JP2006183523A - Drive force control device for hybrid vehicle - Google Patents

Drive force control device for hybrid vehicle Download PDF

Info

Publication number
JP2006183523A
JP2006183523A JP2004376922A JP2004376922A JP2006183523A JP 2006183523 A JP2006183523 A JP 2006183523A JP 2004376922 A JP2004376922 A JP 2004376922A JP 2004376922 A JP2004376922 A JP 2004376922A JP 2006183523 A JP2006183523 A JP 2006183523A
Authority
JP
Japan
Prior art keywords
motor
output
engine
driving force
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004376922A
Other languages
Japanese (ja)
Other versions
JP4258467B2 (en
Inventor
Hiroshi Ishii
宏 石井
Toru Nishizawa
透 西澤
Masayuki Yasuoka
正之 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004376922A priority Critical patent/JP4258467B2/en
Publication of JP2006183523A publication Critical patent/JP2006183523A/en
Application granted granted Critical
Publication of JP4258467B2 publication Critical patent/JP4258467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To reduce PM, NOx emission of a hybrid vehicle at a time of atmospheric pressure drop. <P>SOLUTION: Motor output ratio under a heavy load condition is increased at the time of atmospheric pressure drop as compared to a normal time and engine output ratio is reduced to reduce PM, NOx emission and boundary output at a time of motor travel completion is made small as compared to the normal time and travel output is generated by the engine and the motor is driven as a generator by surplus output to charge a battery. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハイブリッド車両においてエンジンとモータの駆動力を制御する装置に関する。   The present invention relates to an apparatus for controlling driving force of an engine and a motor in a hybrid vehicle.

特許文献1には、エンジンとモータとを駆動力源とするハイブリッド車両において、高速走行域であると判定された時にはエンジン駆動力を車輪に伝達し、低中速走行域と判定されたときにはエンジン駆動力を車輪に伝達することを禁止するように制御するようにした装置が開示されている。
特開平6−225403号公報
In Patent Document 1, in a hybrid vehicle using an engine and a motor as a driving force source, the engine driving force is transmitted to the wheels when it is determined that the vehicle is in a high speed traveling region, and the engine is transmitted when it is determined that the vehicle is in a low / medium speed traveling region. An apparatus is disclosed which is controlled so as to prohibit transmission of driving force to wheels.
JP-A-6-225403

上記特許文献1のように、高負荷領域ではエンジン駆動力を主として利用し、低負荷領域ではモータ駆動力を主として利用する方式とすれば、排気浄化性能および燃費性能を良好に維持することができる。
しかしながら、特にディーゼルエンジンでは、高地走行時に大気圧が低下すると、図12に示すように、高負荷時には十分な空気量の確保が難しく空気の充填効率が低下する。このため、通常(低地走行時)の大気圧に対して吸入空気量を変えないようにEGR量を減少補正するとEGR率低下によってNOx排出量が増加してしまう。逆に、EGR率一定に維持すると、同一負荷(燃料噴射量)に対して吸入空気量が減少するので、排気微粒子(以下PMという)排出量が増加する。
As in the above-mentioned Patent Document 1, if the system mainly uses the engine driving force in the high load region and mainly uses the motor driving force in the low load region, the exhaust purification performance and the fuel consumption performance can be maintained well. .
However, especially in a diesel engine, when the atmospheric pressure decreases during high altitude travel, as shown in FIG. 12, it is difficult to ensure a sufficient amount of air at high loads, and the air charging efficiency decreases. For this reason, if the EGR amount is corrected to decrease so as not to change the intake air amount with respect to the normal atmospheric pressure (during lowland travel), the NOx emission amount increases due to a decrease in the EGR rate. Conversely, if the EGR rate is kept constant, the amount of intake air decreases with respect to the same load (fuel injection amount), so that the amount of exhaust particulate (hereinafter referred to as PM) emission increases.

中間を取って、吸入空気量とEGR率を共に低下させることは、その分、NOxとPMとがそれぞれ悪化することになり、NOxおよびPM排出量を同時に良好に低減することができない。
なお、低負荷時には、図13に示すように、少ない燃料量に対して大気圧が低下しても十分な空気量が確保され、排気流量(絶対量)が減少することもあって、PM、NOx排出量を共に十分低く押さえられる。
If both the intake air amount and the EGR rate are lowered in the middle, NOx and PM are deteriorated accordingly, and the NOx and PM exhaust amount cannot be reduced well at the same time.
When the load is low, as shown in FIG. 13, a sufficient amount of air is ensured even if the atmospheric pressure decreases with respect to a small amount of fuel, and the exhaust flow rate (absolute amount) may decrease. Both NOx emissions can be kept low enough.

上記課題を解決するため本発明は、エンジンおよびモータの駆動力を演算する駆動力演算手段が、大気圧の低下を検出した時には、通常の場合に比べて、前記モータ駆動力の割合を増加して演算する構成とした。   In order to solve the above-mentioned problems, the present invention increases the ratio of the motor driving force when the driving force calculating means for calculating the driving force of the engine and the motor detects a decrease in the atmospheric pressure compared to the normal case. To calculate.

かかる構成により、大気圧の低下時は、通常時よりモータ駆動力割合が増加し、相対的にエンジン駆動力割合が減少することで、NOxおよびPM排出量を通常時レベルまで低減することができる。   With such a configuration, when the atmospheric pressure decreases, the motor driving force ratio increases from the normal time, and the engine driving power ratio decreases relatively, so that the NOx and PM emissions can be reduced to the normal level. .

図1は、本発明の一実施形態に係るハイブリッド車両の駆動制御装置の概略を示している。
エンジン(内燃機関)1の排気通路には、触媒等による排気処理装置1aが取り付けられ、該エンジン1の出力軸に、入/出力プーリ径比を変更することで変速比を無段に可変制御する第1の無段変速機2が接続され、該無段変速機2の出力軸(出力プーリ軸)が、第1のクラッチ3を介してギア軸4の一端に接続されている。
FIG. 1 schematically shows a drive control apparatus for a hybrid vehicle according to an embodiment of the present invention.
An exhaust treatment device 1a made of a catalyst or the like is attached to the exhaust passage of the engine (internal combustion engine) 1, and the gear ratio is variably controlled by changing the input / output pulley diameter ratio on the output shaft of the engine 1 The first continuously variable transmission 2 is connected, and the output shaft (output pulley shaft) of the continuously variable transmission 2 is connected to one end of the gear shaft 4 via the first clutch 3.

前記ギア軸4のギア4aは、両端に車輪が連結された車軸(駆動軸)5に固定されたギア5aと噛み合い、エンジン駆動力が、前記第1の無段変速機2、第1のクラッチ3、ギア4a、ギア5aを介して車軸5に伝達される。
前記エンジン1および第1の無段変速機2は、エンジン制御装置6によって制御される。
The gear 4a of the gear shaft 4 meshes with a gear 5a fixed to an axle (drive shaft) 5 having wheels connected to both ends, and the engine driving force is applied to the first continuously variable transmission 2 and the first clutch. 3. It is transmitted to the axle 5 via the gear 4a and the gear 5a.
The engine 1 and the first continuously variable transmission 2 are controlled by an engine control device 6.

一方、モータ11には、インバータ12を介してバッテリ13が接続され、モータ11が電動機として機能するときはバッテリ13から電力が供給され、モータ11が発電機として機能するときは、発電された電力がバッテリ13に充電される。該モータ11の出力軸に、前記第1の無段変速機2同様の機能を有する第2の無段変速機14が接続され、該無段変速機14の出力軸(出力プーリ軸)が、第2のクラッチ15を介して前記ギア軸4の他端に接続されている。   On the other hand, a battery 13 is connected to the motor 11 via an inverter 12. When the motor 11 functions as an electric motor, electric power is supplied from the battery 13. When the motor 11 functions as an electric generator, electric power generated Is charged in the battery 13. A second continuously variable transmission 14 having a function similar to that of the first continuously variable transmission 2 is connected to the output shaft of the motor 11, and the output shaft (output pulley shaft) of the continuously variable transmission 14 is The other end of the gear shaft 4 is connected via a second clutch 15.

前記モータ11および第2の無段変速機14は、モータ制御装置16によって制御される。
また、ハイブリッド制御装置17には、アクセル開度センサ21からのアクセル開度信号(ドライバ要求信号)、車速センサ22からの車速信号が入力され、基本的には、これらの信号に基づいて車両の要求駆動力を算出し、該要求駆動力(エンジンとモータの要求総合要求出力)に応じて、エンジン1とモータ11との出力割合(駆動力割合)を決定する。
The motor 11 and the second continuously variable transmission 14 are controlled by a motor control device 16.
The hybrid controller 17 receives an accelerator opening signal (driver request signal) from the accelerator opening sensor 21 and a vehicle speed signal from the vehicle speed sensor 22, and basically, based on these signals, the vehicle's speed signal. The required driving force is calculated, and the output ratio (driving force ratio) between the engine 1 and the motor 11 is determined according to the required driving force (required total required output of the engine and motor).

ここで、本発明に係る構成として、高地走行時など大気圧が低い状態が検出されたときは、通常(低地)走行時よりモータ11の出力割合を大きくし、エンジンの出力割合を小さくするように修正する。前記大気圧検出のため、吸気コレクタ圧力を検出する圧力センサ23を設け、低速等所定条件で吸気コレクタ圧力を大気圧として検出する。なお、大気圧の検出としては、この他、エアフロメータで検出した質量吸入空気流量と、スロットル開度およびエンジン回転速度等によって推定される体積吸入空気流量との関係から求められる空気密度に応じて大気圧を推定することができる。   Here, as a configuration according to the present invention, when a low atmospheric pressure state is detected, such as when traveling at high altitude, the output ratio of the motor 11 is increased and the output ratio of the engine is decreased as compared with normal (low altitude) traveling. To correct. In order to detect the atmospheric pressure, a pressure sensor 23 for detecting the intake collector pressure is provided to detect the intake collector pressure as an atmospheric pressure under a predetermined condition such as a low speed. In addition, the atmospheric pressure is detected according to the air density obtained from the relationship between the mass intake air flow rate detected by the air flow meter and the volume intake air flow rate estimated from the throttle opening, the engine speed, and the like. Atmospheric pressure can be estimated.

また、前記バッテリ13の充電量を検出し、該充電量が低すぎるときには、モータ11出力割合の増加修正を禁止する。
そして、このようにして決定された出力割合に応じてエンジン1およびモータ11の要求出力を演算し、各目標出力に応じてエンジン制御装置6とモータ制御装置16を介してエンジン出力およびモータ出力を制御する(図2参照)。
Further, when the charge amount of the battery 13 is detected and the charge amount is too low, the increase correction of the motor 11 output ratio is prohibited.
Then, the required outputs of the engine 1 and the motor 11 are calculated according to the output ratio determined in this way, and the engine output and the motor output are calculated via the engine control device 6 and the motor control device 16 according to each target output. Control (see FIG. 2).

以下、上記ハイブリッド制御装置17によるエンジン出力とモータ出力との配分制御を、図3以降のフローチャートに基づいてより詳細に説明する。
図3は、メインフローを示す。
ステップ(図ではSと記す。以下同様)1では、前記各センサからの検出値を入力して運転状態を検出する。
Hereinafter, the distribution control between the engine output and the motor output by the hybrid control device 17 will be described in more detail based on the flowcharts of FIG.
FIG. 3 shows the main flow.
In step (denoted as S in the figure, the same applies hereinafter) 1, detected values from the respective sensors are input to detect the operating state.

ステップ2では、検出された運転状態に基づいて、通常(低地走行)時用の出力配分マップ(図5参照)と、大気圧低下(高地走行)時用の出力配分マップ(図6参照)とのいずれかを選択する。
前記マップ選択の詳細を、図4のフローチャートに基づいて説明する。
ステップ11では、前記圧力センサ23によって検出した大気圧Pexが、圧力境界値Pexbより低いかを判定し、圧力境界値Pexb以上と判定されたときは、ステップ14へ進んで通常時用の出力配分マップを選択する。
In step 2, based on the detected driving state, an output distribution map for normal (lowland travel) (see FIG. 5) and an output distribution map for atmospheric pressure drop (highland travel) (see FIG. 6) Select one of the following.
Details of the map selection will be described based on the flowchart of FIG.
In step 11, it is determined whether the atmospheric pressure Pex detected by the pressure sensor 23 is lower than the pressure boundary value Pexb. If it is determined that the pressure boundary value Pexb is greater than or equal to the pressure boundary value Pexb, the process proceeds to step 14 and the normal output distribution is performed. Select a map.

一方、ステップ11で、大気圧Pexが、圧力境界値Pexbより低いと判定されたときは、ステップ12へ進んで、バッテリ充電量SOCが、充電量境界値Lbより大きいかを判定し、大きいと判定されたときは、ステップ13へ進んで、大気圧低下時用の出力配分マップを選択する。
また、ステップ12でバッテリ充電量SOCが、充電量境界値Lb以下と判定されたときは、ステップ14へ進んで通常時用の出力配分マップを選択する。
On the other hand, when it is determined in step 11 that the atmospheric pressure Pex is lower than the pressure boundary value Pexb, the process proceeds to step 12 to determine whether the battery charge amount SOC is larger than the charge amount boundary value Lb. When it is determined, the process proceeds to step 13 to select an output distribution map for when the atmospheric pressure drops.
Further, when it is determined in step 12 that the battery charge amount SOC is equal to or less than the charge amount boundary value Lb, the process proceeds to step 14 and an output distribution map for normal time is selected.

すなわち、大気圧が低下したときは、モータの出力配分を通常時より大きくする制御に切り換えたい要求があるが、バッテリ充電量が十分でないときは、無理があるので、充電量が十分な場合に、大気圧低下時用の出力配分マップを選択して、モータの出力配分を通常時より大きくする制御に切り換えることとする。
前記通常時用の出力配分マップは、図5に示すように、エンジン出力とモータ出力とを合わせた総合要求出力(車両要求駆動力)Pが、境界出力Pbm0以下の低出力域では、モータ11のみを駆動し(モータ出力割合100%)、該モータ走行の境界出力Pbm0を超えるとエンジン1のみの駆動(エンジン出力割合100%)に切り換えられ、総合要求出力Pがエンジンの境界出力Peb0以上になると、エンジン出力は該境界出力Peb0一定に保持され、総合要求出力Pからエンジン境界出力Peb0を差し引いた出力分がモータ出力(=P−Peb0)で賄われるように、出力配分されている。すなわち、エンジン1を最も燃費が良く、かつ、排気浄化性能にも優れた領域でのみ運転し、不足出力分をモータ11でアシストするようにしている。
In other words, when the atmospheric pressure drops, there is a request to switch to a control that increases the motor output distribution than usual, but when the battery charge is not enough, it is impossible, so if the charge is sufficient Then, the output distribution map for when the atmospheric pressure drops is selected, and the control is switched to the control for making the output distribution of the motor larger than normal.
As shown in FIG. 5, the normal-time output distribution map shows that the motor 11 is in a low output range where the total required output (vehicle required driving force) P, which is a combination of the engine output and the motor output, is less than or equal to the boundary output Pbm0. Only when the motor driving boundary output Pbm0 is exceeded, the engine 1 is switched to driving only (engine output ratio 100%), and the total required output P becomes equal to or higher than the engine boundary output Peb0. Then, the engine output is held at a constant boundary output Peb0, and the output is distributed so that the output obtained by subtracting the engine boundary output Peb0 from the total required output P is covered by the motor output (= P-Peb0). That is, the engine 1 is operated only in a region where the fuel efficiency is the highest and the exhaust purification performance is excellent, and the motor 11 assists the shortage output.

一方、大気圧低下時用の出力配分マップは、図6に示すように、総合出力Pが通常時のモータ走行の境界出力Pmb0より低い境界出力Pmb1以下の低出力域でモータ出力割合100%に設定され、総合要求出力Pがモータ11の境界出力Pmb1を超えると、エンジン出力は、該モータ境界出力Pmb1より大きいエンジン境界出力Peb1に切り換えられ、該境界出力Peb1一定に制御される。ここで、大気圧低下時におけるエンジン1の境界出力Peb1は、通常時のエンジン境界出力Peb0より小さく設定されている。そして、総合出力Pがエンジン境界出力Peb1以下の領域では、総合要求出力Pに対する境界出力Peb1の過剰出力分(=Peb1−P)を、モータ11を発電機として駆動して、負の出力を発生することにより賄う。総合要求出力Pがエンジンの境界出力Peb1を超えると、通常時同様に不足出力分をモータ11で賄う。   On the other hand, as shown in FIG. 6, the output distribution map for when the atmospheric pressure is reduced has a motor output ratio of 100% in the low output region where the total output P is lower than the boundary output Pmb1 lower than the normal motor traveling boundary output Pmb0. When the total required output P is set and exceeds the boundary output Pmb1 of the motor 11, the engine output is switched to the engine boundary output Peb1 larger than the motor boundary output Pmb1, and is controlled to be constant. Here, the boundary output Peb1 of the engine 1 when the atmospheric pressure drops is set to be smaller than the engine boundary output Peb0 of the normal time. In the region where the total output P is less than or equal to the engine boundary output Peb1, the excess output (= Peb1-P) of the boundary output Peb1 with respect to the total required output P is driven using the motor 11 as a generator to generate a negative output. To do so. When the total required output P exceeds the boundary output Peb1 of the engine, the shortage output is covered by the motor 11 as usual.

図3に戻って、ステップ3では、ステップ2(図4のフロー)で選択された出力配分マップを用いて、総合出力Pからエンジン出力Peとモータ出力Pmとを算出する。
ステップ4では、算出されたエンジン出力Peに対し、図7に示した運転点マップから、エンジン1の目標回転速度Ne0(通常時)、Ne1(大気圧低下時)、目標トルクTe0(通常時)、Te1(大気圧低下時)を設定して、エンジン制御装置6に出力する。この運転点マップは、燃費、排気浄化性能を良好に維持できるように設定されている。また、該エンジンの目標回転速度Neの変更に合わせて、車速一定に維持するように前記第1の無段変速機2の目標変速比が変更される。なお、前記モータ11のみ駆動する低出力領域で、エンジン出力割合=0の場合は、前記第1のクラッチ3が切り離されて車軸4へのエンジン出力の伝達が遮断される。図8は、エンジン運転点におけるエンジン1の回転速度とトルクの関係を示す。
Returning to FIG. 3, in step 3, the engine output Pe and the motor output Pm are calculated from the total output P using the output distribution map selected in step 2 (flow of FIG. 4).
In step 4, for the calculated engine output Pe, from the operating point map shown in FIG. 7, the target engine speed Ne0 (normal time), Ne1 (normal pressure drop), and target torque Te0 (normal time) of the engine 1 are calculated. , Te1 (at the time of atmospheric pressure drop) is set and output to the engine control device 6. This driving point map is set so that fuel consumption and exhaust purification performance can be maintained satisfactorily. Further, the target gear ratio of the first continuously variable transmission 2 is changed so as to keep the vehicle speed constant in accordance with the change of the target rotational speed Ne of the engine. When the engine output ratio = 0 in the low output region where only the motor 11 is driven, the first clutch 3 is disconnected and the transmission of the engine output to the axle 4 is cut off. FIG. 8 shows the relationship between the rotational speed of the engine 1 and the torque at the engine operating point.

ステップ5では、算出されたモータ出力Pmに対し、エンジンの運転点マップと同様に設定された運転点マップ(図示省略)から、モータ11の目標回転速度Nm0(通常時)、Nm1(大気圧低下時)、目標トルクTm0(通常時)、Nm1(大気圧低下時)を設定する。この運転点マップも電力消費を良好に維持できるように設定されている。また、該モータの目標回転速度Nmの変更に合わせて、車速一定に維持するように前記第2の無段変速機14の目標変速比が変更されること、エンジン1のみ駆動する出力領域で、モータ出力割合=0の場合は、前記第2のクラッチ15が切り離されて車軸4へのエンジン出力の伝達が遮断されることもエンジン制御の場合と同様である。図9は、モータ運転点におけるモータ11の回転速度とトルクの関係を示す。   In step 5, from the operating point map (not shown) set in the same manner as the engine operating point map for the calculated motor output Pm, the target rotational speed Nm0 (normal time) and Nm1 (atmospheric pressure drop) of the motor 11 are set. ), Target torque Tm0 (normal time), Nm1 (at the time of atmospheric pressure drop). This operating point map is also set so as to maintain good power consumption. Further, in accordance with the change of the target rotational speed Nm of the motor, the target speed ratio of the second continuously variable transmission 14 is changed so as to maintain the vehicle speed constant, and in the output region where only the engine 1 is driven, When the motor output ratio = 0, the second clutch 15 is disengaged and the transmission of the engine output to the axle 4 is cut off as in the case of engine control. FIG. 9 shows the relationship between the rotational speed of the motor 11 and the torque at the motor operating point.

ここで、前記設定された目標回転速度Nm、目標トルクTmをそのままモータ制御装置16に出力してモータ11を制御すると(簡易的には、これでもよい)、モータ11は、エンジン1に比較して制御応答が良く、目標値への収束が早いため、過渡的に総合出力が変化し、モータ11を電動機として機能するときは出力過剰となり、発電機として機能するときは出力不足となる。   Here, when the set target rotational speed Nm and the target torque Tm are output to the motor control device 16 as they are to control the motor 11 (or simply, this may be sufficient), the motor 11 is compared with the engine 1. Since the control response is good and the convergence to the target value is fast, the total output changes transiently. When the motor 11 functions as an electric motor, the output is excessive, and when the motor 11 functions as a generator, the output is insufficient.

そこで、図10に示すように、エンジン出力指令値(目標値)に対して、モータ出力指令値(目標値)に遅れを持たせて出力する。これにより、エンジン出力とモータ出力とを合わせた総合出力Pの変動を抑制しつつ出力割合を切り換えることができる。
図11は、同上実施形態による制御時の各種状態量の変化を示す。登坂走行時に高度の増大に応じて大気圧が減少し、圧力境界値Pexbを下回ると、通常時の出力配分マップから大気圧低下時の出力配分マップに切り換えられ、モータ11の出力配分が増大する。
Therefore, as shown in FIG. 10, the motor output command value (target value) is output with a delay with respect to the engine output command value (target value). As a result, the output ratio can be switched while suppressing fluctuations in the total output P, which is a combination of the engine output and the motor output.
FIG. 11 shows changes in various state quantities during control according to the embodiment. If the atmospheric pressure decreases as the altitude increases during climbing and falls below the pressure boundary value Pexb, the output distribution map at the normal time is switched to the output distribution map when the atmospheric pressure decreases, and the output distribution of the motor 11 increases. .

マップの切換によりモータ11の出力が増大して電力消費が増大し、バッテリ14の充電量SOCが設定値Lb以下に低下すると(t2)、通常時用の出力配分マップに戻され、モータ11の出力配分が減少する。
これにより、モータ11の電力消費が低減してバッテリ充電量SOCが設定値Lb以上に復帰すると(t3)、再度、大気圧低下時の出力配分マップに切り換えられる。なお、マップ切り換え前に減速運転を行っており、この減速中は、負の車両駆動出力(総合出力)に対し、エンジン出力が0でモータ11が発電機として機能して負の出力を発生しつつバッテリ14を最大限充電する。
When the map is switched, the output of the motor 11 is increased and the power consumption is increased. When the charge amount SOC of the battery 14 is reduced to the set value Lb or less (t2), the output is returned to the normal output distribution map. Output distribution decreases.
As a result, when the power consumption of the motor 11 is reduced and the battery charge SOC returns to the set value Lb or more (t3), the output distribution map is switched again when the atmospheric pressure decreases. In addition, the deceleration operation is performed before the map is switched. During this deceleration, the engine output is 0 and the motor 11 functions as a generator to generate a negative output with respect to the negative vehicle drive output (total output). At the same time, the battery 14 is fully charged.

減速運転を終了して加速運転に切り換わると、車両駆動出力は正の出力となり、エンジン出力とモータ出力とが、大気圧低下時の出力配分マップによって出力配分される。
加速後、アクセルを戻して定速走行に移行すると、エンジン出力一定(=境界出力Peb1)のまま、モータ出力が減少されていき、車両の要求出力(要求出力)がエンジンの境界出力Peb1を下回ると、モータ11が発電機の機能に切り換えられ、要求出力を確保しながら、バッテリ14を充電する。
When the deceleration operation is finished and the operation is switched to the acceleration operation, the vehicle drive output becomes a positive output, and the engine output and the motor output are output and distributed according to the output distribution map when the atmospheric pressure decreases.
After acceleration, when the accelerator is returned and the vehicle shifts to constant speed driving, the motor output is decreased while the engine output is constant (= boundary output Peb1), and the requested output (requested output) of the vehicle is lower than the boundary output Peb1 of the engine. Then, the motor 11 is switched to the function of the generator, and the battery 14 is charged while ensuring the required output.

このように、高地走行など大気圧の低下時には、モータ11の出力配分を通常時より大きくし、相対的にエンジン1の出力を減少することで、図12から図13にシフトしてPM,NOxの低減を両立することができる。
また、バッテリ14の充電量SOCが十分なときだけ、大気圧低下時の出力配分とし、充電量SOCが不足するときは、通常時の制御に維持してモータ出力配分増大による過放電を防止できる。
In this way, when the atmospheric pressure decreases, such as when traveling at high altitudes, the output distribution of the motor 11 is made larger than normal, and the output of the engine 1 is relatively decreased, thereby shifting from FIG. 12 to FIG. Can be reduced at the same time.
Further, only when the charge amount SOC of the battery 14 is sufficient, the output distribution is performed when the atmospheric pressure is reduced. When the charge amount SOC is insufficient, the normal control is maintained to prevent overdischarge due to the increase in motor output distribution. .

さらに、通常時より、モータ11のみで走行する境界出力(エンジン駆動が開始される境界出力)Pmbを、低出力側にシフトしつつエンジン出力を車両要求出力より大きくしてモータを発電機として機能することにより、高負荷側でのモータ出力増大による消費電力増大を、低負荷側で補充することができ、バッテリ充電量を良好に維持して大気圧低下時の制御を長時間安定して行うことができる。   Further, from the normal time, the boundary output (boundary output at which engine driving is started) Pmb that travels only by the motor 11 is shifted to the low output side, and the engine output is made larger than the vehicle required output to function the motor as a generator. By doing so, the increase in power consumption due to the increase in motor output on the high load side can be supplemented on the low load side, and the battery charge amount is maintained well and the control when the atmospheric pressure drops is performed stably for a long time. be able to.

また、上記実施形態では、大気圧低下時におけるエンジン1の境界出力Peb1およびモータ走行の境界出力Pmb1を、一定値に設定したが、図14,15に示すように、大気圧の標準大気圧(760mmHg)からの圧力低下量ΔPexとバッテリ充電量SOCとに基づいて可変に設定してもよい。具体的には、エンジン1の境界出力Peb1は、圧力低下量ΔPexが大きいほど、また、バッテリ充電量SOCが大きいほど小さくして、モータ11の出力配分を大きくするように設定されている。また、モータ走行の境界出力Pmb1は、大気圧低下量ΔPexが大きいほど、また、バッテリ充電量SOCが小さいほど、小さく設定され、これにより、早めに発電が開始され大気圧低下時のモータ消費電力増大に伴う発電量を十分に確保することができる。   In the above embodiment, the boundary output Peb1 of the engine 1 and the boundary output Pmb1 of the motor travel when the atmospheric pressure is reduced are set to constant values. However, as shown in FIGS. 760 mmHg) may be variably set based on the pressure drop amount ΔPex from the battery charge amount SOC. Specifically, the boundary output Peb1 of the engine 1 is set to be smaller as the pressure drop amount ΔPex is larger or as the battery charge amount SOC is larger, so that the output distribution of the motor 11 is larger. Further, the motor traveling boundary output Pmb1 is set to be smaller as the atmospheric pressure decrease amount ΔPex is larger or the battery charge amount SOC is smaller. As a result, power generation is started earlier and the motor power consumption when the atmospheric pressure decreases is reduced. It is possible to secure a sufficient amount of power generation accompanying the increase.

また上記実施形態は、エンジン1とモータ11と並列接続して、それぞれの回転速度とトルクを独立して制御できるパラレル型のハイブリッド原動機を備えた車両に適用したが、エンジンとモータとを直列に接続したシリーズ型のハイブリッド原動機を備えた車両にも適用できる。
図16は、かかるシリーズ型のハイブリッド原動機を備えた車両に本発明を適用した実施形態のシステム構成を示す。
Moreover, although the said embodiment was applied to the vehicle provided with the parallel type | mold hybrid prime mover which can connect the engine 1 and the motor 11 in parallel and can control each rotation speed and torque independently, an engine and a motor are connected in series. It can also be applied to vehicles equipped with connected series-type hybrid prime movers.
FIG. 16 shows a system configuration of an embodiment in which the present invention is applied to a vehicle equipped with such a series type hybrid prime mover.

本実施形態では,エンジン1の出力軸にモータ11が連結され、該モータ11の出力軸に接続された無段変速機31、クラッチ32、ギア33を介して、車軸5のギア5aと連結されている。
本実施形態においても、エンジンとモータの出力は、第1の実施形態と同様に設定されるが、モータの回転速度Nmiがエンジン回転速度Neiと等しく、モータトルクTm1が次式により算出される点で相違する。
In the present embodiment, the motor 11 is connected to the output shaft of the engine 1, and is connected to the gear 5 a of the axle 5 via the continuously variable transmission 31, the clutch 32, and the gear 33 connected to the output shaft of the motor 11. ing.
Also in the present embodiment, the engine and motor outputs are set in the same manner as in the first embodiment, but the motor rotational speed Nmi is equal to the engine rotational speed Nei, and the motor torque Tm1 is calculated by the following equation. Is different.

Tmi=Pmi/Nei;i=1,2(図17,18参照)   Tmi = Pmi / Nei; i = 1, 2 (see FIGS. 17 and 18)

本発明の第1の実施形態に係るハイブリッド車両の駆動制御装置のシステム構成図。The system block diagram of the drive control apparatus of the hybrid vehicle which concerns on the 1st Embodiment of this invention. 同上実施形態の制御ブロック図。The control block diagram of embodiment same as the above. 同上実施形態の制御のメインルーチンを示すフローチャート。The flowchart which shows the main routine of control of embodiment same as the above. 同じくサブルーチンを示すフローチャート。The flowchart which similarly shows a subroutine. 同じく通常時制御用の出力配分マップの特性図。The characteristic figure of the output distribution map for normal time control similarly. 同じく大気圧低下時制御用の出力配分マップの特性図。The characteristic figure of the output distribution map for control at the time of atmospheric pressure fall similarly. 同じくエンジンの運転点テーブル。The engine operating point table. 同じくエンジンの回転速度とトルクの関係を示す特性図。The characteristic view which similarly shows the relationship between the engine speed and torque. 同じくモータの回転速度とトルクの関係を示す特性図。The characteristic view which similarly shows the rotational speed and torque relationship of a motor. 同じくマップ切り換え時のモータ指令値ディレイ特性を示す図。The figure which similarly shows the motor command value delay characteristic at the time of map switching. 同上実施形態による制御時の各種状態量の変化を示すタイムチャート。The time chart which shows the change of the various state quantities at the time of control by embodiment same as the above. 高地高負荷時のPMとNOxの排出量を示す図。The figure which shows discharge | emission amount of PM and NOx at the time of high-altitude high load. 高地低負荷時のPMとNOxの排出量を示す図。The figure which shows discharge | emission amount of PM and NOx at the time of high altitude low load. 圧力低下量とバッテリ充電量に対するエンジンの境界出力を示す図。The figure which shows the engine boundary output with respect to pressure fall amount and battery charge amount. 圧力低下量とバッテリ充電量に対するモータ走行の境界出力を示す図。The figure which shows the boundary output of the motor driving | running | working with respect to pressure fall amount and battery charge amount. 本発明の第2の実施形態に係るハイブリッド車両の駆動制御装置のシステム構成図。The system block diagram of the drive control apparatus of the hybrid vehicle which concerns on the 2nd Embodiment of this invention. 同上実施形態におけるエンジンの回転速度とトルクの関係を示す特性図。The characteristic view which shows the relationship between the rotational speed of an engine and torque in embodiment same as the above. 同じくモータの回転速度とトルクの関係を示す特性図。The characteristic view which similarly shows the rotational speed and torque relationship of a motor.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
2 第1の無段変速機
3 第1のクラッチ
4a ギア
5 車軸
5a ギア
6 エンジン制御装置
11 モータ
12 インバータ
13 バッテリ
14 第2の無段変速機
15 第2のクラッチ
16 モータ制御装置
17 ハイブリッド制御装置
21 アクセル開度センサ
22 車速センサ
23 圧力センサ
31 無段変速機
32 クラッチ
33 ギア
1 engine (internal combustion engine)
2 1st continuously variable transmission 3 1st clutch 4a gear 5 axle 5a gear 6 engine control device 11 motor 12 inverter 13 battery 14 2nd continuously variable transmission 15 2nd clutch 16 motor control device 17 hybrid control device 21 Accelerator opening sensor 22 Vehicle speed sensor 23 Pressure sensor 31 Continuously variable transmission 32 Clutch 33 Gear

Claims (10)

エンジンと、モータと、前記エンジンおよびモータの駆動力を演算する駆動力演算手段と、前記モータに電力を供給する蓄電手段と、前記モータの駆動を制御するモータ制御手段と、前記エンジンに供給される混合気の空燃比を制御するエンジン制御手段と、を備えるハイブリッド車両の駆動力制御装置において、
前記駆動力演算手段は、大気圧の低下を検出した時には、通常の場合に比べて、前記モータ駆動力の割合を増加することを特徴とするハイブリッド車両の駆動力制御装置。
An engine, a motor, driving force calculating means for calculating the driving force of the engine and the motor, power storage means for supplying electric power to the motor, motor control means for controlling the driving of the motor, and the engine. An engine control means for controlling the air-fuel ratio of the air-fuel mixture.
The drive force control device for a hybrid vehicle, wherein the drive force calculation means increases the ratio of the motor drive force when detecting a decrease in atmospheric pressure as compared with a normal case.
前記大気圧力の低下を、エンジンの吸気圧力検出値と運転状態とから推定することを特徴とする請求項1に記載のハイブリッド車両の駆動力制御装置。   2. The driving force control apparatus for a hybrid vehicle according to claim 1, wherein the decrease in the atmospheric pressure is estimated from an intake pressure detection value of the engine and an operating state. 前記大気圧力の低下を、エンジンの質量吸入空気流量検出値と運転状態とから推定することを特徴とする請求項1または請求項2に記載のハイブリッド車両の駆動力制御装置。   3. The driving force control apparatus for a hybrid vehicle according to claim 1, wherein the decrease in the atmospheric pressure is estimated from a detected mass intake air flow rate of the engine and an operating state. ナビゲーション装置を備え、前記大気圧力の低下を、前記ナビゲーション装置の標高情報から判断することを特徴とする請求項1または請求項2に記載のハイブリッド車両の駆動力制御装置。   The hybrid vehicle driving force control device according to claim 1, further comprising a navigation device, wherein the decrease in the atmospheric pressure is determined from altitude information of the navigation device. 前記モータ駆動力割合の増加分は、大気圧の低下が大きいほど大きく制御されることを特徴とする請求項1〜請求項4のいずれか1つに記載のハイブリッド車両の駆動力制御装置。   The driving force control apparatus for a hybrid vehicle according to any one of claims 1 to 4, wherein the increase in the motor driving force ratio is controlled to be greater as the atmospheric pressure decreases. 前記モータ駆動力割合の増加分は、前記蓄電手段の充電量が多いほど大きく制御されることを特徴とする請求項1〜請求項5のいずれか1つに記載のハイブリッド車両の駆動力制御装置。   6. The driving force control apparatus for a hybrid vehicle according to claim 1, wherein the increase in the motor driving force ratio is controlled to be larger as the charging amount of the power storage unit is larger. . 前記蓄電手段の充電量が所定値より少ない場合は、モータ駆動力の増加を行わないことを特徴とする請求項1〜請求項6のいずれか1つに記載のハイブリッド車両の駆動力制御装置。   The driving force control apparatus for a hybrid vehicle according to any one of claims 1 to 6, wherein the motor driving force is not increased when the charge amount of the power storage means is less than a predetermined value. 大気圧低下を検出した場合で、かつエンジン目標出力が所定出力より小さい場合は、燃料噴射量を増量してエンジン出力を増加し、該エンジン出力の増加分を、モータを発電させて回収することを特徴とする請求項1〜請求項7のいずれか1つに記載のハイブリッド車両の駆動力制御装置。   When a decrease in atmospheric pressure is detected and the engine target output is smaller than the predetermined output, the fuel injection amount is increased to increase the engine output, and the increased amount of the engine output is recovered by generating the motor. The driving force control apparatus for a hybrid vehicle according to any one of claims 1 to 7. 前記蓄電手段の充電量が少ないほど、モータ駆動による車両走行時のモータ最大出力値を小さくすることを特徴とする請求項1〜請求項8のいずれか1つに記載のハイブリッド車両の駆動力制御装置。   9. The driving force control of a hybrid vehicle according to claim 1, wherein the motor maximum output value during vehicle traveling by motor driving is decreased as the charging amount of the power storage unit is smaller. apparatus. モータ駆動力を切り換える場合は、モータ駆動力指令値にディレイを付加することを特徴とする請求項1〜請求項9のいずれか1つに記載のハイブリッド車両の駆動力制御装置。   The hybrid vehicle driving force control device according to any one of claims 1 to 9, wherein when the motor driving force is switched, a delay is added to the motor driving force command value.
JP2004376922A 2004-12-27 2004-12-27 Hybrid vehicle driving force control device Expired - Fee Related JP4258467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376922A JP4258467B2 (en) 2004-12-27 2004-12-27 Hybrid vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376922A JP4258467B2 (en) 2004-12-27 2004-12-27 Hybrid vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2006183523A true JP2006183523A (en) 2006-07-13
JP4258467B2 JP4258467B2 (en) 2009-04-30

Family

ID=36736815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376922A Expired - Fee Related JP4258467B2 (en) 2004-12-27 2004-12-27 Hybrid vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP4258467B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062590A1 (en) * 2006-11-20 2008-05-29 Toyota Jidosha Kabushiki Kaisha Power unit and vehicle equipped with power unit
JP2009220765A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Control device for hybrid vehicle
JP2009227074A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Hybrid vehicle and control method thereof
JP2009255767A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Hybrid vehicle and its control method
JP2011213311A (en) * 2010-04-02 2011-10-27 Yazaki Corp Power display device for hybrid vehicle
WO2012036042A1 (en) * 2010-09-16 2012-03-22 ヤンマー株式会社 Drive-type control device for work vehicle
US8311691B2 (en) 2006-09-08 2012-11-13 Toyota Jidosha Kabushiki Kaisha Control device for mobile unit
JP2014211166A (en) * 2014-07-30 2014-11-13 ヤンマー株式会社 Device for controlling drive train of work vehicle
WO2015146770A1 (en) * 2014-03-24 2015-10-01 いすゞ自動車株式会社 Hybrid vehicle, and hybrid-vehicle control method
US10927747B2 (en) 2017-07-05 2021-02-23 Toyota Jidosha Kabushiki Kaisha Controller for cooling system of internal combustion engine
US20220212654A1 (en) * 2019-04-16 2022-07-07 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311691B2 (en) 2006-09-08 2012-11-13 Toyota Jidosha Kabushiki Kaisha Control device for mobile unit
WO2008062590A1 (en) * 2006-11-20 2008-05-29 Toyota Jidosha Kabushiki Kaisha Power unit and vehicle equipped with power unit
JP2009220765A (en) * 2008-03-18 2009-10-01 Toyota Motor Corp Control device for hybrid vehicle
JP2009227074A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Hybrid vehicle and control method thereof
JP2009255767A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Hybrid vehicle and its control method
JP2011213311A (en) * 2010-04-02 2011-10-27 Yazaki Corp Power display device for hybrid vehicle
JP2012062835A (en) * 2010-09-16 2012-03-29 Yanmar Co Ltd Drive-line control device for work vehicle
WO2012036042A1 (en) * 2010-09-16 2012-03-22 ヤンマー株式会社 Drive-type control device for work vehicle
US9180884B2 (en) 2010-09-16 2015-11-10 Yanmar Co., Ltd. Drive system control device for working vehicle
WO2015146770A1 (en) * 2014-03-24 2015-10-01 いすゞ自動車株式会社 Hybrid vehicle, and hybrid-vehicle control method
JP2015182570A (en) * 2014-03-24 2015-10-22 いすゞ自動車株式会社 Hybrid vehicle and control method therefor
JP2014211166A (en) * 2014-07-30 2014-11-13 ヤンマー株式会社 Device for controlling drive train of work vehicle
US10927747B2 (en) 2017-07-05 2021-02-23 Toyota Jidosha Kabushiki Kaisha Controller for cooling system of internal combustion engine
US20220212654A1 (en) * 2019-04-16 2022-07-07 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle
US11654887B2 (en) * 2019-04-16 2023-05-23 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle

Also Published As

Publication number Publication date
JP4258467B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US10513255B2 (en) Hybrid electric vehicle control system and method
US7617893B2 (en) Method and system for determining final desired wheel power in a hybrid electric vehicle powertrain
JP4063744B2 (en) Control device for hybrid vehicle
JP3401181B2 (en) Drive control device for hybrid vehicle
JP4535184B2 (en) Control device for hybrid vehicle
JP4066974B2 (en) Power output device and automobile equipped with the same
US7467033B2 (en) Control method for a vehicle powertrain with protection against low load conditions
US10252712B2 (en) Adapting engine-on time to driver aggressiveness in a hybrid vehicle
US20070298928A1 (en) Hybrid vehicle and control method of the same
WO2010058470A1 (en) Controller of power transmission device for vehicle
JP2018167618A (en) Automobile
EP2611663A1 (en) Controller and method of control of a hybrid electric vehicle
US20180237023A1 (en) Damping control device for hybrid vehicle
US11142202B2 (en) Control system for hybrid vehicle
JPH11324751A (en) Driving force control device
JP2018159296A (en) Automobile
JP5176935B2 (en) Control device for hybrid vehicle
KR101565459B1 (en) Vehicle driving force control apparatus
CN103269928B (en) The control method of vehicle and vehicle
JPWO2012057085A1 (en) Control device for hybrid vehicle
JP4258467B2 (en) Hybrid vehicle driving force control device
CN114274943A (en) Optimized regenerative braking for hybrid electric vehicle powertrain configurations
JP4318698B2 (en) Vehicle power switching control method
JP2017030598A (en) Hybrid vehicle and its control method
US20230166716A1 (en) Compensation method for shortfall of engine torque

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees