JP2009252587A - Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell - Google Patents

Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell Download PDF

Info

Publication number
JP2009252587A
JP2009252587A JP2008100393A JP2008100393A JP2009252587A JP 2009252587 A JP2009252587 A JP 2009252587A JP 2008100393 A JP2008100393 A JP 2008100393A JP 2008100393 A JP2008100393 A JP 2008100393A JP 2009252587 A JP2009252587 A JP 2009252587A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
adsorption amount
water vapor
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008100393A
Other languages
Japanese (ja)
Inventor
Sozaburo Ohashi
聡三郎 大橋
Tetsuo Nagami
哲夫 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008100393A priority Critical patent/JP2009252587A/en
Publication of JP2009252587A publication Critical patent/JP2009252587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To define a high-output range of a catalyst layer for a fuel cell containing a catalyst constituent, an electrolyte material and a carbon carrier to prepare a high-performance catalyst layer for a fuel cell conforming to the range. <P>SOLUTION: This manufacturing method is used for manufacturing a catalyst layer for a fuel cell containing a catalyst constituent, an electrolyte material and a carbon carrier. The manufacturing method of the catalyst layer for a fuel cell is characterized in that the catalyst layer is prepared so that a ratio of a steam adsorption amount obtained from a steam adsorption isotherm to a nitrogen adsorption amount obtained from a nitrogen adsorption isotherm is set to 1.0-4.0. This evaluation method is used for evaluating performance of a catalyst layer for a fuel cell containing a catalyst constituent, an electrolyte material and a carbon carrier. The performance evaluation of the catalyst layer for a fuel cell is characterized by using, as an index, a ratio of a steam adsorption amount obtained from a steam adsorption isotherm to a nitrogen adsorption amount obtained from a nitrogen adsorption isotherm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池用触媒層の製造方法及び燃料電池用触媒層の性能評価方法に関する。特に、燃料電池の出力性能を最大とする範囲を規定することに関する。   The present invention relates to a method for producing a fuel cell catalyst layer and a performance evaluation method for a fuel cell catalyst layer. In particular, it relates to defining a range that maximizes the output performance of the fuel cell.

固体高分子型燃料電池の基本構造は、プロトン伝導性を有する高分子電解質膜を挟んでアノードとカソードとなる触媒層が配置され、これを挟んでさらに外側にガス拡散層が配置され、さらにその外側にセパレーターが配置され、単位セルを構成する。通常、これを必要な出力に合わせてスタック化したものを燃料電池として用いる。   The basic structure of a polymer electrolyte fuel cell is that a catalyst layer that serves as an anode and a cathode is disposed with a polymer electrolyte membrane having proton conductivity interposed therebetween, and a gas diffusion layer is disposed on the outer side with the catalyst layer interposed therebetween. A separator is arranged on the outer side to constitute a unit cell. Usually, a fuel cell is used that is stacked in accordance with the required output.

このような基本構造の燃料電池から電流を取り出すためには、両極に配されたセパレーターのガス流路から、カソード側に酸素あるいは空気等の酸化性ガスを、アノード側には水素等の還元性ガスを、ガス拡散層を介して触媒層までそれぞれ供給する。例えば、水素ガスと酸素ガスを利用する場合、アノードの触媒上で起こる
→2H+2e (E=0V)
の化学反応と、カソードの触媒上で起こる
+4H+4e→2HO (E=1.23V)
の化学反応のエネルギー差を利用して、電流を取り出すこととなる。
In order to take out the current from the fuel cell having such a basic structure, an oxidizing gas such as oxygen or air is supplied to the cathode side from the gas flow path of the separator disposed on both electrodes, and a reducing property such as hydrogen is supplied to the anode side. Gas is supplied to the catalyst layer through the gas diffusion layer. For example, when hydrogen gas and oxygen gas are used, H 2 → 2H + + 2e (E 0 = 0V) occurring on the catalyst of the anode
And O 2 + 4H + + 4e → 2H 2 O that occurs on the cathode catalyst (E 0 = 1.23 V)
The current is taken out using the energy difference of the chemical reaction.

したがって、セパレーターのガス流路から触媒層内部の触媒まで酸素ガスあるいは水素ガスが移動できるガス拡散経路や、アノード触媒上で発生したプロトンをプロトン伝導性電解質膜を通じてカソードの触媒まで伝達できるプロトン伝導経路、さらにはアノード触媒上で発生した電子がガス拡散層、セパレーター、外部回路を通じてカソード触媒まで伝達できる電子伝達経路が、それぞれ分断されることなく連なっていないと、効率よく電流を取り出すことができない。   Therefore, a gas diffusion path through which oxygen gas or hydrogen gas can move from the gas flow path of the separator to the catalyst inside the catalyst layer, and a proton conduction path through which protons generated on the anode catalyst can be transmitted to the cathode catalyst through the proton conductive electrolyte membrane. In addition, the current cannot be efficiently extracted unless the electron transfer paths through which the electrons generated on the anode catalyst can be transmitted to the cathode catalyst through the gas diffusion layer, the separator, and the external circuit are not disconnected.

触媒層内部では、一般に、ガス拡散経路として材料の間隙に形成される気孔、プロトン伝導経路としてアイオノマー(電解質材料)、及び、電子伝導経路として炭素材料や金属材料等の導電性材料が、それぞれのネットワークを形成している。   Inside the catalyst layer, generally, pores formed in the gaps between the materials as gas diffusion paths, ionomers (electrolyte materials) as proton conduction paths, and conductive materials such as carbon materials and metal materials as electron conduction paths, A network is formed.

特に、プロトン伝導経路には、高分子電解質材料としてパーフルオロスルホン酸ポリマーに代表されるイオン交換樹脂が用いられている。これら一般に用いられるイオン交換樹脂は、湿潤環境下で初めて高いプロトン伝導性を発現し、乾燥環境下ではプロトン導電性が低下してしまう。これは、プロトンの移動に水分子の介在や随伴が必須であるためと考えられている。したがって、効率良く燃料電池 を作動させるためには、常に電解質材料が湿潤状態であることが必須であり、両極に供給するガスと共に、常に水蒸気を供給する必要がある。   In particular, an ion exchange resin typified by a perfluorosulfonic acid polymer is used as a polymer electrolyte material in the proton conduction path. These generally used ion exchange resins exhibit high proton conductivity for the first time in a wet environment, and the proton conductivity decreases in a dry environment. This is thought to be due to the interposition and accompanying of water molecules for proton transfer. Therefore, in order to operate the fuel cell efficiently, it is essential that the electrolyte material is always in a wet state, and it is necessary to always supply water vapor together with the gas supplied to both electrodes.

一般には、電解質材料へ水を供給する目的で、セルに供給するガスを加湿し、露点近傍の温度でセルを作動する方法が採用されている。この方法によると、セル内に供給された水蒸気は一部凝集し、凝集水の液滴を形成する。一方、上述したカソード反応により、電流を取り出すとカソード触媒上では、水が生成する。生成した水は、触媒層内の水蒸気が過飽和になった時点で凝集し、凝集水の液滴となる。   In general, for the purpose of supplying water to the electrolyte material, a method of humidifying the gas supplied to the cell and operating the cell at a temperature near the dew point is employed. According to this method, the water vapor supplied into the cell partially aggregates to form droplets of aggregated water. On the other hand, when current is taken out by the cathode reaction described above, water is generated on the cathode catalyst. The generated water aggregates when the water vapor in the catalyst layer becomes supersaturated, and forms droplets of the aggregated water.

これら加湿するために供給された水蒸気がガス拡散層内や触媒層内で凝集したり、反応によって生成した水が凝集してできた液滴は、ガス拡散経路を遮断する。この現象は、フラッディングと呼ばれ、大電流放電時に水が大量に生成するカソードで顕著であり、ガスの供給不足を招き、極度の電圧低下を引き起こす。   The droplets formed by the water vapor supplied to humidify agglomerate in the gas diffusion layer or the catalyst layer or the water produced by the reaction agglomerate block the gas diffusion path. This phenomenon is called flooding, and is remarkable in the cathode in which a large amount of water is generated during a large current discharge, leading to insufficient supply of gas and causing an extreme voltage drop.

このため、安定して燃料電池を作動させるためには、触媒層内を十分に加湿しつつ、凝集水は速やかに系外に排出するといった、相反する要求を満たす必要がある。このために、MEA内の湿潤状態を最適化する必要がある。   For this reason, in order to operate the fuel cell stably, it is necessary to satisfy the conflicting requirements that the condensed water is quickly discharged out of the system while sufficiently humidifying the inside of the catalyst layer. For this, it is necessary to optimize the wet state in the MEA.

例えば、下記特許文献1には、触媒に用いる白金等の高価な貴金属使用量を低減し、触媒層内部のガス、電子、プロトンの物質移動を効率的に行うような触媒層を形成することにより、低コストで出力特性に優れる燃料電池を提供することを目的として、少なくともカソードの触媒層が、触媒成分と、アイオノマーと、炭素材料を含む混合物からなり、触媒担体炭素材料の25℃、相対湿度90%における水蒸気吸着量を50ml/g以上とする発明が開示されている。   For example, in Patent Document 1 below, by using a catalyst layer that reduces the amount of expensive noble metal used such as platinum used for the catalyst and efficiently transfers the gas, electrons, and protons inside the catalyst layer, In order to provide a low-cost fuel cell with excellent output characteristics, at least the catalyst layer of the cathode is composed of a mixture containing a catalyst component, an ionomer, and a carbon material, and the catalyst support carbon material has a temperature of 25 ° C. and a relative humidity. An invention is disclosed in which the water vapor adsorption amount at 90% is 50 ml / g or more.

又、下記特許文献2には、電極内部のガス拡散経路を分断することなく、アイオノマーに好適な湿潤環境を保ち、触媒層の特性を引き出すことができる電極構造を提供することを目的として、繊維状炭素材料を主成分するガス拡散繊維層の片面にカーボンブラックを主成分とするマイクロポア層を有する2層構造の燃料電池用ガス拡散層であって、該マイクロポア層のカーボンブラックの25℃、相対湿度90%における水蒸気吸着量を100ml/g以下とする発明が開示されている。   Patent Document 2 listed below is intended to provide an electrode structure that can maintain a moist environment suitable for an ionomer and extract the characteristics of the catalyst layer without disrupting the gas diffusion path inside the electrode. A gas diffusion layer for a fuel cell having a two-layer structure having a micropore layer mainly composed of carbon black on one side of a gas diffusion fiber layer mainly composed of a carbon-like carbon material, wherein the temperature of the carbon black of the micropore layer is 25 ° C. The invention discloses that the water vapor adsorption amount at a relative humidity of 90% is 100 ml / g or less.

特許文献1及び特許文献2は、湿潤状態を知るパラメーターとして水蒸気吸着量に着目するものである。   Patent Document 1 and Patent Document 2 focus on the water vapor adsorption amount as a parameter for knowing the wet state.

しかしながら、特許文献1では、電極中に含まれるアイオノマー量が変化した場合に、水蒸気吸着量だけ規定しても電極の正確な湿潤状態を評価することが出来ない。電極中のアイオノマー量が増加するとガス透過性が低下するため、アイオノマーに被覆されている触媒粒子へのガス吸着量が低下する。よって水蒸気吸着量が低下する現象が起きる。   However, in Patent Document 1, when the amount of ionomer contained in the electrode changes, it is impossible to evaluate the exact wet state of the electrode even if only the water vapor adsorption amount is defined. As the amount of ionomer in the electrode increases, the gas permeability decreases, so that the amount of gas adsorption on the catalyst particles coated with the ionomer decreases. Therefore, a phenomenon occurs in which the water vapor adsorption amount decreases.

又、特許文献2では、水蒸気吸着量100ml/g以下のマイクロポア層を有する拡散層を用いることによりMEGA内の湿潤状態を最適にすることが出来るとしている。しかし、燃料電池の発電に関わる反応は触媒層で起きるものであり、触媒層はPt(合金)担持カーボンとイオン伝導性アイオノマーから成るものであるため、従来技術をそのまま触媒層に適用することは当然できない。触媒層の触媒種やアイオノマー種、及び触媒とアイオノマーの組み合わせが変化した場合に触媒層内の湿潤状態は変化する。その湿潤状態は触媒層内の現象であるため、100ml/g以下の拡散層により湿潤状態を常に最適状態にすることは出来ない。つまり、拡散層は触媒層とは機能が全く異なるため、拡散層材料を触媒層に転用することは出来ない。触媒層の材料を変えたときには触媒層内の湿潤状態が変化する。その湿潤状態を最適に保つために拡散層からの水供給や拡散層への水排出を最適にすることは一手段として考えられるが、そのためには触媒層の水蒸気吸着量と拡散層の水蒸気吸着量とのバランスを数値化し、最適範囲を規定することが必要である。しかし、従来技術では拡散層側だけで解決しようとしており、どの触媒層仕様においても触媒層内の湿潤状態を最適に保つことは不可能である。   Patent Document 2 states that the wet state in the MEGA can be optimized by using a diffusion layer having a micropore layer having a water vapor adsorption amount of 100 ml / g or less. However, since the reaction related to power generation of the fuel cell occurs in the catalyst layer, and the catalyst layer is composed of Pt (alloy) -supported carbon and ion conductive ionomer, it is not possible to apply the conventional technology as it is to the catalyst layer. Of course not. When the catalyst species or ionomer species of the catalyst layer and the combination of the catalyst and ionomer are changed, the wet state in the catalyst layer is changed. Since the wet state is a phenomenon in the catalyst layer, the wet state cannot always be made optimal by the diffusion layer of 100 ml / g or less. That is, since the diffusion layer has a completely different function from the catalyst layer, the diffusion layer material cannot be diverted to the catalyst layer. When the material of the catalyst layer is changed, the wet state in the catalyst layer changes. Optimizing the water supply from the diffusion layer and the water discharge to the diffusion layer in order to keep the wet state optimal is considered as one means, but for this purpose, the water vapor adsorption amount of the catalyst layer and the water vapor adsorption of the diffusion layer are considered. It is necessary to quantify the balance with the quantity and specify the optimum range. However, the conventional technology tries to solve the problem only on the diffusion layer side, and it is impossible to keep the wet state in the catalyst layer optimal in any catalyst layer specification.

特開2005−332807号公報Japanese Patent Laying-Open No. 2005-332807 特開2006−120335号公報JP 2006-120335 A

本発明は、触媒成分と、アイオノマーと、炭素担体とを含む燃料電池用触媒層の高出力範囲を定め、該範囲に適合した高性能の燃料電池用触媒層を調製することを目的とする。   An object of the present invention is to define a high output range of a fuel cell catalyst layer containing a catalyst component, an ionomer, and a carbon support, and to prepare a high performance fuel cell catalyst layer suitable for the range.

本発明者は、電極触媒層中のアイオノマー量が異なる場合の湿潤状態を表す新たな指標を見出すとともに、該指標により燃料電池の出力性能を最大とする範囲を見出し、本発明に到達した。   The inventor has found a new index representing a wet state when the amount of ionomer in the electrode catalyst layer is different, and has found a range in which the output performance of the fuel cell is maximized by the index, and has reached the present invention.

即ち、特許文献1のように、電極中に含まれるアイオノマー量が変化した場合に、水蒸気吸着量だけ規定しても電極の正確な湿潤状態を評価することが出来ない。電極中のアイオノマー量が増加するとガス透過性が低下するため、アイオノマーに被覆されている触媒粒子へのガス吸着量が低下する。よって水蒸気吸着量が低下する現象が起きる。しかし、アイオノマーは親水的であるためアイオノマー量の増加により実際の電極は親水的になっているはずである。そこで、窒素ガスによる窒素吸着量を測定し、水蒸気吸着量を窒素吸着量で割ることによりガス透過性の差異をキャンセルすることが出来、電極の正確な湿潤状態を評価することが可能となる。   That is, as in Patent Document 1, when the amount of ionomer contained in the electrode changes, it is impossible to evaluate the exact wet state of the electrode even if only the water vapor adsorption amount is defined. As the amount of ionomer in the electrode increases, the gas permeability decreases, so that the amount of gas adsorption on the catalyst particles coated with the ionomer decreases. Therefore, a phenomenon occurs in which the water vapor adsorption amount decreases. However, since the ionomer is hydrophilic, the actual electrode should become hydrophilic due to the increase in the amount of ionomer. Therefore, by measuring the amount of nitrogen adsorbed by nitrogen gas and dividing the amount of water vapor adsorption by the amount of nitrogen adsorption, the difference in gas permeability can be canceled, and the accurate wet state of the electrode can be evaluated.

即ち、第1に、本発明は、触媒成分と、アイオノマーと、炭素担体とを含む燃料電池用触媒層の製造方法の発明であり、水蒸気吸着等温線から求まる水蒸気吸着量と窒素吸着等温線から求まる窒素吸着量の比が1.0〜4.0となるように調製することを特徴とする。   That is, first, the present invention is an invention of a method for producing a catalyst layer for a fuel cell comprising a catalyst component, an ionomer, and a carbon support. From the water vapor adsorption amount determined from the water vapor adsorption isotherm and the nitrogen adsorption isotherm. It is characterized in that it is prepared so that the ratio of the obtained nitrogen adsorption amount is 1.0 to 4.0.

具体的には、アイオノマーと炭素担体の比を0.4〜1.1に調製することにより、水蒸気吸着量と窒素吸着量の比が1.0〜4.0となるように調製できる。この水蒸気吸着量と窒素吸着量の比が1.0〜4.0の範囲の燃料電池用触媒層を用いた場合に、最大出力を得ることができる。   Specifically, by adjusting the ratio of the ionomer and the carbon support to 0.4 to 1.1, the ratio of the water vapor adsorption amount and the nitrogen adsorption amount can be adjusted to 1.0 to 4.0. When a fuel cell catalyst layer having a ratio between the water vapor adsorption amount and the nitrogen adsorption amount in the range of 1.0 to 4.0 is used, the maximum output can be obtained.

第2に、本発明は、触媒成分と、アイオノマーと、炭素担体とを含む燃料電池用触媒層の性能評価方法の発明であり、水蒸気吸着等温線から求まる水蒸気吸着量と窒素吸着等温線から求まる窒素吸着量の比を指標とすることを特徴とする。   2ndly, this invention is invention of the performance-evaluation method of the catalyst layer for fuel cells containing a catalyst component, an ionomer, and a carbon support, and is calculated | required from the water vapor adsorption amount and nitrogen adsorption isotherm calculated | required from a water vapor adsorption isotherm. The ratio of nitrogen adsorption is used as an index.

具体的には、水蒸気吸着量と窒素吸着量の比が1.0〜4.0である場合に最大出力を得ることができるので、性能評価を良と判定する。   Specifically, since the maximum output can be obtained when the ratio of the water vapor adsorption amount and the nitrogen adsorption amount is 1.0 to 4.0, the performance evaluation is determined to be good.

本発明により、燃料電池の最大出力範囲を容易に定めることが可能となり、高性能の燃料電池用触媒層の製造が可能となった。   According to the present invention, it is possible to easily determine the maximum output range of the fuel cell and to manufacture a high-performance fuel cell catalyst layer.

本発明の燃料電池用触媒層に使用される炭素担体の種類は、一般的に存在する電子伝導性を有する炭素材料であれば特に限定するものではないが、本来求められる反応以外の化学反応を起したり、凝集水との接触によって炭素材料を構成する物質が溶出するような材料は好ましくなく、化学的に安定な炭素材料が好ましい。   The type of carbon support used in the fuel cell catalyst layer of the present invention is not particularly limited as long as it is a generally existing carbon material having electron conductivity. A material that causes the material constituting the carbon material to elute due to contact with the agglomerated water is not preferable, and a chemically stable carbon material is preferable.

好ましい炭素担体としては、カーボンブラックが最も一般的であるが、その他にも黒鉛、炭素繊維、活性炭等やこれらの粉砕物、カーボンナノファイバー、カーボンナノチューブ等の炭素化合物等が使用できる。また、これらの2種類以上を混合して使用することもできる。   As a preferred carbon support, carbon black is the most common, but in addition, graphite, carbon fiber, activated carbon and the like, pulverized products thereof, carbon compounds such as carbon nanofiber and carbon nanotube, and the like can be used. Moreover, these two or more types can be mixed and used.

本発明の触媒層に使用され、炭素担体に担持される触媒成分も特に限定されるものではない。具体的には、触媒成分の例として、白金、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム等の貴金属、これらの貴金属を2種類以上複合化した貴金属の複合体や合金、貴金属と有機化合物や無機化合物との錯体、遷移金属、遷移金属と有機化合物や無機化合物との錯体、金属酸化物等を挙げることができる。また、これらの2種類以上を複合したもの等も用いることもできる。   The catalyst component used in the catalyst layer of the present invention and supported on the carbon support is not particularly limited. Specifically, examples of catalyst components include noble metals such as platinum, palladium, ruthenium, gold, rhodium, osmium and iridium, composites and alloys of noble metals obtained by combining two or more of these noble metals, noble metals and organic compounds, A complex with an inorganic compound, a transition metal, a complex of a transition metal with an organic compound or an inorganic compound, a metal oxide, and the like can be given. Moreover, what compounded these 2 or more types can also be used.

炭素担体の触媒層中における好ましい含有率は、炭素担体の種類や含有率、触媒成分の種類や担持率によって影響を受けるので、特定することはできない。5質量%以上80質量%以下の範囲であれば、少なくとも燃料電池が機能し、本発明の効果を得ることができる。より好ましい範囲を例示するならば、10質量%以上60質量%以下である。この範囲外であると、他の主成分とのバランスが悪くなり、効率の良い燃料電池にならない。例えば、5質量%未満であると、炭素担体に担持される触媒成分の量が少なくなり過ぎる。また、例えば、80質量%超であると、電解質材料の量が少なくなり過ぎて、プロトンの伝達経路が貧弱になるため、やはり効率の良い電池にはならない。   A preferable content of the carbon support in the catalyst layer is not specified because it is affected by the type and content of the carbon support and the type and loading of the catalyst component. If it is the range of 5 mass% or more and 80 mass% or less, a fuel cell will function at least and the effect of this invention can be acquired. If a more preferable range is illustrated, it is 10 mass% or more and 60 mass% or less. If it is out of this range, the balance with other main components is deteriorated, and an efficient fuel cell cannot be obtained. For example, if it is less than 5% by mass, the amount of the catalyst component supported on the carbon support becomes too small. For example, if it exceeds 80% by mass, the amount of the electrolyte material becomes too small and the proton transmission path becomes poor, so that an efficient battery cannot be obtained.

本発明の触媒層を含む燃料電池に使用される高分子電解質膜や触媒層中に使用されるアイオノマーは、リン酸基、スルホン酸基等を導入した高分子、例えば、パーフルオロスルホン酸ポリマーやベンゼンスルホン酸が導入されたポリマー等を挙げることができるが、高分子に限定するものではなく、無機系、無機-有機ハイブリッド系等の電解質膜であっても差し支えない。特に好適な作動温度範囲を例示するならば、常温〜150℃の範囲が好ましい。   The polymer electrolyte membrane used in the fuel cell including the catalyst layer of the present invention and the ionomer used in the catalyst layer are polymers introduced with phosphoric acid groups, sulfonic acid groups, etc., such as perfluorosulfonic acid polymers and the like. Examples of the polymer include benzenesulfonic acid introduced, but the polymer is not limited to a polymer, and may be an inorganic or inorganic-organic hybrid electrolyte membrane. If a particularly preferable operating temperature range is exemplified, a range from room temperature to 150 ° C. is preferable.

本発明の燃料電池用触媒層の作製方法は、特に限定はされない。例えば、触媒が担持された炭素担体にパーフルオロスルホン酸ポリマーのような電解質を溶解あるいは分散した溶液を加え、必要に応じて水や有機溶媒を加えて、インクを作製する。このインクを膜状に乾燥し、触媒層として用いることができる。   The method for producing the fuel cell catalyst layer of the present invention is not particularly limited. For example, an ink is prepared by adding a solution in which an electrolyte such as perfluorosulfonic acid polymer is dissolved or dispersed on a carbon support on which a catalyst is supported, and adding water or an organic solvent as necessary. This ink can be dried into a film and used as a catalyst layer.

本発明で指標となる水蒸気吸着等温線から求まる水蒸気吸着量と窒素吸着等温線から求まる窒素吸着量は、電極触媒粉末を約50mg秤量し、120℃にて8時間真空脱気する。この粉末を定容法を用いて水蒸気及び窒素による吸着等温線を測定、相対圧0.5のときの吸着量を水蒸気及び窒素吸着量とした。測定温度は窒素77K、水蒸気323.15Kで行う。   About the water vapor adsorption amount obtained from the water vapor adsorption isotherm as an index in the present invention and the nitrogen adsorption amount obtained from the nitrogen adsorption isotherm, about 50 mg of the electrode catalyst powder is weighed and vacuum degassed at 120 ° C. for 8 hours. The adsorption isotherm of water and nitrogen was measured for this powder using a constant volume method, and the amount of adsorption at a relative pressure of 0.5 was defined as the amount of water vapor and nitrogen adsorbed. The measurement temperature is nitrogen 77K and water vapor 323.15K.

以下、本発明の実施例を示す。
[触媒粉末の調製及び膜電極接合体(MEA)の製作]
触媒担持用炭素担体としてKetjen Black EC(登録商標、ケッチェンブラックインターナショナル社)のカーボンブラックを用い、該カーボンブラックに白金粒子を60wt%担持させたものを触媒粉末とする。
Examples of the present invention will be described below.
[Preparation of catalyst powder and production of membrane electrode assembly (MEA)]
Carbon black of Ketjen Black EC (registered trademark, Ketjen Black International Co., Ltd.) is used as the catalyst-supporting carbon support, and the catalyst powder is obtained by supporting platinum particles on the carbon black at 60 wt%.

該触媒粉末を水及びエタノールからなる分散溶媒と混合し、更にイオン伝導性のあるアイオノマーであるナフィオン(商品名、デュポン社)と混合した。この時、ナフィオン重量のカーボンブラック重量に対する比率を、それぞれ、0.25、0.375、0.5、0.75、1.0、1.1、1.125、1.15、及び1.25とした。   The catalyst powder was mixed with a dispersion solvent composed of water and ethanol, and further mixed with Nafion (trade name, DuPont) which is an ionomer having ion conductivity. At this time, the ratio of the Nafion weight to the carbon black weight is 0.25, 0.375, 0.5, 0.75, 1.0, 1.1, 1.125, 1.15 and 1. 25.

混合液は、超音波ホモナイザーにより触媒粒子を溶媒中に均一分散させる。該分散液をテフロン(商標名)シート基材上に塗布した。塗布量はPt重量が0.3〜0.5mg/cmになるように調整した。該塗布シートを真空、80℃の環境で2時間乾燥させた。 In the mixed solution, catalyst particles are uniformly dispersed in a solvent by an ultrasonic homogenizer. The dispersion was applied onto a Teflon (trade name) sheet substrate. The coating amount was adjusted so that the Pt weight was 0.3 to 0.5 mg / cm 2 . The coated sheet was dried in an environment of vacuum and 80 ° C. for 2 hours.

該シートを高分子電解質膜であるナフィオン112(商品名)にホットプレスし、基材を剥離することにより膜電極接合体(MEA)とした。   The sheet was hot-pressed onto Nafion 112 (trade name), which is a polymer electrolyte membrane, and the substrate was peeled off to obtain a membrane electrode assembly (MEA).

該MEAにカーボンクロスやカーボンペーパーからなる拡散層を接合して電極を作製し、カーボン製やメタル製セパレーターで挟持することにより燃料電池とした。   An electrode was prepared by joining a diffusion layer made of carbon cloth or carbon paper to the MEA, and a fuel cell was obtained by sandwiching the MEA with a carbon or metal separator.

水蒸気吸着量及び窒素吸着量測定に用いる電極粉末は、乾燥後の塗布シートから掻きとって採取した。   The electrode powder used for measuring the amount of water vapor adsorption and the amount of nitrogen adsorption was scraped from the coated sheet after drying.

[電池性能評価]
MEAの外側にカーボン基材と撥水層(カーボン+PTFE)から成る拡散層(GDL)を配置し、アノード側に水素、カソード側に空気を流すことで発電させる。各負荷電流の時の電圧値により電池性能評価を行った。
[Battery performance evaluation]
A diffusion layer (GDL) composed of a carbon base material and a water repellent layer (carbon + PTFE) is disposed outside the MEA, and electricity is generated by flowing hydrogen on the anode side and air on the cathode side. The battery performance was evaluated based on the voltage value at each load current.

[水蒸気吸着量及び窒素吸着量測定]
電極粉末を約50mg秤量し、120℃にて8時間真空脱気する。この粉末を定容法を用いて水蒸気及び窒素による吸着等温線を測定、相対圧0.5の時の吸着量を水蒸気及び窒素吸着量とした。測定温度は窒素77K、水蒸気323.15Kで行った。
下記表1に、水蒸気及び窒素吸着量と得られた電圧値のデータを一覧で示す。
[Measurement of water vapor adsorption and nitrogen adsorption]
About 50 mg of electrode powder is weighed and vacuum degassed at 120 ° C. for 8 hours. The adsorption isotherm of water and nitrogen was measured for this powder using a constant volume method, and the amount of adsorption at a relative pressure of 0.5 was defined as the amount of water vapor and nitrogen adsorbed. The measurement temperature was nitrogen 77K and water vapor 323.15K.
Table 1 below shows a list of data on the amounts of water vapor and nitrogen adsorbed and the obtained voltage values.

Figure 2009252587
図1に、従来の指標として用いられていた水蒸気吸着量とアイオノマー量との関係を示す。図1の結果より、アイオノマー量と湿潤状態との関係は水蒸気吸着量だけでは説明できないことがわかる。
Figure 2009252587
FIG. 1 shows the relationship between the water vapor adsorption amount and the ionomer amount used as a conventional index. From the result of FIG. 1, it can be seen that the relationship between the ionomer amount and the wet state cannot be explained only by the water vapor adsorption amount.

図2〜図4に、各電極粉末の各電流値での水蒸気吸着量/窒素素吸着量と出力の関係を示す。これらの図から最大出力を得るには水蒸気吸着量/窒素吸着量が1.0〜4.0の範囲にあることが良いと判断できる。   2 to 4 show the relationship between the water vapor adsorption amount / nitrogen element adsorption amount and the output at each current value of each electrode powder. From these figures, it can be determined that the water vapor adsorption amount / nitrogen adsorption amount is preferably in the range of 1.0 to 4.0 in order to obtain the maximum output.

また、図5に、アイオノマー量/カーボン量と水蒸気吸着量/窒素吸着量の関係を示す。図5の結果より、電極のアイオノマー量が増加すると電極の親水性が増加すると考えられ、電極粉末の湿潤状態を表す指標としては水蒸気吸着量/窒素吸着量を用いることが良いこと、及び、最大出力を得るために、水蒸気吸着量/窒素吸着量を1.0〜4.0の範囲にするためには、アイオノマー量/カーボン量を0.4〜1.1にすればよいことが分かる。   FIG. 5 shows the relationship between the ionomer amount / carbon amount and the water vapor adsorption amount / nitrogen adsorption amount. From the results of FIG. 5, it is considered that the hydrophilicity of the electrode increases as the ionomer amount of the electrode increases. It is preferable to use the water vapor adsorption amount / nitrogen adsorption amount as an index representing the wet state of the electrode powder, In order to obtain an output, in order to make the water vapor adsorption amount / nitrogen adsorption amount in the range of 1.0 to 4.0, it can be seen that the ionomer amount / carbon amount should be 0.4 to 1.1.

最大出力を得るには水蒸気吸着量/窒素吸着量が1.0〜4.0の範囲にあることが良い理由としては、以下のことが考えられる。
(1)電極粉末の機能として、プロトン伝導性が必要であり、プロトン伝導には随伴水が必要である。水蒸気吸着量/窒素吸着量が1.0未満では、電極粉末の親水性が不足しているため、随伴水が不足し、プロトン伝導性が低下してしまう結果、性能低下を引き起こす。
(2)電極粉末の他の機能として、ガス拡散性が必要である。水蒸気吸着量/窒素吸着量が4.0を越すと、反応で生成した水の保持力が強すぎるため、電極に存在する細孔を埋める量の水を保持してしまうため、ガス拡散を阻害してしまう結果、反応阻害を引き起こす。
The reason why the water vapor adsorption amount / nitrogen adsorption amount is preferably in the range of 1.0 to 4.0 in order to obtain the maximum output is considered as follows.
(1) As a function of the electrode powder, proton conductivity is necessary, and accompanying water is necessary for proton conduction. When the water vapor adsorption amount / nitrogen adsorption amount is less than 1.0, the hydrophilicity of the electrode powder is insufficient, so that the accompanying water is insufficient and the proton conductivity is reduced, resulting in a decrease in performance.
(2) Gas diffusivity is necessary as another function of the electrode powder. If the water vapor adsorption amount / nitrogen adsorption amount exceeds 4.0, the retention of water produced by the reaction is too strong, and the amount of water that fills the pores existing in the electrode is retained, thus inhibiting gas diffusion. As a result, reaction inhibition is caused.

図1に示すように、電極中のアイオノマー量が増加すると、元々のガス透過性が低下するため、湿潤状態を示す従来の指標である水蒸気吸着量だけでは相関が取れない。よって、新しい指標である、水蒸気吸着量/窒素吸着量によって湿潤状態を正しく表すことが可能となった。   As shown in FIG. 1, when the amount of ionomer in the electrode increases, the original gas permeability decreases, so that the correlation cannot be obtained only with the water vapor adsorption amount, which is a conventional index indicating a wet state. Therefore, it became possible to correctly represent the wet state by the water vapor adsorption amount / nitrogen adsorption amount, which is a new index.

燃料電池の最大出力範囲を容易に定め、高性能の燃料電池用触媒層の製造が可能となったことにより、燃料電池の実用化と普及に貢献する。   The maximum output range of the fuel cell can be easily determined and the production of a high-performance fuel cell catalyst layer can be achieved, thereby contributing to the practical application and popularization of fuel cells.

従来の指標として用いられていた水蒸気吸着量とアイオノマー量との関係を示す。The relationship between the water vapor adsorption amount and the ionomer amount used as a conventional index is shown. 各電極粉末の水蒸気吸着量/窒素素吸着量と出力の関係を示す。The relationship between the water vapor adsorption amount / nitrogen element adsorption amount of each electrode powder and the output is shown. 各電極粉末の水蒸気吸着量/窒素素吸着量と出力の関係を示す。The relationship between the water vapor adsorption amount / nitrogen element adsorption amount of each electrode powder and the output is shown. 各電極粉末の水蒸気吸着量/窒素素吸着量と出力の関係を示す。The relationship between the water vapor adsorption amount / nitrogen element adsorption amount of each electrode powder and the output is shown. アイオノマー量/カーボン量と水蒸気吸着量/窒素吸着量の関係を示す。The relationship between the ionomer amount / carbon amount and the water vapor adsorption amount / nitrogen adsorption amount is shown.

Claims (4)

触媒成分と、アイオノマーと、炭素担体とを含む燃料電池用触媒層の製造方法において、水蒸気吸着等温線から求まる水蒸気吸着量と窒素吸着等温線から求まる窒素吸着量の比が1.0〜4.0となるように調製することを特徴とする燃料電池用触媒層の製造方法。   In the method for producing a catalyst layer for a fuel cell including a catalyst component, an ionomer, and a carbon support, a ratio of a water vapor adsorption amount obtained from a water vapor adsorption isotherm to a nitrogen adsorption amount obtained from a nitrogen adsorption isotherm is 1.0 to 4. A method for producing a catalyst layer for a fuel cell, which is prepared so as to be zero. 前記水蒸気吸着量と窒素吸着量の比が1.0〜4.0となるように、アイオノマーと炭素担体の比を0.4〜1.1に調製することを特徴とする請求項1に記載の燃料電池用触媒層の製造方法。   The ratio of the ionomer and the carbon support is adjusted to 0.4 to 1.1 so that the ratio of the water vapor adsorption amount and the nitrogen adsorption amount is 1.0 to 4.0. Of manufacturing a fuel cell catalyst layer. 触媒成分と、アイオノマーと、炭素担体とを含む燃料電池用触媒層の性能評価方法において、水蒸気吸着等温線から求まる水蒸気吸着量と窒素吸着等温線から求まる窒素吸着量の比を指標とすることを特徴とする燃料電池用触媒層の性能評価方法。   In a method for evaluating the performance of a catalyst layer for a fuel cell containing a catalyst component, an ionomer, and a carbon support, a ratio of a water vapor adsorption amount obtained from a water vapor adsorption isotherm and a nitrogen adsorption amount obtained from a nitrogen adsorption isotherm is used as an index. A method for evaluating the performance of a fuel cell catalyst layer. 前記水蒸気吸着量と窒素吸着量の比が1.0〜4.0である場合に性能評価を良と判定することを特徴とする請求項3に記載の燃料電池用触媒層の性能評価方法。   4. The method for evaluating the performance of a fuel cell catalyst layer according to claim 3, wherein the performance evaluation is determined to be good when the ratio of the water vapor adsorption amount and the nitrogen adsorption amount is 1.0 to 4.0. 5.
JP2008100393A 2008-04-08 2008-04-08 Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell Pending JP2009252587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100393A JP2009252587A (en) 2008-04-08 2008-04-08 Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100393A JP2009252587A (en) 2008-04-08 2008-04-08 Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell

Publications (1)

Publication Number Publication Date
JP2009252587A true JP2009252587A (en) 2009-10-29

Family

ID=41313095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100393A Pending JP2009252587A (en) 2008-04-08 2008-04-08 Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell

Country Status (1)

Country Link
JP (1) JP2009252587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146321A (en) * 2010-01-18 2011-07-28 Nippon Steel Corp Catalyst for solid polymer fuel cell, and electrode for solid polymer fuel cell using the same
WO2013014910A1 (en) * 2011-07-27 2013-01-31 トヨタ自動車株式会社 Catalyst ink for fuel cell electrodes, membrane electrode assembly, fuel cell
CN113506895A (en) * 2021-06-18 2021-10-15 西安交通大学 Fuel cell catalyst layer performance analysis method based on relative humidity influence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146321A (en) * 2010-01-18 2011-07-28 Nippon Steel Corp Catalyst for solid polymer fuel cell, and electrode for solid polymer fuel cell using the same
WO2013014910A1 (en) * 2011-07-27 2013-01-31 トヨタ自動車株式会社 Catalyst ink for fuel cell electrodes, membrane electrode assembly, fuel cell
CN113506895A (en) * 2021-06-18 2021-10-15 西安交通大学 Fuel cell catalyst layer performance analysis method based on relative humidity influence
CN113506895B (en) * 2021-06-18 2022-07-15 西安交通大学 Fuel cell catalyst layer performance analysis method based on relative humidity influence

Similar Documents

Publication Publication Date Title
Lobato et al. Study of the Catalytic Layer in Polybenzimidazole‐based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support
JP5021292B2 (en) Fuel cell
EP2991142A1 (en) Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
KR20060117474A (en) Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
JP2006210349A (en) Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
WO2018064623A1 (en) Cathode electrode design for electrochemical fuel cells
Hou et al. Enhanced low-humidity performance in a proton exchange membrane fuel cell by the insertion of microcrystalline cellulose between the gas diffusion layer and the anode catalyst layer
JP4960000B2 (en) Gas diffusion electrode for fuel cell and fuel cell
CN102257662B (en) Anode catalyst layer for solid polymer fuel cell
JP2004158388A (en) Electrode for solid polymer fuel cell
KR20140065283A (en) Electrode for fuel cell, method for preparing the same, membrane electrode assembly for fuel cell the electrode and fuel cell including the membrane electrode assembly
JP5432443B2 (en) Membrane electrode assembly and fuel cell
JP2007214019A5 (en)
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP2017073310A (en) Catalyst layer for fuel cell, and fuel cell
JP2006190606A (en) Electrode for fuel cell, fuel cell, and method of manufacturing electrode for fuel cell
JP2009252587A (en) Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell
JP2004158387A (en) Electrode structure for solid polymer fuel cell
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
EP4086987A1 (en) Electrode for fuel cell having high durability, method for manufacturing same, and membrane-electrode assembly comprising same
JP4271127B2 (en) Electrode structure of polymer electrolyte fuel cell
JP4520815B2 (en) Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
JP6536454B2 (en) Fuel cell catalyst layer