JP2009250364A - Method for manufacturing of half-finished product for forming resin rotating body, method for manufacturing of resin rotating body, and resin gear - Google Patents

Method for manufacturing of half-finished product for forming resin rotating body, method for manufacturing of resin rotating body, and resin gear Download PDF

Info

Publication number
JP2009250364A
JP2009250364A JP2008099987A JP2008099987A JP2009250364A JP 2009250364 A JP2009250364 A JP 2009250364A JP 2008099987 A JP2008099987 A JP 2008099987A JP 2008099987 A JP2008099987 A JP 2008099987A JP 2009250364 A JP2009250364 A JP 2009250364A
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
bush
rotating body
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008099987A
Other languages
Japanese (ja)
Other versions
JP5062009B2 (en
Inventor
Masaya Ozawa
昌也 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008099987A priority Critical patent/JP5062009B2/en
Publication of JP2009250364A publication Critical patent/JP2009250364A/en
Application granted granted Critical
Publication of JP5062009B2 publication Critical patent/JP5062009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a highly reliable resin rotating body with good workability, wherein bonding strength between rotation preventing parts provided on the outer periphery of a metal bush and a reinforcement fiber base material is improved even if only one reinforcement fiber base material is used. <P>SOLUTION: The method for manufacturing includes a first step of forming a reinforced fiber accumulation body 8 surrounding the outer periphery of the bush 2 by accumulating reinforced fiber around the outer periphery of the bush 2 by a papermaking method, and a second step of compressing the reinforced fiber accumulation body 8 in the axial direction of a rotating shaft so as to form the reinforcement fiber base material 5. The first step and the second step are continuously performed within the same device 7 containing the bush and the reinforcement resin accumulation body therein. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、樹脂製回転体成形用半加工品の製造方法に関するものであり、また本発明は樹脂製回転体の製造方法に関するものである。さらに、樹脂製歯車に関するものである。   The present invention relates to a method for manufacturing a semi-finished product for molding a resin rotating body, and the present invention relates to a method for manufacturing a resin rotating body. Furthermore, the present invention relates to a resin gear.

補強用繊維基材を用いた樹脂製回転体は耐久性能に優れ、車輌用部品、産業用部品等に用いられる樹脂製歯車などの樹脂製回転体として好適である。樹脂製歯車を成形するための補強用繊維基材として、筒状に織られた又は編まれた筒状体を端部より裏返しながら巻き込みドーナツ状に形成した補強用繊維基材が特許文献1に記載されている。特許文献1には、当該補強用繊維基材に樹脂を含浸して歯部を形成した樹脂製歯車も記載されている。しかしこの従来の技術では、補強用繊維基材と金属製ブッシュに設けた抜け止めとの結合強度を向上させるために、成形金型内で2つの補強用繊維基材を金属製ブッシュを間に介して2段に重ね、金属製ブッシュの抜け止めを図っている(特許文献1の段落[0013]〜[0015])。
また、熱硬化性樹脂と補強繊維を主成分とする抄造シートをプレス抜きした抄造紙シート素形体を複数枚積み重ねて、成形金型内で加熱加圧成形する樹脂製歯車の製造法が特許文献2に記載されている。
A resin rotating body using a reinforcing fiber base is excellent in durability and is suitable as a resin rotating body such as a resin gear used for vehicle parts, industrial parts and the like. As a reinforcing fiber base material for molding a resin gear, Patent Document 1 discloses a reinforcing fiber base material that is formed into a doughnut shape while turning a tubular body woven or knitted into a tubular shape while turning it over from the end. Are listed. Patent Document 1 also describes a resin gear in which the reinforcing fiber base material is impregnated with resin to form teeth. However, in this conventional technique, in order to improve the bonding strength between the reinforcing fiber base and the stopper provided on the metal bush, two reinforcing fiber bases are placed between the metal bushes in the molding die. In order to prevent the metal bush from coming off, the two layers are stacked (paragraphs [0013] to [0015] of Patent Document 1).
Patent Document 2 discloses a method for manufacturing a resin gear in which a plurality of paper-making paper sheet bodies obtained by pressing a paper-making sheet mainly composed of a thermosetting resin and a reinforcing fiber are stacked and heated and pressed in a molding die. 2.

これら樹脂製歯車は、2つの補強用繊維基材の重ね合わせ界面や抄造シート素形体の積層界面に、繊維の絡み合いが殆どなく、使用用途によっては、積層面で剥離が発生しやすいという心配がある。また、補強用繊維基材と金属製ブッシュとの結合強度が不足する心配がある。これらのことから、使用用途によっては樹脂製歯車の耐久性が不足する心配がある。   These resin gears have little fiber entanglement at the overlapping interface of the two reinforcing fiber bases or the lamination interface of the paper sheet body, and depending on the intended use, there is a concern that peeling may easily occur on the laminated surface. is there. Further, there is a concern that the bonding strength between the reinforcing fiber base and the metal bush is insufficient. For these reasons, depending on the intended use, there is a concern that the durability of the resin gear is insufficient.

これらの問題解決のために、補強繊維を用いて抄造法による金型で集積体を作ることも提案された。特許文献3には補強繊維と熱硬化性樹脂の混合スラリーを、透水性金型内で加圧ないしは減圧脱水して集積体を得る製造法が開示されている。しかし、水に分散できる樹脂は流動性が低く、樹脂と繊維界面での濡れが不充分なために実用に耐える耐久性が得られない。   In order to solve these problems, it has also been proposed to make an aggregate using a papermaking mold using reinforcing fibers. Patent Document 3 discloses a production method in which a mixed slurry of reinforcing fibers and thermosetting resin is pressurized or dehydrated in a water-permeable mold to obtain an aggregate. However, a resin that can be dispersed in water has low fluidity and insufficient wetting at the interface between the resin and the fiber, so that durability that can withstand practical use cannot be obtained.

また、特許文献4には流体流出口を有する成型金型で繊維の充填、さらに樹脂注入も同一の金型で行って加熱加圧をして繊維強化樹脂複合体を形成する方法が開示されている。しかし、この方法では樹脂製回転体の中央部に金属製ブッシュを配置することが難しく、また、注入した樹脂が金網などからなる成型金型全体に洩れて硬化後に成型物を取り出すことが容易にはできない上に、成型金型は目詰まりするために、回数を重ねての使用ができなくなる難点がある。   Patent Document 4 discloses a method of forming a fiber reinforced resin composite by filling a fiber with a molding die having a fluid outlet and further performing resin injection with the same die and heating and pressing. Yes. However, with this method, it is difficult to place a metal bush at the center of the resin rotating body, and the injected resin leaks into the entire molding die made of a metal mesh or the like, and the molded product can be easily taken out after curing. In addition, since the mold is clogged, there is a problem that it cannot be used repeatedly.

さらに、特許文献5には抄造法により得られる円筒状に継ぎ目なく形成された補強用繊維基材を成形金型内で加熱加圧成形する樹脂製歯車の製造法が開示されている。しかし、特許文献5においても、補強用繊維基材と金属製ブッシュとの結合強度を向上させる方法については、一切開示されていない。   Furthermore, Patent Document 5 discloses a method for producing a resin gear, in which a reinforcing fiber base material formed seamlessly in a cylindrical shape obtained by a papermaking method is heated and pressed in a molding die. However, Patent Document 5 does not disclose any method for improving the bonding strength between the reinforcing fiber base and the metal bush.

特開2001−295913号公報JP 2001-295913 A 特開平11−227061号公報JP-A-11-227061 特開2001−1413号公報Japanese Patent Laid-Open No. 2001-1413 特開2005−96173号公報JP 2005-96173 A 特開2007−138146号公報JP 2007-138146 A

中央部に金属製ブッシュを配置した樹脂製回転体において、金属製ブッシュの外周部に設けた回り止め部に補強繊維を充填させるために、金属製ブッシュを上下より2つのリング状補強用繊維基材で挟み込み、回り止めに繊維を喰い込ませて充填させる方法は既知の技術である(特許文献1)。しかし、かかる方法では補強用繊維基材の重ね合わせ界面での繊維の絡みがないために、使用用途によっては界面剥離による耐久性能が低下する心配がある。界面剥離の問題は、1個の補強用繊維基材を使用することにより解決されるが、金属製ブッシュに設けた回り止め部を挟み込むことができないために、回り止め部に繊維を喰い込ませた樹脂製回転体を作製することができなかった。   In the resin rotating body in which the metal bush is arranged at the center, the metal bush is made up of two ring-shaped reinforcing fiber bases from above and below in order to fill the anti-rotation portion provided on the outer periphery of the metal bush with the reinforcing fiber. A method of sandwiching with a material and filling a fiber with a rotation stopper is a known technique (Patent Document 1). However, in this method, since there is no entanglement of fibers at the overlapping interface of the reinforcing fiber base material, there is a concern that the durability performance due to interfacial peeling may be lowered depending on the intended use. The problem of interfacial delamination can be solved by using a single reinforcing fiber substrate. However, since the anti-rotation part provided on the metal bush cannot be sandwiched, the fiber is caught in the anti-rotation part. A resin rotating body could not be produced.

この対策として、1個の補強用繊維基材を使用し、かつ回り止め部に繊維を喰い込ませた樹脂製回転体を作製するために、円筒形状に抄造可能な抄造装置内に金属製ブッシュを配置した後、金属製ブッシュの外周部に補強繊維を集積させる方法が考えられる。しかし、抄造後の補強用繊維基材は非常に嵩高いうえに強度が弱い(型崩れしやすい)ために、金属製ブッシュと一体化した状態を保持したまま抄造装置から取り出したり、加熱加圧成形するために成形金型に配置したりすることが難しいという問題がある。また前記抄造の際、上方から補強繊維を分散させたスラリーを投入し補強繊維を集積させるために、回り止め部自体が障害となり、回り止め部の下側に補強繊維を充填することが難しいという問題がある。さらに、回り止め部への補強繊維の喰い込みをより強固にするために圧縮操作を行う際、上側もしくは下側からの一方向のみから行うために、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができないという問題がある。   As a countermeasure against this, a metal bush is used in a paper making apparatus that can make paper into a cylindrical shape in order to produce a resin rotating body that uses a single reinforcing fiber base material and that has a fiber encroached into a detent. A method of collecting reinforcing fibers on the outer peripheral portion of the metal bush after the placement of the metal bush is conceivable. However, the reinforcing fiber base material after paper making is very bulky and weak in strength (easily loses its shape), so it can be taken out from the paper making apparatus while being integrated with the metal bush, or heated and pressed. There is a problem that it is difficult to arrange in a molding die for molding. In addition, when making the paper, since the slurry in which the reinforcing fibers are dispersed is added from above and the reinforcing fibers are accumulated, the detent portion itself becomes an obstacle, and it is difficult to fill the reinforcing fibers under the detent portion. There's a problem. Furthermore, when performing the compression operation in order to make the reinforcement fiber bite into the detent part more firmly, in order to perform from only one direction from the upper side or the lower side, the upper and lower reinforcement fibers of the detent part There is a problem that it cannot be compressed so that the density is uniform.

本発明が解決しようとする第1の課題は、基材の重ね合わせ界面のない1つの補強用繊維基材を用いた場合であっても、金属製ブッシュの外周部に設けた回り止め部と補強用繊維基材の結合強度を向上させた、信頼性の高い樹脂製回転体成形用半加工品または樹脂製回転体を作業性よく製造することである。また、本発明が解決しようとする第2の課題は、回り止め部の上側および下側の補強繊維密度を均等にした樹脂製回転体成形用半加工品または樹脂製回転体を製造することである。   The first problem to be solved by the present invention is that a detent provided on the outer periphery of a metal bush is used even when a single reinforcing fiber substrate having no overlapping interface is used. This is to manufacture a highly reliable resin-made rotating body half-processed product or resin-made rotating body with improved workability, in which the bonding strength of the reinforcing fiber base material is improved. Further, the second problem to be solved by the present invention is to manufacture a resin-made rotating body half-processed product or a resin-made rotating body in which the upper and lower reinforcing fiber densities of the anti-rotation portion are made uniform. is there.

本発明が改良の対象とする樹脂製回転体成形用半加工品の製造方法では、まず外周部に1以上の回り止め部が形成されて回転軸を中心にして回転するブッシュを用意するステップを実施する。次に、ブッシュの外周部に、補強繊維によって形成され且つ1以上の回り止め部を囲むように嵌った状態で配置された補強用繊維基材を形成するステップを実施する。   In the method for manufacturing a resin-made rotating body half-finished product to be improved by the present invention, first, a step of preparing a bush that has one or more anti-rotation portions formed on the outer peripheral portion and rotates around the rotation axis is prepared. carry out. Next, a step of forming a reinforcing fiber base material, which is formed of reinforcing fibers and arranged so as to surround one or more detents on the outer periphery of the bush, is performed.

本発明では、補強用繊維基材を形成するステップを次の二つのステップにより構成する。第1のステップでは、抄造法により、ブッシュの外周部の周囲に補強繊維を集積させて1以上の回り止め部を含むブッシュの外周部を囲む補強繊維集積体を形成する。抄造法により補強繊維集積体を製造すれば、補強繊維集積体の中央部に剥離の原因となるような境界部が形成されることはない。またブッシュに対して予め作った補強繊維集積体を嵌め込むような作業が必要ないため、作業工程が少なくても済む。さらに抄造の際に、1以上の回り止め部の周囲に補強繊維が確実に回り込むため、ブッシュに対して予め作った補強繊維集積体を嵌め込む場合と比べて、補強繊維集積体とブッシュの回り止め部との結合強度を高めることができる。そして第2のステップでは、前記第1のステップと同一の装置を用いて、補強繊維集積体を回転軸の軸線方向に圧縮して補強用繊維基材を形成する。この圧縮によって、回り止め部への補強繊維の喰い込みを確実なものとするとともに、回り止め部の補強用繊維基材の密度が高まり、ブッシュと補強用繊維基材との結合がさらに高まる。   In the present invention, the step of forming the reinforcing fiber base is constituted by the following two steps. In the first step, a reinforcing fiber assembly surrounding the outer periphery of the bush including one or more detents is formed by collecting reinforcing fibers around the outer periphery of the bush by papermaking. When the reinforcing fiber assembly is manufactured by the papermaking method, a boundary portion that causes peeling is not formed in the central portion of the reinforcing fiber assembly. In addition, since there is no need for a work of fitting a reinforcing fiber assembly made in advance into the bush, the number of work steps can be reduced. In addition, when making paper, the reinforcing fibers surely wrap around the one or more detents. Therefore, compared to the case where the pre-made reinforcing fiber assembly is fitted into the bush, The bond strength with the stopper can be increased. In the second step, the reinforcing fiber base is formed by compressing the reinforcing fiber assembly in the axial direction of the rotating shaft using the same apparatus as in the first step. This compression ensures that the reinforcing fibers are biting into the anti-rotation portion, increases the density of the reinforcing fiber substrate in the anti-rotation portion, and further increases the bond between the bush and the reinforcing fiber substrate.

本発明では、前記第1のステップと前記第2のステップとを、ブッシュと補強繊維集積体を収容している同一装置内で連続して行うことを特徴とする。抄造した補強用繊維基材を同一の装置を用いて連続して圧縮まで行うので、嵩高く強度が弱い(型崩れしやすい)抄造後の補強用繊維基材を取り扱う作業が必要ないため、作業工程が少なくて済む。また、前記第2のステップで行う圧縮により補強繊維基材の密度が高まるので、補強用繊維基材の強度を高めることができ、作業性(取り扱い性)が大幅に向上する。   In this invention, the said 1st step and said 2nd step are continuously performed within the same apparatus which accommodates a bush and a reinforcement fiber assembly. Since the reinforcing fiber base material made by paper is continuously compressed using the same equipment, it is not necessary to handle the reinforcing fiber base material after paper making that is bulky and weak (easy to lose shape). Fewer steps are required. In addition, since the density of the reinforcing fiber base is increased by the compression performed in the second step, the strength of the reinforcing fiber base can be increased, and workability (handleability) is greatly improved.

前記第2のステップは、ブッシュが一対の圧縮用金型の間の中央に位置する状態で、補強繊維集積体を回転軸の軸線方向に上下方向から圧縮することが好ましい。これにより、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができ、樹脂製回転体の機械強度のばらつきを低減することができる。さらに、前記圧縮は加熱した状態で行うことが好ましい。これにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができるとともに、圧縮後の補強用繊維基材の経時変化による厚みの変化を抑えることができる。また、前記圧縮は、ブッシュと補強繊維集積体の収容空間を減圧吸引した状態で行うことが好ましい。これにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができる。   In the second step, it is preferable that the reinforcing fiber assembly is compressed from above and below in the axial direction of the rotation shaft in a state where the bush is positioned at the center between the pair of compression molds. Thereby, it can compress so that the reinforcement fiber density of the upper side and lower side of a rotation prevention part may become uniform, and the dispersion | variation in the mechanical strength of a resin-made rotary body can be reduced. Further, the compression is preferably performed in a heated state. As a result, it is possible to shorten the time for removing moisture contained in the reinforcing fiber base material after papermaking, and to suppress a change in thickness due to a change with time of the reinforcing fiber base material after compression. Moreover, it is preferable to perform the said compression in the state which vacuum-sucked the accommodation space of the bush and the reinforcement fiber integration body. Thereby, the time which removes the water | moisture content contained in the fiber base material for reinforcement after papermaking can be shortened.

前記第1のステップと第2のステップとを行う装置の構成は任意である。例えば、補強繊維集積体がブッシュの径方向外側及び径方向内側に広がるのを規制した状態で、補強繊維集積体を軸線方向に圧縮する装置を用いると、圧縮過程において、補強繊維はブッシュの径方向内側に向かって移動することになる。その結果、補強繊維はブッシュの外周部に押し付けられて、1以上の回り止め部の周囲の補強繊維の密度を高くすることができる。
なおこのような装置は、例えば、圧縮動作時に補強用繊維基材がブッシュの径方向外側に広がるのを規制する筒状金型と、筒状金型の内部に配置されてブッシュの外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に補強繊維集積体がブッシュの径方向内側に広がるのを規制する一対のブッシュ支持用金型と、筒状金型と一対のブッシュ支持用金型の間に位置して、圧縮動作時に補強繊維集積体を軸線方向両側から挟んで圧縮する一対の圧縮用金型とを備え、少なくとも下側の圧縮用金型が透水性を有しているのが好ましい。
The configuration of the apparatus that performs the first step and the second step is arbitrary. For example, when a device that compresses the reinforcing fiber assembly in the axial direction in a state in which the reinforcing fiber assembly is restricted from spreading radially outward and radially inward of the bush, the reinforcing fiber has a diameter of the bush in the compression process. It will move inward. As a result, the reinforcing fibers are pressed against the outer peripheral portion of the bush, and the density of the reinforcing fibers around the one or more detent portions can be increased.
Note that such an apparatus includes, for example, a cylindrical mold that restricts the reinforcing fiber base material from spreading outward in the radial direction of the bush during the compression operation, and an inner portion of the cylindrical mold that is disposed from the outer periphery of the bush. A pair of bushing molds that sandwich the portion located on the inner side from both sides in the axial direction and restrict the reinforcing fiber assembly from spreading inward in the radial direction of the bush during the compression operation, and the cylindrical mold and the pair of bushes A pair of compression molds positioned between the support molds and compressing the reinforcing fiber assembly from both sides in the axial direction during the compression operation, and at least the lower compression mold has water permeability. It is preferable.

このような装置で一対のブッシュ支持用金型を用いると、ブッシュの位置決めと支持を簡単に行うことができる。また補強繊維集積体の外周面の形状は、筒状金型の内周面の形状によって定めることになる。その結果、筒状金型の内周面を歯車形状とすることにより、補強繊維集積体の外周面に歯車形状の凹凸を形成することも可能になる。なお筒状金型の周壁部が透水性を有していてもよいのは勿論である。この場合には、筒状金型及び下側の圧縮用金型に複数の透水孔を形成して透水性を付与することができる。そして補強繊維を水中分散させたスラリーを、筒状金型及び下側の圧縮用金型を通して吸引しながら補強繊維を下側の圧縮用金型上に集積させて補強繊維集積体を形成すればよい。   When a pair of bush supporting molds is used in such an apparatus, positioning and supporting of the bush can be easily performed. The shape of the outer peripheral surface of the reinforcing fiber assembly is determined by the shape of the inner peripheral surface of the cylindrical mold. As a result, by forming the inner peripheral surface of the cylindrical mold into a gear shape, it is possible to form gear-shaped irregularities on the outer peripheral surface of the reinforcing fiber assembly. Of course, the peripheral wall portion of the cylindrical mold may have water permeability. In this case, water permeability can be imparted by forming a plurality of water permeable holes in the cylindrical mold and the lower compression mold. If the slurry in which the reinforcing fibers are dispersed in water is sucked through the cylindrical mold and the lower compression mold, the reinforcing fibers are accumulated on the lower compression mold to form a reinforcing fiber assembly. Good.

また、このような装置で圧縮を行うと、一対の圧縮用金型で補強繊維集積体を圧縮した場合に、ブッシュの径方向の内側及び外側の両方向に補強繊維が膨出するのを確実に阻止することができる。この場合、一対の圧縮用金型の少なくとも一方の圧縮用金型の補強用繊維基材と接触する接触面は、他方の圧縮用金型の補強繊維集積体と接触する接触面との間の距離が、筒状金型から一対のブッシュ支持用金型に近付くに従って長くなるように傾斜する傾斜面であってもよい。   Further, when compression is performed with such an apparatus, when the reinforcing fiber assembly is compressed with a pair of compression molds, it is ensured that the reinforcing fibers bulge in both the radially inner and outer directions of the bush. Can be blocked. In this case, the contact surface that contacts the reinforcing fiber substrate of at least one compression mold of the pair of compression molds is between the contact surface that contacts the reinforcing fiber assembly of the other compression mold. The inclined surface may be inclined such that the distance becomes longer as the distance from the cylindrical mold approaches the pair of bush supporting molds.

なお補強用繊維基材に樹脂を含浸させ、樹脂を硬化して樹脂成形体を形成するステップを追加すれば、樹脂製回転体を製造することができる。   If a step of impregnating the reinforcing fiber substrate with resin and curing the resin to form a resin molded body is added, a resin rotating body can be manufactured.

なお補強繊維としては、種々の材質のものを用いることができる。しかし補強繊維として、アラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が補強繊維中の30質量%以下となるものを用いるのが好ましい。このような補強繊維を用いると、圧縮が容易でしかも、補強用繊維基材と回り止め部との間に必要十分な結合強度を得ることができる。   As the reinforcing fiber, various materials can be used. However, as the reinforcing fibers, those containing fine fibers obtained by fibrillation of aramid fibers, the freeness of the fine fibers being 100 ml or more and 400 ml or less, and the content of the fine fibers being 30% by mass or less in the reinforcing fibers are used. Is preferred. When such a reinforcing fiber is used, compression is easy, and necessary and sufficient bonding strength can be obtained between the reinforcing fiber base and the rotation stopper.

金属製ブッシュの外周部に設ける1以上の回り止め部の数及び形状は任意である。例えば、1以上の回り止め部は、金属製ブッシュの中央部分から軸の径方向に向かって突出する複数の突出部から構成することができる。この場合、隣り合う二つの突出部の間には凹部が形成される。すなわち、突出部と凹部は、周方向に交互に並ぶように配置される。これら突出部と凹部は、突出部の突出寸法と2つの突出部間に形成された凹部の底部の高さ寸法とが異なるように構成することができる。この場合には、突出部の突出寸法をh1とし、凹部の底部の高さ寸法をh2とし、h1>h2であるとしたときには、補強繊維の長さを、0.5×h1mm及び1×h2mmの小さいほうの値以上とし、5×h1mm及び10×h2mmの大きいほうの値以下とするのが好ましい(h1,h2は、図2参照)。このような長さの補強繊維を用いると、隣接する突出部の間に補強繊維が入り込んだ状態でも、補強用繊維基材の一部に裂け目が発生することがなく、補強用繊維基材の機械的強度の低下を抑制することができる。   The number and shape of the one or more anti-rotation portions provided on the outer peripheral portion of the metal bush are arbitrary. For example, the one or more anti-rotation portions can be composed of a plurality of protrusions that protrude from the central portion of the metal bush toward the radial direction of the shaft. In this case, a recess is formed between two adjacent protrusions. That is, the protrusions and the recesses are arranged alternately in the circumferential direction. These protrusions and recesses can be configured such that the protrusion dimensions of the protrusions are different from the height dimension of the bottom part of the recess formed between the two protrusions. In this case, when the projecting dimension of the projecting part is h1, the height of the bottom part of the recessed part is h2, and h1> h2, the lengths of the reinforcing fibers are 0.5 × h1 mm and 1 × h2 mm. It is preferable to set it to be not less than the smaller value of 5 × h1 mm and 10 × h2 mm or less (refer to FIG. 2 for h1 and h2). When the reinforcing fiber having such a length is used, even when the reinforcing fiber enters between adjacent protrusions, no tear is generated in a part of the reinforcing fiber base, and the reinforcing fiber base A decrease in mechanical strength can be suppressed.

なお樹脂成形体に対する補強繊維の割合は、30体積%以上50体積%以下であることが望ましい。この範囲の値であれば、樹脂成形体に必要とされる機械的強度を、確実に得ることができる。   The ratio of the reinforcing fibers to the resin molded body is desirably 30% by volume or more and 50% by volume or less. If it is the value of this range, the mechanical strength required for a resin molding can be obtained reliably.

樹脂成形体に機械加工を施して複数の歯を形成すれば、機械的に強度が高く、しかも、使用時の騒音の発生が少ない歯車を得ることができる。なお本発明の樹脂製回転体を用いて、歯車の他に、プーリ等の回転部品を製造してもよいのは勿論である。   If the resin molded body is machined to form a plurality of teeth, a gear having high mechanical strength and less noise during use can be obtained. Of course, rotating parts such as pulleys may be manufactured in addition to gears using the resin rotating body of the present invention.

また、金属製ブッシュは焼結法により製造されたものを用いることができる。また回り止め部として用いる突出部は、軸線方向に沿って測定した頂部の厚み寸法が基部の厚み寸法よりも大きいアンダーカット形状であり、金属製ブッシュの軸線方向に対向する一対の側面の横断面に対する角度が5°以上40°以下であるのが好ましい。   Moreover, what was manufactured by the sintering method can be used for metal bushes. Further, the protrusion used as the rotation stopper has an undercut shape in which the thickness of the top measured along the axial direction is larger than the thickness of the base, and a cross section of a pair of side surfaces facing the axial direction of the metal bush The angle with respect to is preferably 5 ° or more and 40 ° or less.

本発明の方法により形成される補強用繊維基材は、補強用繊維基材の重ね合せ界面がなく、剥離することがない。これらのことから、樹脂製歯車などの樹脂製回転体の耐久性能は大幅に向上する。   The reinforcing fiber base formed by the method of the present invention has no overlapping interface with the reinforcing fiber base and does not peel off. From these things, the durability performance of resin-made rotary bodies, such as a resin-made gearwheel, improves significantly.

本発明によれば、抄造によりブッシュの外周部に補強繊維集積体を形成する過程で、補強繊維をブッシュの回り止めの周囲に必要な量集積させてブッシュの回り止め部を補強繊維集積体で完全に囲むことができる。さらにこれを圧縮することによって、ブッシュの回り止め部への補強繊維の喰い込みを確実なものとするとともに、ブッシュの外周部近傍の補強用繊維基材の密度を高めることができる。このため、従来のように、補強用繊維基材の内部に繊維層の境界面を形成することなく、補強用繊維基材とブッシュの回り止め部との結合強度を向上させることができて、樹脂製歯車などの樹脂製回転体の耐久性能を大幅に向上することができる利点が得られる。   According to the present invention, in the process of forming the reinforcing fiber assembly on the outer peripheral portion of the bush by papermaking, a necessary amount of reinforcing fiber is accumulated around the bush detent and the bush detent portion is formed by the reinforcing fiber aggregate. Can be completely enclosed. Furthermore, by compressing this, it is possible to ensure that the reinforcing fibers bite into the non-rotating portion of the bush and to increase the density of the reinforcing fiber base in the vicinity of the outer peripheral portion of the bush. For this reason, as in the prior art, without forming the boundary surface of the fiber layer inside the reinforcing fiber base, the bonding strength between the reinforcing fiber base and the detent portion of the bush can be improved, There is an advantage that the durability performance of a resin rotating body such as a resin gear can be greatly improved.

また、前記抄造と前記圧縮を同一の装置を用いて連続して行うことによって、嵩高く強度が弱い(型崩れしやすい)抄造後の補強用繊維基材を取り扱う作業を省くことができ、作業工程を大幅に短縮することができる。さらに、前記圧縮を、ブッシュが中央に位置する状態で、補強繊維集積体を回転軸の軸線方向に上下方向から行うことにより、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができ、樹脂製回転体の機械強度のばらつきを低減することができる。   In addition, by continuously performing the paper making and the compression using the same apparatus, it is possible to omit the work of handling the reinforcing fiber base material after paper making which is bulky and weak (easy to lose shape). The process can be greatly shortened. Further, by performing the compression in the state where the bush is located at the center, the reinforcing fiber assembly is vertically operated in the axial direction of the rotation shaft, so that the density of the reinforcing fibers on the upper side and the lower side of the anti-rotation part becomes uniform And the variation in mechanical strength of the resin rotating body can be reduced.

以下図面を参照して、本発明の実施の形態を詳細に説明する。
図1は、模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。この樹脂製回転体1は、図示しない回転軸を中心にして回転する金属製ブッシュ2を備えている。金属製ブッシュ2の中央部には、図示しない軸が嵌合される貫通孔3が形成されている。また金属製ブッシュ2の外周部には、複数の回り止め部を構成する突出部4Aが周方向に所定の間隔をあけて一体に形成されている。なお金属製ブッシュ2に軸が一体に形成されていてもよい。複数の突出部4Aの軸線方向に測った厚み寸法L2は、金属製ブッシュ2の軸線方向に測った厚み寸法L1よりも小さい。本実施の形態で用いる金属製ブッシュ2は焼結法により製造されたものである。そして回り止め部を構成する突出部4Aは、頂部の厚さが厚く基部の厚さが薄いアンダーカット形状である。そして金属製ブッシュ2の横断面に対する角度θが5°以上40°以下のものを用いている。そして図2に示すように、回転方向への負荷に耐える回り止め部の作用を高めるためには、好ましくは、回り止め部となる突出部4Aは、少なくとも高さh1の突出部4Aと二つの突出部4A間に形成されて高さh2の底部を有する凹部4Bとが交互に配列されたものが好ましい。このようなアンダーカットの形状を持ち、角度θが5°以上40°以下の突出部4Aを用いると、後述する補強用繊維基材5内に回り止め部としての複数の突出部4Aが完全に埋まった状態となり、両者間の機械的結合の強度を十分なものとすることができる。なお隣り合う二つの突出部4A間に形成される凹部4B内に補強用繊維基材5の一部が入ることによっても、前述の機械的強度は当然にして増加する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view of an example of an embodiment of a resin rotating body of the present invention schematically shown. The resin rotating body 1 includes a metal bush 2 that rotates about a rotating shaft (not shown). A through hole 3 into which a shaft (not shown) is fitted is formed at the center of the metal bush 2. Further, on the outer peripheral portion of the metal bush 2, projecting portions 4A constituting a plurality of detent portions are integrally formed with a predetermined interval in the circumferential direction. The shaft may be integrally formed with the metal bush 2. The thickness dimension L2 measured in the axial direction of the plurality of protrusions 4A is smaller than the thickness dimension L1 measured in the axial direction of the metal bush 2. The metal bush 2 used in the present embodiment is manufactured by a sintering method. And the protrusion part 4A which comprises a rotation prevention part is an undercut shape with a thick top part and a thin base part. The metal bush 2 has an angle θ with respect to the cross section of 5 ° or more and 40 ° or less. As shown in FIG. 2, in order to enhance the action of the anti-rotation portion that can withstand a load in the rotational direction, preferably, the protrusion 4A serving as the anti-rotation portion includes at least the protrusion 4A having a height h1 and two It is preferable that the recesses 4B formed between the protrusions 4A and having the bottoms having the height h2 are alternately arranged. When the projecting portion 4A having such an undercut shape and having an angle θ of 5 ° or more and 40 ° or less is used, a plurality of projecting portions 4A as detents are completely formed in the reinforcing fiber base 5 described later. It becomes a buried state, and the strength of mechanical coupling between them can be made sufficient. Note that the mechanical strength described above naturally increases when a part of the reinforcing fiber substrate 5 enters the recess 4B formed between the two adjacent protrusions 4A.

本実施の形態では、1つの補強用繊維基材5が、金属製ブッシュ2の外周部4の外側の位置に、外周部4に嵌った状態で配置されている。そして補強用繊維基材5に樹脂が含浸され且つ樹脂が硬化して形成された樹脂成形体6が形成されている。   In the present embodiment, one reinforcing fiber base 5 is disposed at a position outside the outer peripheral portion 4 of the metal bush 2 in a state of being fitted to the outer peripheral portion 4. A resin molded body 6 is formed in which the reinforcing fiber base 5 is impregnated with resin and cured.

補強用繊維基材5は、図3に概略的に示すように、抄造と圧縮を連続して行うことができる抄造圧縮装置7を用いて金属製ブッシュ2の外周部の外側位置に補強繊維集積体8を形成し、この補強繊維集積体8を回転軸の軸線方向に圧縮することにより形成されている。   As schematically shown in FIG. 3, the reinforcing fiber base 5 is formed by collecting reinforcing fibers at a position outside the outer peripheral portion of the metal bush 2 using a papermaking compression device 7 that can continuously perform papermaking and compression. The body 8 is formed, and the reinforcing fiber assembly 8 is compressed in the axial direction of the rotation shaft.

まず、抄造法によりブッシュの外周部の周囲に補強繊維を集積させて1以上の回り止め部を含むブッシュの外周部を囲む補強繊維集積体を形成する第1のステップについて説明する。
図3(A)に示すように、この抄造圧縮装置7で用いる金型は、圧縮動作時に補強繊維集積体8が金属製ブッシュ2の径方向外側に広がるのを規制する筒状金型10と、筒状金型10の内部に配置されて金属製ブッシュ2の外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に補強繊維集積体8が金属製ブッシュ2の径方向内側に広がるのを規制する一対のブッシュ支持用金型11及び12と、筒状金型10と一対のブッシュ支持用金型11及び12の間に位置して、圧縮動作時に補強繊維集積体8を軸線方向両側から挟んで圧縮する一対の圧縮用金型13及び14とを備えている。そしてこの金型では、下側の圧縮用金型14に透水性を付与するために、下側の圧縮用金型14には水を排水するための貫通孔15が形成されている。この貫通孔15に真空吸引するためのポンプを取付けると排水を短時間で完了することができ好ましい。なおこの例では、排水時の補強繊維の流出防止のために、下側の圧縮用金型14上には底部材16が配置されている。
First, a description will be given of a first step of forming a reinforcing fiber assembly surrounding the outer periphery of the bush including one or more detents by collecting the reinforcing fibers around the outer periphery of the bush by papermaking.
As shown in FIG. 3 (A), the mold used in the paper making compression device 7 includes a cylindrical mold 10 that restricts the reinforcing fiber assembly 8 from spreading outward in the radial direction of the metal bush 2 during the compression operation. Further, a portion disposed inside the cylindrical mold 10 and positioned on the inner side of the outer periphery of the metal bush 2 is sandwiched from both sides in the axial direction, and the reinforcing fiber assembly 8 is in the radial direction of the metal bush 2 during the compression operation. The reinforcing fiber assembly 8 is positioned between the pair of bush supporting molds 11 and 12 for restricting the inward spreading and the cylindrical mold 10 and the pair of bush supporting molds 11 and 12 during the compression operation. Is provided with a pair of compression molds 13 and 14 for compressing by sandwiching them from both sides in the axial direction. In this mold, in order to impart water permeability to the lower compression mold 14, a through hole 15 for draining water is formed in the lower compression mold 14. It is preferable to attach a pump for vacuum suction to the through-hole 15 because drainage can be completed in a short time. In this example, a bottom member 16 is disposed on the lower compression mold 14 to prevent the reinforcing fibers from flowing out during drainage.

一対のブッシュ支持用金型11及び12は、金属製ブッシュ2の外周部よりも内側に補強繊維が入り込まないように金属製ブッシュ2の外周部よりも内側に位置する部分を筒状金型10の中心線が延びる方向の両側から挟んで支持する。なおこの例では、下側のブッシュ支持用金型12、上側のブッシュ支持用金型11、下側の圧縮用金型14、上側の圧縮用金型13、及び筒状金型10はそれぞれ単独で上下に移動可能に構成されている。   The pair of bush supporting molds 11 and 12 is a cylindrical mold 10 having a portion located inside the outer peripheral part of the metal bush 2 so that the reinforcing fibers do not enter inside the outer peripheral part of the metal bush 2. Is supported by being sandwiched from both sides in the direction in which the center line extends. In this example, the lower bushing support mold 12, the upper bushing support mold 11, the lower compression mold 14, the upper compression mold 13, and the cylindrical mold 10 are each independent. It can be moved up and down.

なおこの底部材16には金網を使用でき、そのメッシュサイズは、250メッシュより大きくなると水と繊維の濾過抵抗が大きくなり、金型の内部に入れた補強繊維を含む後述のスラリーを、ポンプで吸引して水分を金型から排水させても、繊維と水の分離に要する時間が長くなり、製造サイクルが長くなる。またメッシュサイズが10メッシュより小さいと、繊維長が長い補強繊維を使用しても網目(貫通孔)が大きいために補強繊維の多くが水と共に流出してしまう。そのために、補強繊維集積体8の繊維密度が著しく低下してしまう問題が発生する。よって使用するメッシュサイズは10メッシュ以上250メッシュ以下が好ましい。   A metal mesh can be used for the bottom member 16. When the mesh size is larger than 250 mesh, the filtration resistance of water and fibers increases, and a slurry described later including reinforcing fibers placed inside the mold is pumped. Even if the moisture is drained from the mold by suction, the time required for separation of the fiber and the water becomes longer, and the production cycle becomes longer. On the other hand, if the mesh size is smaller than 10 meshes, even if reinforcing fibers having a long fiber length are used, the mesh (through hole) is large, so that most of the reinforcing fibers flow out with water. Therefore, there arises a problem that the fiber density of the reinforcing fiber assembly 8 is remarkably lowered. Therefore, the mesh size used is preferably 10 mesh or more and 250 mesh or less.

金属製ブッシュ2を一対のブッシュ支持用金型11及び12の間に挟む場合には、図3(A)に示すように、上側のブッシュ支持用金型11が上方向に移動する。そして金属製ブッシュ2を下側のブッシュ支持用金型12の上に位置決めした後に、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュ2を挟持する。   When the metal bush 2 is sandwiched between the pair of bush supporting molds 11 and 12, the upper bush supporting mold 11 moves upward as shown in FIG. Then, after positioning the metal bush 2 on the lower bush supporting mold 12, the upper bush supporting mold 11 is moved downward as shown in FIG. The metal bush 2 is sandwiched between the bush supporting molds 11 and 12.

補強繊維と水とを混合して形成したスラリーは、図3(B)に示すように、筒状金型10の上側の開口部から供給される。そして真空吸引をして、下側の圧縮用金型14に設けた複数の貫通孔15から水分を排出することにより、金属製ブッシュ2の外周部の周囲を囲む補強繊維集積体8を形成する。このように一対のブッシュ支持用金型11及び12を用いると、金属製ブッシュ2の位置決めと支持を簡単に行うことができる。また補強繊維集積体8の外周面の形状は、筒状金型10の内周面の形状によって定まる。その結果、筒状金型10の内周面を歯車形状とすることにより、補強繊維集積体8の外周面に歯車形状の凹凸を形成することも可能になる。なおスラリーの供給は、前記開口部の複数の場所から行ってもよい。   The slurry formed by mixing the reinforcing fiber and water is supplied from the upper opening of the cylindrical mold 10 as shown in FIG. Then, vacuum reinforcement is performed, and moisture is discharged from the plurality of through holes 15 provided in the lower compression mold 14, thereby forming the reinforcing fiber assembly 8 surrounding the periphery of the metal bush 2. . When the pair of bush supporting molds 11 and 12 are used as described above, the metal bush 2 can be easily positioned and supported. In addition, the shape of the outer peripheral surface of the reinforcing fiber assembly 8 is determined by the shape of the inner peripheral surface of the cylindrical mold 10. As a result, by forming the inner peripheral surface of the cylindrical mold 10 into a gear shape, it is possible to form gear-shaped irregularities on the outer peripheral surface of the reinforcing fiber assembly 8. The slurry may be supplied from a plurality of locations in the opening.

次に、補強繊維集積体を回転軸の軸線方向に圧縮して補強用繊維基材を形成する第2のステップについて説明する。
前述の抄造圧縮装置7で用いる金型であれば、一対の圧縮用金型13及び14で補強繊維集積体8を圧縮した場合に、金属製ブッシュ2の径方向の内側及び外側の両方向に補強繊維が膨出するのを確実に阻止することができる。
Next, a second step of compressing the reinforcing fiber assembly in the axial direction of the rotating shaft to form a reinforcing fiber base will be described.
If it is a metal mold | die used with the paper-making compression apparatus 7 mentioned above, when the reinforcing fiber integration body 8 is compressed with a pair of compression metal molds 13 and 14, the metal bush 2 is reinforced in both the radially inner and outer directions. It is possible to reliably prevent the fibers from bulging.

下側の圧縮用金型14に設けた複数の貫通孔15から水分を排出した後、図3(C)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置まで、上側の圧縮用金型13を下降させる。その後、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13及び14の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ移動させ、補強繊維集積体8が所定の厚みとなるまで圧縮する。なお圧縮を行う時間、温度は使用する補強繊維の種類によって任意であるが、前記圧縮の際、上側の圧縮用金型13にヒータを取り付け、加熱した状態で圧縮することにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができるとともに、圧縮後の補強用繊維基材5の厚みの経時変化を抑えることができる。好ましくは使用する溶媒、本例では水の沸点以上の温度100〜180℃で、0.5〜10分間圧縮することにより、厚みの経時変化のほとんど無い補強用繊維基材5を得ることができる。また前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮することにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができる。   After the moisture is discharged from the plurality of through holes 15 provided in the lower compression mold 14, the metal bush 2 is disposed between the pair of compression molds 13 and 14 as shown in FIG. The upper compression die 13 is lowered to a position that is in the center. Thereafter, as shown in FIG. 3 (D), the pair of compression molds 13 and 14 are moved in a state where the metal bush 2 is located at the center of the pair of compression molds 13 and 14, respectively. Compression is performed until the accumulated body 8 has a predetermined thickness. The time and temperature for compression are arbitrary depending on the type of reinforcing fiber to be used. At the time of compression, a heater is attached to the upper compression mold 13 and compressed in a heated state, thereby reinforcing after paper making. The time for removing the moisture contained in the fiber base material can be shortened, and the change with time of the thickness of the reinforcing fiber base material 5 after compression can be suppressed. Preferably, the reinforcing fiber base material 5 having almost no change with time in thickness can be obtained by compressing for 0.5 to 10 minutes at a temperature of 100 to 180 ° C. above the boiling point of water in the solvent used, in this example. . Further, at the time of the compression, the time for removing moisture contained in the reinforcing fiber base material after paper making can be shortened by compressing in a state of being vacuum sucked from the through hole 15 of the lower compression mold 14. .

補強用繊維基材5または補強繊維集積体8を形成するために用いる補強繊維の種類は後述するように、種々のものを用いることができる。そして補強繊維の長さは、例えば、図2に示すような金属製ブッシュ2を用いる場合には、次のように定める。すなわち突出部4Aの突出寸法(金属製ブッシュ2の中央部分2Aから径方向へ測った突出部4Aの高さ)をh1、凹部4Bの底部の高さ(金属製ブッシュ2の中央部分2Aから径方向へ測った凹部4Bの底部の高さ)をh2としたとき、補強繊維の長さは、0.5×h1mmと1×h2mmの小さいほうの値以上であり、5×h1mmと10×h2mmの大きいほうの値以下であるのが好ましい。ここで、高さ寸法h1とh2が同じ場合は、回り止めの効果が弱くなる。突出部4Aまたは凹部4Bの底部の高さ寸法h1またはh2に対しては、補強繊維が覆いかぶさるのに充分な繊維長さが必要であり、補強繊維の長さが0.5×h1mmと1×h2mmの小さいほうの値以上であることが適当である。また、補強繊維は、長すぎてもスラリーの均一分散を妨げる原因となり、強度の増強に寄与しない不均一な繊維分布になる。そのため補強繊維の長さは、5×h1mmと10×h2mmの大きいほうの値以下が適当である。なお、突出部として、突出凹部の底部の高さ寸法がh1よりも大きなh3となる突出部(2種類以上の突出寸法の異なる突出部)を組み合わせて使用してもよいのは勿論である。   As described later, various types of reinforcing fibers can be used for forming the reinforcing fiber substrate 5 or the reinforcing fiber assembly 8. The length of the reinforcing fiber is determined as follows when, for example, a metal bush 2 as shown in FIG. 2 is used. That is, the protrusion dimension of the protrusion 4A (the height of the protrusion 4A measured in the radial direction from the central portion 2A of the metal bush 2) is h1, and the height of the bottom of the recess 4B (the diameter from the central portion 2A of the metal bush 2). When the height of the bottom of the recess 4B measured in the direction is h2, the length of the reinforcing fiber is not less than the smaller value of 0.5 × h1 mm and 1 × h2 mm, and 5 × h1 mm and 10 × h2 mm. It is preferable that it is below the larger value of. Here, when the height dimensions h1 and h2 are the same, the effect of rotation prevention becomes weak. For the height dimension h1 or h2 of the bottom of the protrusion 4A or the recess 4B, a fiber length sufficient to cover the reinforcing fiber is necessary, and the length of the reinforcing fiber is 0.5 × h1 mm and 1 It is appropriate that the value is smaller than the smaller value of x2 mm. Further, if the reinforcing fiber is too long, it causes the uniform dispersion of the slurry, resulting in a non-uniform fiber distribution that does not contribute to strength enhancement. Therefore, the length of the reinforcing fiber is suitably less than the larger value of 5 × h1 mm and 10 × h2 mm. Needless to say, as the protrusions, protrusions (projections having two or more different protrusion dimensions) in which the height of the bottom of the protrusion recesses is h3 larger than h1 may be used in combination.

このようにして定めた補強繊維の繊維長は、好ましくは2mmから5mmであり、さらに好ましくは3mmである。繊維長が2mm未満の場合、繊維強化樹脂成形体の機械特性が低下する。また、繊維長が6mmを超えると、繊維束を水中で解離し分散させるときに、繊維束の解離が困難になる。また、これまで説明した補強繊維(繊維チョップ)のほかに、アラミド繊維等のパルプを併用してもよい。これにより、繊維同士の絡み合いが増し、補強用繊維基材の取り扱い性が良好となるので好ましい。   The fiber length of the reinforcing fiber thus determined is preferably 2 mm to 5 mm, and more preferably 3 mm. When the fiber length is less than 2 mm, the mechanical properties of the fiber-reinforced resin molded product are deteriorated. On the other hand, when the fiber length exceeds 6 mm, it becomes difficult to dissociate the fiber bundle when the fiber bundle is dissociated and dispersed in water. In addition to the reinforcing fibers (fiber chops) described so far, pulp such as aramid fibers may be used in combination. Thereby, the entanglement of the fibers increases, and the handleability of the reinforcing fiber base material is improved, which is preferable.

また、金属製ブッシュ2の外周部4に設けた回り止め部と樹脂部の結合を強固たるものとするためには、回り止め部は頂部の厚さが厚く基部の厚さが薄いアンダーカット形状であり、金属製ブッシュ2の横断面に対する角度が5°以上40°以下、好ましくは、10°以上35°であるものが効果的である。これは外径方向への抜け阻止に作用するものである。   Further, in order to strengthen the connection between the anti-rotation portion provided on the outer peripheral portion 4 of the metal bush 2 and the resin portion, the anti-rotation portion has an undercut shape with a thick top portion and a thin base portion. It is effective that the angle with respect to the cross section of the metal bush 2 is 5 ° or more and 40 ° or less, preferably 10 ° or more and 35 °. This acts to prevent removal in the outer diameter direction.

上記アンダーカット形状をもった回り止め部を構成する突出部4Aは、焼結法で成型すれば、精度よく設計どおりに作ることができる。突出部4Aの最適構造は、たとえば外径60mmの樹脂製歯車の場合、突出部(山)の数が30であり、突出部の間に形成される凹部すなわち谷部分の数は29である。なおこれらの数は、樹脂製歯車の径や厚さ、歯の構造に応じて適宜変更されることは当然である。   The protrusion 4A that constitutes the anti-rotation portion having the undercut shape can be accurately produced as designed if it is molded by a sintering method. For example, in the case of a resin gear having an outer diameter of 60 mm, the optimum structure of the protrusion 4A is 30 protrusions (crests) and 29 recesses or valleys formed between the protrusions. Of course, these numbers are appropriately changed according to the diameter and thickness of the resin gear and the tooth structure.

使用する補強繊維は、融点、あるいは分解温度が250℃以上の繊維からなるものが好ましい。このような補強繊維を用いて補強繊維集積体8を形成することで、成形時の成形温度や加工温度、実使用時の雰囲気温度において、樹脂製回転体内の補強繊維が熱劣化を起こすことなく、耐熱性に優れた樹脂製回転体とすることができる。このような繊維としては、パラ系アラミド繊維、メタ系アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、超高強力ポリエチレン繊維、ポリケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、全芳香族ポリエステル繊維、ポリイミド繊維、およびポリビニルアルコール系繊維から選ばれた少なくとも1種以上の繊維を使用するのが好ましい。   The reinforcing fiber used is preferably made of fibers having a melting point or decomposition temperature of 250 ° C. or higher. By forming the reinforcing fiber assembly 8 using such reinforcing fibers, the reinforcing fibers in the resin rotating body do not undergo thermal deterioration at the molding temperature and processing temperature during molding, and the ambient temperature during actual use. And a resin rotating body having excellent heat resistance. Such fibers include para-aramid fibers, meta-aramid fibers, carbon fibers, glass fibers, boron fibers, ceramic fibers, ultra-high strength polyethylene fibers, polyketone fibers, polyparaphenylene benzobisoxazole fibers, wholly aromatic polyesters. It is preferable to use at least one fiber selected from fibers, polyimide fibers, and polyvinyl alcohol fibers.

また、補強繊維には、引張強度15cN/dtex以上、引張弾性率350cN/dtex以上の高強度高弾性率繊維を少なくとも20体積%以上含むことが好ましい。このようにして得られる補強繊維集積体8を用いた樹脂製回転体は、使用中にかかる高負荷に耐え得るものとすることができる。   The reinforcing fiber preferably contains at least 20% by volume of high-strength and high-modulus fiber having a tensile strength of 15 cN / dtex or more and a tensile modulus of 350 cN / dtex or more. The resin rotating body using the reinforcing fiber assembly 8 thus obtained can withstand a high load applied during use.

また、抄造圧縮装置7を用いて補強繊維集積体8を金属製ブッシュ2と一体化して形成したものを次工程に移動、又は搬送する際に形状を維持するための強度を付与するためには、補強繊維がアラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が補強繊維中の30質量%以下になるように配合することが望ましい。望ましい態様としては、パラアラミド繊維の機械的剪断で繊維軸方向に裂開させたフィブリル化処理のアラミド微細繊維を混合することが好ましい。フリーネスが400mlを超えるとフィブリル化が不充分のため補強用繊維基材の形状を維持するための強度を付与する上で好ましいものでなくなる。またフリーネスが100ml未満になると繊維軸方向に裂開させるだけでなく、径方向に剪断されて粉末状態になってしまうために繊維の絡みが悪くなって、補強用繊維基材の形状を維持するための強度を付与する上で好ましいものでなくなる。また濾水性が悪化し、樹脂含浸の妨げとなる。またフィブリル化処理したアラミド微細繊維が30質量%を超えると繊維間の隙間にフィブリル化した微細繊維が充填され、樹脂注入成形時に、樹脂の樹脂含浸が阻害され、含浸不良などの不具合が生じてしまう。好ましくは適度な強度を付与し、樹脂含浸性を阻害しない5〜10質量%のフィブリル化した微細繊維を配合するのが好ましい。   In addition, in order to give strength to maintain the shape when moving or transporting the one formed by integrating the reinforcing fiber assembly 8 with the metal bush 2 using the paper making compression device 7 to the next process. The reinforcing fiber contains fine fibers obtained by fibrillation of aramid fibers, and the freeness of the fine fibers is 100 ml or more and 400 ml or less, and the fine fiber content is 30% by mass or less in the reinforcing fibers. Is desirable. As a desirable embodiment, it is preferable to mix fibrillated aramid fine fibers which are cleaved in the fiber axis direction by mechanical shearing of para-aramid fibers. When the freeness exceeds 400 ml, the fibrillation is insufficient, which is not preferable for imparting strength for maintaining the shape of the reinforcing fiber base material. Further, when the freeness is less than 100 ml, not only the fiber axis direction is cleaved but also the powder is crushed in the radial direction and the entanglement of the fibers deteriorates, and the shape of the reinforcing fiber base is maintained. Therefore, it is not preferable in giving strength for the purpose. Further, the drainage is deteriorated, which impedes resin impregnation. When the fibrillated aramid fine fibers exceed 30% by mass, the fibrillated fine fibers are filled in the gaps between the fibers, and the resin impregnation of the resin is hindered during resin injection molding, resulting in defects such as poor impregnation. End up. It is preferable to blend 5 to 10% by mass of fibrillated fine fibers that impart moderate strength and do not impair resin impregnation.

上記補強繊維を水中に分散させる際の濃度は、0.3g/リットル以上20g/リットル以下が好ましい。繊維長が短い繊維を使用する場合、繊維同士の絡みが少なく、分散が良いため濃度20g/リットルの高濃度のスラリーで分散させることができる。一方、繊維長が長い繊維を使用する場合、繊維長が長すぎるため0.3g/リットルの低濃度でないと充分分散させることができない。   The concentration when the reinforcing fiber is dispersed in water is preferably 0.3 g / liter or more and 20 g / liter or less. When fibers having a short fiber length are used, there is little entanglement between the fibers and good dispersion makes it possible to disperse with a high concentration slurry having a concentration of 20 g / liter. On the other hand, when a fiber having a long fiber length is used, the fiber length is too long and cannot be sufficiently dispersed unless the concentration is as low as 0.3 g / liter.

ちなみに、前述の補強繊維がアラミド繊維をフィブリル化処理した微細繊維を含む場合において、金属製ブッシュ2の直径が5cmの場合に使用する補強繊維集積体8の厚み寸法(軸線方向寸法)は、約8cmである。そして後述する圧縮作業により、補強繊維集積体8は約1.5cm程度まで圧縮されて補強用繊維基材5に成形される。   Incidentally, in the case where the above-mentioned reinforcing fibers include fine fibers obtained by fibrillating aramid fibers, the thickness dimension (axial dimension) of the reinforcing fiber assembly 8 used when the diameter of the metal bush 2 is 5 cm is about 8 cm. The reinforcing fiber assembly 8 is compressed to about 1.5 cm and formed into the reinforcing fiber base 5 by a compression operation described later.

次に、補強用繊維基材に樹脂を含浸させ、樹脂を硬化して樹脂成形体を形成するステップについて説明する。
図4に示すように、補強用繊維基材5を備えた樹脂製回転体成形用半加工品21を金型23内に配置した後に金型23に液状樹脂を注入して補強用繊維基材5に樹脂を含浸させ、その後硬化させて、樹脂成形体を備えた樹脂製回転体を成形する。金型23は固定金型25と、固定金型25の中心に配置されて上下方向に変位する移動金型27と、この移動金型27と対になって金属製ブッシュ2を挟持する上金型29とを備えている。上金型29の押圧部29Aが、固定金型25内に挿入されて、金属製ブッシュ2を押圧すると、移動金型27は、上金型29の挿入量に応じて下方に変位する。上金型29で、固定金型25の開口部を完全に塞いだ後に、固定金型25内に液状樹脂が注入される。その後、樹脂が硬化したら、補強用繊維基材5を芯材として成形された樹脂成形体を備えた樹脂製回転体を金型23から取り出して、樹脂製回転体の製造を完了する。
Next, the step of impregnating the reinforcing fiber substrate with resin and curing the resin to form a resin molded body will be described.
As shown in FIG. 4, a resin-made rotating body molding workpiece 21 provided with a reinforcing fiber substrate 5 is placed in a mold 23, and then a liquid resin is injected into the mold 23 to reinforce the fiber substrate. 5 is impregnated with resin and then cured to form a resin rotating body provided with a resin molded body. The mold 23 is a fixed mold 25, a movable mold 27 that is disposed at the center of the fixed mold 25 and is displaced in the vertical direction, and an upper mold that holds the metal bush 2 in pairs with the movable mold 27. A mold 29 is provided. When the pressing portion 29 </ b> A of the upper mold 29 is inserted into the fixed mold 25 and presses the metal bush 2, the moving mold 27 is displaced downward according to the amount of insertion of the upper mold 29. After the upper mold 29 completely closes the opening of the fixed mold 25, the liquid resin is injected into the fixed mold 25. After that, when the resin is cured, the resin rotating body including the resin molded body formed with the reinforcing fiber base 5 as the core is taken out from the mold 23 to complete the production of the resin rotating body.

このようにして成形した樹脂製回転体の樹脂成形体の外周部に機械加工を施して歯を形成すれば樹脂製歯車を得ることができる。また外周面に沿って溝を形成すれば、プーリを得ることができる。   A resin gear can be obtained by forming the teeth by machining the outer periphery of the resin molded body of the molded resin rotating body. If a groove is formed along the outer peripheral surface, a pulley can be obtained.

前述の液状樹脂としては、熱硬化性樹脂、熱可塑性樹脂等いずれのものでも良く、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等から選ばれた1以上の樹脂と該樹脂の種類に応じて硬化剤を組み合わせたものが使用できる。   The liquid resin may be any of thermosetting resin, thermoplastic resin, etc., and epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyether sulfone resin, polyether ether ketone. A combination of at least one resin selected from a resin, a polyamideimide resin, a polyamide resin, a polyester resin, a polyphenylene sulfide resin, a polyethylene resin, a polypropylene resin, and the like and a curing agent according to the type of the resin can be used.

これらの中でも、樹脂硬化物の強度、耐熱性等の点からポリアミノアミド樹脂が好ましく、耐熱性、強度が優れる2,2’−(1,3フェニレン)ビス2−オキサゾリンとアミン硬化剤の混合物100質量部に対し5質量部以下の触媒とからなる樹脂を使用することが好ましい。なお、この触媒を5質量部以上添加すると、硬化時間が短くなって補強用繊維基材5に樹脂が充分含浸される前に樹脂が硬化してしまうため、樹脂含浸不良の問題が発生する。   Among these, a polyaminoamide resin is preferable from the viewpoint of the strength and heat resistance of the cured resin, and a mixture 100 of 2,2 ′-(1,3 phenylene) bis-2-oxazoline and an amine curing agent having excellent heat resistance and strength. It is preferable to use a resin composed of 5 parts by mass or less of the catalyst with respect to parts by mass. When 5 parts by mass or more of this catalyst is added, the curing time is shortened, and the resin is cured before the reinforcing fiber base 5 is sufficiently impregnated with the resin, which causes a problem of poor resin impregnation.

補強繊維の樹脂成形体に含まれる割合は、所望する樹脂製回転体の強度等によって異なるが、30体積%以上50体積%以下であることが好ましい。樹脂成形体に占める補強繊維の割合が30体積%未満である場合、樹脂を繊維で補強する効果がほとんど見られず、また金属製ブッシュ2の回り止め部への繊維の充填も不充分となる。また、補強繊維の割合が50体積%を越えた場合は、繊維の占める割合が高すぎるため、樹脂注入成形時に樹脂の樹脂含浸不足が発生しやすくなるなどの問題がおこる。そのため樹脂成形体に含まれる繊維の割合は樹脂製回転体の強度があり、及び2つの突出部4Aの間に形成される回り止め用の凹部4B内に繊維が確実に充填され、しかも樹脂の含浸を阻害しない35〜45体積%がさらに好ましい。   The ratio of the reinforcing fibers contained in the resin molded body varies depending on the desired strength of the resin rotating body, but is preferably 30% by volume or more and 50% by volume or less. When the proportion of the reinforcing fiber in the resin molded body is less than 30% by volume, the effect of reinforcing the resin with the fiber is hardly seen, and the fiber is not sufficiently filled in the detent portion of the metal bush 2. . In addition, when the proportion of the reinforcing fiber exceeds 50% by volume, the proportion of the fiber is too high, which causes problems such as insufficient resin impregnation of the resin during resin injection molding. Therefore, the ratio of the fibers contained in the resin molded body has the strength of the resin rotating body, and the fibers are surely filled in the recesses 4B for rotation prevention formed between the two protrusions 4A. More preferably, it is 35 to 45% by volume which does not inhibit impregnation.

以下、本発明の実施例を説明する。
実施例1
スラリーを製造するために、繊維チョップ投入時の濃度が4g/リットルとなる量の水を満たしたタンクを用意する。そしてこのタンク内に、樹脂成形体中の補強繊維の繊維総量が40体積%となる量の補強繊維を入れる。具体的には、補強繊維として用いる繊維チョップとして、アスペクト比200のパラ系アラミド繊維“帝人(株)製「テクノーラ(商標)」”を50質量%、アスペクト比200のメタ系アラミド繊維“帝人(株)製「コーネックス(商標)」”を45質量%、そしてフリーネス値300mlまでフィブリル化処理した微細繊維“デュポン(株)製「ケブラー(商標)」”を5質量%となる量をそれぞれ投入する。次に攪拌機でタンク内の水を攪拌し繊維チョップを分散させる。
Examples of the present invention will be described below.
Example 1
In order to produce the slurry, a tank filled with water in an amount that gives a concentration of 4 g / liter when the fiber chop is charged is prepared. And in this tank, the reinforcement fiber of the quantity from which the fiber total amount of the reinforcement fiber in a resin molding becomes 40 volume% is put. Specifically, as a fiber chop used as a reinforcing fiber, 50% by mass of para-aramid fiber “Technola (trademark)” manufactured by Teijin Limited with an aspect ratio of 200, and meta-aramid fiber “Teijin (aspect ratio 200). "Conex (trademark)" made by Co., Ltd. is 45% by mass, and the fine fiber "Kevlar (trademark)" made by DuPont is fibrillated to a freeness value of 300ml. Next, the water in the tank is stirred with a stirrer to disperse the fiber chop.

次に図3(A)に示す抄造圧縮装置7を用いて、下側のブッシュ支持用金型12上に金属製ブッシュ2を位置決めする。使用する金属製ブッシュ2の突出部4A及び凹部4Bの形状は、h1=2mm、h2=0.5mmであり、アンダーカット形状であり、金属製ブッシュ2の仮想中心横断面と側面SFとの間の角度θが20°である。そして、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュを挟持する。ここで、下側の圧縮用金型14の位置は、金属製ブッシュ2の軸方向中央から底部材16上面までの距離が40mmとなる位置とした。この抄造圧縮装置7内に、分散させた繊維チョップを含むスラリーを充填する。そして、真空吸引をして下側の圧縮用金型14に設けた複数の貫通孔15から水を排水することにより、繊維チョップと水を分離して円筒状の補強繊維集積体8を得る。なお排水時に貫通孔15より繊維チョップが流出するのを防止するために、下側の圧縮用金型14上には底部材16を配置した。この底部材16としては金属製100メッシュの金網を用いた。   Next, the metal bush 2 is positioned on the lower bush supporting mold 12 by using the papermaking compression device 7 shown in FIG. The shape of the protrusion 4A and the recess 4B of the metal bush 2 to be used is h1 = 2 mm, h2 = 0.5 mm, an undercut shape, and between the virtual center cross section of the metal bush 2 and the side surface SF. The angle θ is 20 °. Then, as shown in FIG. 3B, the upper bush supporting mold 11 is moved downward, and the metal bush is sandwiched between the pair of bush supporting molds 11 and 12. Here, the position of the lower compression mold 14 was a position where the distance from the center in the axial direction of the metal bush 2 to the upper surface of the bottom member 16 was 40 mm. The papermaking compression device 7 is filled with a slurry containing dispersed fiber chops. Then, vacuum suction is performed to drain water from the plurality of through holes 15 provided in the lower compression mold 14, thereby separating the fiber chop and the water to obtain the cylindrical reinforcing fiber assembly 8. In order to prevent the fiber chop from flowing out of the through hole 15 during drainage, a bottom member 16 is disposed on the lower compression mold 14. As the bottom member 16, a metal 100 mesh wire net was used.

次に金属製ブッシュ2の回り止め部にさらに強固に繊維を喰い込ませるために圧縮を行う。まず図3(C)に示すように、150℃に加熱した上側の圧縮用金型13を、金属製ブッシュ2の軸方向中央から上側の圧縮用金型13下面までの距離が40mmとなる位置まで下降させる。この位置は、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置である。そして、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ速度1〜5mm/sで相互に近づく方向に移動させ、補強繊維集積体8が厚み10mmとなるまで圧縮する。そして、加熱した状態で2分間圧縮することにより、金属製ブッシュ2と一体化した補強用繊維基材5を得た。前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮している。   Next, compression is performed so that the fibers are more firmly entrapped in the rotation stop portion of the metal bush 2. First, as shown in FIG. 3C, the upper compression mold 13 heated to 150 ° C. is positioned at a distance of 40 mm from the axial center of the metal bush 2 to the lower surface of the upper compression mold 13. To lower. This position is a position where the metal bush 2 is located in the center between the pair of compression molds 13 and 14. And as shown in FIG.3 (D), in the state which metal bush 2 is located in the center between a pair of compression metal molds 13 and 14, a pair of compression metal molds 13 and 14 are made into speed 1-each, respectively. It moves to the direction which mutually approaches at 5 mm / s, and it compresses until the reinforcement fiber integration body 8 becomes thickness 10mm. And the fiber substrate 5 for reinforcement integrated with the metal bush 2 was obtained by compressing for 2 minutes in the heated state. At the time of the compression, the compression is performed while being vacuum-sucked from the through hole 15 of the lower compression mold 14.

次に図4に示すように、上記の工程で得られた金属製ブッシュ2と一体化した補強用繊維基材5を200℃に加熱した成形金型27に配置して型締めする。そして、成形金型27内部を圧力90kPa以下に減圧した後、2,2’−(1,3フェニレン)ビス2−オキサゾリン69質量部、4,4’−ジアミノジフェニルメタン31質量部を混合した樹脂を温度140℃で溶解し、オクチルブロマイド1質量部を加えて撹拌した樹脂を金型内部に注入して補強用繊維基材5に含浸させ、成形金型27内で加熱硬化し歯車素材を得る。この歯車素材を切削加工により歯を形成することにより樹脂製歯車を得る。   Next, as shown in FIG. 4, the reinforcing fiber base 5 integrated with the metal bush 2 obtained in the above process is placed in a molding die 27 heated to 200 ° C. and clamped. Then, after reducing the pressure inside the molding die 27 to 90 kPa or less, a resin in which 69 parts by mass of 2,2 ′-(1,3 phenylene) bis-2-oxazoline and 31 parts by mass of 4,4′-diaminodiphenylmethane are mixed. A resin melted at a temperature of 140 ° C., added with 1 part by mass of octyl bromide and stirred is poured into the mold, impregnated into the reinforcing fiber base 5, and heated and cured in the mold 27 to obtain a gear material. A resin gear is obtained by forming teeth by cutting this gear material.

実施例2
図3(B)において、下側の圧縮用金型14の位置を、金属製ブッシュ2の軸方向中央から底部材16上面までの距離が10mmとなる位置とし、
図3(C)において、上側の圧縮用金型13を、金属製ブッシュ2の軸方向中央から上側の圧縮用金型13下面までの距離が70mmとなる位置まで下降させ、
図3(D)において、上側の圧縮用金型13のみを移動させて圧縮する以外は実施例1と同様にして樹脂製歯車を製造した。
Example 2
In FIG. 3 (B), the position of the lower compression mold 14 is a position where the distance from the axial center of the metal bush 2 to the upper surface of the bottom member 16 is 10 mm,
3C, the upper compression mold 13 is lowered to a position where the distance from the center in the axial direction of the metal bush 2 to the lower surface of the upper compression mold 13 is 70 mm.
In FIG. 3D, a resin gear was manufactured in the same manner as in Example 1 except that only the upper compression mold 13 was moved and compressed.

従来例1
水を満たしたタンクを用意し、実施例1と同様の繊維配合、濃度で繊維チョップを分散させる。図5(A)に示すように、抄造装置307は、底面部313および角筒状の抄造用筒体309を備えている。なお底面部313のみを金網で構成した。使用した金網は、100メッシュのシート状金網であった。そして、前述の分散させた繊維チョップを含むスラリーを抄造装置307に導入して、集積物310を得た。集積物310を取り出して、これを脱水、乾燥した。その後、図5(B)に示すように、外径φ80mm×内径φ55mmのドーナツ状に打ち抜き、補強繊維集積体308を得た。
Conventional example 1
A tank filled with water is prepared, and fiber chops are dispersed with the same fiber blending and concentration as in Example 1. As shown in FIG. 5A, the papermaking apparatus 307 includes a bottom surface portion 313 and a rectangular tube-forming cylinder 309. Only the bottom surface portion 313 is made of a wire mesh. The wire mesh used was a 100 mesh sheet metal mesh. And the slurry containing the above-mentioned dispersed fiber chop was introduced into the papermaking apparatus 307, and the accumulation 310 was obtained. The accumulation 310 was taken out and dehydrated and dried. Thereafter, as shown in FIG. 5B, a reinforcing fiber assembly 308 was obtained by punching into a donut shape having an outer diameter of 80 mm and an inner diameter of 55 mm.

次に図6(A)に示すように、上記の工程で得られた補強繊維集積体308を2個使用して、金属製ブッシュ2に設けた突出部4Aを挟み込み、加熱した成形金型323内に配置して型締めをした。その後の工程は、実施例1と同様にして、樹脂製歯車を製造した。図6(B)は、このようにして製造した樹脂製回転体の概略縦断面図である。この樹脂製回転体の樹脂成形体306中にある2つの補強用繊維基材305の重ね合せ界面BSには、補強繊維の絡み合いが殆どない。   Next, as shown in FIG. 6 (A), two reinforcing fiber assemblies 308 obtained in the above process are used to sandwich the protruding portion 4A provided on the metal bush 2 and heated to form a mold 323. Placed inside and clamped. Subsequent steps were performed in the same manner as in Example 1 to produce a resin gear. FIG. 6B is a schematic longitudinal sectional view of the resin rotating body manufactured as described above. There is almost no entanglement of the reinforcing fibers at the overlapping interface BS of the two reinforcing fiber base materials 305 in the resin molded body 306 of the resin rotating body.

上記実施例1〜2及び従来例1で得られた樹脂製歯車について、ボス抜き強度及びモータリング耐久寿命を測定した結果を表1に示す。測定方法は以下に示すとおりである。
ボス抜き強度:図7に示すように樹脂成形体部のみに接し、かつ金属製ブッシュ2の外径サイズより大きい内径の円筒形状の台55の上に樹脂製歯車51を配置する。上方より金属製ブッシュ2を押さえる金具56を取付け、金具56に荷重を加えて、樹脂製歯車51が破壊に至る最大荷重を測定した。
モータリング耐久寿命:表1に示す試験条件により樹脂製歯車を連続回転させ、樹脂製歯車が破壊するまでの時間を測定した。
Table 1 shows the results of measuring the boss punching strength and the motoring durability life of the resin gears obtained in Examples 1 and 2 and Conventional Example 1. The measuring method is as follows.
Boss removal strength: As shown in FIG. 7, the resin gear 51 is disposed on a cylindrical base 55 that is in contact with only the resin molded body portion and has an inner diameter larger than the outer diameter size of the metal bush 2. A metal fitting 56 that holds the metal bush 2 is attached from above, and a load is applied to the metal fitting 56 to measure the maximum load that causes the resin gear 51 to break.
Motoring durability life: The resin gear was continuously rotated under the test conditions shown in Table 1, and the time until the resin gear was broken was measured.

Figure 2009250364
Figure 2009250364

Figure 2009250364
Figure 2009250364


表2から明らかなように、本発明に係る樹脂製回転体は、補強用繊維基材とブッシュの回り止め部との結合強度を向上させることができ、ボス抜き強度が向上している。また、補強用繊維基材の内部に繊維層の境界面を形成することがないため、モータリング耐久寿命が大幅に向上している(実施例1〜2と従来例1の対照)。なお、抄造後の補強用繊維基材を圧縮する際、ブッシュが一対の圧縮用金型の間の中央に位置する状態で、補強繊維集積体を回転軸の軸線方向に上下方向から行うことにより、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができ、樹脂製回転体の機械強度のばらつきが低減している(実施例1と実施例2の対照)。

As is clear from Table 2, the resin rotating body according to the present invention can improve the bonding strength between the reinforcing fiber base and the anti-rotation portion of the bush, and the boss punching strength is improved. Moreover, since the boundary surface of a fiber layer is not formed inside the reinforcing fiber base, the motoring durability life is greatly improved (contrast with Examples 1 and 2 and Conventional Example 1). In addition, when compressing the reinforcing fiber base material after papermaking, the reinforcing fiber assembly is performed from above and below in the axial direction of the rotating shaft in a state where the bush is positioned at the center between the pair of compression molds. Further, it is possible to compress the upper and lower reinforcing fiber densities of the rotation preventing portion so as to be uniform, and the variation in mechanical strength of the resin-made rotating body is reduced (contrast between Example 1 and Example 2). .

模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。It is the longitudinal cross-sectional view of an example of embodiment of the resin-made rotary body of this invention typically shown. (A)及び(B)は金属製ブッシュの平面図及び縦断面図である。(A) And (B) is the top view and longitudinal cross-sectional view of metal bushes. (A)乃至(D)は、補強用繊維基材の抄造及び圧縮工程を順番に示す図である。(A) thru | or (D) is a figure which shows the papermaking and compression process of the fiber base material for a reinforcement in order. 樹脂注型用の金型の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the metal mold | die for resin casting. (A)及び(B)は、従来例を製造するために用いる抄造装置の一例と、従来の補強用繊維基材の製造例を示す図である。(A) And (B) is a figure which shows an example of the papermaking apparatus used in order to manufacture a prior art example, and the example of manufacture of the conventional reinforcing fiber base material. (A)は従来例を製造するために用いる樹脂注型用の金型の一例を示す概略断面図であり、(B)は従来例で製造した樹脂製回転体の縦断面図である。(A) is a schematic sectional drawing which shows an example of the metal mold | die for resin casting used in order to manufacture a prior art example, (B) is a longitudinal cross-sectional view of the resin-made rotary body manufactured by the prior art example. ボス抜き強度を測定する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which measures the boss punch strength.

符号の説明Explanation of symbols

1 樹脂製回転体
2 金属製ブッシュ
3 貫通孔
2B 外周部
4A 突出部(回り止め部)
4B 凹部
5 補強用繊維基材
7 抄造圧縮装置
8 補強繊維集積体
10 筒状金型
11、12 ブッシュ支持用金型
13、14 圧縮用金型
15 貫通孔
16 底部材
DESCRIPTION OF SYMBOLS 1 Resin rotating body 2 Metal bush 3 Through-hole 2B Outer peripheral part 4A Protrusion part (rotation prevention part)
4B Concave part 5 Reinforcing fiber base material 7 Paper-making compression device 8 Reinforcing fiber assembly 10 Cylindrical mold 11, 12 Bush supporting mold 13, 14 Compression mold 15 Through hole 16 Bottom member

Claims (8)

外周部に1以上の回り止め部が形成されて回転軸を中心にして回転するブッシュを用意するステップと、
前記ブッシュの前記外周部に、補強繊維によって形成され且つ前記1以上の回り止め部を囲むように嵌った状態で配置された補強用繊維基材を形成するステップとからなる樹脂製回転体成形用半加工品の製造方法であって、
前記補強用繊維基材を形成するステップが、
抄造法により、前記ブッシュの前記外周部の周囲に前記補強繊維を集積させて前記1以上の回り止め部を含む前記ブッシュの前記外周部を囲む補強繊維集積体を形成する第1のステップと、
前記補強繊維集積体を前記回転軸の軸線方向に圧縮して前記補強用繊維基材を形成する第2のステップとからなり、
前記第1のステップと前記第2のステップとを、ブッシュと補強繊維集積体を収容している同一装置内で連続して行うことを特徴とする樹脂製回転体成形用半加工品の製造方法。
Providing one or more detents on the outer periphery and providing a bush that rotates about the rotation axis;
Forming a reinforcing fiber base formed on the outer peripheral portion of the bush with reinforcing fibers and disposed so as to surround the one or more detents; A method of manufacturing a semi-processed product,
Forming the reinforcing fiber substrate comprises:
A first step of forming a reinforcing fiber assembly surrounding the outer peripheral portion of the bush including the one or more detents by stacking the reinforcing fibers around the outer peripheral portion of the bush by papermaking;
A second step of forming the reinforcing fiber base by compressing the reinforcing fiber assembly in the axial direction of the rotating shaft;
The first step and the second step are continuously performed in the same apparatus containing a bush and a reinforcing fiber assembly, and a method of manufacturing a resin-made rotating body half-processed product .
前記第1のステップと前記第2のステップとを行う装置は、
圧縮動作時に前記補強繊維集積体が前記ブッシュの径方向外側に広がるのを規制する筒状金型と、
前記筒状金型の内部に配置されて前記ブッシュの前記外周部よりも内側に位置する部分を前記軸線方向の両側から挟み且つ圧縮動作時に前記補強繊維集積体が前記ブッシュの径方向内側に広がるのを規制する一対のブッシュ支持用金型と、
前記筒状金型と前記一対のブッシュ支持用金型の間に位置して、圧縮動作時に前記補強繊維集積体を前記軸線方向両側から挟んで圧縮する一対の圧縮用金型とを備え、少なくとも下側の圧縮用金型が透水性を有している請求項1に記載の樹脂製回転体成形用半加工品の製造方法。
An apparatus for performing the first step and the second step is:
A cylindrical mold for restricting the reinforcing fiber assembly from spreading radially outward of the bush during compression operation;
A portion that is disposed inside the cylindrical mold and is located on the inner side of the outer peripheral portion of the bush is sandwiched from both sides in the axial direction, and the reinforcing fiber assembly spreads radially inward of the bush during the compression operation. A pair of bushing support molds for regulating
A pair of compression molds positioned between the cylindrical mold and the pair of bush supporting molds and compressing the reinforcing fiber assembly from both sides in the axial direction during compression operation, The manufacturing method of the resin-made rotary body shaping | molding half-finished product of Claim 1 in which the lower mold for compression has water permeability.
前記第2のステップは、前記ブッシュが一対の圧縮用金型の間の中央に位置する状態で、前記補強繊維集積体を前記回転軸の軸線方向に上下方向から圧縮することを特徴とする請求項1または2に記載の樹脂製回転体成形用半加工品の製造方法。   The second step is to compress the reinforcing fiber assembly from above and below in the axial direction of the rotating shaft in a state where the bush is positioned at the center between a pair of compression molds. Item 3. A method for producing a semi-finished product for molding a resin rotating body according to Item 1 or 2. 前記第2のステップは、加熱した状態で、前記補強繊維集積体を前記軸線方向に圧縮することを特徴とする請求項1〜3のいずれか1項に記載の樹脂製回転体成形用半加工品の製造方法。   The said 2nd step compresses the said reinforcement fiber integration body in the said axial direction in the state heated, The semi-process for resin-made rotary body shaping | molding of any one of Claims 1-3 characterized by the above-mentioned. Product manufacturing method. 前記第2のステップは、ブッシュと補強繊維集積体の収容空間を減圧吸引した状態で、前記補強繊維集積体を前記軸線方向に圧縮することを特徴とする請求項1〜4のいずれか1項に記載の樹脂製回転体成形用半加工品の製造方法。   5. The method according to claim 1, wherein the second step compresses the reinforcing fiber assembly in the axial direction in a state where the housing space of the bush and the reinforcing fiber assembly is sucked under reduced pressure. The manufacturing method of the semi-finished product for resin-made rotary body shaping | molding of description. 前記補強繊維集積体が、歯車の形状をしたものである請求項1〜5のいずれか1項に記載の樹脂製回転体成形用半加工品の製造方法。   The method for producing a semi-finished product for molding a resin rotating body according to any one of claims 1 to 5, wherein the reinforcing fiber assembly is in the shape of a gear. 外周部に1以上の回り止め部が形成されて回転軸を中心にして回転するブッシュを用意するステップと、
前記ブッシュの前記外周部に、補強繊維によって形成され且つ前記1以上の回り止め部を囲むように嵌った状態で配置された補強用繊維基材を形成するステップと、
前記補強用繊維基材に樹脂を含浸させ、前記樹脂を硬化して樹脂成形体を形成するステップとからなる樹脂製回転体の製造方法であって、
前記補強用繊維基材を形成するステップが、請求項1〜6のいずれか1項に記載の方法であることを特徴とする樹脂製回転体の製造方法。
Providing one or more detents on the outer periphery and providing a bush that rotates about the rotation axis;
Forming a reinforcing fiber base formed on the outer peripheral portion of the bush by a reinforcing fiber and arranged so as to surround the one or more detents; and
A step of impregnating the reinforcing fiber base material with a resin and curing the resin to form a resin molded body, comprising the steps of:
The method for producing a resin rotating body, wherein the step of forming the reinforcing fiber base material is the method according to any one of claims 1 to 6.
請求項7記載の方法により製造された樹脂製回転体の樹脂成形体に歯切り加工が施されて形成された樹脂製歯車。   A resin gear formed by performing gear cutting on a resin molded body of a resin rotating body manufactured by the method according to claim 7.
JP2008099987A 2008-04-08 2008-04-08 Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear Active JP5062009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099987A JP5062009B2 (en) 2008-04-08 2008-04-08 Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099987A JP5062009B2 (en) 2008-04-08 2008-04-08 Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear

Publications (2)

Publication Number Publication Date
JP2009250364A true JP2009250364A (en) 2009-10-29
JP5062009B2 JP5062009B2 (en) 2012-10-31

Family

ID=41311272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099987A Active JP5062009B2 (en) 2008-04-08 2008-04-08 Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear

Country Status (1)

Country Link
JP (1) JP5062009B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099171A (en) * 2009-11-05 2011-05-19 Shin Kobe Electric Mach Co Ltd Fiber base material and resin gear using the fiber base material
JP2011152729A (en) * 2010-01-28 2011-08-11 Shin Kobe Electric Mach Co Ltd Papermaking compressor
WO2012002014A1 (en) 2010-06-28 2012-01-05 日本ガスケット株式会社 Resin rotational body and method for producing same
JP2012167682A (en) * 2011-02-09 2012-09-06 Shin Kobe Electric Mach Co Ltd Resin rotor, resin gear, and method of manufacturing resin rotor
JP2013095848A (en) * 2011-11-01 2013-05-20 Shin Kobe Electric Mach Co Ltd Resin molded body and resin-made gear using the same
JP2013141826A (en) * 2012-01-13 2013-07-22 Shin Kobe Electric Mach Co Ltd Method of manufacturing fiber substrate and method of manufacturing resin rotor
JP2014051097A (en) * 2013-10-01 2014-03-20 Nippon Gasket Co Ltd Resin gear manufacturing apparatus
US9925700B2 (en) 2013-12-27 2018-03-27 Hitachi Chemical Company, Ltd. Method and apparatus of manufacturing molding material, and method of manufacturing resin gear
US10265886B2 (en) 2013-07-10 2019-04-23 Hitachi Chemical Company, Ltd. Method of manufacturing molding material, molding die for use in the manufacturing method, and method of manufacturing resin rotator
US10307972B2 (en) 2013-12-27 2019-06-04 Hitachi Chemical Company, Ltd. Apparatus of manufacturing molding material and method of manufacturing resin gear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158224A (en) * 1983-02-28 1984-09-07 Mitsubishi Rayon Co Ltd Preparation of gear
JP2001121617A (en) * 1999-10-29 2001-05-08 Shin Kobe Electric Mach Co Ltd Gear made of resin and its production method
JP2001295913A (en) * 2000-04-12 2001-10-26 Shin Kobe Electric Mach Co Ltd Resin gear and method of manufacturing the same
JP2003314666A (en) * 2002-04-19 2003-11-06 Teijin Ltd Fiber-reinforced resinous gear wheel
JP2005096173A (en) * 2003-09-24 2005-04-14 Toray Ind Inc Manufacturing method of fiber reinforced resin composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158224A (en) * 1983-02-28 1984-09-07 Mitsubishi Rayon Co Ltd Preparation of gear
JP2001121617A (en) * 1999-10-29 2001-05-08 Shin Kobe Electric Mach Co Ltd Gear made of resin and its production method
JP2001295913A (en) * 2000-04-12 2001-10-26 Shin Kobe Electric Mach Co Ltd Resin gear and method of manufacturing the same
JP2003314666A (en) * 2002-04-19 2003-11-06 Teijin Ltd Fiber-reinforced resinous gear wheel
JP2005096173A (en) * 2003-09-24 2005-04-14 Toray Ind Inc Manufacturing method of fiber reinforced resin composite

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099171A (en) * 2009-11-05 2011-05-19 Shin Kobe Electric Mach Co Ltd Fiber base material and resin gear using the fiber base material
JP2011152729A (en) * 2010-01-28 2011-08-11 Shin Kobe Electric Mach Co Ltd Papermaking compressor
WO2012002014A1 (en) 2010-06-28 2012-01-05 日本ガスケット株式会社 Resin rotational body and method for producing same
US9162379B2 (en) 2010-06-28 2015-10-20 Nippon Gasket Co., Ltd. Resin rotating body and manufacturing method for resin rotating body
JP2012167682A (en) * 2011-02-09 2012-09-06 Shin Kobe Electric Mach Co Ltd Resin rotor, resin gear, and method of manufacturing resin rotor
JP2013095848A (en) * 2011-11-01 2013-05-20 Shin Kobe Electric Mach Co Ltd Resin molded body and resin-made gear using the same
JP2013141826A (en) * 2012-01-13 2013-07-22 Shin Kobe Electric Mach Co Ltd Method of manufacturing fiber substrate and method of manufacturing resin rotor
US10265886B2 (en) 2013-07-10 2019-04-23 Hitachi Chemical Company, Ltd. Method of manufacturing molding material, molding die for use in the manufacturing method, and method of manufacturing resin rotator
JP2014051097A (en) * 2013-10-01 2014-03-20 Nippon Gasket Co Ltd Resin gear manufacturing apparatus
US9925700B2 (en) 2013-12-27 2018-03-27 Hitachi Chemical Company, Ltd. Method and apparatus of manufacturing molding material, and method of manufacturing resin gear
US10307972B2 (en) 2013-12-27 2019-06-04 Hitachi Chemical Company, Ltd. Apparatus of manufacturing molding material and method of manufacturing resin gear

Also Published As

Publication number Publication date
JP5062009B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5062009B2 (en) Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
JP5163104B2 (en) Manufacturing method of resin rotating body and manufacturing method of semi-finished product for resin rotating body molding
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP5445175B2 (en) Paper compressor
JP2010115853A (en) Method for manufacturing semi-fabricated product for molding resin-made rotator, method for manufacturing resin-made rotator, and resin-made gear
JP5794316B2 (en) Method for manufacturing semi-finished product for molding resin rotating body and method for manufacturing resin rotating body
JP5556477B2 (en) Manufacturing method of resin gears
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
JP2017089778A (en) Process of manufacture of resin gear
JP2012167682A (en) Resin rotor, resin gear, and method of manufacturing resin rotor
US9962887B2 (en) Method of manufacturing fiber substrate and method of manufacturing resin rotator
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
JP5560663B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin gear
JP5540820B2 (en) Resin gear
JP7056431B2 (en) How to manufacture gearbox components and how to manufacture preforms for gearbox components
JP2014213560A (en) Method of producing resin molding and method of producing resin-made gear using the resin molding produced
JP5818088B2 (en) Resin molded body and resin gear using the same
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP5664451B2 (en) Manufacturing method of resin rotating body forming material and manufacturing method of resin rotating body
JP6086234B2 (en) Manufacturing method of resin gears
JP2016203428A (en) Method for producing rotor made of resin, and method for producing gear made of resin
JP2017089779A (en) Resin gear
JP5620936B2 (en) Manufacturing method of resin gear
JP6156695B2 (en) Gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5062009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350