JP2009252384A - Cylindrical cell - Google Patents

Cylindrical cell Download PDF

Info

Publication number
JP2009252384A
JP2009252384A JP2008095624A JP2008095624A JP2009252384A JP 2009252384 A JP2009252384 A JP 2009252384A JP 2008095624 A JP2008095624 A JP 2008095624A JP 2008095624 A JP2008095624 A JP 2008095624A JP 2009252384 A JP2009252384 A JP 2009252384A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
material layer
electrode plate
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095624A
Other languages
Japanese (ja)
Inventor
Atsuo Yoneda
淳夫 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008095624A priority Critical patent/JP2009252384A/en
Publication of JP2009252384A publication Critical patent/JP2009252384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical cell which possesses both security and higher-capacity performance, by having an electrode group brought closer to a perfect circle, where a resin tape pasted on an applied end part of a positive electrode active material layer is prescribed to a predetermined position. <P>SOLUTION: The cylindrical cell is provided with an electrode group, made by spirally winding around a cathode plate, consisting of an active material layer and a belt-shaped metallic foil strip which is coated on the active material layer except for a partially exposed part and an anode plate via a separator membrane, accommodated in a battery case together with electrolytic solution. The anode lead 5 and a polypropylene (PP) tape 9 pasted on a boundary part of the exposed part of the cathode plate and the active material layer are located in an angular range of -35 to 35 degrees, with respect to the minimum diameter, with a winding core of the electrode group as a center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は円筒形電池に関し、特にその電極群の構造に関するものである。   The present invention relates to a cylindrical battery, and more particularly to the structure of the electrode group.

近年、AV機器あるいはパソコンなどの電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する非水電解質二次電池への要求が高まっている。非水電解質二次電池の代表であるリチウムイオン二次電池は、特に高電圧、高エネルギー密度を有する電池として期待が大きく、高容量化、高出力化の開発競争が激化してきている。   In recent years, electronic devices such as AV devices and personal computers have been rapidly becoming portable and cordless, and the demand for non-aqueous electrolyte secondary batteries having a small size, light weight and high energy density as driving power sources has increased. Yes. Lithium ion secondary batteries, which are representative of nonaqueous electrolyte secondary batteries, are particularly expected as batteries having high voltage and high energy density, and development competition for higher capacity and higher output is intensifying.

円筒形リチウムイオン二次電池においては、正極板と負極板とを隔離膜を介して渦巻状に捲回された電極群を円筒形の電池ケースに挿入するため、電極群の外径が真円に近いほど、電池ケース内の体積を有効に活用し、体積あたりのエネルギー密度を向上することができる。しかし、電極群の負極リードや負極リードを被覆するテープ、および正極リードや正極リードを被覆するテープなどの厚みによって、構成される電極群は真円ではなく、楕円形状のように、最大直径と最小直径を有する形状となる。   In a cylindrical lithium ion secondary battery, an electrode group in which a positive electrode plate and a negative electrode plate are wound in a spiral shape through an isolation film is inserted into a cylindrical battery case. The closer to, the more effectively the volume in the battery case can be utilized and the energy density per volume can be improved. However, depending on the thickness of the negative electrode lead of the electrode group, the tape that covers the negative electrode lead, and the tape that covers the positive electrode lead and the positive electrode lead, the configured electrode group is not a perfect circle, but has an elliptical shape and a maximum diameter. The shape has the smallest diameter.

この楕円形状を真円に近づけるため、電極群における正極リードと負極リードの位置関係を規定する構成が提案されている(例えば、特許文献1参照)
特開平11−26023号公報
In order to make this elliptical shape close to a perfect circle, a configuration that defines the positional relationship between the positive electrode lead and the negative electrode lead in the electrode group has been proposed (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-26023

しかしながら特許文献1では、昨今の円筒形電池の高容量化に伴って、正極板の集電体である金属箔の露出部と正極活物質層の境界部(塗工端部)に微小内部短絡を防ぐために樹脂テープを貼付した構成では、電極群の形状を真円に近づけることが不十分であるという問題があった。   However, in Patent Document 1, along with the recent increase in capacity of cylindrical batteries, a minute internal short circuit is formed between the exposed portion of the metal foil, which is the current collector of the positive electrode plate, and the boundary portion (coating end portion) of the positive electrode active material layer. In the configuration in which the resin tape is affixed to prevent this, there is a problem that it is insufficient to bring the shape of the electrode group close to a perfect circle.

本発明はこのような従来の課題を解決するものであり、微小内部短絡を防ぐ目的で貼付した正極活物質層の塗工端部を被覆する樹脂テープを貼付した構成について考慮したものである。即ち、負極リードと、正極活物質層の塗工端部に貼付した樹脂テープの位置を規定することにより電極群を真円に近づけ、安全性と高容量化の両立を図った円筒形電池を提供することを目的とする。   This invention solves such a conventional subject, and considers the structure which stuck the resin tape which coat | covers the coating edge part of the positive electrode active material layer stuck in order to prevent a minute internal short circuit. In other words, by defining the position of the negative electrode lead and the resin tape affixed to the coated end of the positive electrode active material layer, the cylindrical battery is designed to bring the electrode group closer to a perfect circle and achieve both safety and high capacity. The purpose is to provide.

上記課題を解決するために本発明の円筒形電池は、活物質層と、その活物質層の一部に露出部を設けた帯状の金属箔からなる正極板と負極板とを隔離膜を介して渦巻状に捲回してなる電極群を電解液とともに電池ケースに収納した円筒形電池であって、負極板の露出部に溶接したリードと、正極板の露出部と活物質層の境界部に貼付した樹脂テープが、電極群の捲芯部を中心として最小直径に対し−35°〜35°の角度範囲に位置することを特徴とする。   In order to solve the above problems, a cylindrical battery of the present invention comprises an active material layer, a positive electrode plate made of a strip-shaped metal foil provided with an exposed portion in a part of the active material layer, and a negative electrode plate through an isolation film. A cylindrical battery in which a group of electrodes wound in a spiral shape is housed in a battery case together with an electrolyte solution, the lead welded to the exposed part of the negative electrode plate, and the boundary between the exposed part of the positive electrode plate and the active material layer The affixed resin tape is located in an angle range of −35 ° to 35 ° with respect to the minimum diameter with the core portion of the electrode group as the center.

このような構成にすれば、正極活物質層の塗工端部に樹脂テープを貼付した電極群を有効に真円に近づけることができる。   With such a configuration, the electrode group in which the resin tape is attached to the coating end of the positive electrode active material layer can be effectively brought close to a perfect circle.

本発明によると、正極板の金属箔の露出部と正極活物質層の境界部(塗工端部)に貼付
した樹脂テープ、および負極リードの位置を規定することにより、電極群を真円に近づけることができる。したがって、高容量化した円筒形電池の正極活物質層の塗工端部における微小内部短絡を防ぐ目的で樹脂テープを貼付しても電極群を真円に近づけることができるため、電池ケース内の体積を有効に活用し、体積あたりのエネルギー密度を向上することができる。つまり、安全性と高容量化の両立を図った円筒形電池を提供することができる。
According to the present invention, by defining the position of the resin tape affixed to the boundary part (coating end part) between the exposed part of the metal foil of the positive electrode plate and the positive electrode active material layer, and the negative electrode lead, the electrode group is made into a perfect circle. You can get closer. Therefore, the electrode group can be brought close to a perfect circle even if a resin tape is applied for the purpose of preventing a minute internal short circuit at the coating end of the positive electrode active material layer of the cylindrical battery having a high capacity. It is possible to effectively use the volume and improve the energy density per volume. That is, it is possible to provide a cylindrical battery that achieves both safety and high capacity.

本発明の実施の形態における円筒形電池は、活物質層と、その活物質層の一部に露出部を設けた帯状の金属箔からなる正極板と負極板とを隔離膜を介して渦巻状に捲回してなる電極群を電解液とともに電池ケースに収納した円筒形電池であって、負極板の露出部に溶接したリードと、正極板の露出部と活物質層の境界部に貼付した樹脂テープが、電極群の捲芯部を中心として最小直径に対し−35°〜35°の角度範囲に位置するよう構成する。   A cylindrical battery according to an embodiment of the present invention includes an active material layer, and a positive electrode plate and a negative electrode plate made of a strip-shaped metal foil in which an exposed portion is provided in a part of the active material layer. A cylindrical battery in which a battery case is housed in a battery case together with an electrolyte solution, a lead welded to the exposed portion of the negative electrode plate, and a resin affixed to a boundary portion between the exposed portion of the positive electrode plate and the active material layer The tape is configured so as to be positioned in an angle range of −35 ° to 35 ° with respect to the minimum diameter around the core portion of the electrode group.

こうすることにより、正極活物質層の塗工端部に樹脂テープを貼付しても、電極群を真円に近づけることができるので、電池ケース内の体積を有効に活用し、体積あたりのエネルギー密度を向上することができる。   In this way, the electrode group can be brought close to a perfect circle even if a resin tape is applied to the coating end of the positive electrode active material layer, so that the volume in the battery case can be effectively utilized and the energy per volume can be obtained. The density can be improved.

また、電極群の最大直径と最小直径の差が0.4mm以上であれば特に有効である。一般的にリチウムイオン二次電池などで使用されている厚みが0.15mm程度の負極リード、この負極リードを負極板の集電体の両面に被覆する厚みが0.03mm程度の2枚の樹脂テープ、正極活物質層の塗工端部を被覆する厚みが0.03mm程度の2枚の樹脂テープを、電極群の捲芯部を中心として最小直径の方向に重ねて位置させても、その重ねた部分を含む電極群の直径が最大直径を越えず電極群を真円に近づけることができる。   Further, it is particularly effective if the difference between the maximum diameter and the minimum diameter of the electrode group is 0.4 mm or more. A negative electrode lead having a thickness of about 0.15 mm, which is generally used in a lithium ion secondary battery, etc., and two resins having a thickness of about 0.03 mm covering the negative electrode lead on both sides of a current collector of a negative electrode plate Even if two resin tapes with a thickness of about 0.03 mm covering the coated end of the tape and the positive electrode active material layer are positioned so as to overlap each other in the direction of the minimum diameter around the core of the electrode group, The diameter of the electrode group including the overlapped portion does not exceed the maximum diameter, and the electrode group can be brought close to a perfect circle.

以下、正極板について詳述する。   Hereinafter, the positive electrode plate will be described in detail.

正極活物質は、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)などのリチウム含有遷移金属酸化物を用いることができる。また、原料が比較的安価なマンガンを用いたマンガン酸リチウム(LiMn)のようなスピネル型複合酸化物を用いることもできる。 As the positive electrode active material, a lithium-containing transition metal oxide such as lithium cobaltate (LiCoO 2 ) or lithium nickelate (LiNiO 2 ) can be used. Also, a spinel type complex oxide such as lithium manganate (LiMn 2 O 4 ) using relatively inexpensive manganese as a raw material can be used.

正極板に用いる増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシメチルセルロース(HMC)、エチルセルロース、ポリビニルアルコール(PVA)、酸化スターチ、リン酸化スターチ、およびガゼインなどを用いるとよい。   As the thickener used for the positive electrode plate, carboxymethyl cellulose (CMC), methyl cellulose (MC), hydroxymethyl cellulose (HMC), ethyl cellulose, polyvinyl alcohol (PVA), oxidized starch, phosphorylated starch, and casein may be used.

正極板に用いる導電剤は電子伝導性材料であればよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、チャンネルブラック、ファーネスブラック、およびサーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケルなどの金属粉末類およびポリフェニレン誘電体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤の中で、人造黒鉛、アセチレンブラック、および炭素繊維が特に好ましい。導電剤の添加量は特に限定されないが、負極活物質に対して1〜30重量%が好ましく、さらには1〜10重量%が好ましい。   The conductive agent used for the positive electrode plate may be an electron conductive material. For example, natural graphite (such as flake graphite), graphite such as artificial graphite and expanded graphite, carbon blacks such as acetylene black, channel black, furnace black, and thermal black, and conductive fibers such as carbon fiber and metal fiber In addition, metal powders such as copper and nickel and organic conductive materials such as polyphenylene dielectrics can be contained alone or as a mixture thereof. Among these conductive agents, artificial graphite, acetylene black, and carbon fiber are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1-30 weight% is preferable with respect to a negative electrode active material, Furthermore, 1-10 weight% is preferable.

正極板に用いる集電体の材質は、アルミニウム、チタン(Ti)、およびタンタル(Ta)等の金属またはその合金が使用できるが、軽量でエネルギー密度が有利であることから、特に、アルミニウムまたはその合金を使用するのが望ましい。   As the material of the current collector used for the positive electrode plate, metals such as aluminum, titanium (Ti), and tantalum (Ta) or alloys thereof can be used. It is desirable to use an alloy.

以下、負極板について詳述する。   Hereinafter, the negative electrode plate will be described in detail.

負極活物質は、黒鉛系、非晶系などの炭素材料あるいはその混合体、合金や金属酸化物などが挙げられ、これらを単独もしくは2種類以上を混合して用いることができる。合金は、ケイ素、スズ、アルミニウム、亜鉛、マグネシウム、チタン、およびニッケルよりなる群から選択される少なくとも一種の元素からなるのが好ましい。また、金属化合物はケイ素、スズ、アルミニウム、亜鉛、マグネシウム、チタン、およびニッケルの酸化物や炭化物よりなる群から選択される少なくとも一種である。負極活物質の平均粒径は特に限定されないが、1〜30μmが好ましい。   Examples of the negative electrode active material include carbon materials such as graphite and amorphous materials, mixtures thereof, alloys, metal oxides, and the like, and these can be used alone or in admixture of two or more. The alloy preferably comprises at least one element selected from the group consisting of silicon, tin, aluminum, zinc, magnesium, titanium, and nickel. The metal compound is at least one selected from the group consisting of silicon, tin, aluminum, zinc, magnesium, titanium, and nickel oxides and carbides. Although the average particle diameter of a negative electrode active material is not specifically limited, 1-30 micrometers is preferable.

負極板に用いる集電体は電気化学的に安定な電子伝導体であればよく、銅、ニッケル、およびステンレスなどの金属が使用できるが、これらの中で薄膜に加工しやすく、低コストであることから銅箔が好ましい。   The current collector used for the negative electrode plate may be an electrochemically stable electron conductor, and metals such as copper, nickel, and stainless steel can be used. Among these, it is easy to process into a thin film, and the cost is low. Therefore, copper foil is preferable.

正極板および負極板の製造に用いる結着剤については、電極製造時に使用する溶媒や電解質に対して安定な材料であれば特に限定されない。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、イソプロピレンゴム、ブタジエンゴム、およびエチレンプロピレンジエタンポリマー(EPDM)などを用いるとよい。   The binder used for manufacturing the positive electrode plate and the negative electrode plate is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used in manufacturing the electrode. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), isopropylene rubber, butadiene rubber, ethylene propylene diethane polymer (EPDM), or the like may be used.

以下、非水電解質について詳述する。   Hereinafter, the nonaqueous electrolyte will be described in detail.

非水溶媒は炭酸エステルが好ましい。炭酸エステルは、環状、鎖状のいずれも使用することができる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、およびブチレンカーボネート(BC)などが好適に挙げられる。これらの高誘電率溶媒は、1種類、または2種類以上を組み合わせて使用してもよい。鎖状炭酸エステルとしては、例えばジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジ−n−プロピルカーボネート、メチル−n−プロピルカーボネート、およびエチル−i−プロピルカーボネートなどが挙げられる。これらの低粘度溶媒は、1種類、または2種類以上を組み合わせて使用してもよい。環状炭酸エステルと鎖状炭酸エステルは各々任意に選択して組み合わせて使用することもできる。   The non-aqueous solvent is preferably a carbonate ester. The carbonate ester can be either cyclic or chain. Preferable examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC). These high dielectric constant solvents may be used alone or in combination of two or more. Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), di-n-propyl carbonate, methyl-n-propyl carbonate, and ethyl-i-propyl carbonate. Can be mentioned. These low viscosity solvents may be used alone or in combination of two or more. A cyclic carbonate and a chain carbonate can be arbitrarily selected and used in combination.

電解質塩としては、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、および四フッ化ホウ酸リチウム(LiBF)から選ばれる無機リチウム塩や、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、およびLiC(CFSOなどの含フッ素有機リチウム塩などが挙げられる。それら電解質塩の中でも、LiPF、もしくはLiBFが好ましい。これらの電解質塩は1種類、または2種類以上を組み合わせて用いることができる。これらの電解質塩は、上述した非水溶媒に、通常0.1〜3.0mol/L、好ましくは0.5〜2.0mol/Lの濃度になるように調製して使用するのが好ましい。 As the electrolyte salt, an inorganic lithium salt selected from lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium tetrafluoroborate (LiBF 4 ), LiCF 3 SO 3 , LiN Fluorine-containing organic lithium such as (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), and LiC (CF 3 SO 2 ) 3 Examples include salt. Among these electrolyte salts, LiPF 6 or LiBF 4 is preferable. These electrolyte salts can be used alone or in combination of two or more. These electrolyte salts are preferably prepared and used in the non-aqueous solvent described above so that the concentration is usually 0.1 to 3.0 mol / L, preferably 0.5 to 2.0 mol / L.

非水電解質には、過充電に対する耐性を高める添加剤を含ませてもよい。添加剤には、フェニル基およびそれに隣接する環状化合物基からなるベンゼン誘導体を用いることが好ましい。このようなベンゼン誘導体として、ビフェニル、シクロヘキシルベンゼン、ジフェニルエーテル、およびフェニルラクトンなどが挙げられる。   The non-aqueous electrolyte may contain an additive that increases resistance to overcharge. As the additive, a benzene derivative composed of a phenyl group and a cyclic compound group adjacent thereto is preferably used. Examples of such benzene derivatives include biphenyl, cyclohexyl benzene, diphenyl ether, and phenyl lactone.

非水電解質二次電池を製造する方法については、特に限定されず、通常採用されている
方法の中から適宜選択することができる。
The method for producing the nonaqueous electrolyte secondary battery is not particularly limited, and can be appropriately selected from commonly employed methods.

(実施例)
以下、本発明の一実施の形態について図面を用いて説明する。図1〜5は本発明の実施例で使用した正・負極板の概略図である。
(Example)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 to 5 are schematic views of positive and negative electrode plates used in Examples of the present invention.

(正極板の作製1)
まず、正極板の作製方法について説明する。炭酸リチウム(LiCO)と四酸化三コバルト(Co)を混合して空気中において900℃で焼成したコバルト酸リチウム(LiCoO)からなる正極活物質、アセチレンブラック(AB)からなる導電材、およびポリフッ化ビニリデン(PVDF)からなる結着剤を重量比が100:2:3となるように混合したものを、N−メチル−2−ピロリドン(NMP)を分散媒として用いて混練分散して正極ペーストを作製した。正極ペーストを、正極集電体3として厚さ15μmのアルミニウム箔に塗工し、乾燥した。その後、正極活物質層2の密度が3.5〜3.6g/cmになるように圧延し、正極板の総厚みを0.158mmとした。そして、捲き始め端部および捲き終わり端部にそれぞれ35mmおよび50mmの活物質未塗工部(露出部)を含む全長が612mm、幅57mmとなるように裁断し、前記捲き始め端部に設けた活物質未塗工部(露出部)に正極リード1を超音波溶着により接続した正極板αを作製した(図1)。
(Preparation of positive electrode plate 1)
First, a method for producing a positive electrode plate will be described. From acetylene black (AB), a positive electrode active material composed of lithium cobaltate (LiCoO 2 ) obtained by mixing lithium carbonate (Li 2 CO 3 ) and tricobalt tetroxide (Co 3 O 4 ) and firing in air at 900 ° C. A conductive material and a binder made of polyvinylidene fluoride (PVDF) mixed at a weight ratio of 100: 2: 3, using N-methyl-2-pyrrolidone (NMP) as a dispersion medium The positive electrode paste was prepared by kneading and dispersing. The positive electrode paste was applied to a 15 μm thick aluminum foil as the positive electrode current collector 3 and dried. Then, it rolled so that the density of the positive electrode active material layer 2 might be set to 3.5-3.6 g / cm < 3 >, and the total thickness of the positive electrode plate was 0.158 mm. And it cut | judged so that the full length containing an active material uncoated part (exposed part) of 35 mm and 50 mm at the starting end part and the finishing end part might be set to 612 mm and width 57 mm, respectively, and it provided in the said starting start part A positive electrode plate α in which the positive electrode lead 1 was connected to the active material uncoated part (exposed part) by ultrasonic welding was produced (FIG. 1).

(正極板の作製2)
前記正極板αの捲き始めおよび捲き終わりの活物質塗工部(正極活物質層2)と未塗工部(露出部)の境界部に厚みが0.03mm、幅16mmのポリプロピレンテープ(PPテープ4、9)を正極板の両面にそれぞれ1枚ずつ貼付した正極板βを作製した(図2)。
(Preparation of positive electrode plate 2)
A polypropylene tape (PP tape) having a thickness of 0.03 mm and a width of 16 mm at the boundary between the active material coated portion (positive electrode active material layer 2) and the uncoated portion (exposed portion) at the beginning and end of the positive electrode plate α. A positive electrode plate β was prepared by attaching 4, 9) to each of both surfaces of the positive electrode plate (FIG. 2).

(負極板の作製1)
次に、負極板の作製方法について説明する。人造黒鉛からなる負極活物質、ポリフッ化ビニリデン(PVDF)からなる結着剤を重量比が100:6となるように混合したものを、N−メチル−2−ピロリドン(NMP)を分散媒として用いて混練分散して負極ペーストを作製した。負極ペーストを、負極集電体7として厚さ10μmの銅箔に塗着、乾燥した。そして、負極活物質層6の密度が1.57g/cmになるように圧延し、負極板の総厚みを0.158mmとし、幅59mm、全長645mmに裁断した負極板αを作製した(図3)。
(Preparation of negative electrode plate 1)
Next, a method for manufacturing the negative electrode plate will be described. N-methyl-2-pyrrolidone (NMP) is used as a dispersion medium in which a negative electrode active material made of artificial graphite and a binder made of polyvinylidene fluoride (PVDF) are mixed so that the weight ratio is 100: 6. The mixture was kneaded and dispersed to prepare a negative electrode paste. The negative electrode paste was applied to a copper foil having a thickness of 10 μm as the negative electrode current collector 7 and dried. Then, the density of the negative electrode active material layer 6 is rolled to a 1.57 g / cm 3, the total thickness of the negative electrode plate and 0.158 mm, to prepare a width 59 mm, the negative electrode plate was cut into full length 645 mm alpha (FIG. 3).

(負極板の作製2)
負極板αの捲き終わり側である電極群の最外周部に厚みが0.15mm、幅が3.0mmの負極リード5を溶接した負極板βを作製した(図4)。
(Preparation of negative electrode plate 2)
A negative electrode plate β was prepared by welding a negative electrode lead 5 having a thickness of 0.15 mm and a width of 3.0 mm to the outermost peripheral portion of the electrode group on the side where the negative electrode plate α was rolled (FIG. 4).

(負極板の作製3)
負極板βの負極リード5の周辺部のみに厚みが0.03mm、幅が7.0mmのPPテープ8を負極集電体7の両面にそれぞれ1枚ずつ貼付した負極板γを作製した(図5)。
(Preparation of negative electrode plate 3)
A negative electrode plate γ was prepared by attaching PP tape 8 having a thickness of 0.03 mm and a width of 7.0 mm only to the periphery of the negative electrode lead 5 of the negative electrode plate β, one on each side of the negative electrode current collector 7 (see FIG. 5).

(電極群の作製1)
このようにして得られた正極板αと負極板αを組み合わせ、隔離膜として厚み16μmの微多孔性ポリエチレン樹脂を用い、それを介して正極板と負極板を捲回して電極群aを作製した。
(Production of electrode group 1)
The positive electrode plate α and the negative electrode plate α thus obtained were combined, a microporous polyethylene resin having a thickness of 16 μm was used as a separator, and the positive electrode plate and the negative electrode plate were wound therethrough to produce an electrode group a. .

(電極群の形状の歪み度合いの評価方法)
次に電極群aの歪み度合いを評価するため、電極群aを10個作製し、それぞれ直径を連
続的に測定し、最も大きくなる点での直径を最大直径X、最も小さくなる点での直径を最小直径Yとしたとき、歪み度合いをX−Yで表した。この値が大きいほど電極群の歪み度合いが大きいことになる。
(Evaluation method of distortion degree of electrode group shape)
Next, in order to evaluate the degree of distortion of the electrode group a, 10 electrode groups a are prepared, and the diameters are continuously measured, and the diameter at the largest point is the maximum diameter X and the diameter at the smallest point. Is the minimum diameter Y, the degree of distortion is represented by XY. The larger the value, the greater the degree of distortion of the electrode group.

(表1)に10個の電極群aの歪み度合いを示した。   Table 1 shows the degree of distortion of the ten electrode groups a.

Figure 2009252384
Figure 2009252384

(表1)の結果から、電極群aの歪み度合いは0.41〜0.62mmであり、平均0.47mmであることがわかった。   From the results of (Table 1), it was found that the degree of distortion of the electrode group a was 0.41 to 0.62 mm, and the average was 0.47 mm.

(電極群の作製2)
そして、前記正極板βと、前記負極板βおよびγのいずれかを組み合わせて、隔離膜として厚さ16μmの微多孔性ポリエチレン樹脂を用い、それを介して正極板と負極板を捲回して電極群を作製した。このとき、負極リード5と塗工端部のPPテープ9が、捲芯部を中心として最小直径Yに対し、所定の角度になるよう配置した。
(Production of electrode group 2)
Then, the positive electrode plate β and any one of the negative electrode plates β and γ are combined, and a microporous polyethylene resin having a thickness of 16 μm is used as a separator, and the positive electrode plate and the negative electrode plate are wound around the electrode. Groups were made. At this time, the negative electrode lead 5 and the PP tape 9 at the coating end were arranged at a predetermined angle with respect to the minimum diameter Y around the core portion.

正極板βと負極板βを用いて、図6に示したように、重ねて配置した負極リード5(厚み0.15mm、幅3.0mm)と塗工端部のPPテープ9(厚み0.03mm、幅16.0mm)が、捲芯部を中心として最小直径Yに対し、電極群の上面からみて角度Zが時計周り方向に35°の角度になるよう配置したものを実施例1の電極群bとした。   As shown in FIG. 6, using the positive electrode plate β and the negative electrode plate β, the negative electrode lead 5 (thickness 0.15 mm, width 3.0 mm) and the PP tape 9 (thickness 0. The electrode of Example 1 is arranged so that the angle Z is 35 ° in the clockwise direction when viewed from the upper surface of the electrode group with respect to the minimum diameter Y centering on the core portion. Group b.

ここで、角度の測定箇所は負極リード5の幅方向の中央部、および塗工端部のPPテープ9の幅方向の中央部とした。   Here, the measurement points of the angle were the central part in the width direction of the negative electrode lead 5 and the central part in the width direction of the PP tape 9 at the coating end.

塗工端部のPPテープ9はその幅16.0mmのうち約3mmを正極活物質の上に貼付した。また、負極板を挟んで対向する負極板上にも同じ寸法のPPテープを貼付した。   The PP tape 9 at the coating end was pasted on the positive electrode active material by about 3 mm out of its width of 16.0 mm. Also, a PP tape of the same size was stuck on the negative electrode plate facing the negative electrode plate.

図7に示したように、負極リード5と塗工端部のPPテープ9が、捲芯部を中心として最小直径Yに対し、電極群の上面からみて角度Zが半時計周り方向に35°の角度(−35°)になるよう配置したことの他は、実施例1と同様に作製したものを実施例2の電極群cとした。   As shown in FIG. 7, the negative electrode lead 5 and the PP tape 9 at the coating end are 35 ° in the counterclockwise direction with respect to the minimum diameter Y with respect to the core portion as seen from the upper surface of the electrode group. The electrode group c of Example 2 was prepared in the same manner as in Example 1 except that it was arranged so that the angle was −35 °.

正極板βと負極板γを用いて、図8に示したように、負極リード5を被覆するPPテープ8(厚み0.03mm、幅7.0mm)を貼付したことの他は実施例1と同様に作製したものを実施例3の極板群dとした。   Using the positive electrode plate β and the negative electrode plate γ, as shown in FIG. 8, except that the PP tape 8 (thickness 0.03 mm, width 7.0 mm) covering the negative electrode lead 5 was applied, and Example 1 The electrode plate group d of Example 3 was prepared in the same manner.

(比較例1)
負極リードと塗工端部のPPテープが、捲芯部を中心として最小直径Yに対し、電極群の上面からみて角度Zが半時計周り方向に40°の角度(−40°)になるよう配置したことの他は、実施例1と同様に作製したものを比較例1の電極群eとした。
(Comparative Example 1)
The negative electrode lead and the PP tape at the coating end are such that the angle Z is 40 ° in the counterclockwise direction (−40 °) when viewed from the upper surface of the electrode group with respect to the minimum diameter Y around the core portion. The electrode group e of Comparative Example 1 was prepared in the same manner as in Example 1 except that it was arranged.

次に、実施例1〜3の電極群b〜d、比較例1の電極群eの最大直径を測定した。測定結果を(表2)に示す。   Next, the maximum diameters of the electrode groups b to d of Examples 1 to 3 and the electrode group e of Comparative Example 1 were measured. The measurement results are shown in (Table 2).

Figure 2009252384
Figure 2009252384

(表2)より、電極群b〜dの最大直径は17.46〜17.48mmであり、電極群aの最大直径と変化がないことがわかった。一方、電極群eの最大直径は17.59mmであり、明らかに最大直径が大きくなっていることがわかった。これは負極リードと塗工端部のPPテープの影響と考えられる。即ち、このように正極活物質層の塗工端部に樹脂テープを貼付した構成では、塗工端部のPPテープと負極リードが、電極群の捲芯部を中心として最小直径に対し−35°〜35°の角度範囲に位置させることにより、電極群の最大直径が大きくなることを防止できることがわかった。   From Table 2, the maximum diameter of the electrode groups b to d was 17.46 to 17.48 mm, and it was found that there was no change from the maximum diameter of the electrode group a. On the other hand, the maximum diameter of the electrode group e was 17.59 mm, and it was found that the maximum diameter was clearly increased. This is considered to be an influence of the negative electrode lead and the PP tape at the coating end. That is, in the configuration in which the resin tape is applied to the coating end portion of the positive electrode active material layer in this way, the PP tape and the negative electrode lead at the coating end portion are −35 to the minimum diameter with the core portion of the electrode group as the center. It was found that an increase in the maximum diameter of the electrode group can be prevented by positioning it in the angle range of ˜35 °.

また、実施例3の電極群dによれば、負極リード5を被覆するPPテープ8を貼付しても有効であることがわかった。   Moreover, according to the electrode group d of Example 3, it turned out that it is effective even if the PP tape 8 which coat | covers the negative electrode lead 5 is stuck.

したがって、電極群b、c、dの方が電極群eに比べて、より小さな電池ケースに収納することができるといえる。   Therefore, it can be said that the electrode groups b, c, and d can be accommodated in a smaller battery case than the electrode group e.

(円筒形電池の作製)
以上のようにして作製した電極群b、c、d、および電極群eを、ニッケルめっきを施し、側面の厚みが0.15mmの鉄製の円筒形電池ケースに収納し、電極群の上下両面にポリプロピレン製の絶縁板を配した。そして、正・負極板の各々から集電を行うために、正・負極リードを正・負極板の集電体から各々導出した。電極群の下方に導出した負極リード5は円筒形電池ケースの底部に抵抗溶接した。
(Production of cylindrical battery)
The electrode groups b, c, d and the electrode group e produced as described above are subjected to nickel plating and housed in an iron cylindrical battery case having a side thickness of 0.15 mm. A polypropylene insulating plate was arranged. Then, in order to collect current from each of the positive and negative electrode plates, the positive and negative electrode leads were led out from the current collectors of the positive and negative electrode plates, respectively. The negative electrode lead 5 led out below the electrode group was resistance welded to the bottom of the cylindrical battery case.

次に、電極群が収納された円筒形電池ケース内に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1で混合し、1mol/Lの六フッ化リン酸リチウム(LiPF)を溶解した非水電解液を注入した。そして、予めガスケットを組み込んだ封口板に、電極群から導出させた正極リード1を溶接した。その後、封口板を円筒形電池ケースに装着し、カシメにより封口して円筒形リチウム二次電池を作製した。電
極群b、c、d、および電極群eを用いて作製した円筒形リチウム二次電池を、各々電池B、C、D、および電池Eとした。
Next, ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1 in the cylindrical battery case in which the electrode group is accommodated, and 1 mol / L lithium hexafluorophosphate (LiPF 6 ) is mixed. ) Was dissolved in a non-aqueous electrolyte solution. Then, the positive electrode lead 1 led out from the electrode group was welded to a sealing plate in which a gasket was previously incorporated. Thereafter, the sealing plate was attached to a cylindrical battery case and sealed by caulking to produce a cylindrical lithium secondary battery. Cylindrical lithium secondary batteries produced using the electrode groups b, c, d and the electrode group e were designated as batteries B, C, D and battery E, respectively.

また、電池B、C、D、および電池Eに用いた円筒形電池ケースの外径、およびそれぞれの電池の体積を(表3)に示した。なお、円筒形電池ケースの外径は各電極群を挿入することができる寸法で、できるだけ小さい外径のものを選択した。   The outer diameters of the cylindrical battery cases used for the batteries B, C, D, and the battery E, and the volume of each battery are shown in (Table 3). The outer diameter of the cylindrical battery case was selected such that each electrode group could be inserted and the outer diameter was as small as possible.

Figure 2009252384
Figure 2009252384

(円筒形電池の評価)
電池B、C、D、および電池Eを各々10個ずつ用意し、以下の条件で充放電を実施した。
(Evaluation of cylindrical battery)
Ten batteries B, C, D, and battery E were prepared, and charging / discharging was performed under the following conditions.

充電条件は25℃で電圧4.2Vの定電流・定電圧方式で行い、定電流1500mA、電池電圧が4.2Vに到達した時点で定電圧4.2Vで終止電流が100mAになるまで充電した。放電条件は25℃で定電流方式で行い、定電流2500mA、終止電圧2.5Vまで放電した。(表4)に各電池の放電時の容量を示し、(表5)に各電池の単位体積あたりの容量を示した。   The charging conditions were a constant current / constant voltage system with a voltage of 4.2 V at 25 ° C., and when the battery reached a constant current of 1500 mA and a battery voltage of 4.2 V, the battery was charged with a constant voltage of 4.2 V until the end current reached 100 mA. . The discharge conditions were a constant current method at 25 ° C., and the battery was discharged to a constant current of 2500 mA and a final voltage of 2.5V. (Table 4) shows the capacity of each battery during discharging, and (Table 5) shows the capacity per unit volume of each battery.

Figure 2009252384
Figure 2009252384

Figure 2009252384
Figure 2009252384

(表4),(表5)より、電池B、C、D、および電池Eの放電時の容量はいずれも2575mAh程度となり容量で比較すると同等であるが、単位体積あたりの容量は電池B、C、Dが499mAh/cm、電池Eが493mAh/cmとなり、電極群の最大直径の小さな電池の方が2%程度大きな値となった。 From (Table 4) and (Table 5), the batteries B, C, D, and the battery E each have a capacity at the time of discharge of about 2575 mAh, which is equivalent in terms of capacity, but the capacity per unit volume is the battery B, C and D were 499 mAh / cm 3 , the battery E was 493 mAh / cm 3 , and the battery with the smaller maximum diameter of the electrode group was about 2% larger.

以上のことから、塗工端部のPPテープと負極リードを、電極群の捲芯部を中心として最小直径に対し−35°〜35°の角度範囲に位置させた電池は、容量的に有利であることが確認できた。   From the above, the battery in which the PP tape and the negative electrode lead at the coating end are positioned in the angle range of −35 ° to 35 ° with respect to the minimum diameter with the core portion of the electrode group as the center is advantageous in terms of capacity. It was confirmed that.

これは、塗工端部のPPテープや負極リードがない場合の電極群の最大直径と最小直径の差が0.4mm以上のときに特に効果が顕著に現れる。   This is particularly effective when the difference between the maximum diameter and the minimum diameter of the electrode group when there is no PP tape or negative electrode lead at the coating end is 0.4 mm or more.

なお、円筒形電池として、円筒形リチウム二次電池について説明したが、リチウム二次電池以外のマグネシウム二次電池などの非水電解質二次電池においても、同様の効果が得られるものである。   In addition, although the cylindrical lithium secondary battery was demonstrated as a cylindrical battery, the same effect is acquired also in nonaqueous electrolyte secondary batteries, such as magnesium secondary batteries other than a lithium secondary battery.

本発明の円筒形電池は、電子機器などの主電源に有用である。例えば、携帯電話やノート型パソコンなどの民生用モバイルツールの主電源、電動ドライバーなどのパワーツールの主電源、およびEV自動車などの産業用主電源の用途に適している。   The cylindrical battery of the present invention is useful as a main power source for electronic devices and the like. For example, it is suitable for main power sources for consumer mobile tools such as mobile phones and notebook computers, main power sources for power tools such as electric drivers, and industrial main power sources such as EV cars.

本発明の実施例で使用した正極板αの概略図Schematic diagram of positive electrode plate α used in the examples of the present invention 本発明の実施例で使用した正極板βの概略図Schematic of the positive electrode plate β used in the examples of the present invention 本発明の実施例で使用した負極板αの概略図Schematic of the negative electrode plate α used in the examples of the present invention. 本発明の実施例で使用した負極板βの概略図Schematic of negative electrode plate β used in the examples of the present invention 本発明の実施例で使用した負極板γの概略図Schematic diagram of negative electrode plate γ used in Examples of the present invention 本発明の実施例1の電極群を上面からみた概略図Schematic of the electrode group of Example 1 of the present invention as viewed from above 本発明の実施例2の電極群を上面からみた概略図Schematic of the electrode group of Example 2 of the present invention as viewed from above 本発明の実施例3の電極群を上面からみた概略図Schematic of the electrode group of Example 3 of the present invention as viewed from above

符号の説明Explanation of symbols

1 正極リード
2 正極活物質層
3 正極集電体
4 PPテープ
5 負極リード
6 負極活物質層
7 負極集電体
8 PPテープ
9 塗工端部のPPテープ
DESCRIPTION OF SYMBOLS 1 Positive electrode lead 2 Positive electrode active material layer 3 Positive electrode collector 4 PP tape 5 Negative electrode lead 6 Negative electrode active material layer 7 Negative electrode collector 8 PP tape 9 PP tape of a coating edge part

Claims (1)

活物質層と、その活物質層の一部に露出部を設けた帯状の金属箔からなる正極板と負極板とを隔離膜を介して渦巻状に捲回してなる電極群を電解液とともに電池ケースに収納した円筒形電池であって、
前記負極板の露出部に溶接したリードと、前記正極板の露出部と活物質層の境界部に貼付した樹脂テープが、前記電極群の捲芯部を中心として最小直径に対し−35°〜35°の角度範囲に位置することを特徴とする円筒形電池。

A battery comprising an active material layer and an electrode group formed by spirally winding a positive electrode plate and a negative electrode plate made of a strip-shaped metal foil provided with an exposed portion in a part of the active material layer through a separator, together with an electrolyte A cylindrical battery housed in a case,
A lead welded to the exposed portion of the negative electrode plate, and a resin tape affixed to a boundary portion between the exposed portion of the positive electrode plate and the active material layer are −35 ° to the minimum diameter centering on the core portion of the electrode group A cylindrical battery characterized by being located in an angle range of 35 °.

JP2008095624A 2008-04-02 2008-04-02 Cylindrical cell Pending JP2009252384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095624A JP2009252384A (en) 2008-04-02 2008-04-02 Cylindrical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095624A JP2009252384A (en) 2008-04-02 2008-04-02 Cylindrical cell

Publications (1)

Publication Number Publication Date
JP2009252384A true JP2009252384A (en) 2009-10-29

Family

ID=41312925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095624A Pending JP2009252384A (en) 2008-04-02 2008-04-02 Cylindrical cell

Country Status (1)

Country Link
JP (1) JP2009252384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180748A1 (en) * 2017-03-28 2018-10-04 三洋電機株式会社 Secondary battery using non-aqueous electrolyte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223841A (en) * 1992-11-25 1994-08-12 Hitachi Maxell Ltd Swirl type electrode for battery
JPH09147915A (en) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd Cylindrical nonaqueous electrolyte secondary cell
JPH1126023A (en) * 1997-07-01 1999-01-29 Matsushita Electric Ind Co Ltd Cylindrical battery
JP2000003722A (en) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd Battery and its manufacture
JP2000048797A (en) * 1998-07-29 2000-02-18 Sony Corp Non-aqueous electrolyte secondary battery
JP2003331924A (en) * 1998-07-10 2003-11-21 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2006134763A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223841A (en) * 1992-11-25 1994-08-12 Hitachi Maxell Ltd Swirl type electrode for battery
JPH09147915A (en) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd Cylindrical nonaqueous electrolyte secondary cell
JPH1126023A (en) * 1997-07-01 1999-01-29 Matsushita Electric Ind Co Ltd Cylindrical battery
JP2000003722A (en) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd Battery and its manufacture
JP2003331924A (en) * 1998-07-10 2003-11-21 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2000048797A (en) * 1998-07-29 2000-02-18 Sony Corp Non-aqueous electrolyte secondary battery
JP2006134763A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180748A1 (en) * 2017-03-28 2018-10-04 三洋電機株式会社 Secondary battery using non-aqueous electrolyte
JPWO2018180748A1 (en) * 2017-03-28 2020-02-06 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7035017B2 (en) 2017-03-28 2022-03-14 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7035017B6 (en) 2017-03-28 2022-04-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US11769933B2 (en) 2017-03-28 2023-09-26 Panasonic Energy Co., Ltd. Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
JP5220273B2 (en) Electrode and non-aqueous secondary battery using the same
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP2008234855A (en) Nonaqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2009129721A (en) Non-aqueous secondary battery
WO2017122251A1 (en) Non-aqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP2015082381A (en) Nonaqueous electrolyte secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP7106748B2 (en) Electrodes, batteries and battery packs
JP7064270B2 (en) Non-aqueous electrolyte secondary battery
CN105359301A (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2015129376A1 (en) Rolled electrode set and nonaqueous-electrolyte battery
JP4270904B2 (en) Non-aqueous lithium secondary battery
JP2009252384A (en) Cylindrical cell
JP3624793B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507