JP2009252910A - Solid-state laser device - Google Patents

Solid-state laser device Download PDF

Info

Publication number
JP2009252910A
JP2009252910A JP2008097642A JP2008097642A JP2009252910A JP 2009252910 A JP2009252910 A JP 2009252910A JP 2008097642 A JP2008097642 A JP 2008097642A JP 2008097642 A JP2008097642 A JP 2008097642A JP 2009252910 A JP2009252910 A JP 2009252910A
Authority
JP
Japan
Prior art keywords
temperature
solid
semiconductor laser
state laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008097642A
Other languages
Japanese (ja)
Other versions
JP4968149B2 (en
Inventor
Kazuma Watanabe
一馬 渡辺
Kimitada Tojo
公資 東條
Ichiro Fukushi
一郎 福士
Naoya Ishigaki
直也 石垣
Akiyuki Kadoya
章之 門谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008097642A priority Critical patent/JP4968149B2/en
Publication of JP2009252910A publication Critical patent/JP2009252910A/en
Application granted granted Critical
Publication of JP4968149B2 publication Critical patent/JP4968149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress total current consumption when an use environmental temperature is changed. <P>SOLUTION: A solid-state laser device detects the use environmental temperature Ts and changes it to a control temperature Tc having a smaller difference from the use environmental temperature Ts between control temperatures of at least two usable semiconductor lasers. Consequently, the drive current of the semiconductor laser becomes larger compared with the case when the temperature Tc is fixed, but a Peltier current Ip is made small. A portion where the Peltier current Ip is made smaller is larger than a portion where the drive current of the semiconductor laser is increased, so the total current consumption is suppressed. Then a battery life can be made longer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体レーザ装置に関し、さらに詳しくは、総消費電流を抑制することが出来る固体レーザ装置に関する。   The present invention relates to a solid-state laser device, and more particularly to a solid-state laser device capable of suppressing the total current consumption.

従来、光出力を一定に維持でき且つ半導体レーザの駆動電流が最小になる制御温度に半導体レーザやレーザ光学系に含まれる光学素子の温度を制御する固体レーザ装置が知られている(例えば、特許文献1参照。)。
特開2004−235551号公報
2. Description of the Related Art Conventionally, a solid-state laser device that controls the temperature of an optical element included in a semiconductor laser or a laser optical system to a control temperature at which the optical output can be maintained constant and the driving current of the semiconductor laser is minimized is known (for example, patents). Reference 1).
JP 2004-235551 A

上記従来の固体レーザ装置では、異なる制御温度Tcにおいて光出力を一定に維持するための半導体レーザの駆動電流Idを測定し、半導体レーザの駆動電流Idが最小となる制御温度を使用時の制御温度として採用していた。例えば図5に示すようにTc=25℃とすると半導体レーザの駆動電流Idが約180mAとなり、35℃とすると約150mAとなり、45℃とすると約180mAとなるなら、図6に示すように、使用環境温度Tsにかかわらず制御温度Tc=35℃に一定にしていた。これにより、使用環境温度Tsにかかわらず半導体レーザの駆動電流Idを約150mAにすることが出来た。
しかし、ペルチェ素子に供給するペルチェ電流Ipに着目すると、制御温度Tc=35℃一定とするとき、例えば、図6に示すように、使用環境温度Tsが30℃のときはペルチェ電流Ipは約0mAで済むが、使用環境温度Tsが−10℃のときはペルチェ電流Ipは約800mAが必要になり、使用環境温度Tsが50℃のときはペルチェ電流Ipは約600mAが必要になる。つまり、使用環境温度Tsにかかわらず制御温度Tcを一定にしていた場合、半導体レーザの駆動電流Idを常に最小に維持できたとしても、使用環境温度Tsが−10℃や50℃のときには非常に大きなペルチェ電流Ipが必要となり、総消費電流を抑制できない問題点があった。そのため、固体レーザ装置を電池駆動した場合、電池の寿命が短くなってしまう問題点があった。
そこで、本発明の目的は、総消費電流を抑制することが出来る固体レーザ装置を提供することにある。
In the above conventional solid-state laser device, the driving current Id of the semiconductor laser for maintaining the optical output constant at different control temperatures Tc is measured, and the control temperature at which the driving current Id of the semiconductor laser is minimized is the control temperature at the time of use. It was adopted as. For example, as shown in FIG. 5, when Tc = 25 ° C., the semiconductor laser drive current Id is about 180 mA, 35 ° C. is about 150 mA, and 45 ° C. is about 180 mA, as shown in FIG. Regardless of the environmental temperature Ts, the control temperature Tc was kept constant at 35 ° C. As a result, the driving current Id of the semiconductor laser can be reduced to about 150 mA regardless of the use environment temperature Ts.
However, paying attention to the Peltier current Ip supplied to the Peltier element, when the control temperature Tc = 35 ° C. is constant, for example, as shown in FIG. However, when the use environment temperature Ts is −10 ° C., the Peltier current Ip needs about 800 mA, and when the use environment temperature Ts is 50 ° C., the Peltier current Ip needs about 600 mA. In other words, when the control temperature Tc is kept constant regardless of the use environment temperature Ts, even if the drive current Id of the semiconductor laser can always be kept at a minimum, it is very high when the use environment temperature Ts is −10 ° C. or 50 ° C. A large Peltier current Ip is required, and there is a problem that the total current consumption cannot be suppressed. Therefore, when the solid-state laser device is driven by a battery, there is a problem that the life of the battery is shortened.
Therefore, an object of the present invention is to provide a solid-state laser device capable of suppressing the total current consumption.

第1の観点では、本発明は、励起レーザ光を発生する半導体レーザと、前記半導体レーザに駆動電流を供給する駆動回路と、前記励起レーザ光によって励起される固体レーザ媒質と、前記固体レーザ媒質を含んで形成される光共振器内に収容され前記光共振器で発振する基本波の高調波を出力する非線形光学結晶と、前記半導体レーザの温度を制御する温度制御手段と、前記高調波の一部を検出するモニタ用光検出器と、前記モニタ用光検出器の出力を前記駆動回路へフィードバックすることにより所定出力のレーザ光が外部へ出力されるように制御する出力調整回路と、使用環境温度を検出する使用環境温度検出手段と、検出した使用環境温度に応じて前記半導体レーザの制御温度を切り替えることで前記半導体レーザの発振波長を変えて前記固体レーザ媒質の少なくとも2カ所の吸収バンド使用する制御温度切替手段とを具備したことを特徴とする固体レーザ装置を提供する。
固体レーザ媒質の吸収バンドは少なくとも2カ所あるので、それらの吸収バンドに応じて少なくとも2つの励起レーザ光の波長を使用可能である。言い換えると、励起レーザ光の波長は半導体レーザの温度により制御できるから、少なくとも2つの半導体レーザの制御温度を使用することが出来る。
そこで、上記第1の観点による固体レーザ装置では、使用環境温度を検出し、使用可能な少なくとも2つの半導体レーザの制御温度の中から、使用環境温度との差が小さくなるような制御温度に切り替える。これにより、制御温度を一定にする場合に比べて、半導体レーザの駆動電流は増えるが、温調のための電流を小さくすることが出来る。そして、半導体レーザの駆動電流が増える分よりも温調のための電流を小さく出来る分の方が大きいため、総消費電流を抑制することが出来る。
In a first aspect, the present invention provides a semiconductor laser that generates excitation laser light, a drive circuit that supplies a drive current to the semiconductor laser, a solid-state laser medium that is excited by the excitation laser light, and the solid-state laser medium. A nonlinear optical crystal that outputs a harmonic of a fundamental wave that is oscillated in the optical resonator, and that includes a temperature control unit that controls the temperature of the semiconductor laser, and A monitoring photodetector for detecting a part, an output adjustment circuit for controlling the output of the monitoring photodetector to be output to the outside by feeding back the output of the monitoring photodetector to the drive circuit, and use Use environment temperature detection means for detecting the environment temperature, and change the oscillation wavelength of the semiconductor laser by switching the control temperature of the semiconductor laser according to the detected use environment temperature. Serial to provide a solid-state laser apparatus characterized by comprising a control temperature switch means for absorbing band the use of at least two locations of the solid-state laser medium.
Since there are at least two absorption bands in the solid-state laser medium, at least two wavelengths of excitation laser light can be used according to the absorption bands. In other words, since the wavelength of the excitation laser light can be controlled by the temperature of the semiconductor laser, the control temperatures of at least two semiconductor lasers can be used.
Therefore, in the solid-state laser device according to the first aspect, the use environment temperature is detected, and the control temperature is switched from the control temperatures of at least two usable semiconductor lasers to a control temperature that reduces the difference from the use environment temperature. . As a result, the driving current of the semiconductor laser increases as compared with the case where the control temperature is kept constant, but the current for temperature adjustment can be reduced. And since the part which can make the electric current for temperature control small can be larger than the part which the drive current of a semiconductor laser increases, total current consumption can be suppressed.

本発明の固体レーザ装置によれば、使用環境温度が変化する場合に、総消費電流を抑制することが出来る。従って、携帯型の電池駆動の固体レーザ装置において、電池寿命を延ばすことが出来る。   According to the solid-state laser device of the present invention, the total current consumption can be suppressed when the use environment temperature changes. Therefore, the battery life can be extended in the portable battery-driven solid-state laser device.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る固体レーザ装置100を示す説明図である。
この固体レーザ装置100は、励起レーザ光を発生する半導体レーザ1と、励起レーザ光を集光する集光レンズ系2と、励起レーザ光の入射面に反射面が形成され且つ励起レーザ光により励起されて基本波光を発生する固体レーザ媒質3と、基本波光が入射すると第2高調波光を発生する非線形光学結晶4と、固体レーザ媒質3の反射面との間で光共振器を形成する反射面を持つ出力側ミラー5と、出力側ミラー5から外部へ出力される出力レーザ光の一部を透過すると共に残りを分岐するビームスプリッタ6と、分岐光を受光し電気信号に変換するホトダイオード7と、ペルチェ素子と温度センサとを有し半導体レーザ1や固体レーザ媒質3や非線形光学結晶4の温調を行うための温調ユニット8と、筐体10と、使用環境温度Tsを検出するための使用環境温度検出器9と、半導体レーザ1に駆動電流Idを供給する半導体レーザ駆動回路14と、温調ユニット8の実温度Tpが制御温度Tcに一致するようにペルチェ電流Ipを制御する温度制御回路15と、ホトダイオード7で受光する分岐光の強度が一定になるような駆動電流Idを半導体レーザ1に供給すべく半導体レーザ駆動回路14を制御すると共に温度制御回路15に指示する制御温度Tcを使用環境温度Tsの変化に応じて切り替える制御部16とを具備している。
FIG. 1 is an explanatory diagram illustrating a solid-state laser device 100 according to the first embodiment.
This solid-state laser device 100 includes a semiconductor laser 1 that generates excitation laser light, a condensing lens system 2 that condenses the excitation laser light, a reflection surface formed on the incident surface of the excitation laser light, and is excited by the excitation laser light. The reflecting surface that forms an optical resonator between the solid-state laser medium 3 that generates the fundamental wave light, the nonlinear optical crystal 4 that generates the second harmonic light when the fundamental wave light is incident, and the reflecting surface of the solid-state laser medium 3 An output-side mirror 5, a beam splitter 6 that transmits a part of the output laser light output from the output-side mirror 5 to the outside and branches the remainder, and a photodiode 7 that receives the branched light and converts it into an electrical signal. A temperature control unit 8 having a Peltier element and a temperature sensor for controlling the temperature of the semiconductor laser 1, the solid-state laser medium 3, and the nonlinear optical crystal 4, a housing 10, and a use environment temperature Ts. Operating temperature detector 9 for controlling the semiconductor laser 1, a semiconductor laser driving circuit 14 for supplying a driving current Id to the semiconductor laser 1, and controlling the Peltier current Ip so that the actual temperature Tp of the temperature control unit 8 coincides with the control temperature Tc. The temperature control circuit 15 for controlling the semiconductor laser and the semiconductor laser drive circuit 14 to supply the semiconductor laser 1 with a drive current Id so that the intensity of the branched light received by the photodiode 7 is constant. And a control unit 16 that switches the temperature Tc according to a change in the use environment temperature Ts.

図2は、半導体レーザ1の温度−励起レーザ光波長の特性を示す例示図である。
温度0℃で波長795nm付近、温度30℃で波長804nm付近、温度45℃で波長809nm付近となるものを想定する。
FIG. 2 is an exemplary diagram showing the temperature-excitation laser light wavelength characteristics of the semiconductor laser 1.
It is assumed that the temperature is near 795 nm at a temperature of 0 ° C., the wavelength is near 804 nm at a temperature of 30 ° C., and the wavelength is near 809 nm at a temperature of 45 ° C.

図3は、Nd:YAG結晶を固体レーザ媒質3として用いた場合の吸収スペクトルの例示図である。
波長が0.79μm〜0.83μmの範囲に吸収スペクトルの強度が大きいピークがいくつかある。大きい方から3カ所選ぶと、809nm付近のピーク、795nm付近のピーク、804nm付近のピークである。これらの3カ所の吸収バンドを使用するものとする。
FIG. 3 is an exemplary diagram of an absorption spectrum when an Nd: YAG crystal is used as the solid-state laser medium 3.
There are several peaks having a large intensity of the absorption spectrum in the wavelength range of 0.79 μm to 0.83 μm. When three locations are selected from the larger, they are a peak near 809 nm, a peak near 795 nm, and a peak near 804 nm. These three absorption bands shall be used.

図4は、使用環境温度Tsとそれに応じて切り替える制御温度Tcと半導体レーザ1の温度Tpを制御温度Tcに維持するために必要なペルチェ電流Ipの関係を示す特性図である。
使用環境温度Tsが−10℃〜10℃のときに制御温度Tcを0℃に、使用環境温度Tsが10℃〜32.5℃のときに制御温度Tcを30℃に、使用環境温度Tsが32.5℃〜50℃のときに制御温度Tcを45℃に切り替える。
−10℃〜50℃の使用環境温度Tsで必要とされるペルチェ電流Ipの最大値は約300mAに抑えることが出来る。
FIG. 4 is a characteristic diagram showing the relationship between the use environment temperature Ts, the control temperature Tc to be switched accordingly, and the Peltier current Ip necessary for maintaining the temperature Tp of the semiconductor laser 1 at the control temperature Tc.
The control temperature Tc is 0 ° C. when the use environment temperature Ts is −10 ° C. to 10 ° C., the control temperature Tc is 30 ° C. when the use environment temperature Ts is 10 ° C. to 32.5 ° C., and the use environment temperature Ts is When the temperature is 32.5 ° C. to 50 ° C., the control temperature Tc is switched to 45 ° C.
The maximum value of the Peltier current Ip required at the use environment temperature Ts of −10 ° C. to 50 ° C. can be suppressed to about 300 mA.

実施例1の固体レーザ装置100によれば、使用環境温度Tsを検出し、使用環境温度Tsとの差があまり大きくならないように制御温度Tcを変化させるから、制御温度Tcを一定にする場合に比べて、半導体レーザ1の駆動電流Idは増えるが、ペルチェ電流Ipを小さくすることが出来る。そして、半導体レーザ1の駆動電流Idが増える分よりもペルチェ電流Ipを小さく出来る分の方が大きいため、総消費電流|Ip|+|Id|を抑制することが出来る。よって、乾電池で駆動した場合の電池寿命を延ばすことが出来る。   According to the solid-state laser device 100 of the first embodiment, the use environment temperature Ts is detected, and the control temperature Tc is changed so that the difference from the use environment temperature Ts does not become so large. In comparison, the drive current Id of the semiconductor laser 1 increases, but the Peltier current Ip can be reduced. Since the amount by which the Peltier current Ip can be reduced is larger than the amount by which the drive current Id of the semiconductor laser 1 increases, the total current consumption | Ip | + | Id | can be suppressed. Therefore, the battery life when driven by a dry battery can be extended.

本発明の固体レーザ装置は、バイオエンジニアリング分野や計測分野で利用できる。また、乾電池で駆動する例えばレーザポインタに有用である。   The solid-state laser device of the present invention can be used in the bioengineering field and the measurement field. Moreover, it is useful for, for example, a laser pointer driven by a dry battery.

実施例1に係る固体レーザ装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 半導体レーザ温度と励起レーザ光波長の特性を示す例示図である。It is an illustration figure which shows the characteristic of semiconductor laser temperature and an excitation laser beam wavelength. 固体レーザ媒質の吸収スペクトルを示す例示図である。It is an illustration figure which shows the absorption spectrum of a solid-state laser medium. 使用環境温度に応じて切り替える制御温度とそれに応じて必要なペルチェ電流の関係を示す特性図である。It is a characteristic view which shows the relationship between the control temperature switched according to use environment temperature, and the Peltier current required according to it. 半導体レーザの温度の変化に対して光出力を一定に維持するための半導体レーザの駆動電流の変化を示す特性図である。FIG. 10 is a characteristic diagram showing a change in the driving current of the semiconductor laser for maintaining the optical output constant with respect to a change in the temperature of the semiconductor laser. 使用環境温度にかかわらず一定の制御温度とそれに応じて必要なペルチェ電流の関係を示す特性図である。It is a characteristic view which shows the relationship between fixed control temperature and the Peltier current required according to it regardless of use environment temperature.

符号の説明Explanation of symbols

1 半導体レーザ
2 集光レンズ系
3 固体レーザ媒質
4 非線形光学結晶
5 出力側ミラー
6 ビームスプリッタ
7 ホトダイオード
8 温調ユニット
9 使用環境温度検出器
14 半導体レーザ駆動回路
15 温度制御回路
16 制御部
100 固体レーザ装置
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Condensing lens system 3 Solid state laser medium 4 Nonlinear optical crystal 5 Output side mirror 6 Beam splitter 7 Photodiode 8 Temperature control unit 9 Environment temperature detector 14 Semiconductor laser drive circuit 15 Temperature control circuit 16 Control part 100 Solid state laser apparatus

Claims (1)

励起レーザ光を発生する半導体レーザと、前記半導体レーザに駆動電流を供給する駆動回路と、前記励起レーザ光によって励起される固体レーザ媒質と、前記固体レーザ媒質を含んで形成される光共振器内に収容され前記光共振器で発振する基本波の高調波を出力する非線形光学結晶と、前記半導体レーザの温度を制御する温度制御手段と、前記高調波の一部を検出するモニタ用光検出器と、前記モニタ用光検出器の出力を前記駆動回路へフィードバックすることにより所定出力のレーザ光が外部へ出力されるように制御する出力調整回路と、使用環境温度を検出する使用環境温度検出手段と、検出した使用環境温度に応じて前記半導体レーザの制御温度を切り替えることで前記半導体レーザの発振波長を変えて前記固体レーザ媒質の少なくとも2カ所の吸収バンド使用する制御温度切替手段とを具備したことを特徴とする固体レーザ装置。 A semiconductor laser that generates pump laser light, a drive circuit that supplies a drive current to the semiconductor laser, a solid-state laser medium that is pumped by the pump laser light, and an optical resonator that includes the solid-state laser medium A non-linear optical crystal that outputs harmonics of a fundamental wave that is oscillated by the optical resonator, temperature control means that controls the temperature of the semiconductor laser, and a monitoring photodetector that detects part of the harmonics An output adjusting circuit for controlling the output of the monitor photodetector to be output to the outside by feeding back the output of the monitor photodetector to the drive circuit, and an operating environment temperature detecting means for detecting the operating environment temperature And by switching the control temperature of the semiconductor laser according to the detected use environment temperature, the oscillation wavelength of the semiconductor laser is changed to reduce the amount of the solid laser medium. Also solid state laser device is characterized in that and a control temperature switch means for absorbing band use two.
JP2008097642A 2008-04-04 2008-04-04 Solid state laser equipment Active JP4968149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097642A JP4968149B2 (en) 2008-04-04 2008-04-04 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097642A JP4968149B2 (en) 2008-04-04 2008-04-04 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2009252910A true JP2009252910A (en) 2009-10-29
JP4968149B2 JP4968149B2 (en) 2012-07-04

Family

ID=41313344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097642A Active JP4968149B2 (en) 2008-04-04 2008-04-04 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP4968149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156544A1 (en) * 2013-03-26 2014-10-02 大学共同利用機関法人自然科学研究機構 Onboard ignition device combining semiconductor laser light source and solid-state laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539274B1 (en) * 2012-08-13 2015-07-24 광주대학교산학협력단 Method for generation of a quasi-fock state field in a continuous-wave form in a micromaser/laser cavity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258280A (en) * 1996-03-18 1997-10-03 Topcon Corp Laser device and laser device control method
JPH1012976A (en) * 1996-06-19 1998-01-16 Topcon Corp Laser oscillator
WO2000031841A1 (en) * 1998-11-19 2000-06-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser-excited solid laser
JP2001185794A (en) * 1999-12-22 2001-07-06 Yokogawa Electric Corp Semiconductor laser excitation solid laser
JP2002158383A (en) * 2000-11-17 2002-05-31 Fuji Photo Film Co Ltd Method and device for deciding appropriate driving temperature of laser source
JP2003198018A (en) * 2001-12-28 2003-07-11 Communication Research Laboratory Light stimulated solid-state laser oscillator
JP3119810U (en) * 2005-12-27 2006-03-09 株式会社島津製作所 Semiconductor laser pumped solid-state laser device
JP2008135492A (en) * 2006-11-28 2008-06-12 Shimadzu Corp Solid-state laser device
JP2008135491A (en) * 2006-11-28 2008-06-12 Shimadzu Corp Solid-state laser device
JP2008145896A (en) * 2006-12-13 2008-06-26 Shimadzu Corp Laser pointer using semiconductor laser excitation solid laser

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258280A (en) * 1996-03-18 1997-10-03 Topcon Corp Laser device and laser device control method
JPH1012976A (en) * 1996-06-19 1998-01-16 Topcon Corp Laser oscillator
WO2000031841A1 (en) * 1998-11-19 2000-06-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser-excited solid laser
JP2001185794A (en) * 1999-12-22 2001-07-06 Yokogawa Electric Corp Semiconductor laser excitation solid laser
JP2002158383A (en) * 2000-11-17 2002-05-31 Fuji Photo Film Co Ltd Method and device for deciding appropriate driving temperature of laser source
JP2003198018A (en) * 2001-12-28 2003-07-11 Communication Research Laboratory Light stimulated solid-state laser oscillator
JP3119810U (en) * 2005-12-27 2006-03-09 株式会社島津製作所 Semiconductor laser pumped solid-state laser device
JP2008135492A (en) * 2006-11-28 2008-06-12 Shimadzu Corp Solid-state laser device
JP2008135491A (en) * 2006-11-28 2008-06-12 Shimadzu Corp Solid-state laser device
JP2008145896A (en) * 2006-12-13 2008-06-26 Shimadzu Corp Laser pointer using semiconductor laser excitation solid laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156544A1 (en) * 2013-03-26 2014-10-02 大学共同利用機関法人自然科学研究機構 Onboard ignition device combining semiconductor laser light source and solid-state laser device
JP2014192166A (en) * 2013-03-26 2014-10-06 National Institutes Of Natural Sciences On-vehicle ignition apparatus employing semiconductor laser excitation solid-state laser device

Also Published As

Publication number Publication date
JP4968149B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP2006330518A (en) Harmonic generator
JP2011137898A (en) Method for controlling laser and laser controlling device
JP2010251448A (en) Solid-state pulsed laser apparatus for output of third harmonic waves
JP5070819B2 (en) Solid state laser equipment
JP4968149B2 (en) Solid state laser equipment
JP5070820B2 (en) Solid state laser equipment
JP2008130848A (en) Laser frequency stabilizing apparatus, and laser frequency stabilizing method
JP4832730B2 (en) Semiconductor laser device for excitation
JP4763337B2 (en) Semiconductor laser pumped solid-state laser device
JP2011249400A (en) Adjustment system for laser light source and adjustment method for laser light source
JP5087919B2 (en) Laser pointer using semiconductor laser pumped solid-state laser
JP3968868B2 (en) Solid state laser equipment
JP6862106B2 (en) Current control device and laser device
JP3121920U (en) Laser pointer
JP2007242974A (en) Semiconductor-laser exciting solid laser device
JP2008141127A (en) Semiconductor laser excitation solid-state laser device
JP6273716B2 (en) Solid state laser equipment
JP5875251B2 (en) Manufacturing method of semiconductor laser pumped solid-state laser device
US20100054286A1 (en) Semiconductor Diode Pumped Laser Using Heating-Only Power Stabilization
JP6299534B2 (en) Semiconductor laser pumped solid state laser device and laser beam output method
US9025626B2 (en) Semiconductor laser excited solid state laser device and laser light output method
JP2014225542A (en) Solid-state pulse laser device
JP5842496B2 (en) Solid state pulse laser equipment
JP3339081B2 (en) Laser light generator
JP4415750B2 (en) Solid state laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4968149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3