JP2009254057A - Pulse power supply - Google Patents

Pulse power supply Download PDF

Info

Publication number
JP2009254057A
JP2009254057A JP2008096758A JP2008096758A JP2009254057A JP 2009254057 A JP2009254057 A JP 2009254057A JP 2008096758 A JP2008096758 A JP 2008096758A JP 2008096758 A JP2008096758 A JP 2008096758A JP 2009254057 A JP2009254057 A JP 2009254057A
Authority
JP
Japan
Prior art keywords
saturable reactor
pulse
compression circuit
power supply
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096758A
Other languages
Japanese (ja)
Inventor
Eiji Sasamoto
栄二 笹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008096758A priority Critical patent/JP2009254057A/en
Publication of JP2009254057A publication Critical patent/JP2009254057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable short pulsation of output while preventing heat generation from a magnetic body on the periphery of a circuit. <P>SOLUTION: A magnetic pulse compression circuit of a plurality of stages is constituted of capacitors C1 and C2, and saturable reactors T3 and T4, and the opposite sides and the upper side of the saturable reactor T4 constituting the magnetic pulse compression circuit at the final stage are covered with an anti-earth side conductor 18 (outer conductor also serving as a container) of the capacitor C2 constituting the magnetic pulse compression circuit at the final stage. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、高電圧、大電流の短パルスを発生するパルス電源装置に関するものである。   The present invention relates to a pulse power supply device that generates short pulses of high voltage and large current.

炭酸ガスレーザやエキシマレーザ等のパルスレーザにおいては、放電のための不安定さや高ピーク、大出力レーザ光を得るために、短時間に放電部に電力を注入する必要がある。そして、これらの電源にはコンデンサに充電した電荷をスイッチング素子で放電する方法が採られているが、寿命や保守の点でスイッチング素子には半導体が望ましい。しかし、現在、高電圧、大電流、高速スイッチング機能を有した半導体素子がなく、比較的低い周波数の電流パルスを例えば図6のように鉄心の飽和特性を使った磁気パルス圧縮回路で短パルス化して放電部へ印加している。   In a pulse laser such as a carbon dioxide laser or an excimer laser, it is necessary to inject electric power into the discharge portion in a short time in order to obtain instability for discharge, high peak, and high output laser light. In these power supplies, a method of discharging the charge charged in the capacitor by the switching element is adopted, but a semiconductor is desirable for the switching element in terms of life and maintenance. However, there is currently no semiconductor device having a high voltage, large current, and high speed switching function, and a relatively low frequency current pulse is shortened by a magnetic pulse compression circuit using the saturation characteristic of an iron core as shown in FIG. Applied to the discharge part.

図6において、1は交流電源、2は充電器であり、この充電器2の出力によりコンデンサCOが初期充電され、この充電電圧は半導体スイッチSWのオンにより放電され、可飽和リアクトルT1の飽和により短いパルス幅τ0の放電電流I0がパルストランスT2の一次側に流れ、この電流はパルストランスT2により昇圧され、二次側を介してコンデンサC1に充電される。この充電電圧は可飽和リアクトルT3の飽和により磁気パルス圧縮され、コンデンサC2に移り、さらに可飽和リアクトルT4の飽和により磁気パルス圧縮され、ピーキングコンデンサCPのパルス幅τpの充電電流Ipとなり、このピーキングコンデンサCPの充電電圧により放電管3が放電し、パルスエネルギとして供給される。なお、ピーキングコンデンサCP及び放電管3により負荷が構成される。又、可飽和リアクトルT1,T3,T4は円環状のトロイダルコアに巻線を施したものである。   In FIG. 6, 1 is an AC power source, and 2 is a charger. The capacitor CO is initially charged by the output of the charger 2, and this charging voltage is discharged when the semiconductor switch SW is turned on, and the saturation of the saturable reactor T1. A discharge current I0 having a short pulse width τ0 flows to the primary side of the pulse transformer T2, and this current is boosted by the pulse transformer T2 and charged to the capacitor C1 via the secondary side. This charging voltage is magnetically compressed by the saturation of the saturable reactor T3, moves to the capacitor C2, and further compressed by the magnetic pulse by the saturation of the saturable reactor T4, resulting in a charging current Ip having a pulse width τp of the peaking capacitor CP. The discharge tube 3 is discharged by the charging voltage of CP and supplied as pulse energy. The peaking capacitor CP and the discharge tube 3 constitute a load. Saturable reactors T1, T3, and T4 are formed by winding an annular toroidal core.

図7は特許文献1等で示されたパルス電源装置の構成を示す縦断正面図であり、可飽和リアクトルT4はトロイダルコア4に2個の巻線5が巻き付けられて構成され、可飽和リアクトルT4の外側には、平行にまたは複数個の内側導体6と容器を兼ねた外側導体7が設けられ、この間には円筒形セラミックス製コンデンサC2が左右に6個ずつ両極を内側導体6及び外側導体7に接続されて取り付けられている。そして、各巻線5の一端は内側導体6の下端に接続されるとともに、各巻線5の他端は容器を兼ねた外側導体7の下端の孔7aを絶縁板8を介して挿通された導体9に接続され、導体9はピーキングコンデンサCPの一端及び放電管3の一端に接続され、ピーキングコンデンサCPの他端及び放電管3の他端は接地された外側導体7に接続される。   FIG. 7 is a longitudinal front view showing the configuration of the pulse power supply device disclosed in Patent Document 1 and the like. The saturable reactor T4 is configured by winding two windings 5 around the toroidal core 4, and the saturable reactor T4. The outer conductor 7 is provided in parallel or outside conductor 7 which serves as a container together with a plurality of inner conductors 6. Between these, six cylindrical ceramic capacitors C2 are arranged on the left and right, respectively, and the inner conductor 6 and the outer conductor 7 are disposed on both poles. Connected to and attached. One end of each winding 5 is connected to the lower end of the inner conductor 6, and the other end of each winding 5 is a conductor 9 inserted through the hole 7 a at the lower end of the outer conductor 7 that also serves as a container through an insulating plate 8. The conductor 9 is connected to one end of the peaking capacitor CP and one end of the discharge tube 3, and the other end of the peaking capacitor CP and the other end of the discharge tube 3 are connected to the grounded outer conductor 7.

又、可飽和リアクトルT4の上側には、同じくトロイダルコア10に2個の巻線11が巻き付けられた可飽和リアクトルT3が設けられ、可飽和リアクトルT3の外側には同じく内側導体12、セラミックスコンデンサC1及び容器を兼ねた外側導体7が取り付けられ、各巻線11の一端は下側の内側導体6の上端に接続され、各巻線11の他端は上側の内側導体12の下端にそれぞれ接続されている。そして、内側導体12の上端左右は接続線13により接続された後、パルストランスT2の二次側の+側に接続され、外側導体7の上端左右は接続線14を介して相互に接続されてパルストランスT2の二次側の−側に接続される。又、容器を兼ねる外側導体7内には絶縁油15が収納され、15aはその油面である。   Further, a saturable reactor T3 in which two windings 11 are wound around the toroidal core 10 is provided on the upper side of the saturable reactor T4. Similarly, an inner conductor 12 and a ceramic capacitor C1 are provided outside the saturable reactor T3. And an outer conductor 7 also serving as a container, one end of each winding 11 is connected to the upper end of the lower inner conductor 6, and the other end of each winding 11 is connected to the lower end of the upper inner conductor 12. . The upper and left ends of the inner conductor 12 are connected by the connection line 13, and then connected to the secondary side + side of the pulse transformer T 2. The upper and left ends of the outer conductor 7 are connected to each other via the connection line 14. It is connected to the negative side of the secondary side of the pulse transformer T2. Moreover, the insulating oil 15 is accommodated in the outer conductor 7 which also serves as a container, and 15a is the oil level.

なお、この出願の発明に関連する他の先行技術文献情報としては、特許文献2〜5がある。
特開平2−46016号公報 特開平3−120708号公報 特開平6−5426号公報 特開平11−121239号公報 特開平11−121240号公報
In addition, there exist patent documents 2-5 as other prior art document information relevant to invention of this application.
Japanese Patent Laid-Open No. 2-46016 Japanese Patent Laid-Open No. 3-120708 JP-A-6-5426 JP 11-121239 A JP-A-11-121240

前記したパルス電源装置において、パルス生成のために要求される可飽和リアクトルの特性としては、パルス圧縮動作時に、可飽和リアクトルが飽和した後の漂遊インダクタンスが大きい場合には、パルス幅τ=π√LCのLが大きくなり、パルス幅τが長くなり、出力の短パルス化が阻害されるので、飽和後のインダクタンスが小さいことが望まれる。このため、図7に示した従来のパルス電源装置においても、部品配置をなるべく近接させてリード線を短くし、回路インダクタンスの低減を図り、短パルス化を実現しようとしているが、十分なものが得られなかった。又、パルス圧縮動作時に、可飽和リアクトルT3,T4の漏れ磁束(巻線11,5に流れる電流により漏れ磁束が発生する。)により回路周辺の磁性体や金属部が誘導加熱されるので、可飽和リアクトルT3,T4の漏れ磁束が少ないことが要求されるが、これもまた実現が容易でなかった。   In the pulse power supply device described above, the characteristics of the saturable reactor required for pulse generation are as follows. When the stray inductance after saturation of the saturable reactor is large during the pulse compression operation, the pulse width τ = π√ Since L of LC becomes large, pulse width τ becomes long, and shortening of output is hindered, it is desired that inductance after saturation is small. Therefore, in the conventional pulse power supply device shown in FIG. 7 as well, an attempt is made to reduce the circuit inductance by shortening the lead wire by making the component arrangement as close as possible, but to achieve a shorter pulse. It was not obtained. Also, during the pulse compression operation, the magnetic substance and metal part around the circuit are inductively heated by the leakage flux of the saturable reactors T3 and T4 (leakage flux is generated by the current flowing through the windings 11 and 5). The saturation reactors T3 and T4 are required to have a small leakage magnetic flux, but this is also not easy to realize.

図8(a),(b)は一例としての可飽和リアクトルT4の漏れ磁束の状態を示す平面図及び正面図であり、巻線5に電流Ipが流れることにより磁束φが発生し、それに伴って漏れ磁束16が発生する。漏れ磁束16は大きな漂遊インダクタンスとなり、出力の短パルス化が阻害されるとともに、回路周辺に磁性体や金属部17があると、漏れ磁束16により誘導加熱され、発熱した。   8A and 8B are a plan view and a front view showing a state of leakage magnetic flux of the saturable reactor T4 as an example, and a magnetic flux φ is generated by the current Ip flowing through the winding 5, and accompanying this, As a result, a leakage flux 16 is generated. Leakage magnetic flux 16 becomes a large stray inductance, and shortening of the output is hindered, and if there is a magnetic body or metal part 17 around the circuit, it is inductively heated by the leakage magnetic flux 16 and generates heat.

この発明は上記のような課題を解決するために成されたものであり、可飽和リアクトルの漏れ磁束を低減することにより、可飽和リアクトルが飽和した後のインダクタンスを小さくして出力の短パルス化を可能とするとともに、可飽和リアクトルの漏れ磁束を低減することにより、回路周辺の磁性体等の発熱を防止することができるパルス電源装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and by reducing the leakage magnetic flux of the saturable reactor, the inductance after the saturable reactor is saturated is reduced to shorten the output pulse. It is an object of the present invention to provide a pulse power supply device that can prevent heat generation of a magnetic body around a circuit by reducing the leakage magnetic flux of a saturable reactor.

この発明の請求項1に係るパルス電源装置は、コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成するコンデンサの反接地側導体により最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを覆い、その発生漏れ磁束を電磁遮蔽したものである。   According to a first aspect of the present invention, there is provided a pulse power supply device comprising a plurality of stages of magnetic pulse compression circuits each comprising a capacitor and a saturable reactor, and constituting a final stage magnetic pulse compression circuit in a pulse power supply apparatus that outputs short pulses. The saturable reactor constituting the final stage magnetic pulse compression circuit is covered with the anti-ground side conductor of the capacitor to be shielded, and the generated leakage magnetic flux is electromagnetically shielded.

請求項2に係るパルス電源装置は、コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成するコンデンサの接地側導体により最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを覆い、その発生漏れ磁束を電磁遮蔽したものである。   According to a second aspect of the present invention, there is provided a pulse power supply device including a plurality of stages of magnetic pulse compression circuits each including a capacitor and a saturable reactor. The saturable reactor constituting the final stage magnetic pulse compression circuit is covered with a ground-side conductor, and the generated leakage magnetic flux is electromagnetically shielded.

請求項3に係るパルス電源装置は、コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを平板状の電磁遮蔽板により覆い、その発生漏れ磁束を電磁遮蔽したものである。   The pulse power supply device according to claim 3 has a multi-stage magnetic pulse compression circuit comprising a capacitor and a saturable reactor, and in the pulse power supply device that outputs a short pulse, the saturable magnetic pulse compression circuit constituting the final stage is provided. The reactor is covered with a flat electromagnetic shielding plate, and the generated leakage magnetic flux is electromagnetically shielded.

請求項4に係るパルス電源装置は、コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルの周囲を電磁遮蔽板により覆い、その発生漏れ磁束を電磁遮蔽したものである。   The pulse power supply device according to claim 4 has a multi-stage magnetic pulse compression circuit comprising a capacitor and a saturable reactor, and in the pulse power supply device that outputs a short pulse, the saturable magnetic pulse compression circuit constituting the final stage is provided. The reactor is covered with an electromagnetic shielding plate, and the generated leakage magnetic flux is electromagnetically shielded.

以上のようにこの発明の請求項1によれば、最終段の磁気パルス圧縮回路を構成するコンデンサの反接地側導体により最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを覆っており、該可飽和リアクトルの漏れ磁束によりコンデンサの反接地側導体には渦電流が発生し、この渦電流により可飽和リアクトルの漏れ磁束と反対方向の磁束が発生し、漏れ磁束は電磁遮蔽され、漏れ磁束は低減される。このため、可飽和リアクトルが飽和した後の漂遊インダクタンスは小さくなり、出力の短パルス化が可能となるとともに、回路周辺の磁性体等の発熱が防止される。   As described above, according to the first aspect of the present invention, the saturable reactor constituting the final magnetic pulse compression circuit is covered by the anti-ground side conductor of the capacitor constituting the final magnetic pulse compression circuit, Due to the leakage flux of the saturable reactor, an eddy current is generated in the non-grounded conductor of the capacitor, and this eddy current generates a magnetic flux in the opposite direction to the leakage flux of the saturable reactor. The leakage flux is electromagnetically shielded, and the leakage flux is Reduced. For this reason, the stray inductance after the saturable reactor is saturated is reduced, the output can be shortened, and the heat generation of the magnetic body and the like around the circuit is prevented.

請求項2によれば、最終段の磁気パルス圧縮回路を構成するコンデンサの接地側導体により最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを覆っており、該可飽和リアクトルの漏れ磁束によりコンデンサの接地側導体には渦電流が発生し、この渦電流により可飽和リアクトルの漏れ磁束と反対方向の磁束が発生し、漏れ磁束は電磁遮蔽され、漏れ磁束は低減される。このため、可飽和リアクトルが飽和した後の漂遊インダクタンスは小さくなり、出力の短パルス化が可能となるとともに、回路周辺の磁性体等の発熱が防止される。   According to the second aspect of the present invention, the saturable reactor constituting the final stage magnetic pulse compression circuit is covered with the ground-side conductor of the capacitor constituting the final stage magnetic pulse compression circuit, and the leakage flux of the saturable reactor causes the capacitor to An eddy current is generated in the ground-side conductor of this, and this eddy current generates a magnetic flux in a direction opposite to the leakage flux of the saturable reactor. The leakage flux is electromagnetically shielded and the leakage flux is reduced. For this reason, the stray inductance after the saturable reactor is saturated is reduced, the output can be shortened, and the heat generation of the magnetic body and the like around the circuit is prevented.

請求項3によれば、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを平板状の電磁遮蔽板により覆っており、該可飽和リアクトルの漏れ磁束により電磁遮蔽板には渦電流が発生し、この渦電流により可飽和リアクトルの漏れ磁束と反対方向の磁束が発生し、漏れ磁束は電磁遮蔽され、漏れ磁束は低減される。このため、可飽和リアクトルが飽和した後の漂遊インダクタンスは小さくなり、出力の短パルス化が可能となるとともに、回路周辺の磁性体等の発熱が防止される。   According to the third aspect, the saturable reactor constituting the final stage magnetic pulse compression circuit is covered by a flat electromagnetic shielding plate, and an eddy current is generated in the electromagnetic shielding plate by the leakage magnetic flux of the saturable reactor. The eddy current generates a magnetic flux in the direction opposite to the leakage flux of the saturable reactor, the leakage flux is electromagnetically shielded, and the leakage flux is reduced. For this reason, the stray inductance after the saturable reactor is saturated is reduced, the output can be shortened, and the heat generation of the magnetic body and the like around the circuit is prevented.

請求項4によれば、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルの周囲を電磁遮蔽板により覆っており、該可飽和リアクトルの漏れ磁束により電磁遮蔽板には渦電流が発生し、この渦電流により可飽和リアクトルの漏れ磁束と反対方向の磁束が発生し、漏れ磁束は電磁遮蔽され、漏れ磁束は低減される。このため、可飽和リアクトルが飽和した後の漂遊インダクタンスは小さくなり、出力の短パルス化が可能となるとともに、回路周辺の磁性体等の発熱が防止される。   According to claim 4, the periphery of the saturable reactor constituting the final stage magnetic pulse compression circuit is covered by an electromagnetic shielding plate, and an eddy current is generated in the electromagnetic shielding plate by the leakage magnetic flux of the saturable reactor, This eddy current generates a magnetic flux in a direction opposite to the leakage flux of the saturable reactor, the leakage flux is electromagnetically shielded, and the leakage flux is reduced. For this reason, the stray inductance after the saturable reactor is saturated is reduced, the output can be shortened, and the heat generation of the magnetic body and the like around the circuit is prevented.

実施最良形態1
以下、この発明を実施するための最良の形態を図面とともに説明する。図1及び図2はこの発明の実施最良形態1によるパルス電源装置の縦断正面図及び磁気パルス圧縮回路の最終段部分の横断平面図を示し、図において、可飽和リアクトルT4はトロイダルコア4に2個または複数個の巻線5が巻き付けられて構成され、可飽和リアクトルT4の両側には、可飽和リアクトルT4の両側及び上方(反接地側)を覆う内側導体18と容器を兼ねた外側導体7とが設けられ、この間には最終段の磁気パルス圧縮回路を構成するコンデンサC2が左右に6個ずつ両極を内側導体18及び外側導体7に接続されて取り付けられる。内側導体18の可飽和リアクトルT4の上方を覆う部分18aは、図2に矢印19で示す絶縁油15の流れを妨げないように設けられる。そして、各巻線5の一端は内側導体18の下端に接続されるとともに、各巻線5の他端は容器を兼ねた外側導体7の下端の孔7aを絶縁板8を介して挿通された導体9に接続され、導体9はピーキングコンデンサCPの一端及び放電管3の一端に接続され、ピーキングコンデンサCPの他端及び放電管3の他端は外側導体7に接続され、外側導体7は接地される。
Best Embodiment 1
The best mode for carrying out the present invention will be described below with reference to the drawings. 1 and 2 show a longitudinal front view of a pulse power supply device according to Embodiment 1 of the present invention and a cross-sectional plan view of a final stage portion of a magnetic pulse compression circuit. In the figure, a saturable reactor T4 is connected to a toroidal core 4 by 2. One or a plurality of windings 5 are wound, and on both sides of the saturable reactor T4, an inner conductor 18 that covers both sides of the saturable reactor T4 and above (anti-grounding side) and an outer conductor 7 that also serves as a container. In the meantime, six capacitors C2 constituting the final-stage magnetic pulse compression circuit are attached with both poles connected to the inner conductor 18 and the outer conductor 7, respectively. A portion 18a of the inner conductor 18 covering the saturable reactor T4 is provided so as not to hinder the flow of the insulating oil 15 indicated by an arrow 19 in FIG. One end of each winding 5 is connected to the lower end of the inner conductor 18, and the other end of each winding 5 is a conductor 9 inserted through an insulating plate 8 through a hole 7 a at the lower end of the outer conductor 7 that also serves as a container. The conductor 9 is connected to one end of the peaking capacitor CP and one end of the discharge tube 3, the other end of the peaking capacitor CP and the other end of the discharge tube 3 are connected to the outer conductor 7, and the outer conductor 7 is grounded. .

又、可飽和リアクトルT4の上側には、同じくトロイダルコア10に2個または複数個の巻線11が巻き付けられて構成された可飽和リアクトルT3が設けられ、可飽和リアクトルT3の両側には、内側導体12及び容器を兼ねた外側導体7が設けられ、この間にはコンデンサC1が左右に6個ずつ両極を内側導体12及び外側導体7に接続されて取り付けられる。そして、各巻線11の一端は下側の内側導体18の上端に接続され、各巻線11の他端は上側の内側導体12の下端に接続される。内側導体12の上端左右は接続線13を介して接続された後、パルストランスT2の二次側の+側に接続され、外側導体7の上端左右は接続線14を介して相互に接続されてパルストランスT2の二次側の−側に接続される。又、容器を兼ねた外側導体7内には絶縁油15が収納され、その上面は油面15aとなる。   Further, on the upper side of the saturable reactor T4, there is provided a saturable reactor T3 which is configured by winding two or a plurality of windings 11 around the toroidal core 10 and on both sides of the saturable reactor T3, The conductor 12 and the outer conductor 7 also serving as a container are provided, and between these capacitors, six capacitors C1 are connected to the inner conductor 12 and the outer conductor 7 on both sides. One end of each winding 11 is connected to the upper end of the lower inner conductor 18, and the other end of each winding 11 is connected to the lower end of the upper inner conductor 12. The upper and left ends of the inner conductor 12 are connected via the connection line 13 and then connected to the secondary side + side of the pulse transformer T2, and the upper and left ends of the outer conductor 7 are connected to each other via the connection line 14. It is connected to the negative side of the secondary side of the pulse transformer T2. Insulating oil 15 is accommodated in the outer conductor 7 which also serves as a container, and the upper surface thereof is an oil surface 15a.

前記した実施最良形態1においては、最終段の磁気パルス圧縮回路を構成するコンデンサC2の非磁性の金属からなる内側導体、即ち反接地側導体18により、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルT4の両側及び上方(反接地側)を覆っており、巻線5に電流Ipが流れることにより発生する磁束の一部が漏れ磁束となるが、この漏れ磁束と直交する方向の内側導体18の可飽和リアクトルT4の上方を覆う部分18aは渦電流を発生し、この渦電流により漏れ磁束と反対方向の磁束が発生し、漏れ磁束が相殺される。このように、漏れ磁束が電磁遮蔽により低減されるので、可飽和リアクトルT4が飽和した後の漂遊インダクタンスが小さくなり、出力の短パルス化が可能となるとともに、周囲の磁性体等が誘導加熱されることが防止される。   In the first embodiment described above, the final stage magnetic pulse compression circuit can be constituted by the inner conductor made of nonmagnetic metal of the capacitor C2 constituting the final stage magnetic pulse compression circuit, that is, the anti-ground side conductor 18. A part of the magnetic flux generated by the current Ip flowing through the winding 5 is a leakage flux that covers both sides and the upper side (anti-grounding side) of the saturation reactor T4. The inner conductor in a direction orthogonal to the leakage flux The portion 18a covering the 18 saturable reactors T4 generates an eddy current, and the eddy current generates a magnetic flux in a direction opposite to the leakage magnetic flux to cancel the leakage magnetic flux. As described above, since the magnetic flux leakage is reduced by electromagnetic shielding, the stray inductance after saturation of the saturable reactor T4 is reduced, the output can be shortened, and the surrounding magnetic material is induction-heated. Is prevented.

実施最良形態2
図3はこの発明の実施最良形態2によるパルス電源装置の縦断正面図であり、可飽和リアクトルT4の両側には、可飽和リアクトルT4の両側を覆う内側導体6と容器を兼ねた外側導体20とが設けられ、この間にはコンデンサC2が左右に6個ずつ両極を内側導体6及び外側導体20に接続されて取り付けられる。又、外側導体20には可飽和リアクトルT4の上方(反接地側)を覆う部分20aが設けられ、該部分20aは絶縁油15の流れを妨げないように設けられる。そして、各巻線5の一端は内側導体6の下端に接続されるとともに、各巻線5の他端は容器を兼ねた外側導体20の下端の孔20bを絶縁板8を介して挿通された導体9に接続され、導体9はピーキングコンデンサCPの一端及び放電管3の一端に接続され、ピーキングコンデンサCPの他端及び放電管3の他端は外側導体20に接続され、外側導体20は接地される。
Embodiment 2
FIG. 3 is a longitudinal sectional front view of the pulse power supply device according to Embodiment 2 of the present invention. On both sides of the saturable reactor T4, there are an inner conductor 6 covering both sides of the saturable reactor T4 and an outer conductor 20 serving as a container. In the meantime, six capacitors C2 are attached to the left and right, with both poles connected to the inner conductor 6 and the outer conductor 20, respectively. Further, the outer conductor 20 is provided with a portion 20a that covers the upper side (anti-grounding side) of the saturable reactor T4, and the portion 20a is provided so as not to disturb the flow of the insulating oil 15. One end of each winding 5 is connected to the lower end of the inner conductor 6, and the other end of each winding 5 is the conductor 9 inserted through the insulating plate 8 through the hole 20 b at the lower end of the outer conductor 20 that also serves as a container. The conductor 9 is connected to one end of the peaking capacitor CP and one end of the discharge tube 3, the other end of the peaking capacitor CP and the other end of the discharge tube 3 are connected to the outer conductor 20, and the outer conductor 20 is grounded. .

又、可飽和リアクトルT4の上側には、可飽和リアクトルT3が設けられ、可飽和リアクトルT3の両側には、内側導体12及び容器を兼ねた外側導体20が設けられ、この間にはコンデンサC1が左右に6個ずつ両極を内側導体12及び外側導体20に接続されて取り付けられる。そして、各巻線11の一端は外側導体20の可飽和リアクトルT4の上方を覆う部分20aに設けられた孔20cに絶縁板21を介して挿通された導体22に接続され、各巻線11の他端は上側の内側導体12の下端に接続される。内側導体12の上端左右は接続線13を介して接続された後、パルストランスT2の二次側の+側に接続され、外側導体20の上端左右は接続線14を介して相互に接続されてパルストランスT2の二次側の−側に接続される。又、容器を兼ねた外側導体20内には絶縁油15が収納され、その上面は油面15aとなる。   A saturable reactor T3 is provided above the saturable reactor T4, and an inner conductor 12 and an outer conductor 20 serving as a container are provided on both sides of the saturable reactor T3. The two poles are attached to the inner conductor 12 and the outer conductor 20, respectively. One end of each winding 11 is connected to a conductor 22 inserted through an insulating plate 21 into a hole 20c provided in a portion 20a covering the saturable reactor T4 of the outer conductor 20, and the other end of each winding 11 is connected. Is connected to the lower end of the upper inner conductor 12. The upper and left ends of the inner conductor 12 are connected via the connection line 13 and then connected to the secondary side + side of the pulse transformer T2, and the upper and left ends of the outer conductor 20 are connected to each other via the connection line 14. It is connected to the negative side of the secondary side of the pulse transformer T2. Further, the insulating oil 15 is accommodated in the outer conductor 20 which also serves as a container, and the upper surface thereof becomes the oil surface 15a.

前記した実施最良形態2においては、最終段の磁気パルス圧縮回路を構成するコンデンサC2の外側導体20、即ち接地側導体により、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルT4の上方(反接地側)を覆っており、巻線5を流れる電流Ipにより漏れ磁束が発生するが、この漏れ磁束と直交する方向の外側導体20の可飽和リアクトルT4の上方を覆う部分20aは渦電流を発生し、この渦電流により漏れ磁束と反対方向の磁束が発生し、漏れ磁束が相殺される。このように、漏れ磁束が電磁遮蔽により低減されるので、可飽和リアクトルT4が飽和した後の漂遊インダクタンスが小さくなり、出力の短パルス化が可能となるとともに、周囲の磁性体等が誘導加熱されることが防止される。又、外側導体20は接地電位となるので、絶縁が容易となる。   In the second preferred embodiment described above, the outer conductor 20 of the capacitor C2 constituting the final stage magnetic pulse compression circuit, that is, the ground-side conductor, above the saturable reactor T4 constituting the final stage magnetic pulse compression circuit (on the opposite side). A leakage magnetic flux is generated by the current Ip flowing through the winding 5, and a portion 20a of the outer conductor 20 covering the saturable reactor T4 in a direction orthogonal to the leakage magnetic flux generates an eddy current. However, this eddy current generates a magnetic flux in the direction opposite to the leakage magnetic flux, and the leakage magnetic flux is canceled out. As described above, since the magnetic flux leakage is reduced by electromagnetic shielding, the stray inductance after saturation of the saturable reactor T4 is reduced, the output can be shortened, and the surrounding magnetic material is induction-heated. Is prevented. Further, since the outer conductor 20 is at ground potential, insulation is facilitated.

実施最良形態3
図4は実施最良形態3によるパルス電源装置の縦断正面図を示し、可飽和リアクトルT4の両側には、可飽和リアクトルT4の両側を覆う内側導体6と容器を兼ねた外側導体7とが設けられ、この間には最終段の磁気パルス圧縮回路を構成するコンデンサC2が左右に6個ずつ両極を内側導体6及び外側導体7に接続されて取り付けられる。そして、可飽和リアクトルT4の上方(反接地側)には、該上方を覆う平板状の金属製の電磁遮蔽板23を設ける。電磁遮蔽板23は、図2に矢印19で示す絶縁油15の流れを妨げないように設けられる。各巻線5の一端は内側導体6の下端に接続されるとともに、各巻線5の他端は容器を兼ねた外側導体7の下端の孔7aを絶縁板8を介して挿通された導体9に接続され、導体9はピーキングコンデンサCPの一端及び放電管3の一端に接続され、ピーキングコンデンサCPの他端及び放電管3の他端は外側導体7に接続され、外側導体7は接地される。
Embodiment 3
FIG. 4 is a longitudinal front view of the pulse power supply device according to the third embodiment. On both sides of the saturable reactor T4, an inner conductor 6 that covers both sides of the saturable reactor T4 and an outer conductor 7 that also serves as a container are provided. In the meantime, six capacitors C2 constituting the final stage magnetic pulse compression circuit are attached with both poles connected to the inner conductor 6 and the outer conductor 7, respectively. A flat metal electromagnetic shielding plate 23 is provided above the saturable reactor T4 (on the anti-grounding side) to cover the upper side. The electromagnetic shielding plate 23 is provided so as not to obstruct the flow of the insulating oil 15 indicated by an arrow 19 in FIG. One end of each winding 5 is connected to the lower end of the inner conductor 6, and the other end of each winding 5 is connected to the conductor 9 inserted through the insulating plate 8 through the hole 7 a at the lower end of the outer conductor 7 that also serves as a container. The conductor 9 is connected to one end of the peaking capacitor CP and one end of the discharge tube 3, the other end of the peaking capacitor CP and the other end of the discharge tube 3 are connected to the outer conductor 7, and the outer conductor 7 is grounded.

又、可飽和リアクトルT4の上側には、可飽和リアクトルT3が設けられ、可飽和リアクトルT3の両側には、内側導体12及び容器を兼ねた外側導体7が設けられ、この間にはコンデンサC1が左右に6個ずつ両極を内側導体12及び外側導体7に接続されて取り付けられる。そして、各巻線11の一端は下側の内側導体6の上端に接続され、各巻線11の他端は上側の内側導体12の下端に接続される。内側導体12の上端左右は接続線13を介して接続された後、パルストランスT2の二次側の+側に接続され、外側導体7の上端左右は接続線14を介して相互に接続されてパルストランスT2の二次側の−側に接続される。又、容器を兼ねた外側導体7内には絶縁油15が収納され、その上面は油面15aとなる。   A saturable reactor T3 is provided above the saturable reactor T4, and an inner conductor 12 and an outer conductor 7 serving as a container are provided on both sides of the saturable reactor T3. The two poles are attached to the inner conductor 12 and the outer conductor 7, respectively. One end of each winding 11 is connected to the upper end of the lower inner conductor 6, and the other end of each winding 11 is connected to the lower end of the upper inner conductor 12. The upper and left ends of the inner conductor 12 are connected via the connection line 13 and then connected to the secondary side + side of the pulse transformer T2, and the upper and left ends of the outer conductor 7 are connected to each other via the connection line 14. It is connected to the negative side of the secondary side of the pulse transformer T2. Insulating oil 15 is accommodated in the outer conductor 7 which also serves as a container, and the upper surface thereof is an oil surface 15a.

前記した実施最良形態3においては、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルT4の上方(反接地側)を独立した電磁遮蔽板23により覆っており、巻線5に電流Ipが流れることにより発生する磁束の一部が漏れ磁束となるが、この漏れ磁束と直交する電磁遮蔽板23は渦電流を発生し、この渦電流により漏れ磁束と反対方向の磁束が発生し、漏れ磁束が相殺される。このように、漏れ磁束が電磁遮蔽により低減されるので、可飽和リアクトルT4が飽和した後の漂遊インダクタンスが小さくなり、出力の短パルス化が可能となるとともに、周囲の磁性体等が誘導加熱されることが防止される。又、電磁遮蔽板23を新たに設けるだけであるので、磁気パルス圧縮回路の構成に影響を与えることなく、かつ電磁遮蔽板23は電位的に浮いた状態であるので、設置が容易となる。   In the third embodiment described above, the upper part (anti-grounding side) of the saturable reactor T4 constituting the final stage magnetic pulse compression circuit is covered by the independent electromagnetic shielding plate 23, and the current Ip flows through the winding 5. Part of the generated magnetic flux becomes leakage magnetic flux, but the electromagnetic shielding plate 23 orthogonal to the leakage magnetic flux generates eddy current, and this eddy current generates magnetic flux in the opposite direction to the leakage magnetic flux, Offset. As described above, since the magnetic flux leakage is reduced by electromagnetic shielding, the stray inductance after saturation of the saturable reactor T4 is reduced, the output can be shortened, and the surrounding magnetic material is induction-heated. Is prevented. Further, since only the electromagnetic shielding plate 23 is newly provided, the electromagnetic shielding plate 23 is in a floating state without affecting the configuration of the magnetic pulse compression circuit, and the installation becomes easy.

実施最良形態4
図5は実施最良形態4によるパルス電源装置の縦断正面図を示し、可飽和リアクトルT4の両側には、内側導体6と容器を兼ねた外側導体7とが設けられ、この間には最終段の磁気パルス圧縮回路を構成するコンデンサC2が左右に6個ずつ両極を内側導体6及び外側導体7に接続されて取り付けられる。そして、可飽和リアクトルT4の周囲、即ち上方(反接地側)、両側方及び下方(接地側)を覆う金属製の電磁遮蔽板24を設ける。電磁遮蔽板24は、図2に矢印19で示す絶縁油15の流れを妨げないように設けられる。各巻線5の一端は内側導体6の下端に接続されるとともに、各巻線5の他端は容器を兼ねた外側導体7の下端の孔7aを絶縁板8を介して挿通された導体9に接続され、導体9はピーキングコンデンサCPの一端及び放電管3の一端に接続され、ピーキングコンデンサCPの他端及び放電管3の他端は外側導体7に接続され、外側導体7は接地される。
Embodiment 4
FIG. 5 is a longitudinal front view of the pulse power supply device according to the fourth embodiment. On both sides of the saturable reactor T4, an inner conductor 6 and an outer conductor 7 also serving as a container are provided. The capacitor C2 constituting the pulse compression circuit is attached by connecting six poles on the left and right sides to the inner conductor 6 and the outer conductor 7 respectively. And the metal electromagnetic shielding board 24 which covers the circumference | surroundings of the saturable reactor T4, ie, upper direction (anti-grounding side), both sides, and the lower side (grounding side) is provided. The electromagnetic shielding plate 24 is provided so as not to obstruct the flow of the insulating oil 15 indicated by the arrow 19 in FIG. One end of each winding 5 is connected to the lower end of the inner conductor 6, and the other end of each winding 5 is connected to the conductor 9 inserted through the insulating plate 8 through the hole 7 a at the lower end of the outer conductor 7 that also serves as a container. The conductor 9 is connected to one end of the peaking capacitor CP and one end of the discharge tube 3, the other end of the peaking capacitor CP and the other end of the discharge tube 3 are connected to the outer conductor 7, and the outer conductor 7 is grounded.

又、可飽和リアクトルT4の上側には、可飽和リアクトルT3が設けられ、可飽和リアクトルT3の両側には、内側導体12及び容器を兼ねた外側導体7が設けられ、この間にはコンデンサC1が左右に6個ずつ両極を内側導体12及び外側導体7に接続されて取り付けられる。そして、各巻線11の一端は下側の内側導体6の上端に接続され、各巻線11の他端は上側の内側導体12の下端に接続される。内側導体12の上端左右は接続線13を介して接続された後、パルストランスT2の二次側の+側に接続され、外側導体7の上端左右は接続線14を介して相互に接続されてパルストランスT2の二次側の−側に接続される。又、容器を兼ねた外側導体7内には絶縁油15が収納され、その上面は油面15aとなる。   A saturable reactor T3 is provided above the saturable reactor T4, and an inner conductor 12 and an outer conductor 7 serving as a container are provided on both sides of the saturable reactor T3. The two poles are attached to the inner conductor 12 and the outer conductor 7, respectively. One end of each winding 11 is connected to the upper end of the lower inner conductor 6, and the other end of each winding 11 is connected to the lower end of the upper inner conductor 12. The upper and left ends of the inner conductor 12 are connected via the connection line 13 and then connected to the secondary side + side of the pulse transformer T2, and the upper and left ends of the outer conductor 7 are connected to each other via the connection line 14. It is connected to the negative side of the secondary side of the pulse transformer T2. Insulating oil 15 is accommodated in the outer conductor 7 which also serves as a container, and the upper surface thereof is an oil surface 15a.

前記した実施最良形態4においては、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルT4の周囲、即ち上方(反接地側)、両側方及び下方を独立した電磁遮蔽板24により覆っており、巻線5に電流Ipが流れることにより発生する磁束の一部が漏れ磁束となるが、この漏れ磁束と直交する電磁遮蔽板24は渦電流を発生し、この渦電流により漏れ磁束と反対方向の磁束が発生し、漏れ磁束が相殺される。このように、漏れ磁束が電磁遮蔽により低減されるので、可飽和リアクトルT4が飽和した後の漂遊インダクタンスが小さくなり、出力の短パルス化が可能となるとともに、周囲の磁性体等が誘導加熱されることが防止される。又、電磁遮蔽板24は可飽和リアクトルT4の周囲、即ち上方だけでなく、側方及び下方も覆うので、漏れ磁束は効果的に電磁遮蔽される。さらに、電磁遮蔽板24を新たに設けるだけであるので、磁気パルス圧縮回路の構成に影響を与えることなく、かつ電磁遮蔽板24は電位的に浮いた状態であるので、設置が容易となる。   In the fourth embodiment, the periphery of the saturable reactor T4 constituting the final stage magnetic pulse compression circuit, that is, the upper side (anti-grounding side), both sides, and the lower side are covered by independent electromagnetic shielding plates 24, A part of the magnetic flux generated by the current Ip flowing through the winding 5 becomes a leakage magnetic flux, but the electromagnetic shielding plate 24 orthogonal to the leakage magnetic flux generates an eddy current, and the eddy current causes the opposite direction of the leakage magnetic flux. Magnetic flux is generated and the leakage flux is canceled out. As described above, since the magnetic flux leakage is reduced by electromagnetic shielding, the stray inductance after saturation of the saturable reactor T4 is reduced, the output can be shortened, and the surrounding magnetic material is induction-heated. Is prevented. Moreover, since the electromagnetic shielding plate 24 covers not only the periphery of the saturable reactor T4, that is, the upper side but also the side and lower side, the leakage flux is effectively electromagnetically shielded. Furthermore, since only the electromagnetic shielding plate 24 is newly provided, the configuration of the magnetic pulse compression circuit is not affected, and the electromagnetic shielding plate 24 is in a floating state, so that installation is easy.

この発明の実施最良形態1によるパルス電源装置の縦断正面図である。1 is a longitudinal front view of a pulse power supply device according to Embodiment 1 of the present invention. 実施最良形態1によるパルス電源装置の磁気パルス圧縮回路の最終段部分の横断平面図である。FIG. 3 is a cross-sectional plan view of the final stage portion of the magnetic pulse compression circuit of the pulse power supply device according to the first embodiment. 実施最良形態2によるパルス電源装置の縦断正面図である。It is a vertical front view of the pulse power supply device by Embodiment 2. 実施最良形態3によるパルス電源装置の縦断正面図である。It is a vertical front view of the pulse power supply device by Embodiment 3. 実施最良形態4によるパルス電源装置の縦断正面図である。It is a vertical front view of the pulse power supply device by Embodiment 4. 従来のパルス電源装置の回路図である。It is a circuit diagram of the conventional pulse power supply device. 特許文献1等で示された従来のパルス電源装置の縦断正面図である。It is a vertical front view of the conventional pulse power supply device shown by patent document 1 grade | etc.,. 従来の可飽和リアクトルの漏れ磁束の状態を示す平面図及び正面図である。It is the top view and front view which show the state of the leakage magnetic flux of the conventional saturable reactor.

符号の説明Explanation of symbols

4,10…トロイダルコア
5,11…巻線
6,12,18…内側導体
7,20…容器を兼ねる外側導体
16…漏れ磁束
18a,20a…可飽和リアクトルの上方を覆う部分
23,24…電磁遮蔽板
T3,T4…可飽和リアクトル
C1,C2…コンデンサ
4, 10 ... Toroidal core 5, 11 ... Winding 6, 12, 18 ... Inner conductor 7, 20 ... Outer conductor also serving as a container 16 ... Leakage magnetic flux 18a, 20a ... Parts covering the upper side of the saturable reactor 23, 24 ... Electromagnetic Shielding plate T3, T4 ... Saturable reactor C1, C2 ... Capacitor

Claims (4)

コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成するコンデンサの反接地側導体により最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを覆い、その発生漏れ磁束を電磁遮蔽したことを特徴とするパルス電源装置。   In a pulse power supply device that has a multi-stage magnetic pulse compression circuit consisting of a capacitor and a saturable reactor, and outputs a short pulse, the final-stage magnetic pulse is applied by the anti-ground side conductor of the capacitor constituting the final-stage magnetic pulse compression circuit. A pulse power supply device characterized by covering a saturable reactor constituting a compression circuit and electromagnetically shielding the generated leakage magnetic flux. コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成するコンデンサの接地側導体により最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを覆い、その発生漏れ磁束を電磁遮蔽したことを特徴とするパルス電源装置。   In a pulse power supply device that has a multi-stage magnetic pulse compression circuit consisting of a capacitor and a saturable reactor, and outputs a short pulse, the final-stage magnetic pulse compression is performed by the grounding conductor of the capacitor that forms the final-stage magnetic pulse compression circuit. A pulse power supply device characterized by covering a saturable reactor constituting a circuit and electromagnetically shielding the generated leakage magnetic flux. コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルを平板状の電磁遮蔽板により覆い、その発生漏れ磁束を電磁遮蔽したことを特徴とするパルス電源装置。   In a pulse power supply device that has a multi-stage magnetic pulse compression circuit consisting of a capacitor and a saturable reactor and outputs a short pulse, the saturable reactor constituting the final stage magnetic pulse compression circuit is covered with a flat electromagnetic shielding plate A pulse power supply device characterized by electromagnetically shielding the generated leakage magnetic flux. コンデンサと可飽和リアクトルからなる複数段の磁気パルス圧縮回路を有し、短パルスを出力するパルス電源装置において、最終段の磁気パルス圧縮回路を構成する可飽和リアクトルの周囲を電磁遮蔽板により覆い、その発生漏れ磁束を電磁遮蔽したことを特徴とするパルス電源装置。   In a pulse power supply device that has a multi-stage magnetic pulse compression circuit composed of a capacitor and a saturable reactor, and outputs a short pulse, the periphery of the saturable reactor constituting the final stage magnetic pulse compression circuit is covered with an electromagnetic shielding plate, A pulse power supply device characterized by electromagnetically shielding the generated leakage magnetic flux.
JP2008096758A 2008-04-03 2008-04-03 Pulse power supply Pending JP2009254057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096758A JP2009254057A (en) 2008-04-03 2008-04-03 Pulse power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096758A JP2009254057A (en) 2008-04-03 2008-04-03 Pulse power supply

Publications (1)

Publication Number Publication Date
JP2009254057A true JP2009254057A (en) 2009-10-29

Family

ID=41314198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096758A Pending JP2009254057A (en) 2008-04-03 2008-04-03 Pulse power supply

Country Status (1)

Country Link
JP (1) JP2009254057A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246016A (en) * 1988-08-08 1990-02-15 Toshiba Corp Magnetic pulse generator
JPH118987A (en) * 1997-06-17 1999-01-12 Meidensha Corp Pulse power source
JPH11177169A (en) * 1997-12-15 1999-07-02 Meidensha Corp Pulse power source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246016A (en) * 1988-08-08 1990-02-15 Toshiba Corp Magnetic pulse generator
JPH118987A (en) * 1997-06-17 1999-01-12 Meidensha Corp Pulse power source
JPH11177169A (en) * 1997-12-15 1999-07-02 Meidensha Corp Pulse power source

Similar Documents

Publication Publication Date Title
US9356520B2 (en) Forward converter with magnetic component
EP2677526B1 (en) Integrated magnetics for switched mode power converter
JP4663404B2 (en) Common mode noise canceling circuit device for high voltage motor equipment for vehicle use
CN107393705B (en) Integrated transformer and coupled inductor and associated switching power converter and method
JP5736887B2 (en) High voltage inverter device
US8400250B2 (en) Composite transformer
US7915989B2 (en) Magnetic element and magnetic core assembly having reduced winding loss
JP2009515300A5 (en)
RU2412498C2 (en) Transformer magnetic core with magnetic shield
EP0901136B1 (en) Inductance device with gap
US6100781A (en) High leakage inductance transformer
JP2009254057A (en) Pulse power supply
JP2013243890A (en) Contactless feeding apparatus
JP6085904B2 (en) Noise reduction device, power supply device, and method of arranging core in noise reduction device
US10305330B2 (en) Power transmission device
JP2010245183A (en) Coupling coil and arc welder provided with the same
US20170040097A1 (en) Switching converter circuit with an integrated transformer
KR101392768B1 (en) Control system of magnetic reluctance and self-inductance using partial flux saturation phenomenon of core
JP2006294803A (en) Transformer
CN1167177C (en) Harmonic suppression device
JP5950655B2 (en) Flyback transformer
CN2595048Y (en) Harmonic wave inhibitor
JPH11308882A (en) Pulse discharge circuit and laser apparatus
JP2005102378A (en) Inductive power receiving circuit
JP2012239288A (en) High voltage inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20121113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20121227

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521