JP2009250366A - Check valve - Google Patents

Check valve Download PDF

Info

Publication number
JP2009250366A
JP2009250366A JP2008100073A JP2008100073A JP2009250366A JP 2009250366 A JP2009250366 A JP 2009250366A JP 2008100073 A JP2008100073 A JP 2008100073A JP 2008100073 A JP2008100073 A JP 2008100073A JP 2009250366 A JP2009250366 A JP 2009250366A
Authority
JP
Japan
Prior art keywords
valve
diameter
check valve
valve body
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008100073A
Other languages
Japanese (ja)
Inventor
Mineo Kinoshita
峰夫 木下
Kazuto Toshima
和人 戸嶋
Tadaaki Ikeda
忠顕 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2008100073A priority Critical patent/JP2009250366A/en
Priority to CN2009200030798U priority patent/CN201521684U/en
Publication of JP2009250366A publication Critical patent/JP2009250366A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a check valve easy to be opened and capable of providing a large flow rate in a fully opened state of the valve. <P>SOLUTION: A valve element 3 is inserted between a calve seat member 2 and a stopper 4 in a body joint 1. The valve element 3 is constituted of a disk 31, a cylindrical body 32, a flow straightening protrusion 33 formed into a nearly conical shape, a guide 34 and a flow straightening plate 35. A recessed groove 31b is formed inside a plane seal 31a of the disk 31. The diameter of the cylindrical body 32 is formed smaller than the diameter of a valve port 21 of the valve seat member 2, and the diameter of a recessed groove 31b is formed larger than the diameter of the valve port 21. The pressure of a refrigerant from a lead-in pipe 11 is received by the recessed groove 31b. In a state of opening the valve, a refrigerant from the valve port 21 is straightened by the flow straightening protrusion 33, and the refrigerant is guided to the periphery of the disk 31, and guided backward through a passage between the guides 34. A flow of the refrigerant is straightened to be in parallel with a lead-out pipe 12 by the flow straightening plate 35 between the guides 34. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体の順方向の流れの圧力で弁開状態とし、流体の逆方向の流れの圧力で弁閉状態とする逆止弁に関する。   The present invention relates to a check valve that is opened by pressure of a forward flow of fluid and is closed by pressure of a backward flow of fluid.

従来、蒸気圧縮式冷凍サイクルにおいて、サイクルの回路を構成する要素として逆止弁が多用されている。逆止弁は、流体の順方向の流れによって弁開状態となって流路を形成し、逆方向の流れによって弁閉状態として流路を閉止することを目的とするものであり、このような逆止弁として、例えば実開昭63−37873号公報(特許文献1)に開示されたものがある。   Conventionally, in a vapor compression refrigeration cycle, a check valve is frequently used as an element constituting a circuit of the cycle. The check valve is a valve that is opened by a forward flow of fluid to form a flow path, and is closed by a reverse flow to close the flow path. An example of the check valve is disclosed in Japanese Utility Model Publication No. 63-37873 (Patent Document 1).

この特許文献1のものは、弁体が円板形状の円板部を備え、この円板部はシール面が流体の流れ方向に対して垂直に配置されるため、抗力係数が非常に大きく、低差圧でも弁が開き易いものである。しかしながら、弁の全開時には逆に抗力係数が大きいため、大流量を確保できなくなるという問題がある。   In this Patent Document 1, the valve body includes a disk-shaped disk portion, and the seal surface of the disk portion is arranged perpendicular to the fluid flow direction, so the drag coefficient is very large, The valve is easy to open even at a low differential pressure. However, there is a problem that when the valve is fully opened, the drag coefficient is large, so that a large flow rate cannot be secured.

これを解消するために、例えば特開2001−81651号公報(特許文献2)に開示されているように、弁の先端に突起を設け、乱流の発生を抑制し、流量を確保することが考えられる。
実開昭63−37873号公報 特開2001−81651号公報
In order to solve this problem, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-81651 (Patent Document 2), a protrusion is provided at the tip of the valve to suppress the generation of turbulent flow and ensure the flow rate. Conceivable.
Japanese Utility Model Publication No. 63-37873 JP 2001-81651 A

前記特許文献1のような逆止弁に対して特許文献2のような技術を適用しても、最大流量を確保するという観点からは不十分であり、改良の余地がある。また、逆に、特許文献1の弁体の円板部に特許文献2のような突起を単に設けた形状では、円板形状の場合に比して抗力係数が小さいので低差圧で弁開しにくいという現象が生じる。   Even if a technique such as Patent Document 2 is applied to a check valve such as Patent Document 1, it is insufficient from the viewpoint of ensuring the maximum flow rate, and there is room for improvement. On the contrary, in the shape in which the protrusion of Patent Document 2 is simply provided on the disc portion of the valve body of Patent Document 1, the drag coefficient is smaller than in the case of the disk shape, so the valve is opened with a low differential pressure. The phenomenon that it is difficult to do occurs.

本発明は、上記の問題点に鑑みてなされたもので、低差圧でも弁開しやすく、かつ、大流量を確保できる逆止弁を提供することを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a check valve that can be easily opened even at a low differential pressure and that can secure a large flow rate.

請求項1の逆止弁は、円板部と該円板部の外周より突出させた複数のガイド部とを有する弁体を、パイプ内に設けられた弁座部とストッパ部との間に内挿し、隣接する前記ガイド部間により前記円板部の外周に流体の通路を形成した逆止弁において、前記弁座部のシール面と前記円板部のシール面とが共に平面シール部を有し、かつ、前記円板部の平面シール部の内側に、前記弁座部の弁ポートの直径より径の大なる凹溝が当該円板部と同軸に形成され、該凹溝内に前記弁座部の弁ポートの径よりも径の小なる円柱体が当該円板部の同軸上に立設され、該円柱体の端面に、底面の径が該円柱体の外径と同一の整流用突部が設けられていることを特徴とする。   The check valve according to claim 1 includes a valve body having a disc portion and a plurality of guide portions protruding from the outer periphery of the disc portion between a valve seat portion and a stopper portion provided in the pipe. In a check valve inserted and formed with a fluid passage on the outer periphery of the disk part between adjacent guide parts, the seal surface of the valve seat part and the seal surface of the disk part are both flat seal parts. A concave groove having a diameter larger than the diameter of the valve port of the valve seat portion is formed coaxially with the disk portion inside the flat seal portion of the disk portion, A cylindrical body having a diameter smaller than the diameter of the valve port of the valve seat portion is erected on the same axis of the disk portion, and the diameter of the bottom surface of the cylindrical body is the same as the outer diameter of the cylindrical body. It is characterized in that a projecting portion is provided.

請求項2の逆止弁は、請求項1に記載の逆止弁であって、前記整流用突部は円錐体であり、前記円柱体の高さが、該円錐体の側面の傾斜角度の仮想延長線が前記円板部の外径縁に接するような高さ以上であることを特徴とする。   The check valve according to claim 2 is the check valve according to claim 1, wherein the rectifying projection is a cone, and the height of the cylindrical body is an inclination angle of a side surface of the cone. The imaginary extension line is not less than a height so as to contact the outer diameter edge of the disk portion.

請求項3の逆止弁は、請求項1に記載の逆止弁であって、前記凹溝の内径が、前記弁座部の弁ポートの直径に、前記パイプの前記弁体の位置における内径と前記ガイド部の外径との隙間を足した以上の内径であることを特徴とする。   The check valve according to claim 3 is the check valve according to claim 1, wherein the inner diameter of the concave groove is equal to the diameter of the valve port of the valve seat portion, and the inner diameter of the pipe at the position of the valve body. And an inner diameter larger than a gap between the guide portion and the outer diameter of the guide portion.

請求項1の逆止弁によれば、弁閉状態では、該円柱体の周囲の凹溝の一部が該弁ポートの内側に位置するので、この凹溝により流体の圧力を受けることができ、低差圧でも弁開とすることができる。また、弁全開状態では、円柱体により弁体の平面シール部よりも弁ポート側に前記整流用突部が位置することになり、該整流用突部で整流された流体が円柱体の周囲及び前記通路を介して流れるので、大流量を得ることができる。   According to the check valve of the first aspect, in the valve closed state, a part of the concave groove around the cylindrical body is located inside the valve port, so that the pressure of the fluid can be received by the concave groove. Even with a low differential pressure, the valve can be opened. When the valve is fully open, the rectifying protrusion is positioned closer to the valve port than the flat seal portion of the valve body by the cylinder, and the fluid rectified by the rectifying protrusion is around the cylinder and Since it flows through the passage, a large flow rate can be obtained.

請求項2の逆止弁によれば、請求項1の効果に加えて、円錐体(整流用突部)の側面に倣う流線が円板部の外径縁よりも外側を通る傾向になり、弁全開状態で流体の流れが円板部により阻害される傾向を少なくでき、さらに大流量を得ることができる。   According to the check valve of the second aspect, in addition to the effect of the first aspect, the streamline following the side surface of the cone (rectifying protrusion) tends to pass outside the outer diameter edge of the disk portion. The tendency that the fluid flow is obstructed by the disk portion when the valve is fully opened can be reduced, and a larger flow rate can be obtained.

請求項3の逆止弁によれば、請求項1の効果に加えて、弁体がパイプ内で軸と直交する方向にずれても、そのずれ量は最大でもパイプの前記内径とガイド部の外径との隙間であるので、この最大ずれた状態でも、凹溝の内径縁が弁ポートの内側に入ることがない。したがって、弁座部のシール面と円板部のシール面とが常に平面シール部を構成するので、弁体の平面シール部に弁ポートの縁による凹凸等が生じることがなく、経年変化による漏れを防止することができる。   According to the check valve of the third aspect, in addition to the effect of the first aspect, even if the valve element is displaced in the direction orthogonal to the axis in the pipe, the deviation amount is at most the pipe inner diameter and the guide portion. Since it is a gap with the outer diameter, the inner diameter edge of the concave groove does not enter the inside of the valve port even in this maximum deviation state. Therefore, the sealing surface of the valve seat portion and the sealing surface of the disc portion always constitute a flat sealing portion, so that the flat sealing portion of the valve body does not have irregularities due to the edge of the valve port, and leaks due to secular change. Can be prevented.

次に、本発明の逆止弁の実施形態を図面を参照して説明する。図1は実施形態の逆止弁10の一部断面側面図であり、図1(A) は弁全開状態を示す図、図1(B) は弁閉状態を示す図。図1(C) は図1(B) のA−A断面図である。図2は同逆止弁10の弁体3を示す図であり、図2(A) は斜視図、図2(B) は一部破砕側面図である。図3は同逆止弁10の弁座部材2と弁体3の円板部31の詳細断面図である。   Next, an embodiment of the check valve of the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional side view of a check valve 10 of the embodiment, FIG. 1 (A) is a diagram showing a fully opened state, and FIG. 1 (B) is a diagram showing a valve closed state. FIG. 1C is a cross-sectional view taken along the line AA in FIG. 2A and 2B are views showing the valve body 3 of the check valve 10, wherein FIG. 2A is a perspective view and FIG. 2B is a partially broken side view. FIG. 3 is a detailed sectional view of the valve seat member 2 of the check valve 10 and the disc portion 31 of the valve body 3.

この逆止弁10は、「パイプ」としての本体継手1と、「弁座部」としての弁座部材2及び弁体3を備えている。本体継手1は、円筒形のストレート管の両側を縮管して径の小さな導入管部11と導出管部12を形成するとともに、その中央部に径の大きな弁室13を形成したものである。また、この本体継手1の縮管により導出管部12と弁室13との境界部分にストッパ部4が形成されている。弁座部材2には中央に弁ポート21が形成されており、この弁座部材2は弁室13内で導入管部11側に配置されて、かしめ部1aによりかしめ固着されている。また、弁室13の内面と弁座部材2との間はOリング5により封止されている。そして、弁体3は弁座部材2とストッパ部4との間に挿入配置されている。   The check valve 10 includes a main body joint 1 as a “pipe”, a valve seat member 2 and a valve body 3 as “valve seat portions”. The main body joint 1 is formed by contracting both sides of a cylindrical straight pipe to form a small-diameter introduction pipe portion 11 and a lead-out pipe portion 12 and a large-diameter valve chamber 13 at the center thereof. . Further, a stopper portion 4 is formed at a boundary portion between the outlet tube portion 12 and the valve chamber 13 by the contraction tube of the main body joint 1. A valve port 21 is formed at the center of the valve seat member 2, and the valve seat member 2 is disposed in the valve chamber 13 on the introduction pipe portion 11 side and is fixed by caulking by a caulking portion 1 a. The space between the inner surface of the valve chamber 13 and the valve seat member 2 is sealed with an O-ring 5. The valve body 3 is inserted and disposed between the valve seat member 2 and the stopper portion 4.

図2に示すように、弁体3は、円板状の円板部31、円板部31から弁座部材2側に立設された円柱体32(図2(B) )、この円柱体32の仮想的な端面32aから弁座部材2側に突出した略円錐体状の整流用突部33、円板部31の円柱体32と反対側に形成された3つのガイド部34、及びガイド部34の内側を連結する整流板35とを備えている。また、弁体3は合成樹脂部材であり、上記各部が一体成形されている。ガイド部34は円板部31の外周より突出されており、このガイド部34が弁室13の内周面により摺動案内されることで、弁体3は図1(A) 及び図1(B) の2つの位置間を移動する。   As shown in FIG. 2, the valve body 3 includes a disk-shaped disk portion 31, a cylinder body 32 (FIG. 2B) standing on the valve seat member 2 side from the disk portion 31, and this cylinder body. 32, a substantially conical rectifying projection 33 projecting toward the valve seat member 2 from the virtual end surface 32a, three guide portions 34 formed on the opposite side of the circular plate 32 of the disc portion 31, and a guide And a rectifying plate 35 connecting the inside of the portion 34. Further, the valve body 3 is a synthetic resin member, and the above-described parts are integrally formed. The guide part 34 protrudes from the outer periphery of the disc part 31, and this guide part 34 is slidably guided by the inner peripheral surface of the valve chamber 13, so that the valve body 3 is shown in FIGS. B) Move between the two positions.

以上の構成により、弁体3は、そのガイド部34を弁室13の内周面に摺接し、この弁室13の内周面により弁開閉方向(図1の左右方向)の移動を案内される。導出管部12から冷媒(流体)が流入する場合は、その流体圧力により弁体3は弁座部材2に着座して弁ポート21を閉じる。一方、冷媒の流れが逆になり、導入管部11から冷媒が流入すると、弁ポート21内の冷媒の圧力が弁体3の反対側すなわち弁室13の圧力より高くなる。そして、両圧力の差圧により、弁体3は弁座部材2から離間して弁室13内を移動し、弁体3のガイド部34の端部がストッパ部4に当接し、弁体3は図1(A) の開状態となる。   With the above configuration, the valve body 3 has its guide portion 34 slidably contacted with the inner peripheral surface of the valve chamber 13 and is guided by the inner peripheral surface of the valve chamber 13 in the valve opening / closing direction (left-right direction in FIG. 1). The When refrigerant (fluid) flows from the outlet pipe portion 12, the valve body 3 is seated on the valve seat member 2 by the fluid pressure, and the valve port 21 is closed. On the other hand, when the flow of the refrigerant is reversed and the refrigerant flows in from the introduction pipe portion 11, the pressure of the refrigerant in the valve port 21 becomes higher than the pressure on the opposite side of the valve body 3, that is, the valve chamber 13. Then, due to the differential pressure between the two pressures, the valve body 3 moves away from the valve seat member 2 and moves in the valve chamber 13, and the end of the guide portion 34 of the valve body 3 comes into contact with the stopper portion 4. Is in the open state of FIG.

そして、後述説明するようにこの弁体3が弁座部材2から離間するとき、弁体3は冷媒の流体圧力を十分に受けることができ、容易に離間することができる。また、図1(A) の全開状態では、矢印で示すように、冷媒は弁体3の整流用突部33に倣って円柱体32から離れて円板部31の外側を通り、ガイド部34,34の間の通路を通って導出管部12側に流入する。このとき、冷媒は、円柱体32により円板部31から離れた位置に配置された整流用突部33の作用により弁体3の周囲をなめらかに流れる。さらに、ガイド部34の内側に形成された整流板35により弁体3の後方をなめらかに流れる。   As will be described later, when the valve body 3 is separated from the valve seat member 2, the valve body 3 can sufficiently receive the fluid pressure of the refrigerant and can be easily separated. In the fully opened state of FIG. 1 (A), as indicated by the arrow, the refrigerant follows the rectifying projection 33 of the valve body 3, moves away from the cylindrical body 32, passes the outside of the disk portion 31, and passes through the guide portion 34. , 34 flows into the outlet pipe section 12 side. At this time, the refrigerant flows smoothly around the valve body 3 by the action of the rectifying projection 33 disposed at a position away from the disk portion 31 by the cylindrical body 32. Furthermore, it flows smoothly behind the valve body 3 by the current plate 35 formed inside the guide portion 34.

図3に示すように、弁座部材2には弁ポート21の開口の周囲に平面シール部2aが形成されている。また、円板部31の弁座部材2側の面は略平面であり、その面の外周側にはリング状の平面シール部31aが形成されている。さらに、平面シール部31aの内側に、僅かに窪んだ凹溝31bが形成されており、この凹溝31b内に前記円柱体32が立設されている。そして、平面シール部31a、凹溝31b及び円柱体32は、円板部31の中心軸L1と同軸になっている。なお、弁体3が弁座部材2に着座すると、円柱体32(及び整流用突部33)が弁ポート21内に挿入した状態で平面シール部31aが弁座部材2の平面シール部2aに当接し、弁ポート21が閉状態(弁閉状態)となる。   As shown in FIG. 3, the valve seat member 2 is formed with a flat seal portion 2 a around the opening of the valve port 21. Further, the surface of the disc portion 31 on the valve seat member 2 side is substantially flat, and a ring-shaped flat seal portion 31a is formed on the outer peripheral side of the surface. Furthermore, a slightly recessed groove 31b is formed inside the flat seal portion 31a, and the cylindrical body 32 is erected in the groove 31b. The planar seal portion 31a, the recessed groove 31b, and the cylindrical body 32 are coaxial with the central axis L1 of the disc portion 31. When the valve body 3 is seated on the valve seat member 2, the planar seal portion 31 a becomes the planar seal portion 2 a of the valve seat member 2 with the cylindrical body 32 (and the rectifying projection 33) inserted into the valve port 21. The valve port 21 is in a closed state (valve closed state).

ここで、弁室13(本体継手1の弁体3が配置される空間)の内径とガイド部34の外径との隙間、すなわち弁体3が中心軸Lから最大ずれた場合(図3では左側にずれた状態)の弁室13とガイド部34の隙間を(d)とすると、凹溝31bの内径(D1)は、弁座部2の弁ポート21の直径(D2)に隙間(d)を足した値(D2+d)よりも大きくなっている。したがって、弁体3が弁室13内で軸Lから上記隙間(d)分移動しても、円板部31の平面シール部31aは弁座部材2の平面シール部2aの範囲から外れることがない。したがって、弁体3側の平面シール部31aが弁ポート21の開口の縁に当接することはなく、長期使用していてもこの平面シール部31aに凹凸等が形成されることなく、弁閉状態を確実に保って漏れ等を生じることがない。   Here, a gap between the inner diameter of the valve chamber 13 (the space in which the valve body 3 of the main body joint 1 is disposed) and the outer diameter of the guide portion 34, that is, when the valve body 3 is maximally displaced from the central axis L (in FIG. 3). When the gap between the valve chamber 13 and the guide portion 34 in a state shifted to the left side is (d), the inner diameter (D1) of the concave groove 31b is the gap (d2) to the diameter (D2) of the valve port 21 of the valve seat portion 2. ) Is added (D2 + d). Therefore, even if the valve body 3 moves from the axis L within the valve chamber 13 by the gap (d), the flat seal portion 31a of the disc portion 31 may be out of the range of the flat seal portion 2a of the valve seat member 2. Absent. Therefore, the flat seal portion 31a on the valve body 3 side does not abut against the edge of the opening of the valve port 21, and even when used for a long time, the flat seal portion 31a is not formed with irregularities and the like, and the valve is closed. It is ensured that no leakage occurs.

また、弁閉状態で、円柱体32と弁ポート21との間には十分な間隙があり、さらに、この弁ポート21の開口部分に対して凹溝31bが対向しており、この凹溝31bの内側と整流用突部33は弁ポート21の開口断面積分の圧力を十分に受ける。したがって、弁体3は弁座部材2から容易に離間し、弁が開き易くなっている。   Further, in the valve closed state, there is a sufficient gap between the cylindrical body 32 and the valve port 21, and the concave groove 31b is opposed to the opening portion of the valve port 21, and the concave groove 31b And the rectifying projection 33 sufficiently receive the pressure of the opening cross-section integral of the valve port 21. Therefore, the valve body 3 is easily separated from the valve seat member 2 so that the valve is easily opened.

図4は実施形態の弁体3と従来の弁体との構造に違いによる弁の開き易さ(離間し易さ)を比較して説明する図であり、図4(B) は実施形態の弁体3、図4(A) 及び(C) は従来の例である。図4(C) の弁体7は弁ポート21内にニードル部7aが挿入されるものであり、冷媒の流れ(矢印)はニードル部7aの斜面に倣って弁ポート21の内壁の方に流れている。これに対して、図4(B) の実施形態の弁体3では、冷媒の流れは整流用突部33から円柱体32と弁ポート21の内壁との間に流れ、さらに凹溝31b内に流れる。そして、この凹溝31bが主に冷媒の圧力を受けることで、図4(C) の場合よりも弁体が開き易くなる。なお、図4(A) の弁体6は弁ポート21に対し平面部6aを対向させたものであるが、この場合には冷媒の流れを平面部6aの全面で受けるので実施形態と同等やそれよりさらに開き易くなる。すなわち、図4(A) 、図4(B) 及び図4(C) のそれぞれの開き易さを例えば開き始めの冷媒圧力をPA 、PB 、PC とすると、
A ≦PB <PC となる。
FIG. 4 is a diagram for explaining the ease of opening (easy separation) of the valve due to the difference in structure between the valve body 3 of the embodiment and the conventional valve body, and FIG. The valve body 3 and FIGS. 4A and 4C are conventional examples. In the valve body 7 in FIG. 4C, the needle portion 7a is inserted into the valve port 21, and the refrigerant flow (arrow) flows toward the inner wall of the valve port 21 along the slope of the needle portion 7a. ing. On the other hand, in the valve body 3 of the embodiment of FIG. 4B, the refrigerant flows from the rectifying projection 33 between the cylindrical body 32 and the inner wall of the valve port 21, and further into the concave groove 31b. Flowing. And since this concave groove 31b mainly receives the pressure of the refrigerant, the valve body is easier to open than in the case of FIG. The valve body 6 in FIG. 4 (A) has the flat surface portion 6a opposed to the valve port 21. In this case, since the flow of the refrigerant is received by the entire surface of the flat surface portion 6a, It becomes easier to open than that. That is, FIG. 4 (A), the FIG. 4 (B) and FIG. 4 (C) of the respective opening of the easiness for example start the refrigerant pressure P A, P B, when the P C,
P A ≦ P B <P C.

図5は実施形態の弁体3と従来の弁体との構造に違いによる冷媒の流れ方を比較して説明する図であり、図5(C) は実施形態の弁体3、図5(A) 及び(B) は前記図4(A) 及び図4(C) と同様な従来の例である。図5(A) の弁体6は冷媒の流れ(矢印)に対し平面部6aが正面で対向するので、この場合には冷媒の流れの障害となりやすい。また、図5(B) の弁体7では、冷媒の流れはニードル部7aの斜面に倣って弁体7の外周方向に流れ、図5(A) の場合よりはなめらかに流れる。   FIG. 5 is a diagram for explaining the flow of refrigerant according to the difference in structure between the valve body 3 of the embodiment and the conventional valve body, and FIG. 5 (C) shows the valve body 3 of the embodiment and FIG. A) and (B) are conventional examples similar to those shown in FIGS. 4 (A) and 4 (C). In the valve body 6 in FIG. 5A, the flat portion 6a is opposed to the refrigerant flow (arrow) in the front, and in this case, the refrigerant flow tends to be an obstacle. In the valve body 7 in FIG. 5 (B), the refrigerant flows in the outer peripheral direction of the valve body 7 along the slope of the needle portion 7a, and flows more smoothly than in the case of FIG. 5 (A).

これに対して、図5(C) の実施形態の弁体3では次のように作用する。図6は整流用突部33と円板部31との位置関係を説明する図である。整流用突部33は円錐体の形状で、その側面33aの仮想的な延長線pが円板部31の外径縁311に接するような高さ以上となっている。すなわち、整流用突部33は、円柱体32により円板部31から離れた位置に配置されている。このため、図5(C) に示すように、冷媒の流れは、整流用突部33に倣って流線をとり、この整流用突部33の作用でできる流線により、冷媒の流れは円板部31の外周側を迂回するような流れとなり、この弁体3の周囲をなめらかに流れる。すなわち、図5(A) 、図5(B) 及び図5(C) のそれぞれの流量係数をQA 、QB 、QC とすると、
A <QB <QC となる。
On the other hand, the valve body 3 of the embodiment of FIG. 5 (C) operates as follows. FIG. 6 is a diagram for explaining the positional relationship between the rectifying projection 33 and the disc portion 31. The rectifying protrusion 33 has a conical shape, and is not less than a height at which a virtual extension line p of the side surface 33 a contacts the outer diameter edge 311 of the disk portion 31. That is, the rectifying projection 33 is disposed at a position away from the disk portion 31 by the cylindrical body 32. Therefore, as shown in FIG. 5C, the flow of the refrigerant takes a stream line following the rectifying projection 33, and the flow of the refrigerant is circular due to the stream line generated by the action of the rectifying projection 33. The flow bypasses the outer peripheral side of the plate portion 31 and flows smoothly around the valve body 3. That is, if the flow coefficients in FIGS. 5 (A), 5 (B) and 5 (C) are Q A , Q B and Q C ,
Q A <Q B becomes the <Q C.

また、冷媒がガイド部34,34の間の通路を流れるとき、整流板35に沿って弁体3の後方に流れる。このような流れは3つの通路で生じ、それぞれの流れが弁体3の後方の部分において、導出管部12と略平行な方向を向いてまとまって導出管部12を流れていく。このような冷媒の流れにより大流量が得られる。   Further, when the refrigerant flows through the passage between the guide portions 34, 34, the refrigerant flows along the rectifying plate 35 to the rear of the valve body 3. Such a flow is generated in three passages, and each flow is gathered in a direction substantially parallel to the outlet pipe portion 12 in the rear part of the valve body 3 and flows through the outlet pipe portion 12. A large flow rate is obtained by the flow of the refrigerant.

図7は実施形態の弁体3を用いた逆止弁10と、前記図5(A) のプレート形状の弁体6及び図5(B) の先端ニードル形状の弁体7を用いた逆止弁の流量係数の計測試験例を示す図である。なお、この流量係数Cvは、「JIS規格B2005−2−3に記載の工業プロセス用調整弁−第2部:流れの容量−第3節:試験手順」に規定された試験装置にて試験した実施例である。図7(A) は弁開き始め付近の流量係数であり、図(B) は全開時の流量係数である。また、流量係数Cvは、差圧が1psiのとき、バルブを流れる40〜100°Fの水が1分間に流れるU.S.Galの数として表されたもので、周知の係数である。   FIG. 7 shows a check valve 10 using the valve body 3 of the embodiment, a check valve 10 using the plate-shaped valve body 6 shown in FIG. 5 (A) and the tip needle-shaped valve body 7 shown in FIG. 5 (B). It is a figure which shows the example of a measurement test of the flow coefficient of a valve. In addition, this flow coefficient Cv was tested with the test apparatus prescribed | regulated to "Regulation valve for industrial processes as described in JIS standard B2005-2-3-Part 2: Flow capacity-Section 3: Test procedure." This is an example. Fig. 7 (A) shows the flow coefficient near the beginning of valve opening, and Fig. 7 (B) shows the flow coefficient when fully opened. In addition, the flow coefficient Cv is the U.S. flow rate of 40 to 100 ° F. water flowing through the valve per minute when the differential pressure is 1 psi. S. It is expressed as the number of Gal and is a well-known coefficient.

図7(A) の開き始め付近では、弁体が全開していないので、微少に弁体が弁座部材から離れた状態における流量係数(Cv値)であり、一次側圧力(導入管部11側圧力)に対し、流量係数が大きい方が弁開し易いことを表している。図7(A) のように、実施形態の弁体3はプレート形状の弁体6と略同等な開き易さを示している。また、図7(B) の全開流量の場合には、弁体3は全開しているので一次側圧力が変動しても、流量係数自体は変動しないものとなる。そして、実施形態の逆止弁10が従来のものよりも大流量となることが解る。   In the vicinity of the beginning of opening in FIG. 7 (A), since the valve body is not fully opened, it is a flow coefficient (Cv value) in a state where the valve body is slightly separated from the valve seat member, and the primary side pressure (introduction pipe portion 11). The larger the flow coefficient with respect to the side pressure), the easier the valve opens. As shown in FIG. 7 (A), the valve body 3 of the embodiment shows an easiness of opening that is substantially equivalent to the plate-shaped valve body 6. Further, in the case of the fully open flow rate in FIG. 7B, the valve body 3 is fully open, so even if the primary side pressure changes, the flow coefficient itself does not change. And it turns out that the non-return valve 10 of embodiment becomes larger flow volume than the conventional one.

図8は弁体の他の実施形態を示す図である。図8(A) は整流用突部33が円錐体の形状をしたものである。図8(B) は整流用突部33が半球形状をしたものである。図8(C) は整流用突部33が尖塔形状をしたものである。いずれの場合も、整流用突部33の側面の仮想的な延長線pが円板部31の外径縁311に接するような高さ以上となっている。これにより、矢印で示すように、冷媒は弁体3の整流用突部33に倣って円柱体32から離れて円板部31の外側を通るようになり、大流量が得られる。   FIG. 8 is a view showing another embodiment of the valve body. In FIG. 8A, the rectifying projection 33 has a conical shape. FIG. 8B shows the rectifying projection 33 having a hemispherical shape. FIG. 8C shows the rectifying projection 33 having a spire shape. In any case, the height is such that the virtual extension line p on the side surface of the rectifying projection 33 is in contact with the outer diameter edge 311 of the disk portion 31. As a result, as indicated by the arrows, the refrigerant moves away from the cylindrical body 32 along the rectifying projection 33 of the valve body 3 and passes outside the disk portion 31 to obtain a large flow rate.

図9は弁体のさらに他の実施形態を示す図であり、図9(A) は3つのガイド部34,34,34が一体に形成され、前記整流板を厚くした形状のものである。図9(B) は前記整流板35を無くしたものである。なお、図9(B) のように、整流板35がない場合には、このガイド部34の内側で3方の流れが互いに干渉して渦等が生じ易いので、前記実施形態のように整流板35が有る場合よりも大流量を得るという点では不利である。ただし、弁体としては、円板部31、円柱体32、整流用突部33、平面シール部31a、凹溝31bを備えていれば、整流板35がなくても、これらの部材により弁体の離れやすさや大流量が得られることは前述の通りである。   FIG. 9 is a view showing still another embodiment of the valve body, and FIG. 9A shows a shape in which three guide portions 34, 34, 34 are integrally formed and the current plate is thickened. FIG. 9 (B) is the one in which the rectifying plate 35 is eliminated. As shown in FIG. 9B, when there is no rectifying plate 35, the three flows inside the guide portion 34 interfere with each other and vortices are likely to occur. It is disadvantageous in that a larger flow rate is obtained than when the plate 35 is provided. However, as a valve body, if it has the disc part 31, the cylindrical body 32, the rectification | straightening protrusion 33, the plane seal part 31a, and the ditch | groove 31b, even if it does not have the rectification | straightening board 35, these members will use the valve body As described above, the ease of separation and the large flow rate can be obtained.

本発明の実施形態の逆止弁の一部断面側面図である。It is a partial cross section side view of the check valve of the embodiment of the present invention. 同逆止弁の弁体を示す図でである。It is a figure which shows the valve body of the check valve. 同逆止弁の弁座部材と弁体の円板部の詳細断面図である。It is a detailed sectional view of the valve seat member of the check valve and the disc part of the valve body. 実施形態の逆止弁と従来の逆止弁の弁体の構造に違いによる弁の開き易さを比較して説明する図である。It is a figure which compares and demonstrates the ease of opening of the valve by a difference in the structure of the valve body of the check valve of embodiment, and the conventional check valve. 実施形態の逆止弁と従来の逆止弁の弁体の構造に違いによる冷媒の流れ方を比較して説明する図である。It is a figure which compares and demonstrates the way of the refrigerant | coolant by the difference in the structure of the valve body of the check valve of embodiment, and the conventional check valve. 実施形態の整流用突部と円板部との位置関係を説明する図である。It is a figure explaining the positional relationship of the protrusion for rectification | straightening of an embodiment, and a disc part. 実施形態の弁体を用いた逆止弁と従来の逆止弁の流量係数の計測試験例を示す図である。It is a figure which shows the measurement test example of the flow coefficient of the non-return valve using the valve body of embodiment, and the conventional non-return valve. 弁体の他の実施形態を示す図である。It is a figure which shows other embodiment of a valve body. 弁体のさらに他の実施形態を示す図である。It is a figure which shows other embodiment of a valve body.

符号の説明Explanation of symbols

1 本体継手(パイプ)
2 弁座部材(弁座部)
3 弁体
4 ストッパ部
21 弁ポート
31 円板部
31a 平面シール部
31b 凹溝
32 円柱体
33 整流用突部
34 ガイド部
35 整流板
L 中心軸
1 Body joint (pipe)
2 Valve seat member (valve seat)
3 Valve body 4 Stopper portion 21 Valve port 31 Disc portion 31a Flat seal portion 31b Concave groove 32 Cylindrical body 33 Rectification projection 34 Guide portion 35 Rectification plate L Central axis

Claims (3)

円板部と該円板部の外周より突出させた複数のガイド部とを有する弁体を、パイプ内に設けられた弁座部とストッパ部との間に内挿し、隣接する前記ガイド部間により前記円板部の外周に流体の通路を形成した逆止弁において、
前記弁座部のシール面と前記円板部のシール面とが共に平面シール部を有し、かつ、前記円板部の平面シール部の内側に、前記弁座部の弁ポートの直径より径の大なる凹溝が当該円板部と同軸に形成され、該凹溝内に前記弁座部の弁ポートの径よりも径の小なる円柱体が当該円板部の同軸上に立設され、該円柱体の端面に、底面の径が該円柱体の外径と同一の整流用突部が設けられている
ことを特徴とする逆止弁。
A valve body having a disc part and a plurality of guide parts protruding from the outer periphery of the disc part is inserted between a valve seat part provided in the pipe and a stopper part, and between the adjacent guide parts In the check valve in which a fluid passage is formed on the outer periphery of the disc part by:
Both the seal surface of the valve seat portion and the seal surface of the disc portion have a flat seal portion, and the inner diameter of the flat seal portion of the disc portion is larger than the diameter of the valve port of the valve seat portion. Is formed coaxially with the disk portion, and a cylindrical body having a diameter smaller than the diameter of the valve port of the valve seat portion is erected coaxially with the disk portion in the groove. A check valve characterized in that a rectifying protrusion having the same bottom diameter as the outer diameter of the cylindrical body is provided on the end face of the cylindrical body.
請求項1に記載の逆止弁であって、
前記整流用突部は略円錐体であり、前記円柱体の高さが、該円錐体の側面の傾斜角度の仮想延長線が前記円板部の外径縁に接するような高さ以上であることを特徴とする逆止弁。
The check valve according to claim 1,
The rectifying protrusion is substantially a cone, and the height of the cylindrical body is equal to or higher than a height at which a virtual extension line of the inclination angle of the side surface of the cone contacts the outer diameter edge of the disk portion. A check valve characterized by that.
請求項1に記載の逆止弁であって、
前記凹溝の内径が、前記弁座部の弁ポートの直径に、前記パイプの前記弁体の位置における内径と前記ガイド部の外径との隙間を足した以上の内径である
ことを特徴とする逆止弁。
The check valve according to claim 1,
The inner diameter of the concave groove is equal to or larger than the diameter of the valve port of the valve seat portion plus a gap between the inner diameter of the pipe at the valve body position and the outer diameter of the guide portion. Check valve.
JP2008100073A 2008-04-08 2008-04-08 Check valve Withdrawn JP2009250366A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008100073A JP2009250366A (en) 2008-04-08 2008-04-08 Check valve
CN2009200030798U CN201521684U (en) 2008-04-08 2009-03-31 Check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100073A JP2009250366A (en) 2008-04-08 2008-04-08 Check valve

Publications (1)

Publication Number Publication Date
JP2009250366A true JP2009250366A (en) 2009-10-29

Family

ID=41311274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100073A Withdrawn JP2009250366A (en) 2008-04-08 2008-04-08 Check valve

Country Status (2)

Country Link
JP (1) JP2009250366A (en)
CN (1) CN201521684U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234754A (en) * 2012-05-02 2013-11-21 Saginomiya Seisakusho Inc Check valve
JP2016151316A (en) * 2015-02-17 2016-08-22 株式会社不二工機 Flow regulating valve
CN108799567A (en) * 2018-08-21 2018-11-13 上海银轮热交换系统有限公司 Built-in check valve
KR20220002470A (en) * 2019-06-13 2022-01-06 제지앙 둔안 아트피셜 인바이런먼트 컴퍼니 리미티드 Valve silencer and electronic expansion valve thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107035897A (en) * 2017-05-18 2017-08-11 长沙执先智量科技股份有限公司 A kind of filling pin of band without dead angle check valve
CN107023700A (en) * 2017-06-16 2017-08-08 芜湖捷和科技有限公司 It is a kind of to prevent the car-valve of abrasion deformation
CN111577902A (en) * 2019-02-18 2020-08-25 浙江盾安禾田金属有限公司 Valve body assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234754A (en) * 2012-05-02 2013-11-21 Saginomiya Seisakusho Inc Check valve
JP2016151316A (en) * 2015-02-17 2016-08-22 株式会社不二工機 Flow regulating valve
CN108799567A (en) * 2018-08-21 2018-11-13 上海银轮热交换系统有限公司 Built-in check valve
KR20220002470A (en) * 2019-06-13 2022-01-06 제지앙 둔안 아트피셜 인바이런먼트 컴퍼니 리미티드 Valve silencer and electronic expansion valve thereof
KR102630724B1 (en) * 2019-06-13 2024-01-29 제지앙 둔안 아트피셜 인바이런먼트 컴퍼니 리미티드 Valve silencer and its electronic expansion valve

Also Published As

Publication number Publication date
CN201521684U (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP2009250366A (en) Check valve
JP5153349B2 (en) 3-way ball valve
KR101964948B1 (en) Non-return valve
US7143961B1 (en) Control system for changing water flow between two shower heads
JP2010138927A (en) Check valve
RU2013113721A (en) GRAVITY VALVE
WO2007046379A1 (en) Cage valve
JP6041298B2 (en) Ball valve
TWI698607B (en) Gate valve
JP4950265B2 (en) Low noise rotary valve
JP5648036B2 (en) Pilot operated solenoid valve
JP5651730B2 (en) Check valve
CN218267295U (en) Electronic expansion valve
WO2023173905A1 (en) Stop valve and refrigeration system thereof
JP4563770B2 (en) Low noise rotary valve
JP2009041701A (en) Caulking structure and check valve
WO2019148855A1 (en) Compressor
JP4755483B2 (en) Diaphragm valve
EP3569902B1 (en) Flow channel with an arcuate segment
JP5658194B2 (en) solenoid valve
JP3623708B2 (en) Butterfly valve seat ring
JP2005036963A (en) Valve core
JP5369136B2 (en) Valve seal structure
JP2009002498A (en) Expansion joint
JP7332396B2 (en) one way valve

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705