine is executed, first, the CPU 72 of the hybrid electronic control unit 70 first determines the accelerator opening Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, the rotational speed Nm1, of the motors MG1, MG2. A process of inputting data required for control, such as Nm2, the storage ratio SOC of the battery 50, the output limit Wout of the battery 50, and the atmospheric pressure Pa from the atmospheric pressure sensor 89, is executed (step S100). Here, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 are calculated based on the rotational positions of the motors MG1 and MG2 and input from the motor ECU 40 by communication. The storage ratio SOC and output limit Wout of the battery 50 are set based on the integrated value of the charge / discharge current of the battery 50, and calculated based on the battery temperature Tb of the battery 50 and the storage ratio SOC. Are input from the battery ECU 52 by communication.

こうしてデータを入力すると、入力したアクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*とエンジン22に要求される要求パワーPedとを設定する(ステップS110)。要求トルクTr*は、実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、車速Vとアクセル開度Accとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図3に要求トルク設定用マップの一例を示す。要求パワーPedは、設定した要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものとバッテリ50に充放電すべき要求充放電電力Pb*とロスLossとの和として計算することができる。なお、リングギヤ軸32aの回転数Nrは、車速Vに換算係数kを乗じること(Nr=k・V)によって求めたり、モータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで割ること(Nr=Nm2/Gr)によって求めることができる。   When the data is thus input, the required torque Tr * to be output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b as the torque required for the vehicle based on the input accelerator opening Acc and the vehicle speed V. And the required power Ped required for the engine 22 is set (step S110). In the embodiment, the required torque Tr * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required torque Tr * in the ROM 74 as a required torque setting map, and the vehicle speed V, the accelerator opening Acc, , The corresponding required torque Tr * is derived and set from the stored map. FIG. 3 shows an example of the required torque setting map. The required power Ped can be calculated as the sum of the set required torque Tr * multiplied by the rotational speed Nr of the ring gear shaft 32a and the required charge / discharge power Pb * to be charged / discharged to the battery 50 and the loss Loss. The rotational speed Nr of the ring gear shaft 32a is obtained by multiplying the vehicle speed V by a conversion factor k (Nr = k · V), or the rotational speed Nm2 of the motor MG2 is divided by the gear ratio Gr of the reduction gear 35 (Nr = Nm2 / Gr).

次に、大気圧Paに基づいてバッテリ50の蓄電割合SOCについての下限閾値SLを設定し(ステップS120)、バッテリ50の蓄電割合SOCを設定した下限閾値SLと比較する(ステップS130)。大気圧Paと下限閾値SLとの関係の一例を図4に示す。下限閾値SLは、図示するように、大気圧Paが標準圧Pnml(例えば1気圧)以上の領域では図示しない設定処理によって設定される制御中心としての目標蓄電割合SOC*が設定され、大気圧Paが比較的低い値である値PLo未満の領域では一定に値Sminが設定され、大気圧Paが標準圧Pnml未満で値Plo以上の領域では大気圧Paが小さいほど目標蓄電割合SOC*から値Sminに向けて徐々に小さくなる値が設定される。ここで、値Sminとしては例えばバッテリ50が過放電となる蓄電割合よりやや大きい値などを用いることができ、目標蓄電割合SOC*としては例えば50%や60%などが設定される。   Next, the lower limit threshold SL for the storage ratio SOC of the battery 50 is set based on the atmospheric pressure Pa (step S120), and compared with the lower limit threshold SL that sets the storage ratio SOC of the battery 50 (step S130). An example of the relationship between the atmospheric pressure Pa and the lower limit threshold SL is shown in FIG. As shown in the figure, the lower limit threshold SL is set to a target storage ratio SOC * as a control center set by a setting process (not shown) in an area where the atmospheric pressure Pa is equal to or higher than the standard pressure Pnml (for example, 1 atmosphere). The value Smin is set to a constant value in the region below the value PLo, which is a relatively low value, and the value Smin from the target power storage ratio SOC * decreases as the atmospheric pressure Pa decreases in the region where the atmospheric pressure Pa is less than the standard pressure Pnml and above the value Plo. A value that gradually decreases toward is set. Here, as the value Smin, for example, a value slightly larger than the power storage ratio at which the battery 50 is overdischarged can be used, and as the target power storage ratio SOC *, for example, 50% or 60% is set.

そして、蓄電割合SOCが下限閾値SL未満のときには大気圧Paに基づいて補正係数kpを設定し(ステップS140)、蓄電割合SOCが下限閾値SL以上のときには大気圧Paに拘わらず補正係数kpに値1.0を設定し(ステップS150)、設定した補正係数kpを要求パワーPedに乗じてエンジン22の目標パワーPe*を設定する(ステップS160)。蓄電割合SOCが下限閾値SL未満のときの大気圧Paと補正係数kpとの関係の一例を図5に示す。蓄電割合SOCが下限閾値SL未満のときの補正係数kpは、図示するように、大気圧Paが標準圧Pnml(例えば1気圧)以上の領域では一定に値1.0が設定され、大気圧Paが標準圧Pnml未満の領域では大気圧Paが小さいほど大きい値が設定される。これにより、蓄電割合SOCが下限閾値SL未満のときには、補正係数kpを要求パワーPedに乗じて設定されるエンジン22の目標パワーPe*は、大気圧Paが標準圧Pnml以上の領域では要求パワーPedと一致し、大気圧Paが標準圧Pnml未満の領域では大気圧Paが小さいほど要求パワーPedより大きい値となる。一方、蓄電割合SOCが下限閾値SL以上のときには、目標パワーPe*は、大気圧Paに拘わらず要求パワーPedと一致する。   When the storage ratio SOC is less than the lower limit threshold SL, the correction coefficient kp is set based on the atmospheric pressure Pa (step S140). When the storage ratio SOC is equal to or higher than the lower limit threshold SL, the correction coefficient kp is set regardless of the atmospheric pressure Pa. 1.0 is set (step S150), and the target power Pe * of the engine 22 is set by multiplying the required power Ped by the set correction coefficient kp (step S160). An example of the relationship between the atmospheric pressure Pa and the correction coefficient kp when the power storage rate SOC is less than the lower limit threshold SL is shown in FIG. As shown in the figure, the correction coefficient kp when the power storage ratio SOC is less than the lower limit threshold SL is set to a constant value 1.0 in a region where the atmospheric pressure Pa is equal to or higher than the standard pressure Pnml (for example, 1 atmosphere). In a region where the pressure is less than the standard pressure Pnml, a larger value is set as the atmospheric pressure Pa is smaller. Thereby, when the storage ratio SOC is less than the lower limit threshold SL, the target power Pe * of the engine 22 set by multiplying the required power Ped by the correction coefficient kp is the required power Ped in the region where the atmospheric pressure Pa is equal to or higher than the standard pressure Pnml. In a region where the atmospheric pressure Pa is less than the standard pressure Pnml, the smaller the atmospheric pressure Pa, the larger the required power Ped. On the other hand, when the power storage rate SOC is equal to or higher than the lower limit threshold SL, the target power Pe * matches the required power Ped regardless of the atmospheric pressure Pa.

続いて、設定した目標パワーPe*に基づいてエンジン22を運転すべき運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定する(ステップS170)。この設定は、エンジン22を効率よく動作させる動作ラインと目標パワーPe*とに基づいて行なわれる。エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を図6に示す。目標回転数Ne*と目標トルクTe*は、図示するように、動作ラインと目標パワーPe*(Ne*×Te*)が一定の曲線との交点により求めることができる。   Subsequently, the target rotational speed Ne * and the target torque Te * are set as operating points at which the engine 22 should be operated based on the set target power Pe * (step S170). This setting is performed based on the operation line for efficiently operating the engine 22 and the target power Pe *. FIG. 6 shows an example of the operation line of the engine 22 and how the target rotational speed Ne * and the target torque Te * are set. As shown in the figure, the target rotational speed Ne * and the target torque Te * can be obtained from the intersection of the operation line and a curve with a constant target power Pe * (Ne * × Te *).

次に、エンジン22の目標回転数Ne*とモータMG2の回転数Nm2と動力分配統合機構30のギヤ比ρと減速ギヤ35のギヤ比Grとを用いて次式(1)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と入力したモータMG1の回転数Nm1とエンジン22の目標トルクTe*と動力分配統合機構30のギヤ比ρとに基づいて式(2)によりモータMG1のトルク指令Tm1*を計算する(ステップS180)。ここで、式(1)は、動力分配統合機構30の回転要素に対する力学的な関係式である。エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図7に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。式(1)は、この共線図を用いれば容易に導くことができる。なお、R軸上の2つの太線矢印は、モータMG1から出力されたトルクTm1がリングギヤ32aに作用するトルクと、モータMG2から出力したトルクが減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。また、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。   Next, using the target rotational speed Ne * of the engine 22, the rotational speed Nm2 of the motor MG2, the gear ratio ρ of the power distribution and integration mechanism 30, and the gear ratio Gr of the reduction gear 35, the target of the motor MG1 is expressed by the following equation (1). Formula (2) is calculated based on the calculated target rotational speed Nm1 *, the input rotational speed Nm1 of the motor MG1, the target torque Te * of the engine 22, and the gear ratio ρ of the power distribution and integration mechanism 30. To calculate the torque command Tm1 * of the motor MG1 (step S180). Here, Expression (1) is a dynamic relational expression for the rotating element of the power distribution and integration mechanism 30. FIG. 7 is a collinear diagram showing a dynamic relationship between the rotational speed and torque in the rotating elements of the power distribution and integration mechanism 30 when traveling with the power output from the engine 22. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. Equation (1) can be easily derived by using this alignment chart. The two thick arrows on the R axis indicate the torque that the torque Tm1 output from the motor MG1 acts on the ring gear 32a, and the torque that the torque output from the motor MG2 acts on the ring gear shaft 32a via the reduction gear 35. Indicates. Expression (2) is a relational expression in feedback control for rotating the motor MG1 at the target rotational speed Nm1 *. In Expression (2), “k1” in the second term on the right side is a gain of a proportional term. “K2” in the third term on the right side is the gain of the integral term.

Nm1*=Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) (1)
Tm1*=-ρ・Te*/(1+ρ)+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
Nm1 * = Ne * ・ (1 + ρ) / ρ-Nm2 / (Gr ・ ρ) (1)
Tm1 * =-ρ ・ Te * / (1 + ρ) + k1 (Nm1 * -Nm1) + k2∫ (Nm1 * -Nm1) dt (2)

そして、要求トルクTr*に設定したトルク指令Tm1*を動力分配統合機構30のギヤ比ρで除したものを加えて更に減速ギヤ35のギヤ比Grで除してモータMG2から出力すべきトルクの仮の値である仮トルクTm2tmpを次式(3)により計算すると共に(ステップS190)、バッテリ50の出力制限Woutと設定したトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上限としてのトルク制限Tm2maxを次式(4)により計算し(ステップS200)、設定した仮トルクTm2tmpをトルク制限Tm2maxで制限してモータMG2のトルク指令Tm2*を設定する(ステップS210)。ここで、式(3)は、図7の共線図から容易に導くことができる。   Then, the torque command Tm1 * set as the required torque Tr * is divided by the gear ratio ρ of the power distribution and integration mechanism 30 and further divided by the gear ratio Gr of the reduction gear 35 to obtain the torque to be output from the motor MG2. A temporary torque Tm2tmp, which is a temporary value, is calculated by the following equation (3) (step S190), and is obtained by multiplying the output limit Wout of the battery 50 and the set torque command Tm1 * by the current rotational speed Nm1 of the motor MG1. A torque limit Tm2max as an upper limit of the torque that may be output from the motor MG2 by dividing the deviation from the power consumption (generated power) of the motor MG1 by the rotation speed Nm2 of the motor MG2 is calculated by the following equation (4) (step) S200), the set temporary torque Tm2tmp is limited by the torque limit Tm2max, and the torque command Tm2 * of the motor MG2 is set. Set (step S210). Here, Expression (3) can be easily derived from the alignment chart of FIG.

Tm2tmp=(Tr*+Tm1*/ρ)/Gr (3)
Tm2max=(Wout-Tm1*・Nm1)/Nm2 (4)
Tm2tmp = (Tr * + Tm1 * / ρ) / Gr (3)
Tm2max = (Wout-Tm1 * ・ Nm1) / Nm2 (4)

こうしてエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*についてはモータECU40にそれぞれ送信して(ステップS220)、駆動制御ルーチンを終了する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、バッテリ50の入出力制限Win,Woutの範囲内でエンジン22を効率よく運転して駆動軸としてのリングギヤ軸32aに要求トルクTr*を出力して走行することができる。   Thus, when the target engine speed Ne *, the target torque Te *, and the torque commands Tm1 *, Tm2 * of the motors MG1, MG2 are set, the target engine speed Ne * and the target torque Te * of the engine 22 are set in the engine ECU 24. The torque commands Tm1 * and Tm2 * for the motors MG1 and MG2 are transmitted to the motor ECU 40 (step S220), and the drive control routine is terminated. The engine ECU 24 that has received the target rotational speed Ne * and the target torque Te * controls the intake air amount in the engine 22 so that the engine 22 is operated at the operating point indicated by the target rotational speed Ne * and the target torque Te *. Controls such as fuel injection control and ignition control. Further, the motor ECU 40 that has received the torque commands Tm1 * and Tm2 * controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tm1 * and the motor MG2 is driven by the torque command Tm2 *. To do. By such control, the engine 22 can be efficiently operated within the range of the input / output limits Win and Wout of the battery 50, and the required torque Tr * can be output to the ring gear shaft 32a as a drive shaft to travel.

ここで、大気圧Paが標準圧Pnmlのときにエンジン22から出力されるパワー(以下、エンジンパワーという)Peが目標パワーPe*となるようにエンジン22の吸入空気量制御や燃料噴射制御などを行なう車両では、大気圧Paが比較的小さいときには、エンジン22に吸入される空気密度が小さくなることによって燃焼室内に吸入される酸素量が減少するため、エンジンパワーPeは目標パワーPe*に対して小さくなると考えられる。この場合、エンジンパワーPeとして目標パワーPe*が出力されるときに比して、上述した式(2)によりモータMG1を目標回転数Nm1*で回転させるよう計算されるモータMG1のトルク指令Tm1*が大きくなる(発電用トルクとしては小さくなる)と共にこのトルク指令Tm1*を用いて式(3)により計算されるモータMG2の仮トルクTm2tmpが大きくなる。したがって、エンジンパワーPeとして目標パワーPe*が出力されるときに比して、モータMG1により発電される電力が小さくなると共にモータMG2により消費される電力が大きくなり、バッテリ50に入出力される電力が充放電要求電力Pb*より放電側になると想定される。このことを考慮して、実施例では、バッテリ50の蓄電割合SOCが下限閾値SL未満のときには、要求パワーPedに大気圧Paが小さいほど大きい傾向の補正係数kpを乗じて目標パワーPe*を設定するものとした。これにより、エンジンパワーPeを要求パワーPedにより近づけることができ、高地などの気圧が低い地域の走行に際してバッテリ50の蓄電割合SOCが過剰に低下するのを抑制することができる。   Here, when the atmospheric pressure Pa is the standard pressure Pnml, the intake air amount control or fuel injection control of the engine 22 is performed so that the power Pe output from the engine 22 (hereinafter referred to as engine power) Pe becomes the target power Pe *. When the atmospheric pressure Pa is relatively low, the engine power Pe is less than the target power Pe * because the amount of oxygen sucked into the combustion chamber is reduced due to a decrease in the air density sucked into the engine 22 when the atmospheric pressure Pa is relatively small. It will be smaller. In this case, compared to when the target power Pe * is output as the engine power Pe, the torque command Tm1 * of the motor MG1 calculated to rotate the motor MG1 at the target rotational speed Nm1 * by the above-described equation (2). Increases (the torque for power generation decreases), and the temporary torque Tm2tmp of the motor MG2 calculated by the equation (3) using the torque command Tm1 * increases. Therefore, compared to when target power Pe * is output as engine power Pe, the electric power generated by motor MG1 becomes smaller and the electric power consumed by motor MG2 becomes larger. Is assumed to be on the discharge side from the required charge / discharge power Pb *. Considering this, in the embodiment, when the storage ratio SOC of the battery 50 is less than the lower limit threshold SL, the target power Pe * is set by multiplying the required power Ped by a correction coefficient kp that tends to increase as the atmospheric pressure Pa decreases. To do. As a result, the engine power Pe can be made closer to the required power Ped, and it is possible to suppress an excessive decrease in the storage ratio SOC of the battery 50 when traveling in an area where the atmospheric pressure is low such as a high altitude.

また、高地などの大気圧Paが比較的小さい地域を走行するときには、平地の走行時に比べて降坂路を走行する機会が一般に増加し、いずれ降坂路を走行することが予想される。そして、降坂路ではモータMG2を回生制御することにより車両の運動エネルギを回収してバッテリ50を充電することが可能である。このため、実施例では、こうした降坂路において車両の運動エネルギをより多く回収できるように、蓄電割合SOCが下限閾値SL以上のときには、大気圧Paに拘わらず補正係数kpに値1.0を設定してバッテリ50からの電力を積極的に利用してモータMG2から動力を出力することでエンジンパワーPeの低下を補うものとした。これにより、蓄電割合SOCが下限閾値SL以上のときには、上述したようにバッテリ50に入出力される電力が充放電要求電力Pb*より放電側になると、徐々に蓄電割合SOCが低下することから、車両の運動エネルギを回収するためのバッテリ50の許容充電容量を確保することができる。したがって、こうした制御により、降坂路を走行する機会が増加すると予想される高地での走行に際して、蓄電割合SOCが大きいためにバッテリ50の充電が制限されるのを抑制することができ、降坂路におけるモータMG2の回生を促進させることが可能となる。   Further, when traveling in an area where the atmospheric pressure Pa is relatively small, such as a highland, the chance of traveling on a downhill road is generally increased as compared to traveling on a flat ground, and it is expected that the road will travel downhill. Then, on the downhill road, the motor MG2 is regeneratively controlled to recover the kinetic energy of the vehicle and charge the battery 50. For this reason, in the embodiment, when the power storage rate SOC is equal to or higher than the lower limit threshold SL, the correction coefficient kp is set to a value 1.0 regardless of the atmospheric pressure Pa so that more kinetic energy of the vehicle can be recovered on such downhill roads. The power from the battery 50 is actively used to output power from the motor MG2 to compensate for the decrease in engine power Pe. Thereby, when the power storage rate SOC is equal to or greater than the lower limit threshold SL, as described above, when the power input / output to / from the battery 50 is on the discharge side from the charge / discharge required power Pb *, the power storage rate SOC gradually decreases. The allowable charging capacity of the battery 50 for recovering the kinetic energy of the vehicle can be ensured. Therefore, by such control, it is possible to suppress the charging of the battery 50 from being restricted due to the large storage ratio SOC when traveling at a high altitude where an opportunity to travel on the downhill road is expected to increase. It becomes possible to promote regeneration of motor MG2.

さらに、車両が走行している位置の高度が高いほど、その後に降坂路が多くあると予想され、モータMG2が回生制御して回収する電力が多くなると予想されるから、実施例では、上述した図3に示すように、下限閾値SLを大気圧Paが小さいほど小さく設定するものとした。即ち、車両が走行する高度が高いほど降坂路を走行する機会が増加し、車両の運動エネルギを回収できる量も多いと予想されるから、下限閾値SLを小さい値に設定してバッテリ50の許容充電容量をより大きく確保するのである。これにより、大気圧Paに応じて即ち車両の走行する位置の高度に応じてバッテリ50の許容充電容量を確保することができ、車両のエネルギ効率をより向上させることができる。   Furthermore, the higher the altitude of the position where the vehicle is traveling, the more descending slopes are expected thereafter, and the motor MG2 is expected to increase the power recovered by regenerative control. As shown in FIG. 3, the lower limit threshold SL is set to be smaller as the atmospheric pressure Pa is smaller. That is, the higher the altitude at which the vehicle travels, the greater the chance of traveling on the downhill road and the greater the amount of vehicle kinetic energy that can be recovered, so the lower limit threshold SL is set to a small value and the battery 50 is allowed. A larger charge capacity is ensured. Thereby, the allowable charge capacity of the battery 50 can be ensured according to the atmospheric pressure Pa, that is, the altitude of the position where the vehicle travels, and the energy efficiency of the vehicle can be further improved.

以上説明した実施例のハイブリッド自動車20によれば、駆動軸としてのリングギヤ軸32aに要求される要求トルクTr*に基づいてエンジン22に要求される要求パワーPedを設定し、バッテリ50の蓄電割合SOCが下限閾値SL未満のときには、要求パワーPedに大気圧Paに基づく補正係数kpを乗じた目標パワーPe*がエンジン22から出力されると共にリングギヤ軸32aに要求駆動力Tr*を出力して走行するようエンジン22とモータMG1,MG2とを制御するから、気圧が低い地域の走行に際して蓄電割合SOCが過剰に低下するのを抑制することができる。一方、蓄電割合SOCが下限閾値SL以上のときには、要求パワーPedに大気圧Paに拘わらず値1.0が設定される補正係数kpを乗じた目標パワーPe*がエンジン22から出力されると共にリングギヤ軸32aに要求駆動力Tr*を出力して走行するようエンジン22とモータMG1,MG2とを制御するから、降坂路を走行する機会が増加すると予想される高地での走行に際して、バッテリ50の許容充電容量を確保し、降坂路におけるモータMG2の回生を促進させることが可能となる。したがって、これらにより、蓄電割合SOCをより適正に管理して車両のエネルギ効率をより向上させることができる。   According to the hybrid vehicle 20 of the embodiment described above, the required power Ped required for the engine 22 is set based on the required torque Tr * required for the ring gear shaft 32a as the drive shaft, and the power storage rate SOC of the battery 50 is set. Is less than the lower limit threshold SL, the target power Pe * obtained by multiplying the required power Ped by the correction coefficient kp based on the atmospheric pressure Pa is output from the engine 22, and the required driving force Tr * is output to the ring gear shaft 32a. Since the engine 22 and the motors MG1 and MG2 are controlled as described above, it is possible to suppress an excessive decrease in the storage rate SOC during traveling in a region where the atmospheric pressure is low. On the other hand, when the storage ratio SOC is equal to or greater than the lower limit threshold SL, the target power Pe * obtained by multiplying the required power Ped by a correction coefficient kp that is set to a value 1.0 regardless of the atmospheric pressure Pa is output from the engine 22 and the ring gear. Since the engine 22 and the motors MG1 and MG2 are controlled so as to travel by outputting the required driving force Tr * to the shaft 32a, the battery 50 is allowed to travel at high altitudes where the chance of traveling downhill is expected to increase. It is possible to secure the charging capacity and promote the regeneration of the motor MG2 on the downhill road. Therefore, it is possible to more appropriately manage the power storage ratio SOC and further improve the energy efficiency of the vehicle.

実施例のハイブリッド自動車20では、下限閾値SLは、大気圧Paに基づいて設定されるものとしたが、これに代えてまたは加えて、GPS衛星から走行位置を受信可能である車両では受信した走行位置と地図情報とに基づいて検出される車両が位置する高度を用いて設定されるものとしてもよいし、路面勾配センサを備えた車両では検出された路面勾配θと車速Vなどに基づいて演算される車両が位置する高度の変化量を積算することにより演算される車両が位置する高度を用いて設定されるものとしてもよい。また、下限閾値SLは、こうしたデータの所定時間における変化量に基づいて設定されるものとしても構わない。この場合、下限閾値SLは、こうした変化量に基づく値と前回の下限閾値SLとに基づいて所定時間ごとに設定されるものとしてもよい。さらに、下限閾値SLは、こうしたデータに拘わらず一定の固定値を設定されるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the lower limit threshold SL is set based on the atmospheric pressure Pa, but instead of or in addition to this, in the vehicle that can receive the traveling position from the GPS satellite, the received traveling It may be set using the altitude at which the vehicle detected based on the position and map information is located, or in a vehicle equipped with a road surface gradient sensor, it is calculated based on the detected road surface gradient θ and vehicle speed V, etc. It may be set using the altitude at which the vehicle is calculated by integrating the amount of change in altitude at which the vehicle is positioned. The lower limit threshold SL may be set based on the amount of change of such data in a predetermined time. In this case, the lower limit threshold SL may be set every predetermined time based on the value based on such a change amount and the previous lower limit threshold SL. Furthermore, the lower limit threshold SL may be set to a fixed value regardless of such data.

実施例のハイブリッド自動車20では、バッテリ50の蓄電割合SOCが下限閾値SL以上のときには補正係数kpに一定に値1.0を設定するものとしたが、蓄電割合SOCが下限閾値SL以上であってもエンジン22の要求パワーPedが閾値Pref未満のときには、大気圧Paと図5の補正係数設定用マップとに基づいて補正係数kpを設定するものとしてもよい。即ち、蓄電割合SOCが下限閾値SL以上であってもエンジン22の要求パワーPedが閾値Pref未満のときには、大気圧Paに基づく補正を施してエンジン22の目標パワーPe*を設定するものとしても構わない。こうすれば、大気圧Paが小さく且つエンジン22から出力すべき要求パワーPedが小さいときに生じる不具合(例えば、燃焼不良など)を抑制することができる。   In the hybrid vehicle 20 of the embodiment, when the storage ratio SOC of the battery 50 is equal to or higher than the lower limit threshold SL, the correction coefficient kp is set to a constant value 1.0, but the storage ratio SOC is equal to or higher than the lower limit threshold SL. Alternatively, when the required power Ped of the engine 22 is less than the threshold value Pref, the correction coefficient kp may be set based on the atmospheric pressure Pa and the correction coefficient setting map of FIG. That is, even if the power storage ratio SOC is equal to or greater than the lower limit threshold SL, when the required power Ped of the engine 22 is less than the threshold Pref, the target power Pe * of the engine 22 may be set by performing correction based on the atmospheric pressure Pa. Absent. By so doing, it is possible to suppress problems that occur when the atmospheric pressure Pa is small and the required power Ped to be output from the engine 22 is small (for example, poor combustion).

実施例のハイブリッド自動車20では、バッテリ50の蓄電割合SOCが下限閾値SL未満のときに、大気圧Paが標準圧Pnml未満のときには補正係数kpに大気圧Paが小さいほど大きい値を設定するものとしたが、大気圧Paが標準圧Pnml未満のときには補正係数kpに大気圧Paに拘わらず値1.0より大きい固定値を設定するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, when the storage ratio SOC of the battery 50 is less than the lower threshold SL, and when the atmospheric pressure Pa is less than the standard pressure Pnml, the correction coefficient kp is set to a larger value as the atmospheric pressure Pa is smaller. However, when the atmospheric pressure Pa is less than the standard pressure Pnml, the correction coefficient kp may be set to a fixed value greater than 1.0 regardless of the atmospheric pressure Pa.

実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the motor MG2 is attached to the ring gear shaft 32a as the drive shaft via the reduction gear 35. However, the motor MG2 may be directly attached to the ring gear shaft 32a, or Instead, the motor MG2 may be attached to the ring gear shaft 32a via a transmission such as a 2-speed, 3-speed, or 4-speed.

実施例のハイブリッド自動車20では、モータMG2の動力を減速ギヤ35により変速してリングギヤ軸32aに出力するものとしたが、図8の変形例のハイブリッド自動車120に例示するように、モータMG2の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図8における車輪64a,64bに接続された車軸)に出力するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the motor MG2 is shifted by the reduction gear 35 and output to the ring gear shaft 32a. However, as illustrated in the hybrid vehicle 120 of the modified example of FIG. May be output to an axle (an axle connected to the wheels 64a and 64b in FIG. 8) different from an axle to which the ring gear shaft 32a is connected (an axle to which the drive wheels 63a and 63b are connected).

実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図9の変形例のハイブリッド自動車220に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ232と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, but the modified example of FIG. The hybrid vehicle 220 includes an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b. A counter-rotor motor 230 that transmits a part of the power to the drive shaft and converts the remaining power into electric power may be provided.

また、本実施例では、本発明の内容をハイブリッド自動車20として説明したが、こうしたハイブリッド車の制御方法の形態としてもよい。   Further, in the present embodiment, the content of the present invention has been described as the hybrid vehicle 20, but such a hybrid vehicle control method may be employed.

ここで、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、動力分配統合機構30とモータMG1とが「電力動力入出力手段」に相当し、モータMG2が「電動機」に相当し、バッテリ50が「蓄電手段」に相当し、大気圧センサ89が「大気圧検出手段」に相当し、電流センサにより検出された充放電電流の積算値に基づいてバッテリ50から放電可能な電力量の満充電のときに対する割合である蓄電割合SOCを演算するバッテリECU52が「蓄電割合検出手段」に相当し、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定する図2の駆動制御ルーチンのステップS110の処理を実行するハイブリッド用電子制御ユニット70が「要求駆動力設定手段」に相当し、要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものと充放電要求電力Pb*とロスLossとの和として要求パワーPedを設定する図2の駆動制御ルーチンのステップS110の処理を実行するハイブリッド用電子制御ユニット70が「要求パワー設定手段」に相当し、バッテリ50の蓄電割合SOCが下限閾値SL未満のときには要求パワーPedに大気圧Paに基づく補正係数kpを乗じて目標パワーPe*を設定し、蓄電割合SOCが下限閾値SL以上のときには要求パワーPedに大気圧Paに拘わらず値1.0が設定される補正係数kpを乗じて目標パワーPe*を設定し、設定した目標パワーPe*がエンジン22から出力されると共に要求駆動力Tr*がリングギヤ軸32aに作用して走行するようエンジン22の目標回転数Ne*と目標トルクTe*とを設定すると共にモータMG1,MG2のトルク指令Tm1*,Tm2*を設定してエンジンECU24やモータECU40に送信する図2の駆動制御ルーチンのステップS130〜S220の処理を実行するハイブリッド用電子制御ユニット70と目標回転数Ne*と目標トルクTe*とに基づいてエンジン22を制御するエンジンECU24とトルク指令Tm1*,Tm2*に基づいてモータMG1,MG2を制御するモータECU40とが「制御手段」に相当する。また、モータMG1が「発電機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当する。さらに、対ロータ電動機230も「電力動力入出力手段」に相当する。   Here, the correspondence between the main elements of the embodiments and the modified examples and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22 corresponds to an “internal combustion engine”, the power distribution and integration mechanism 30 and the motor MG1 correspond to “power power input / output means”, the motor MG2 corresponds to “electric motor”, and the battery 50 corresponds to “ “Atmospheric pressure sensor 89” corresponds to “atmospheric pressure detection means” and the battery 50 is fully charged with the amount of electric power that can be discharged based on the integrated value of the charge / discharge current detected by the current sensor. Step S110 of the drive control routine of FIG. 2 in which the battery ECU 52 for calculating the storage ratio SOC, which is a ratio to the above, corresponds to the “storage ratio detection means” and sets the required torque Tr * based on the accelerator opening Acc and the vehicle speed V. The hybrid electronic control unit 70 that executes the above process corresponds to “required driving force setting means”, and the required torque Tr * is multiplied by the rotational speed Nr of the ring gear shaft 32a. The hybrid electronic control unit 70 that executes the processing of step S110 of the drive control routine of FIG. 2 that sets the required power Ped as the sum of the charge, the required charge / discharge power Pb *, and the loss Loss becomes the “required power setting means”. The target power Pe * is set by multiplying the required power Ped by the correction coefficient kp based on the atmospheric pressure Pa when the storage ratio SOC of the battery 50 is less than the lower limit threshold SL, and required when the storage ratio SOC is greater than or equal to the lower limit threshold SL. The target power Pe * is set by multiplying the power Ped by a correction coefficient kp that is set to a value of 1.0 regardless of the atmospheric pressure Pa. The set target power Pe * is output from the engine 22 and the required driving force Tr *. Sets the target rotational speed Ne * and the target torque Te * of the engine 22 so that the vehicle travels by acting on the ring gear shaft 32a. The hybrid electronic control unit 70 for executing the processing of steps S130 to S220 of the drive control routine of FIG. 2 for setting torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 and transmitting them to the engine ECU 24 and the motor ECU 40 together with the target rotation. The engine ECU 24 that controls the engine 22 based on the number Ne * and the target torque Te * and the motor ECU 40 that controls the motors MG1 and MG2 based on the torque commands Tm1 * and Tm2 * correspond to “control means”. Further, the motor MG1 corresponds to a “generator”, and the power distribution and integration mechanism 30 corresponds to a “3-axis power input / output unit”. Further, the counter-rotor motor 230 also corresponds to “power power input / output means”.

ここで、「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンなど如何なるタイプの内燃機関であっても構わない。「電力動力入出力手段」としては、動力分配統合機構30とモータMG1とを組み合わせたものや対ロータ電動機230に限定されるされるものではなく、車軸に連結された駆動軸に接続されると共に駆動軸とは独立に回転可能に内燃機関の出力軸に接続され、電力と動力の入出力を伴って駆動軸と出力軸とに動力を入出力可能なものであれば如何なるものとしても構わない。「電動機」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、誘導電動機など、駆動軸に動力を入出力可能なものであれば如何なるタイプの電動機であっても構わない。「蓄電手段」としては、二次電池としてのバッテリ50に限定されるものではなく、キャパシタなど、電力動力入出力手段や電動機と電力のやりとりが可能であれば如何なるものとしても構わない。「大気圧検出手段」としては、大気圧センサ89に限定されるものではなく、大気圧を検出するものであれば如何なるものとしても構わない。「蓄電割合検出手段」としては、電流センサにより検出された充放電電流の積算値に基づいて蓄電割合SOCを演算するものに限定されるものではなく、例えば、蓄電手段の端子間電圧に基づいて検出するものとしてもよく、蓄電手段から放電可能な電力量の割合である蓄電割合を検出するものであれば如何なるものとしても構わない。「要求駆動力設定手段」としては、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定するものに限定されるものではなく、アクセル開度Accだけに基づいて要求トルクを設定するものや走行経路が予め設定されているものにあっては走行経路における走行位置に基づいて要求トルクを設定するものなど、走行に要求される要求駆動力を設定するものであれば如何なるものとしても構わない。「要求パワー設定手段」としては、要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものと充放電要求電力Pb*とロスLossとの和として要求パワーPedを設定するものに限定されるものではなく、設定された要求駆動力に基づいて内燃機関から出力すべき要求パワーを設定するものであれば如何なるものとしても構わない。「制御手段」としては、ハイブリッド用電子制御ユニット70とエンジンECU24とモータECU40とからなる組み合わせに限定されるものではなく単一の電子制御ユニットにより構成されるなどとしてもよい。また、「制御手段」としては、バッテリ50の蓄電割合SOCが下限閾値SL未満のときには要求パワーPedに大気圧Paに基づく補正係数kpを乗じて目標パワーPe*を設定し、蓄電割合SOCが下限閾値SL以上のときには要求パワーPedに大気圧Paに拘わらず値1.0が設定される補正係数kpを乗じて目標パワーPe*を設定し、設定した目標パワーPe*がエンジン22から出力されると共に要求駆動力Tr*がリングギヤ軸32aに作用して走行するようエンジン22とモータMG1,MG2とを制御するものに限定されるものではなく、蓄電手段から放電可能な電力量の割合である蓄電割合が所定蓄電割合未満のときには設定した要求パワーに対して大気圧による補正を施してなる補正要求パワーが内燃機関から出力されると共に要求駆動力に基づく駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御し、蓄電割合が所定蓄電割合以上のときには設定した要求パワーが内燃機関から出力されると共に要求駆動力に基づく駆動力により走行するよう内燃機関と電力動力入出力手段と電動機とを制御するものであれば如何なるものとしても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、誘導電動機など、動力を入出力可能なものであれば如何なるタイプの発電機としても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる作動作用を有するものなど、駆動軸と出力軸と発電機の回転軸との3軸に接続され3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。   Here, the “internal combustion engine” is not limited to an internal combustion engine that outputs power using a hydrocarbon fuel such as gasoline or light oil, and may be any type of internal combustion engine such as a hydrogen engine. The “power power input / output means” is not limited to the combination of the power distribution and integration mechanism 30 and the motor MG1 or the counter-rotor motor 230, and is connected to the drive shaft connected to the axle. As long as it is connected to the output shaft of the internal combustion engine so as to be able to rotate independently of the drive shaft, and can input and output power to and from the drive shaft and output shaft together with input and output of electric power and power, it may be anything. . The “motor” is not limited to the motor MG2 configured as a synchronous generator motor, and may be any type of motor as long as it can input and output power to the drive shaft, such as an induction motor. . The “storage means” is not limited to the battery 50 as a secondary battery, and may be anything as long as it can exchange power with a power motive power input / output means or an electric motor such as a capacitor. The “atmospheric pressure detecting means” is not limited to the atmospheric pressure sensor 89, and any means that detects atmospheric pressure may be used. The “power storage ratio detection means” is not limited to the one that calculates the power storage ratio SOC based on the integrated value of the charge / discharge current detected by the current sensor. For example, based on the voltage between the terminals of the power storage means. It may be detected, and any device may be used as long as it can detect a power storage ratio that is a ratio of the amount of power that can be discharged from the power storage means. The “required driving force setting means” is not limited to the one that sets the required torque Tr * based on the accelerator opening Acc and the vehicle speed V, but sets the required torque based only on the accelerator opening Acc. If the required driving force required for traveling is set, such as those for which the required torque is set based on the traveling position on the traveling route, such as those for which the driving route is set in advance I do not care. The “required power setting means” is limited to a device that sets the required power Ped as the sum of the required torque Tr * multiplied by the rotation speed Nr of the ring gear shaft 32a and the charge / discharge required power Pb * and the loss Loss. It does not matter as long as it sets the required power to be output from the internal combustion engine based on the set required driving force. The “control means” is not limited to the combination of the hybrid electronic control unit 70, the engine ECU 24, and the motor ECU 40, and may be configured by a single electronic control unit. Further, as the “control means”, when the storage ratio SOC of the battery 50 is less than the lower limit threshold SL, the target power Pe * is set by multiplying the required power Ped by the correction coefficient kp based on the atmospheric pressure Pa, and the storage ratio SOC is the lower limit. When the value is equal to or greater than the threshold value SL, the target power Pe * is set by multiplying the required power Ped by a correction coefficient kp that is set to a value of 1.0 regardless of the atmospheric pressure Pa, and the set target power Pe * is output from the engine 22. In addition, it is not limited to controlling the engine 22 and the motors MG1 and MG2 so that the required driving force Tr * acts on the ring gear shaft 32a and travels. When the ratio is less than the specified power storage ratio, the corrected required power obtained by correcting the set required power with atmospheric pressure is output from the internal combustion engine. The internal combustion engine, the power drive input / output means and the motor are controlled so that the vehicle travels with a driving force based on the required driving force. When the storage ratio is equal to or higher than the predetermined storage ratio, the set required power is output from the internal combustion engine and requested. Any device may be used as long as it controls the internal combustion engine, the electric power drive input / output means, and the electric motor so as to travel with the driving force based on the driving force. The “generator” is not limited to the motor MG1 configured as a synchronous generator motor, and may be any type of generator such as an induction motor that can input and output power. The “three-axis power input / output means” is not limited to the power distribution / integration mechanism 30 described above, but includes four or more shafts using a double pinion type planetary gear mechanism or a combination of a plurality of planetary gear mechanisms. Any one of the three axes connected to the three axes of the drive shaft, the output shaft, and the rotating shaft of the generator, such as those connected to the motor and those having a different operation action from the planetary gear such as a differential gear As long as the power is input / output to / from the remaining shafts based on the power input / output to / from the power source, any method may be used.

なお、実施例や変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Note that the correspondence between the main elements of the embodiment and the modified example and the main elements of the invention described in the column of means for solving the problem is described in the column of means for the embodiment to solve the problem. Since this is an example for specifically describing the best mode for carrying out the invention, the elements of the invention described in the column of means for solving the problems are not limited. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、車両の製造産業などに利用可能である。   The present invention can be used in the vehicle manufacturing industry.

本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 according to an embodiment of the present invention. ハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。4 is a flowchart showing an example of a drive control routine executed by a hybrid electronic control unit 70. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. 大気圧Paと下限閾値SLとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between atmospheric pressure Pa and lower limit threshold value SL. 大気圧Paと補正係数kpとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between atmospheric pressure Pa and the correction coefficient kp. エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を示す説明図である。It is explanatory drawing which shows a mode that an example of the operating line of the engine 22, the target rotational speed Ne *, and the target torque Te * are set. エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図である。FIG. 6 is a collinear diagram showing a dynamic relationship between the number of rotations and torque in the rotating elements of the power distribution and integration mechanism 30 when traveling with power output from the engine 22; 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification. 変形例のハイブリッド自動車220の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.

符号の説明Explanation of symbols

20,120,220 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89 大気圧センサ、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、MG1,MG2 モータ。   20, 120, 220 Hybrid vehicle, 22 engine, 24 engine electronic control unit (engine ECU), 26 crankshaft, 28 damper, 30 power distribution integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear, 34 carrier 35, reduction gear, 40 motor electronic control unit (motor ECU), 41, 42 inverter, 43, 44 rotational position detection sensor, 50 battery, 51 temperature sensor, 52 battery electronic control unit (battery ECU), 54 power line , 60 gear mechanism, 62 differential gear, 63a, 63b drive wheel, 64a, 64b wheel, 70 electronic control unit for hybrid, 72 CPU, 74 ROM, 76 RAM, 80 ignition switch , 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 88 vehicle speed sensor, 89 atmospheric pressure sensor, 230 rotor motor, 232 inner rotor, 234 outer Rotor, MG1, MG2 motor.

Claims (5)

内燃機関と、車軸に連結された駆動軸に接続されると共に前記駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力する電力動力入出力手段と、前記駆動軸に動力を入出力する電動機と、前記電力動力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備えるハイブリッド車であって、
大気圧を検出する大気圧検出手段と、
前記蓄電手段から放電可能な電力量の割合である蓄電割合を検出する蓄電割合検出手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記設定された要求駆動力に基づいて前記内燃機関から出力すべき要求パワーを設定する要求パワー設定手段と、
前記検出された蓄電割合が所定蓄電割合未満のときには前記設定された要求パワーに対して前記検出された大気圧による補正を施してなる補正要求パワーが前記内燃機関から出力されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御し、前記検出された蓄電割合が前記所定蓄電割合以上のときには前記設定された要求パワーが前記内燃機関から出力されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する制御手段と、
を備えるハイブリッド車。
Connected to an internal combustion engine and a drive shaft connected to an axle, and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, the drive shaft and the output with input and output of electric power and power An electric power input / output means for inputting / outputting power to / from the shaft, an electric motor for inputting / outputting power to / from the drive shaft, and a power storage means capable of exchanging electric power with the electric power / input / output means and the electric motor. A car,
Atmospheric pressure detection means for detecting atmospheric pressure;
A power storage ratio detection means for detecting a power storage ratio that is a ratio of the amount of power that can be discharged from the power storage means;
A required driving force setting means for setting a required driving force required for traveling;
Required power setting means for setting required power to be output from the internal combustion engine based on the set required driving force;
When the detected power storage ratio is less than a predetermined power storage ratio, a correction required power obtained by correcting the set required power by the detected atmospheric pressure is output from the internal combustion engine and the set The internal combustion engine, the electric power drive input / output means, and the electric motor are controlled to run with a driving force based on a required driving force, and when the detected power storage ratio is equal to or higher than the predetermined power storage ratio, the set required power is Control means for controlling the internal combustion engine, the power power input / output means, and the electric motor so as to travel with a driving force output from the internal combustion engine and based on the set required driving force;
A hybrid car with
前記所定蓄電割合は、前記検出された大気圧が小さいほど小さい割合である請求項1記載のハイブリッド車。   The hybrid vehicle according to claim 1, wherein the predetermined power storage ratio is a smaller ratio as the detected atmospheric pressure is smaller. 前記補正要求パワーは、前記検出された大気圧が所定大気圧未満のときに、該検出された大気圧が小さいほど大きくなる傾向に補正が施されてなるパワーである請求項1または2記載のハイブリッド車。   The correction required power is a power that is corrected such that when the detected atmospheric pressure is less than a predetermined atmospheric pressure, the corrected atmospheric power becomes larger as the detected atmospheric pressure is smaller. Hybrid car. 前記制御手段は、前記検出された蓄電割合が前記所定蓄電割合以上であっても前記設定された要求パワーが所定パワー未満のときには、前記補正要求パワーが前記内燃機関から出力されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する手段である請求項1ないし3のいずれか1つの請求項に記載のハイブリッド車。   The control means outputs the correction request power from the internal combustion engine and sets the power when the set required power is less than the predetermined power even when the detected power storage ratio is equal to or greater than the predetermined power storage ratio. The hybrid vehicle according to any one of claims 1 to 3, which is means for controlling the internal combustion engine, the electric power drive input / output means, and the electric motor so as to travel with a driving force based on the requested driving force. 内燃機関と、車軸に連結された駆動軸に接続されると共に前記駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力する電力動力入出力手段と、前記駆動軸に動力を入出力する電動機と、前記電力動力入出力手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備えるハイブリッド車の制御方法であって、
(a)走行に要求される要求駆動力に基づいて前記内燃機関から出力すべき要求パワーを設定し、
(b)前記蓄電手段から放電可能な電力量の割合である蓄電割合が所定蓄電割合未満のときには前記設定した要求パワーに対して大気圧による補正を施してなる補正要求パワーが前記内燃機関から出力されると共に前記要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御し、前記蓄電割合が前記所定蓄電割合以上のときには前記設定した要求パワーが前記内燃機関から出力されると共に前記要求駆動力に基づく駆動力により走行するよう前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する、
ハイブリッド車の制御方法。
Connected to an internal combustion engine and a drive shaft connected to an axle, and connected to an output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, the drive shaft and the output with input and output of electric power and power An electric power input / output means for inputting / outputting power to / from the shaft, an electric motor for inputting / outputting power to / from the drive shaft, and a power storage means capable of exchanging electric power with the electric power / input / output means and the electric motor. A vehicle control method,
(A) setting a required power to be output from the internal combustion engine based on a required driving force required for traveling;
(B) When the power storage ratio, which is the ratio of the amount of power that can be discharged from the power storage means, is less than a predetermined power storage ratio, a corrected required power obtained by correcting the set required power by atmospheric pressure is output from the internal combustion engine. And controlling the internal combustion engine, the power drive input / output means, and the electric motor so that the vehicle travels with a driving force based on the required driving force, and when the power storage ratio is equal to or higher than the predetermined power storage ratio, the set required power is Controlling the internal combustion engine, the power power input / output means, and the electric motor so as to travel with a driving force based on the required driving force and output from the internal combustion engine;
Control method of hybrid vehicle.
JP2008108021A 2008-04-17 2008-04-17 Hybrid vehicle and control method thereof Expired - Fee Related JP4992810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108021A JP4992810B2 (en) 2008-04-17 2008-04-17 Hybrid vehicle and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108021A JP4992810B2 (en) 2008-04-17 2008-04-17 Hybrid vehicle and control method thereof

Publications (2)

Publication Number Publication Date
JP2009255767A true JP2009255767A (en) 2009-11-05
JP4992810B2 JP4992810B2 (en) 2012-08-08

Family

ID=41383762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108021A Expired - Fee Related JP4992810B2 (en) 2008-04-17 2008-04-17 Hybrid vehicle and control method thereof

Country Status (1)

Country Link
JP (1) JP4992810B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956953B2 (en) 2015-06-30 2018-05-01 Hyundai Motor Company Apparatus and method for controlling engine of hybrid vehicle
US20220212654A1 (en) * 2019-04-16 2022-07-07 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836698B1 (en) * 2016-09-21 2018-03-09 현대자동차주식회사 Method and system for amending engine torque

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331772A (en) * 1995-05-30 1996-12-13 Toyota Motor Corp Controller of induction machine for vehicle
JP2000310131A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Hybrid vehicle
JP2004178965A (en) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd Control device of vehicle
JP2006183523A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Drive force control device for hybrid vehicle
JP2007216841A (en) * 2006-02-16 2007-08-30 Toyota Motor Corp Power output device and control method therefor, and vehicle
JP2007223403A (en) * 2006-02-22 2007-09-06 Toyota Motor Corp Power output device, its control method, and vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331772A (en) * 1995-05-30 1996-12-13 Toyota Motor Corp Controller of induction machine for vehicle
JP2000310131A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Hybrid vehicle
JP2004178965A (en) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd Control device of vehicle
JP2006183523A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Drive force control device for hybrid vehicle
JP2007216841A (en) * 2006-02-16 2007-08-30 Toyota Motor Corp Power output device and control method therefor, and vehicle
JP2007223403A (en) * 2006-02-22 2007-09-06 Toyota Motor Corp Power output device, its control method, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956953B2 (en) 2015-06-30 2018-05-01 Hyundai Motor Company Apparatus and method for controlling engine of hybrid vehicle
US20220212654A1 (en) * 2019-04-16 2022-07-07 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle
US11654887B2 (en) * 2019-04-16 2023-05-23 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle

Also Published As

Publication number Publication date
JP4992810B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4513882B2 (en) Hybrid vehicle and control method thereof
JP4086018B2 (en) HYBRID VEHICLE, ITS CONTROL METHOD, AND POWER OUTPUT DEVICE
JP4345824B2 (en) Vehicle and control method thereof
JP4407741B2 (en) Vehicle and control method thereof
JP2009126257A (en) Vehicle and its control method
JP2009248732A (en) Hybrid vehicle and method of controlling the same
JP5200924B2 (en) Hybrid vehicle and control method thereof
JP4466635B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2006094626A (en) Hybrid vehicle and its control method
JP4229125B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4365354B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP4992810B2 (en) Hybrid vehicle and control method thereof
JP2010064522A (en) Vehicle and method of controlling the same
JP2008213531A (en) Vehicle and its control method
JP4345765B2 (en) Vehicle and control method thereof
JP5691997B2 (en) Hybrid car
JP2005210841A (en) Vehicle and method for controlling the same
JP2009149154A (en) Vehicle and control method therefor
JP2008143426A (en) Vehicle and control method
JP2009227074A (en) Hybrid vehicle and control method thereof
JP2009023527A (en) Vehicle and control method thereof
JP2009137369A (en) Vehicle, driving device, and control method for vehicle
JP4258519B2 (en) Vehicle and control method thereof
JP2009184387A (en) Hybrid vehicle and method of controlling the same
JP2009262866A (en) Hybrid car and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees