JP2009249703A - Method for producing metal thin film-laminated board and vacuum film deposition device - Google Patents

Method for producing metal thin film-laminated board and vacuum film deposition device Download PDF

Info

Publication number
JP2009249703A
JP2009249703A JP2008100786A JP2008100786A JP2009249703A JP 2009249703 A JP2009249703 A JP 2009249703A JP 2008100786 A JP2008100786 A JP 2008100786A JP 2008100786 A JP2008100786 A JP 2008100786A JP 2009249703 A JP2009249703 A JP 2009249703A
Authority
JP
Japan
Prior art keywords
film
metal thin
organic liquid
vacuum
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008100786A
Other languages
Japanese (ja)
Inventor
Eizaburo Kanda
栄三郎 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008100786A priority Critical patent/JP2009249703A/en
Publication of JP2009249703A publication Critical patent/JP2009249703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for producing a board obtained by laminating metal films on both the sides of a long-length resin film which is produced through a process by vacuum film deposition, in which the narrow pitch wiring of a both side flexible wiring board is possible. <P>SOLUTION: In the method for producing a board where metal thin films are vacuum-deposited on both the sides of a long-length film, so as to laminate the metal thin films on both the sides of the long-length film, after the metal thin films are vacuum-deposited on both the sides of the long-length resin film, an organic matter liquid film is formed on the surface of at least one metal thin film of the metal thin films, and the metal thin film-laminated layer board is coiled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、長尺フィルムの両面に金属薄膜を成膜する成膜方法及び、該成膜方法を実施する成膜装置に関する。   The present invention relates to a film forming method for forming a metal thin film on both sides of a long film and a film forming apparatus for performing the film forming method.

長尺樹脂フィルムはフレキシブル性を有し、容易に加工できるので、その表面に金属膜や酸化物膜を形成して電子部品や光学部品、包装材料などとして広く産業界で用いられている。例えば、液晶ディスプレイのドライバ回路には、フレキシブル性と微細配線に対応する特性を持つCOF(Chip on Film)が採用されている。また、携帯電話など小型電子機器ではフレキシブル配線基板が使用されている。近年の電子機器の電子部品の実装の高密度化等により、フレキシブル配線基板等は、両面フレキシブル配線基板あるいは多層基板となっている。   A long resin film has flexibility and can be easily processed. Therefore, a metal film or an oxide film is formed on the surface of the long resin film, and it is widely used in the industry as an electronic component, an optical component, a packaging material, and the like. For example, a driver circuit of a liquid crystal display employs COF (Chip on Film) having characteristics corresponding to flexibility and fine wiring. In addition, flexible wiring boards are used in small electronic devices such as mobile phones. Due to the recent increase in mounting density of electronic components of electronic devices, flexible wiring boards and the like have become double-sided flexible wiring boards or multilayer boards.

ところで、COF用の基板やフレキシブル配線基板は、ポリイミドフィルム上に金属膜を積層した基板をサブトラクティブ法等により加工して製造する。ポリイミドフィルム上に金属膜を積層した基板を製造するには、ポリイミドフィルムにニッケル−クロム合金及び銅等の金属薄膜を真空成膜する工程を経て、銅薄膜上に銅を電気めっきする方法、銅箔とポリイミドフィルムを過熱圧着する方法等が知られている。そのうち、ポリイミドフィルムに金属薄膜を真空成膜する工程を経た基板は、ポリイミドフィルムと金属薄膜層が連続していることから50μm未満の狭ピッチ配線に対応できる。   By the way, the substrate for COF and the flexible wiring substrate are manufactured by processing a substrate in which a metal film is laminated on a polyimide film by a subtractive method or the like. In order to manufacture a substrate in which a metal film is laminated on a polyimide film, a method of electroplating copper on the copper thin film through a step of vacuum-depositing a metal thin film such as a nickel-chromium alloy and copper on the polyimide film, copper A method of overheating and pressing a foil and a polyimide film is known. Among them, a substrate that has undergone a step of vacuum-depositing a metal thin film on a polyimide film can accommodate narrow pitch wiring of less than 50 μm because the polyimide film and the metal thin film layer are continuous.

ポリイミドフィルムの両面に金属膜を積層した基板を製造するのに、真空成膜法で成膜すると、ポリイミドフィルムの両面に成膜されて巻き取られた後、金属薄膜積層基板の表裏両面間の金属表面同士が接触し、巻き取り時の張力にて押し付けられることと、10−1Paの減圧下にあることで、金属表面同士が結合してしまう。次工程にて巻きだされると、金属同士の密着力が強いために、金属薄膜がポリイミドから剥がれるという現象が発生し、結果的にピンホールが発生する等の致命的な不良となる。 To manufacture a substrate with a metal film laminated on both sides of a polyimide film, when the film is formed by a vacuum film formation method, the film is formed on both sides of the polyimide film and wound, and then between the front and back sides of the metal thin film laminate substrate The metal surfaces come into contact with each other and are pressed by the tension at the time of winding, and the metal surfaces are bonded to each other under a reduced pressure of 10 −1 Pa. When it is unwound in the next step, since the adhesion between the metals is strong, a phenomenon that the metal thin film is peeled off from the polyimide occurs, resulting in a fatal defect such as a pinhole.

なお、真空中で金属薄膜積層基板Sの表裏面間の金属薄膜の表面同士が結合することを防ぐ他の方法としては、長尺樹脂フィルムと金属薄膜積層基板をラミネートしながら巻き取る方法がある。しかし、真空成膜装置内に長尺フィルムのラミネート機構を加えるため、装置が複雑化し、管理が煩雑なる。   In addition, as another method for preventing the surfaces of the metal thin films between the front and back surfaces of the metal thin film multilayer substrate S from being bonded in a vacuum, there is a method of winding while laminating the long resin film and the metal thin film multilayer substrate. . However, since a long film laminating mechanism is added to the vacuum film forming apparatus, the apparatus becomes complicated and management becomes complicated.

銅箔とポリイミドフィルムを過熱圧着する方法でポリイミドフィルムの両面に金属膜を積層した基板を製造すると、大気圧下の作業のため、上述の表裏両面間の金属表面同士が結合することは無い。特許第3675805号には、片面に銅箔層を有するポリイミドフィルムに銅箔を過熱密着して両面に金属膜を積層した基板の製造方法が開示されている。   If the board | substrate which laminated | stacked the metal film on both surfaces of the polyimide film by the method of carrying out the thermocompression bonding of copper foil and a polyimide film is manufactured for the operation under atmospheric pressure, the metal surfaces between the above-mentioned front and back both surfaces will not couple | bond together. Japanese Patent No. 3675805 discloses a method for producing a substrate in which a copper film is superheat-adhered to a polyimide film having a copper foil layer on one side and a metal film is laminated on both sides.

しかし、特許第3675805号に開示されている方法では、銅とポリイミドの密着力を高めるために、ポリイミドと接触する銅箔表面は粗化されている。エッチング加工にて配線加工すると、この粗化面の凹凸のために、配線加工ピッチに限界があり、50μm未満の狭ピッチ配線には対応できていない。
特許第3675805号広報
However, in the method disclosed in Japanese Patent No. 3675805, the surface of the copper foil in contact with the polyimide is roughened in order to increase the adhesion between copper and polyimide. When wiring is processed by etching, the wiring processing pitch is limited due to the unevenness of the roughened surface, and it is not possible to handle narrow pitch wiring of less than 50 μm.
Japanese Patent No. 3675805

両面フレキシブル配線基板の狭ピッチ配線が可能な長尺樹脂フィルムの両面に金属膜を積層した金属薄膜積層基板の製造方法と製造装置を提供することにある。   An object of the present invention is to provide a manufacturing method and a manufacturing apparatus of a metal thin film laminated substrate in which metal films are laminated on both sides of a long resin film capable of narrow pitch wiring of a double-sided flexible wiring substrate.

本発明の第一の発明は、 長尺樹脂フィルムの両面に金属薄膜を真空成膜させて積層する金属薄膜積層基板の製造方法において、
長尺樹脂フィルムの両面に金属薄膜を真空成膜した後に、該金属薄膜のうち少なくとも一方の金属薄膜の表面に有機物液体塗布機構を用い有機物液体膜を塗布形成し、その後、該長尺樹脂フィルムの両面に金属薄膜を積層した金属薄膜積層基板を巻き取ることを特徴とする金属薄膜積層基板の製造方法の発明である。
The first invention of the present invention is a method for producing a metal thin film laminate substrate in which a metal thin film is vacuum-deposited on both sides of a long resin film,
After a metal thin film is vacuum-deposited on both sides of the long resin film, an organic liquid film is applied and formed on the surface of at least one of the metal thin films using an organic liquid coating mechanism, and then the long resin film It is an invention of a method for manufacturing a metal thin film multilayer substrate, wherein the metal thin film multilayer substrate in which the metal thin films are laminated on both sides is wound up.

第二の発明は、有機物液体膜の塗布が、多孔質ロールあるいはドクターブレードにより行われることを特徴とする第一の発明に記載の金属薄膜積層基板の製造方法である。   The second invention is the method for producing a metal thin film multilayer substrate according to the first invention, wherein the organic liquid film is applied by a porous roll or a doctor blade.

第三の発明は、有機物液体の蒸気圧が、真空成膜装置の成膜時の雰囲気の圧力の1/100以下であることを特徴とする請求項1又は2のいずれかに記載の金属薄膜積層基板の製造方法である。   The third invention is characterized in that the vapor pressure of the organic liquid is 1/100 or less of the pressure of the atmosphere during film formation of the vacuum film forming apparatus. It is a manufacturing method of a laminated substrate.

本発明の第四の発明は、長尺樹脂フィルムの巻き出しロールとキャンロールと巻き取りロールと前記キャンロールに対向した真空成膜機構を備えた真空成膜装置において、長尺樹脂フィルムの搬送経路上で、前記キャンロールと前記巻き取りロールの間に該長尺樹脂フィルムの少なくとも一方の面に有機物液体膜を塗布させて有機物液体膜を形成する有機物液体塗布機構を備えていることを特徴とする真空成膜装置の発明である。   A fourth invention of the present invention is a vacuum film forming apparatus provided with a vacuum film forming mechanism facing a take-up roll, a can roll, a take-up roll and a can roll of a long resin film. An organic liquid application mechanism for forming an organic liquid film by applying an organic liquid film on at least one surface of the long resin film between the can roll and the take-up roll on the path is provided. This is an invention of a vacuum film forming apparatus.

本発明の第五発明は、前記有機物液体塗布機構のうち有機物液体膜の塗布が、多孔質ロールによることを特徴とする第四の発明に記載の真空成膜装置の発明である。   According to a fifth aspect of the present invention, there is provided the vacuum film forming apparatus according to the fourth aspect, wherein the organic liquid film is applied by a porous roll in the organic liquid application mechanism.

本発明の第六の発明は、前記有機物液体塗布機構のうち有機物液体膜の塗布が、ドクターブレードによることを特徴とする第四の発明に記載の真空成膜装置の発明である。   According to a sixth aspect of the present invention, there is provided the vacuum film forming apparatus according to the fourth aspect, wherein the organic liquid film is applied by a doctor blade in the organic liquid application mechanism.

本発明の第七の前記有機物液体塗布機構が、有機物液体が満たされた容器と、該容器内に金属薄膜積層基板を通過させるガイドロールと、該容器の外にあってかつ該容器内を通過後の金属薄膜積層基板を挟み込む対向した2本のニップロールで構成されることを特徴とする第四の発明に記載の真空成膜装置の発明である。   The seventh organic liquid application mechanism of the present invention includes a container filled with an organic liquid, a guide roll for allowing the metal thin film laminated substrate to pass through the container, and outside the container and passing through the container. It is an invention of a vacuum film-forming apparatus according to a fourth invention, characterized in that it is composed of two opposing nip rolls sandwiching a subsequent metal thin film laminated substrate.

本発明によれば、長尺樹脂フィルム両面に真空成膜法にて金属薄膜を成膜する際に、巻き取りによる長尺樹脂フィルムの表裏に成膜された金属薄膜間の結合を防止でき、次に巻き出した時に膜剥がれが起きる不具合を低減することが可能となり、狭ピッチ配線加工に対応した金属薄膜積層基板の製造が可能となる。   According to the present invention, when a metal thin film is formed on both sides of a long resin film by a vacuum film forming method, it is possible to prevent bonding between the metal thin films formed on the front and back of the long resin film by winding, Next, it is possible to reduce the problem that film peeling occurs when unwinding, and it becomes possible to manufacture a metal thin film multilayer substrate corresponding to narrow pitch wiring processing.

本発明の金属薄膜積層基板は、例えば、ポリイミドフィルム上にニッケル−クロム合金薄膜層を成膜し、該合金薄膜層上に銅薄膜層を真空成膜する工程を経て、銅薄膜層上に電解めっきにて銅膜を成膜する方法で製造される。ここで、該ポリイミドフィルムの両面に真空成膜法にて上記ニッケル−クロム合金薄膜層、銅薄膜層を順次成膜して積層した後、得られた金属薄膜積層基板を、10−1Paの減圧下で巻き取りを行うことになるが、この場合、上記したようにフィルムの両面に成膜された金属薄膜の表面同士が接触した状態で巻きとられることになり、金属薄膜の表面同士が結合し、次に巻き出すときに金属薄膜がポリイミドから剥がれるという現象が発生し、致命的な不良となることがあった。 The metal thin film multilayer substrate of the present invention is formed by, for example, forming a nickel-chromium alloy thin film layer on a polyimide film and vacuum forming a copper thin film layer on the alloy thin film layer. It is manufactured by a method of forming a copper film by plating. Here, after the said nickel-chromium alloy thin film layer and the copper thin film layer were sequentially formed and laminated | stacked on both surfaces of this polyimide film with the vacuum film-forming method, the obtained metal thin film laminated substrate was 10 <-1 > Pa. Winding is performed under reduced pressure. In this case, as described above, the surfaces of the metal thin films formed on both surfaces of the film are wound in contact with each other, and the surfaces of the metal thin films are wound together. The phenomenon that the metal thin film is peeled off from the polyimide at the time of bonding and unwinding may occur, resulting in a fatal defect.

そこで、本発明の金属薄膜積層基板の製造方法においては、かかる不良を防止するために、長尺樹脂フィルムの一方の面に金属薄膜を真空成膜して、さらに他方の面に金属薄膜を真空成膜した後、長尺金属薄膜積層基板を巻き取る前に、金属薄膜のうち少なくとも一方の表面に有機物液体膜を形成して長尺樹脂フィルムの表裏面間の金属薄膜表面同士が結合することを防ぐのである。   Therefore, in the method for manufacturing a metal thin film multilayer substrate of the present invention, in order to prevent such defects, a metal thin film is vacuum-deposited on one surface of the long resin film, and further a metal thin film is vacuum-deposited on the other surface. After film formation, before winding up the long metal thin film laminated substrate, an organic liquid film is formed on at least one surface of the metal thin film, and the metal thin film surfaces between the front and back surfaces of the long resin film are bonded to each other. It prevents.

本発明の金属薄膜席層基板の製造方法について、図1の本発明の真空成膜装置10を用いて説明する。図1は、本発明の真空成膜装置10の一例を模式的に示す側面図である。図2は、本発明の真空成膜装置の別な例を模式的に示す側面図である。図3は、有機物液体塗布機構の一例を示す側面図と正面図である。図4、図5及び図6は、有機物液体塗布機構を模式的に示す側面図である。各種ロールが円状に描かれているが、実際は円筒状である。   A method of manufacturing the metal thin film seat layer substrate of the present invention will be described using the vacuum film forming apparatus 10 of the present invention shown in FIG. FIG. 1 is a side view schematically showing an example of the vacuum film forming apparatus 10 of the present invention. FIG. 2 is a side view schematically showing another example of the vacuum film forming apparatus of the present invention. FIG. 3 is a side view and a front view showing an example of the organic liquid application mechanism. 4, 5 and 6 are side views schematically showing the organic liquid application mechanism. Various rolls are drawn in a circular shape, but are actually cylindrical.

真空成膜装置10は、その構成部品のほとんどが収納された直方体状の筐体12を備えている。筐体は円筒状でも良く、その形状は問わないが、10−4Pa〜1Paの範囲に減圧された状態を保持できれば良い。筐体内にはフィルムの巻きだしロール13、キャンロール14、スパッタリングカソード15a、15b、テンションロール16a、16b、巻き取りロール17、有機物液体塗布機構の一つである多孔質ロール18を有する。 The vacuum film forming apparatus 10 includes a rectangular parallelepiped housing 12 in which most of the components are stored. The casing may be cylindrical and the shape is not limited as long as the decompressed state can be maintained in the range of 10 −4 Pa to 1 Pa. The casing has a film winding roll 13, a can roll 14, sputtering cathodes 15a and 15b, tension rolls 16a and 16b, a winding roll 17, and a porous roll 18 which is one of organic liquid application mechanisms.

スパッタリングカソード15a、15bは、マグネトロンカソード式でキャンロール14に対向して配置される。スパッタリングカソード15a、15bの長尺樹脂フィルムの巾方向の寸法は、長尺樹脂フィルムの巾より広ければよい。例えば500mmの長尺樹脂フィルムであれば、スパッタリングカソードの長尺樹脂フィルムの巾方向の寸法は600mmあればよい。   The sputtering cathodes 15a and 15b are of a magnetron cathode type and are arranged to face the can roll 14. The dimension in the width direction of the long resin film of the sputtering cathodes 15a and 15b may be wider than the width of the long resin film. For example, if it is a 500 mm long resin film, the width direction dimension of the long resin film of a sputtering cathode should just be 600 mm.

キャンロール14の直径400Φ以上あれば、複数のスパッタリングカソードを対向させることができる。キャンロール14内部には水や有機溶媒などの冷媒が循環し、スパッタリングの際の長尺樹脂フィルムの冷却を行う。キャンロール14の表面は、硬質クロムめっきされている。図2は二組のキャンロール等を備えた真空成膜装置11であり、一つの装置を一回稼動することで長尺樹脂フィルムの両面に成膜が行える。   If the diameter of the can roll 14 is 400Φ or more, a plurality of sputtering cathodes can be opposed to each other. A coolant such as water or an organic solvent circulates inside the can roll 14 to cool the long resin film during sputtering. The surface of the can roll 14 is plated with hard chrome. FIG. 2 shows a vacuum film forming apparatus 11 having two sets of can rolls and the like, and film formation can be performed on both sides of a long resin film by operating one apparatus once.

真空成膜装置10では長尺樹脂フィルムFは、巻き出しロール13から巻き出され、テンションロール16a、キャンロール14、テンションロール16bを経て緩まないように搬送され巻き取りロール17で巻き取られる。また、長尺樹脂フィルムFは、キャンロール14の表面に接触しかつキャンロール14の表面に沿って搬送されるものである。長尺樹脂フィルムFは、両面に金属薄膜が成膜されて長尺樹脂フィルムの両面に金属薄膜を積層した金属薄膜積層基板S(以下金属薄膜積層基板Sとする。)となる。なお、真空成膜装置10は1組のキャンロールとスパッタリングカソードを備えるので、長尺樹脂フィルムの両面に成膜するには、長尺樹脂フィルムの片面に金属膜を積層した基板を取り出し、該基板の成膜されていない面を成膜すれば良い。最初の成膜の際には、有機物液体膜は形成しない。   In the vacuum film forming apparatus 10, the long resin film F is unwound from the unwinding roll 13, conveyed through the tension roll 16 a, the can roll 14, and the tension roll 16 b so as not to be loosened, and taken up by the take-up roll 17. The long resin film F is in contact with the surface of the can roll 14 and is conveyed along the surface of the can roll 14. The long resin film F is a metal thin film laminated substrate S (hereinafter referred to as a metal thin film laminated substrate S) in which metal thin films are formed on both sides and metal thin films are laminated on both sides of the long resin film. Since the vacuum film forming apparatus 10 includes a pair of can rolls and a sputtering cathode, in order to form a film on both sides of the long resin film, a substrate having a metal film laminated on one side of the long resin film is taken out, The surface of the substrate that is not formed may be formed. In the first film formation, the organic liquid film is not formed.

真空成膜装置10及び11では成膜機構にスパッタリングを用いている。スパッタリング法で成膜する場合、真空成膜装置内を有機物液体の蒸気圧又は10−4Paから10−3Paまでの範囲内の圧力でいずれか高いほうまで減圧される。該減圧の圧力を到達圧力という。到達圧力まで減圧された後に、スパッタリングガス(アルゴン)導入させて、10−1Pa〜約1Paまでの範囲内の圧力でスパッタリングを行う。なお、成膜機構はスパッタリングに限定されず、蒸着などを公知の真空成膜方法を用いることができる。 In the vacuum film forming apparatuses 10 and 11, sputtering is used as a film forming mechanism. When the film is formed by sputtering, the inside of the vacuum film forming apparatus is depressurized to the higher one by the vapor pressure of the organic liquid or the pressure in the range from 10 −4 Pa to 10 −3 Pa. This reduced pressure is called ultimate pressure. After the pressure is reduced to the ultimate pressure, sputtering gas (argon) is introduced, and sputtering is performed at a pressure in the range of 10 −1 Pa to about 1 Pa. Note that the film formation mechanism is not limited to sputtering, and a known vacuum film formation method such as vapor deposition can be used.

図3は有機物液体塗布機構の一例を模式的に示す図である。金属薄膜積層基板Sへの有機物液体の塗布をスポンジで形成された多孔質ロール18で行う。真空成膜装置10および11では、多孔質ロールは多孔質ロールとテンションロールで金属薄膜積層基板Sを挟み込み、金属薄膜積層基板Sの搬送により回転する。さらに多孔質ロールの回転軸は可動式とし、該長尺樹脂フィルムの両面に金属膜を積層した基板との接触圧を外部から制御できる。   FIG. 3 is a diagram schematically showing an example of the organic liquid application mechanism. Application of the organic liquid to the metal thin film laminated substrate S is performed with a porous roll 18 formed of a sponge. In the vacuum film forming apparatuses 10 and 11, the porous roll sandwiches the metal thin film multilayer substrate S between the porous roll and the tension roll, and rotates when the metal thin film multilayer substrate S is conveyed. Further, the rotating shaft of the porous roll is movable, and the contact pressure with the substrate having metal films laminated on both sides of the long resin film can be controlled from the outside.

多孔質ロール18は、ウレタンスポンジやゴムスポンジ等で形成された円筒状のスポンジ18aと、この円筒の中空部に差し込まれた円筒管18bとから構成されている。円筒管18bの外周面には多数の孔(図示せず)が形成されている。円筒管18bの両端部は筐体12の壁12aに軸受(ロータリージョイント)36を介して回転自在に固定されており(図3(b)では円筒管32bの一端部しか示していないが、他端部も同様の構成である)、この一端部は配管(送油管)38によって液体供給ポンプ34に接続されている。液体供給ポンプ34は、液体Lが収容された液体タンク39に接続されている。   The porous roll 18 includes a cylindrical sponge 18a formed of urethane sponge, rubber sponge, or the like, and a cylindrical tube 18b inserted into a hollow portion of the cylinder. A large number of holes (not shown) are formed on the outer peripheral surface of the cylindrical tube 18b. Both end portions of the cylindrical tube 18b are rotatably fixed to the wall 12a of the housing 12 via bearings (rotary joints) 36 (FIG. 3B shows only one end portion of the cylindrical tube 32b. The end portion has the same configuration), and this one end portion is connected to the liquid supply pump 34 by a pipe (oil feed pipe) 38. The liquid supply pump 34 is connected to a liquid tank 39 in which the liquid L is stored.

液体供給ポンプ34を稼動させることにより、液体タンク39内の液体Lが配管38を通って円筒管18bに供給され、この円筒管18bの多数の孔を通ってスポンジ18aに染み出ていき、スポンジ18aは多量の液体Lを含むこととなる。スポンジ18aに含まれた液体Lは。金属薄膜積層基板Sの一方の面に塗布される。   By operating the liquid supply pump 34, the liquid L in the liquid tank 39 is supplied to the cylindrical tube 18b through the pipe 38, and oozes out into the sponge 18a through the numerous holes of the cylindrical tube 18b. 18a contains a large amount of liquid L. The liquid L contained in the sponge 18a. It is applied to one surface of the metal thin film multilayer substrate S.

図4は、有機物液体供給機構の一例を模式的に示す側面図である。ドクターブレード41で金属薄膜積層基板Sへの有機物液体の塗布を行う。図1および2の多孔質ロール18の替わりに図4の有機物液体供給機構を長尺樹脂フィルムの搬送経路上、テンションロール16bと巻き取りロール17の間に設けることができる。ドクターブレード41には、上述の液体供給ポンプ、配管38を備えて筐体外部から有機物液体を供給することができる。   FIG. 4 is a side view schematically showing an example of the organic liquid supply mechanism. An organic liquid is applied to the metal thin film laminated substrate S by the doctor blade 41. The organic liquid supply mechanism shown in FIG. 4 can be provided between the tension roll 16b and the take-up roll 17 on the long resin film conveyance path instead of the porous roll 18 shown in FIGS. The doctor blade 41 is provided with the above-described liquid supply pump and pipe 38 and can supply organic liquid from the outside of the casing.

図5は、有機物液体塗布機構の一例を模式的に示す側面図である。有機物液体Lが満たされた容器51と、容器51に金属薄膜積層基板Sを通過させるガイドロール52と、容器51の外にあり容器51内を通過した金属薄膜積層基板Sを挟み込む対向した2本のニップロール53で構成される有機物液体塗布機構である。金属薄膜積層基板Sが、有機物液体中を、通過させられることで、金属薄膜積層基板Sの金属薄膜の表面に有機物液体膜を形成することが可能となる。具体的には、金属薄膜積層基板Sが、ガイドロール52により導かれ、有機物液体が満たされた容器51を通過し、通過後に金属薄膜積層基板Sをニップロール53により挟み込み、有機物液体膜の膜厚を調整するものである。ニップロール53内には水などの冷媒が循環し冷却されるものである。ガイドロール52は金属薄膜積層基板Sが容器51を通過するように適宜配され、図5の配置に限定されない。ガイドロール52とニップロール53は、金属薄膜積層基板Sの搬送に追従して回転する。金属薄膜積層基板Sの両面には有機物液体膜が形成されているので、ニップロール53で挟み込まれても金属薄膜の表面に傷など不具合が生じることはない。また、ニップロール53は硬質クロムめっきされたステンレスやゴムなど適宜選択できる。   FIG. 5 is a side view schematically showing an example of the organic liquid application mechanism. A container 51 filled with the organic liquid L, a guide roll 52 for allowing the metal thin film multilayer substrate S to pass through the container 51, and two opposing metal sandwiching the metal thin film multilayer substrate S that has passed through the container 51 outside the container 51 This is an organic liquid application mechanism composed of a nip roll 53. By allowing the metal thin film multilayer substrate S to pass through the organic liquid, it is possible to form an organic liquid film on the surface of the metal thin film of the metal thin film multilayer substrate S. Specifically, the metal thin film multilayer substrate S is guided by the guide roll 52, passes through the container 51 filled with the organic liquid, and after passing, the metal thin film multilayer substrate S is sandwiched by the nip roll 53, and the film thickness of the organic liquid film is reached. Is to adjust. A coolant such as water circulates in the nip roll 53 and is cooled. The guide roll 52 is appropriately arranged so that the metal thin film laminated substrate S passes through the container 51, and is not limited to the arrangement shown in FIG. The guide roll 52 and the nip roll 53 rotate following the conveyance of the metal thin film multilayer substrate S. Since the organic liquid film is formed on both surfaces of the metal thin film laminated substrate S, there is no problem such as scratches on the surface of the metal thin film even if it is sandwiched between the nip rolls 53. The nip roll 53 can be appropriately selected from hard chrome plated stainless steel or rubber.

図1および2の多孔質ロール18の替わりに図5の有機物液体供給機構を長尺樹脂フィルムの搬送経路上、テンションロール16bと巻き取りロール17の間に設けることができる。   The organic liquid supply mechanism shown in FIG. 5 can be provided between the tension roll 16b and the take-up roll 17 on the transport path of the long resin film instead of the porous roll 18 shown in FIGS.

図6は、有機物液体塗布機構の一例を模式的に示す側面図である。スリットコーター61で金属薄膜積層基板Sに有機物液体の塗布を行うものである。   FIG. 6 is a side view schematically showing an example of the organic liquid application mechanism. An organic liquid is applied to the metal thin film laminated substrate S by the slit coater 61.

有機物液体膜の膜厚は、薄過ぎると銅面同士が接触し、厚すぎると巻き取り後の巻き緩みが発生しやすくなるので、数十nm〜5μmが望ましい。有機物液体の膜厚は、多孔質ロール18による塗布の場合には多孔質ロール18の圧接の圧力や有機物液体の供給量で塗布膜厚が調整できる。ドクターブレード41による塗布の場合には、ドクターブレード41と金属薄膜積層基板S間のギャップ及び金属薄膜積層基板Sの搬送速度により有機物液体膜の塗布膜厚が調整できる。スリットコーター61による塗布の場合には、スリットコーター61と金属薄膜積層基板Sとの距離、スリットコーター61のスリット62の巾、金属薄膜積層基板Sの搬送速度により有機物液体膜の塗布膜厚が調整できる。   If the film thickness of the organic liquid film is too thin, the copper surfaces come into contact with each other. If the film is too thick, loosening after winding is likely to occur. Therefore, it is preferably several tens of nm to 5 μm. The film thickness of the organic liquid can be adjusted by the pressure of the pressure contact of the porous roll 18 or the supply amount of the organic liquid in the case of application by the porous roll 18. In the case of coating by the doctor blade 41, the coating thickness of the organic liquid film can be adjusted by the gap between the doctor blade 41 and the metal thin film multilayer substrate S and the transport speed of the metal thin film multilayer substrate S. In the case of coating by the slit coater 61, the coating thickness of the organic liquid film is adjusted by the distance between the slit coater 61 and the metal thin film multilayer substrate S, the width of the slit 62 of the slit coater 61, and the transport speed of the metal thin film multilayer substrate S. it can.

有機物液体は、特定の蒸気圧および化学的特性を有すればよい。有機物液体の蒸気圧は、成膜時の雰囲気の圧力の1/100以下であることが好ましく、例えば、成膜時の雰囲気の圧力が0.1Paであれば、40℃の蒸気圧が1×10−3Pa以下あることが必要である。有機物液体の蒸気圧が、成膜時の雰囲気の圧力の1/100以下であることが好ましいのは、真空成膜装置内を到達圧力まで減圧しても、真空成膜装置内を有機物液体の蒸気で汚染しないためである。さらに、有機物液体は、長尺樹脂フィルムを溶解しないこと、金属薄膜を腐食しないこと、次工程(電解めっき)における処理前に、公知の方法の溶剤あるいはアルカリ脱脂液で除去できる化学的特性を有すればよい。 The organic liquid may have specific vapor pressure and chemical properties. The vapor pressure of the organic liquid is preferably 1/100 or less of the atmospheric pressure during film formation. For example, if the atmospheric pressure during film formation is 0.1 Pa, the vapor pressure at 40 ° C. is 1 ×. It must be 10 −3 Pa or less. It is preferable that the vapor pressure of the organic liquid is 1/100 or less of the pressure of the atmosphere at the time of film formation. This is because it is not contaminated with steam. In addition, organic liquids do not dissolve long resin films, do not corrode metal thin films, and have chemical characteristics that can be removed with a known method of solvent or alkaline degreasing solution before processing in the next step (electrolytic plating). do it.

有機物液体の粘性は、金属薄膜積層基板Sに塗り広げ有機物液体膜を形成できる粘性であればよい。真空ポンプ油のような液体状の有機物液体でも良い。炭化水素系やシリコーン系の真空ポンプ(拡散ポンプ)油として入手することができ、例えば、アルバック社製真空ポンプの純正真空ポンプ油のULVOIL(登録商標) D−11、D−31等を選択することができる。   The viscosity of the organic liquid may be any viscosity that can be spread on the metal thin film laminated substrate S to form an organic liquid film. It may be a liquid organic liquid such as vacuum pump oil. Available as hydrocarbon or silicone vacuum pump (diffusion pump) oil, for example, ULVOIL (registered trademark) D-11, D-31, etc. of genuine vacuum pump oil of ULVAC vacuum pump be able to.

有機物液体Lには、巻き取られた金属薄膜積層基板Sの表裏面間を接着や固着しないことが必要である。有機物液体Lは、液状の接着剤であってはならないし、硬化反応する有機物液体ではならない。   It is necessary for the organic liquid L not to adhere or adhere between the front and back surfaces of the wound metal thin film laminated substrate S. The organic liquid L must not be a liquid adhesive and cannot be an organic liquid that undergoes a curing reaction.

本発明に用いることができる長尺樹脂フィルムFには、ポリイミドフィルム、ポリアミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンテレナフタレートフィルム等適宜選択できるものである。   As the long resin film F that can be used in the present invention, a polyimide film, a polyamide film, a polyethylene terephthalate film, a polyethylene terephthalate film, or the like can be appropriately selected.

(実施例)
長尺樹脂フィルムには巾500mm厚み25μmの東レ・デュポン社製カプトン(登録商標)を用いた。真空成膜装置は図1の真空成膜装置10を用いた。図1の真空成膜装置10の2個のスパッタリングカソードのうち、巻き出しロール側のスパッタリングカソード15aにはニッケル−クロム合金(ニッケル93質量%−クロム7質量%)ターゲット、巻き取りロール側のスパッタリングカソード15bには銅ターゲットを装着した。真空成膜装置筐体内を2×10−4Pa以下まで減圧し、到達圧力とした。真空成膜装置筐体12内にアルゴンガスを 0.2Paとなるまで導入した。長尺樹脂フィルムFの一面目の成膜は、有機物液体の塗布を行わないため多孔質ロール18を長尺樹脂フィルムFに接触させずかつ有機物液体の供給を停止した。ニッケル−クロム合金層70Å,銅層1000Å成膜した。巻き取りロール17に巻き取られた長尺樹脂フィルムFを真空成膜装置10より取り出し、長尺樹脂フィルムFの表裏を反対にして巻き出しロール13に取り付けた。続いて、一面目の裏面(二面目)の成膜はニッケル−クロム合金と銅を一面目と同様に成膜した後、金属薄膜積層基板Sに多孔質ロール18を密着させて有機物液体膜を形成し、その後巻き取った。有機物液体膜の膜厚は 約1.3μmであり、重量法で測定した。重量法とは、有機物液体の塗布後と洗浄後の基板の重量変化から塗布膜厚を推定することである。有機物液体にはアルバック製ULVOIL(登録商標)D−11で、動粘度0.3St、比重0.91、25℃での蒸気圧は約4×10−4Paである。D−11の蒸気圧はスパッタリング際の雰囲気の圧力の1000の1と十分低い。巻き取り後、真空成膜装置10より大気中へとりだし1日放置した後に、巻き出して油膜をアルカリ洗浄し、続いて、金属薄膜積層基板Sの両面の銅膜上に厚さ8μmの銅を電気めっきした。片面のニッケルークロム合金と銅の膜を塩化第二鉄水溶液で化学エッチングし、透過光にて片側のピンホールの有無を光学顕微鏡にて観察した。任意の1mm四方10箇所を観察したところピンホールは確認されなかった。
(Example)
For the long resin film, Kapton (registered trademark) manufactured by Toray DuPont having a width of 500 mm and a thickness of 25 μm was used. As the vacuum film forming apparatus, the vacuum film forming apparatus 10 shown in FIG. 1 was used. Among the two sputtering cathodes of the vacuum film forming apparatus 10 of FIG. 1, the sputtering cathode 15a on the unwinding roll side has a nickel-chromium alloy (nickel 93 mass% -chromium 7 mass%) target, and the sputtering on the winding roll side. A copper target was attached to the cathode 15b. The inside of the vacuum film-forming apparatus housing was depressurized to 2 × 10 −4 Pa or less to obtain an ultimate pressure. Argon gas was introduced into the vacuum film forming apparatus housing 12 until the pressure reached 0.2 Pa. In the film formation on the first surface of the long resin film F, since the organic liquid was not applied, the porous roll 18 was not brought into contact with the long resin film F and the supply of the organic liquid was stopped. A nickel-chromium alloy layer of 70 mm and a copper layer of 1000 mm were formed. The long resin film F taken up by the take-up roll 17 was taken out from the vacuum film forming apparatus 10 and attached to the take-up roll 13 with the front and back sides of the long resin film F reversed. Subsequently, after forming a nickel-chromium alloy and copper in the same manner as in the first surface, the back surface (second surface) of the first surface is made to adhere to the porous thin film 18 and the organic liquid film. Formed and then wound up. The film thickness of the organic liquid film was about 1.3 μm and was measured by a gravimetric method . The gravimetric method is to estimate the coating film thickness from the change in the weight of the substrate after application of the organic liquid and after cleaning. The organic liquid is ULVOIL (registered trademark) D-11 manufactured by ULVAC, the kinematic viscosity is 0.3 St, the specific gravity is 0.91, and the vapor pressure at 25 ° C. is about 4 × 10 −4 Pa. The vapor pressure of D-11 is sufficiently low, 1 of 1000 of the atmospheric pressure during sputtering. After winding, the film is taken out from the vacuum film forming apparatus 10 into the atmosphere and left for one day. Then, the oil film is unwound and the oil film is washed with alkali. Subsequently, copper having a thickness of 8 μm is deposited on the copper films on both sides of the metal thin film multilayer substrate S Electroplated. A nickel-chromium alloy and copper film on one side was chemically etched with an aqueous ferric chloride solution, and the presence or absence of a pinhole on one side was observed with an optical microscope with transmitted light. When ten arbitrary 1 mm squares were observed, pinholes were not confirmed.

(比較例)
有機物液体膜を形成しないこと以外は、実施例と同じ条件で両面成膜した金属薄膜積層基板を作成した。さらに実施例と同様に、続いて両面の銅膜上に銅を電気めっきした。実施例と同様に片面のニッケルークロム合金と銅の膜を塩化第二鉄水溶液で化学エッチングし、透過光にて片側のピンホールの有無を光学顕微鏡にて観察した。任意の1mm四方10箇所を観察したところピンホールが約120個程度確認された。
(Comparative example)
A metal thin film laminated substrate was formed on both sides under the same conditions as in the Examples except that no organic liquid film was formed. Further, similarly to the example, copper was electroplated on the copper films on both sides. Similarly to the example, a nickel-chromium alloy and copper film on one side was chemically etched with an aqueous ferric chloride solution, and the presence or absence of a pinhole on one side was observed with an optical microscope with transmitted light. When ten arbitrary 1 mm squares were observed, about 120 pinholes were confirmed.

実施例では、有機物液体膜が金属薄膜積層基板の片面に成膜されているので、巻き取り後に表裏での結合が無くその結果ピンホールが発生しなかった。一方、比較例では有機物液体膜が形成されていないので、巻き取り後の金属薄膜積層基板の表裏での結合が発生し、結果的に銅の電気めっき膜にピンホールが生じた。   In the example, since the organic liquid film was formed on one surface of the metal thin film laminated substrate, there was no bonding on the front and back after winding, and as a result, no pinhole was generated. On the other hand, in the comparative example, since the organic liquid film was not formed, bonding on the front and back of the metal thin film laminated substrate after winding occurred, resulting in a pinhole in the copper electroplating film.

は、本発明の真空成膜装置の一例を示す側面図である。These are side views which show an example of the vacuum film-forming apparatus of this invention. は、本発明の真空成膜装置の一例を示す側面図である。These are side views which show an example of the vacuum film-forming apparatus of this invention. (a)は、本発明の有機物液体塗布機構の一例を模式的に示す側面図であり、(b)は、正面図である。(A) is a side view which shows typically an example of the organic substance liquid application | coating mechanism of this invention, (b) is a front view. は、本発明の有機物液体塗布機構の一例を模式的に示す側面図である。These are side views which show typically an example of the organic substance liquid application | coating mechanism of this invention. は、本発明の有機物液体塗布機構の一例を模式的に示す側面図である。These are side views which show typically an example of the organic substance liquid application | coating mechanism of this invention. は、本発明の有機物液体塗布機構の一例を模式的に示す側面図である。These are side views which show typically an example of the organic substance liquid application | coating mechanism of this invention.

符号の説明Explanation of symbols

10.真空成膜装置
11.真空成膜装置
12.真空成膜装置筐体
13.巻き出しロール
14.キャンロール
15a.スパッタリングカソード
15b.スパッタリングカソード
16a.テンションロール
16b.テンションロール
17.巻き取りロール
18.多孔質ロール
34.液体供給ポンプ
36.ロータリージョイント
38.送油管
39.液体タンク
41.ドクターブレード
51.容器
52.ガイドロール
53.ニップロール
61.スリットコーター
62.スリット
10. Vacuum film forming apparatus 11. Vacuum film forming apparatus 12. Vacuum film forming apparatus casing 13. Unwinding roll 14. Can roll 15a. Sputtering cathode 15b. Sputtering cathode 16a. Tension roll 16b. Tension roll 17. Winding roll 18. Porous roll 34. Liquid supply pump 36. Rotary joint 38. Oil feed pipe 39. Liquid tank 41. Doctor blade 51. Container 52. Guide roll 53. Nip roll 61. Slit coater 62. Slit

Claims (7)

長尺樹脂フィルムの両面に金属薄膜を真空成膜させて積層する金属薄膜積層基板の製造方法において、
長尺樹脂フィルムの両面に金属薄膜を真空成膜した後に、該金属薄膜のうち少なくとも一方の金属薄膜の表面に有機物液体塗布機構を用い有機物液体膜を塗布形成し、その後、該長尺樹脂フィルムの両面に金属薄膜を積層した金属薄膜積層基板を巻き取ることを特徴とする金属薄膜積層基板の製造方法。
In the manufacturing method of a metal thin film laminated substrate in which a metal thin film is vacuum-deposited on both sides of a long resin film,
After a metal thin film is vacuum-deposited on both sides of the long resin film, an organic liquid film is applied and formed on the surface of at least one of the metal thin films using an organic liquid coating mechanism, and then the long resin film A method for producing a metal thin film laminate substrate, comprising winding a metal thin film laminate substrate having metal thin films laminated on both sides of the substrate.
有機物液体膜の塗布が、多孔質ロールあるいはドクターブレードにより行われることを特徴とする請求項1に記載の金属薄膜積層基板の製造方法。   2. The method for producing a metal thin film laminated substrate according to claim 1, wherein the organic liquid film is applied by a porous roll or a doctor blade. 有機物液体の蒸気圧が、真空成膜装置の成膜時の雰囲気の圧力の1/100以下であることを特徴とする請求項1又は2のいずれかに記載の金属薄膜積層基板の製造方法。   The method for producing a metal thin film multilayer substrate according to claim 1, wherein the vapor pressure of the organic liquid is 1/100 or less of the pressure of the atmosphere at the time of film formation in the vacuum film formation apparatus. 長尺樹脂フィルムの巻き出しロールとキャンロールと巻き取りロールと前記キャンロールに対向した真空成膜機構を備えた真空成膜装置において、
長尺樹脂フィルムの搬送経路上で、前記キャンロールと前記巻き取りロールの間に該長尺樹脂フィルムの少なくとも一方の面に有機物液体膜を塗布させて有機物液体膜を形成する有機物液体塗布機構を備えていることを特徴とする真空成膜装置。
In a vacuum film forming apparatus equipped with a vacuum film forming mechanism facing the unwinding roll, can roll, take-up roll, and can roll of the long resin film,
An organic liquid application mechanism for forming an organic liquid film by applying an organic liquid film on at least one surface of the long resin film between the can roll and the take-up roll on the transport path of the long resin film. A vacuum film forming apparatus comprising:
前記有機物液体塗布機構のうち有機物液体膜の塗布が、多孔質ロールによることを特徴とする請求項4に記載の真空成膜装置。   5. The vacuum film forming apparatus according to claim 4, wherein the organic liquid film is applied by a porous roll in the organic liquid application mechanism. 前記有機物液体塗布機構のうち有機物液体膜の塗布が、ドクターブレードによることを特徴とする請求項4に記載の真空成膜装置。   5. The vacuum film forming apparatus according to claim 4, wherein the organic liquid film is applied by a doctor blade in the organic liquid application mechanism. 前記有機物液体塗布機構が、有機物液体が満たされた容器と、該容器内に金属薄膜積層基板を通過させるガイドロールと、該容器の外にあってかつ該容器内を通過後の金属薄膜積層基板を挟み込む対向した2本のニップロールで構成されることを特徴とする請求項4に記載の真空成膜装置。

A container filled with an organic liquid; a guide roll for allowing the metal thin film multilayer substrate to pass through the container; and a metal thin film multilayer substrate outside the container and after passing through the container. The vacuum film-forming apparatus according to claim 4, comprising two nip rolls facing each other.

JP2008100786A 2008-04-08 2008-04-08 Method for producing metal thin film-laminated board and vacuum film deposition device Pending JP2009249703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100786A JP2009249703A (en) 2008-04-08 2008-04-08 Method for producing metal thin film-laminated board and vacuum film deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100786A JP2009249703A (en) 2008-04-08 2008-04-08 Method for producing metal thin film-laminated board and vacuum film deposition device

Publications (1)

Publication Number Publication Date
JP2009249703A true JP2009249703A (en) 2009-10-29

Family

ID=41310674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100786A Pending JP2009249703A (en) 2008-04-08 2008-04-08 Method for producing metal thin film-laminated board and vacuum film deposition device

Country Status (1)

Country Link
JP (1) JP2009249703A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026025A (en) * 2010-07-28 2012-02-09 Sumitomo Metal Mining Co Ltd Film deposition method, method for manufacturing resin film with metal base layer and sputtering apparatus
JP2012077330A (en) * 2010-09-30 2012-04-19 Sumitomo Metal Mining Co Ltd Sputtering device, sputtering method, and method of manufacturing resin film with metal base layer
JP2012149284A (en) * 2011-01-17 2012-08-09 Sumitomo Metal Mining Co Ltd Roll-to-roll type vacuum double-sided film forming device and device for manufacturing resin film with metal base layer on both sides
CN109153254A (en) * 2016-05-18 2019-01-04 应用材料公司 Device and method thereof for continuous processing flexible base board in a vacuum
CN112195441A (en) * 2020-09-28 2021-01-08 中国科学院宁波材料技术与工程研究所 Method for preparing flexible electronic/quantum circuit by liquid metal
WO2021072968A1 (en) * 2019-10-15 2021-04-22 中国科学院宁波材料技术与工程研究所 Method for preparing liquid metal thin film
CN112930421A (en) * 2018-10-23 2021-06-08 住友金属矿山株式会社 Apparatus and method for manufacturing resin film with metal film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026025A (en) * 2010-07-28 2012-02-09 Sumitomo Metal Mining Co Ltd Film deposition method, method for manufacturing resin film with metal base layer and sputtering apparatus
JP2012077330A (en) * 2010-09-30 2012-04-19 Sumitomo Metal Mining Co Ltd Sputtering device, sputtering method, and method of manufacturing resin film with metal base layer
JP2012149284A (en) * 2011-01-17 2012-08-09 Sumitomo Metal Mining Co Ltd Roll-to-roll type vacuum double-sided film forming device and device for manufacturing resin film with metal base layer on both sides
CN109153254A (en) * 2016-05-18 2019-01-04 应用材料公司 Device and method thereof for continuous processing flexible base board in a vacuum
CN112930421A (en) * 2018-10-23 2021-06-08 住友金属矿山株式会社 Apparatus and method for manufacturing resin film with metal film
WO2021072968A1 (en) * 2019-10-15 2021-04-22 中国科学院宁波材料技术与工程研究所 Method for preparing liquid metal thin film
CN112195441A (en) * 2020-09-28 2021-01-08 中国科学院宁波材料技术与工程研究所 Method for preparing flexible electronic/quantum circuit by liquid metal

Similar Documents

Publication Publication Date Title
JP2009249703A (en) Method for producing metal thin film-laminated board and vacuum film deposition device
JP6455693B2 (en) Method of manufacturing ultra-thin metal layer printed circuit board
JP6477150B2 (en) Sputtering film forming method, metallized resin film manufacturing method using the same, and sputtering film forming apparatus
WO2017110404A1 (en) Copper foil with carrier, copper foil with resin and method for manufacturing printed wiring board
WO2009034764A1 (en) Process for producing printed wiring board and printed wiring board produced by the production process
JP6662048B2 (en) Method and apparatus for manufacturing double-sided film
JP2011037214A (en) Metal coated polyimide film and method for manufacturing the same
JP4986081B2 (en) Method for manufacturing printed wiring board
WO2020084974A1 (en) Apparatus and method for manufacturing resin film provided with metal membrane
WO2014013962A1 (en) Continuous pattern plating transfer system and method for manufacturing continuous pattern plating transfer material
JP2020193385A (en) Vacuum film deposition apparatus and vacuum film deposition method
JP6880810B2 (en) A surface treatment method for a resin film and a method for manufacturing a copper-clad laminated substrate having the same.
WO2017033740A1 (en) Conductive substrate
JP2019038136A (en) Double side metal laminate and production method thereof
JP2007131377A (en) Film winding core, and rolled-film drying method
JP5157935B2 (en) Film forming method by roll-to-roll vacuum film forming apparatus and roll cleaning method thereof
JP6772662B2 (en) Can roll, dry film forming equipment, and curing band material
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
TW201016096A (en) Method for manufacturing multilayer laminated circuit board
JP2014062294A (en) Continuous patterned plate transfer system and continuous patterned plate-transferred object manufacturing method
JP7380354B2 (en) Manufacturing method of flexible circuit board
JP7285430B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP6349641B2 (en) Film with transfer copper foil, method for producing laminated copper foil laminate, film intermediate with transfer copper foil
JP2006077286A (en) Method for producing vacuum thin film, vacuum thin film/base material-stacked product, and metal layer/base material-stacked product
JP2009249688A (en) Method for manufacturing stacked substrate, vacuum film-forming method, and vacuum film-forming apparatus