JP2009249500A - Polymerizable highly-branched polymer and its manufacturing method - Google Patents
Polymerizable highly-branched polymer and its manufacturing method Download PDFInfo
- Publication number
- JP2009249500A JP2009249500A JP2008099211A JP2008099211A JP2009249500A JP 2009249500 A JP2009249500 A JP 2009249500A JP 2008099211 A JP2008099211 A JP 2008099211A JP 2008099211 A JP2008099211 A JP 2008099211A JP 2009249500 A JP2009249500 A JP 2009249500A
- Authority
- JP
- Japan
- Prior art keywords
- methanol
- polymerizable
- mmol
- glycidyl ether
- nmr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyethers (AREA)
Abstract
Description
本発明は、エネルギー照射によって硬化する高分岐ポリマー及びその製造方法に関する。 The present invention relates to a hyperbranched polymer that is cured by energy irradiation and a method for producing the same.
紫外線や電子線等のエネルギー照射によって硬化する樹脂は、様々な産業分野において利用されている。例えば、光照射によって硬化する光硬化性樹脂は、リソグラフィーのための材料として電子デバイス作製等に利用されている。近年、電子デバイスの構造はますます微細化しており、光硬化性樹脂を用いたリソグラフィー技術において、加工精度の更なる向上が求められている。 Resins that are cured by irradiation with energy such as ultraviolet rays and electron beams are used in various industrial fields. For example, a photocurable resin that is cured by light irradiation is used as a material for lithography in the production of electronic devices. In recent years, the structure of electronic devices has been further miniaturized, and further improvement in processing accuracy has been demanded in lithography technology using a photocurable resin.
従来、光リソグラフィーに用いられる重合性樹脂組成物は、光化学反応を起こす高分子樹脂(プレポリマー)と、プレポリマーの希釈剤としての多官能性の低分子(モノマー)と、光化学反応を開始させるための開始剤とから構成されているものがある(例えば特許文献1〜3参照)。 Conventionally, a polymerizable resin composition used in photolithography initiates a photochemical reaction with a polymer resin (prepolymer) that causes a photochemical reaction, and a polyfunctional low molecule (monomer) as a diluent for the prepolymer. (For example, refer patent documents 1-3).
プレポリマーには、アクリル酸/1,6−ヘキサンジオール/アクリル酸(下式1)、無水フタル酸/プロピレンオキサイド/アクリル酸(下式2)、トリメリット酸/ジエチレングリコール/アクリル酸(下式3)等の比較的大きな分子量からなるポリエステル系紫外線硬化樹脂がよく用いられている。
しかし、プレポリマーは極めて粘度が高く、塗布等の取り扱いが困難なため、プレポリマーと共重合可能な多官能性のモノマーが希釈剤として加えられることが多い。この希釈剤は、プレポリマーよりも低分子量であり、これをプレポリマーに加えることにより、粘度を下げることができる。なお、プレポリマーを溶剤で希釈することによっても粘度を下げることは可能となるが、これでは光照射前に溶剤が揮発して表面に凹凸が生じてしまい、光硬化における加工精度が低下するという問題が生ずる。また、プレポリマーを溶剤で希釈した場合、溶剤の揮発によって粘度が変化してしまい、取り扱いも困難となる。 However, since the prepolymer has a very high viscosity and is difficult to handle such as coating, a polyfunctional monomer copolymerizable with the prepolymer is often added as a diluent. This diluent has a lower molecular weight than the prepolymer, and the viscosity can be lowered by adding it to the prepolymer. Although it is possible to reduce the viscosity by diluting the prepolymer with a solvent, this causes the solvent to volatilize before light irradiation, resulting in irregularities on the surface, which reduces the processing accuracy in photocuring. Problems arise. Further, when the prepolymer is diluted with a solvent, the viscosity changes due to volatilization of the solvent, and handling becomes difficult.
このため、本発明者らは、特異な分岐構造を有するデンドリティック高分子の末端に、重合可能な炭素−炭素二重結合やエポキシ基を修飾させた重合性デンドリティック高分子を既に開発している(特許文献4及び特許文献5)。これらの重合性デンドリティック高分子は、大きな分子量を有する割には粘度が小さいという性質を有しており、これをプレポリマーとして用いることにより、粘度が低くて取り扱いが容易な重合性樹脂組成物となる。 For this reason, the present inventors have already developed a polymerizable dendritic polymer in which a polymerizable carbon-carbon double bond or an epoxy group is modified at the end of a dendritic polymer having a unique branched structure. (Patent Document 4 and Patent Document 5). These polymerizable dendritic polymers have the property of having a small viscosity for having a large molecular weight. By using this as a prepolymer, a polymerizable resin composition having a low viscosity and easy to handle. It becomes.
なお、本発明に関係する技術として、特許文献6には、グリシドールが分岐状に重合した高分岐ポリマーの製造方法が記載されている。
しかし、上記特許文献4及び5に記載の重合性デンドリティック高分子は、分岐構造を段階的に延ばして製造されるため、製造工程数が多くて手間がかかり、製造コストが高騰化するという問題があった。本発明は、このような従来の実情に鑑みてなされたものであって、粘度が低くて取り扱いが容易であり、製造が容易で安価に製造可能な重合性デンドリティック高分子を提供することを解決すべき課題としている。 However, the polymerizable dendritic polymers described in Patent Documents 4 and 5 are produced by extending the branched structure step by step, so that the number of production steps is large and time-consuming, and the production cost increases. was there. The present invention has been made in view of such conventional circumstances, and it is intended to provide a polymerizable dendritic polymer that has a low viscosity and is easy to handle, easy to manufacture and inexpensive to manufacture. This is a problem to be solved.
高度に分岐した構造を有するデンドリティック高分子には、多官能基を有するモノマーを一段階づつ化学反応させ、分岐構造を形成させるデンドリマーと、ABx型モノマーを重縮合させて一気に分岐構造を形成する高分岐ポリマーとが知られている。上記特許文献4及び5に記載の重合性デンドリティック高分子はデンドリマーである。発明者らは、デンドリマーの代わりに、製造が容易な高分岐ポリマーに重合性の官能基を修飾させれば上記従来の問題点を解決できるのではないかと考え、鋭意研究を行った結果、本発明を完成するに至った。 For dendritic polymers with highly branched structures, a polyfunctional group-containing monomer is chemically reacted step by step to form a branched structure by polycondensing a dendrimer that forms a branched structure with an ABx type monomer. Hyperbranched polymers are known. The polymerizable dendritic polymer described in Patent Documents 4 and 5 is a dendrimer. The inventors have considered that the above-mentioned conventional problems can be solved by modifying a polymerizable functional group in a hyperbranched polymer that is easy to produce instead of a dendrimer, and as a result of conducting extensive research, The invention has been completed.
すなわち、本発明における第1発明の重合性高分岐ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した構造とされていることを特徴とする。 That is, the polymerizable hyperbranched polymer of the first invention in the present invention is a glycidyl ether having a carbon-carbon double bond capable of polymerizing a terminal hydroxyl group of a hyperbranched polymer in which glycidol is polymerized in a branched form starting from the hydroxyl group of the core molecule. It is characterized by having a structure added to the epoxy group.
第1発明の分岐状ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合して高分岐ポリマーとなっており、更に高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルによって修飾されているため、大きな分子量を有する割には粘度が小さいという性質を有している。またこのような高分岐ポリマーは、修飾された重合可能な炭素−炭素二重結合をラジカル開始剤によってラジカル重合させたり、酸によってカチオン重合させたりすることができる。 The branched polymer of the first invention is a highly branched polymer in which glycidol is polymerized in a branched manner starting from the hydroxyl group of the core molecule, and further has a carbon-carbon double bond capable of polymerizing the terminal hydroxyl group of the highly branched polymer. Since it is modified with glycidyl ether, it has the property of having a low viscosity for a large molecular weight. In addition, such a hyperbranched polymer can be subjected to radical polymerization of a modified polymerizable carbon-carbon double bond with a radical initiator or cationic polymerization with an acid.
重合可能な炭素−炭素二重結合を有するグリシジルエーテルとしては、酸素を挟んでグリシジル基と反対側に重合可能な炭素−炭素二重結合を有する非対象エーテルであれば用いることができる。このようなグリシジルエーテルとして、例えばアリルグルシジルエーテルや、3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル等が挙げられる。 As the glycidyl ether having a polymerizable carbon-carbon double bond, any non-target ether having a polymerizable carbon-carbon double bond on the opposite side of the glycidyl group across oxygen can be used. Examples of such glycidyl ether include allyl glycidyl ether and 3,5-bis (3-butenyloxy) benzyl glycidyl ether.
また、コア分子としては、グリシドールのエポキシ基と反応可能な水酸基を有する分子であれば、用いることができる。このようなコア分子としては、グリセロール、ジグリセリン、チオグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリトリトール、ジペンタエリトリトール、meso−エリトリトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,2−プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,2,4−ブタントリオール、ヘキサメチレングリコール、トリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン、N−フェニルジエタノールアミン、2−フェニル−1,3−プロパンジオール、3−メチルペンタン−1,3,5−トリオール、1,2,3−ブタントリオール、アラビトール、リビトール、フロログルシノール、ピロガロール、1,2,4−トリヒドロキシベンゼン、ヘキサヒドロキシベンゼン、ロイコキニザリン、キニザリン、アントラルフィン、クリサジン、ビスフェノールA、2,6−ジヒドロキシアントラキノン、プルプリン、アリザリン、1,8,9−トリヒドロキシアントラセン、ビス(3−ヒドロキシフェニル)ジスルフィド、4,4’−ジヒドロキシジフェニルエーテル−4,4’−ビフェノール、1,3,5−シクロヘキサントリオール、及びトレイトール等が挙げられる。 As the core molecule, any molecule having a hydroxyl group capable of reacting with the epoxy group of glycidol can be used. Examples of such core molecules include glycerol, diglycerin, thioglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, meso-erythritol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol. 1,2-propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol, 1,2,4-butanetriol, hexamethylene glycol, triethanolamine, N, N-bis (2,3-dihydroxy Propyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) Range amine, N-phenyldiethanolamine, 2-phenyl-1,3-propanediol, 3-methylpentane-1,3,5-triol, 1,2,3-butanetriol, arabitol, ribitol, phloroglucinol, pyrogallol 1,2,4-trihydroxybenzene, hexahydroxybenzene, leucoquinizarin, quinizarin, anthralphine, chrysazine, bisphenol A, 2,6-dihydroxyanthraquinone, purpurine, alizarin, 1,8,9-trihydroxyanthracene, bis ( 3-hydroxyphenyl) disulfide, 4,4′-dihydroxydiphenyl ether-4,4′-biphenol, 1,3,5-cyclohexanetriol, and threitol.
第1発明の重合性高分岐ポリマーは、次のようにして製造することができる。すなわち、本発明における第1発明の重合性高分岐ポリマーの製造方法は、コア分子の水酸基を基点としてグリシドールを分岐状に重合して高分岐ポリマーとする重合工程と、該高分岐ポリマーの水酸基を重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加させて重合性官能基を導入する修飾工程とを含むことを特徴とする。 The polymerizable hyperbranched polymer of the first invention can be produced as follows. That is, the method for producing a polymerizable hyperbranched polymer of the first invention in the present invention comprises a polymerization step in which a glycidol is branched into a highly branched polymer from the hydroxyl group of the core molecule as a base point, and the hydroxyl group of the highly branched polymer is And a modification step of introducing a polymerizable functional group by adding to an epoxy group of a glycidyl ether having a polymerizable carbon-carbon double bond.
重合工程では、コア分子の水酸基がグリシドールのエポキシ基と反応して結合し、これによって開環したエポキシから水酸基が形成される。このため、コア分子の水酸基へグリシドールが1分子結合することにより、2つの水酸基が形成される。さらに、その2つの水酸基のそれぞれにグリシドールが結合して、水酸基が4つ形成される。こうして、グリシドールが次々と分岐状に重合していき、高分岐ポリマーが形成される。グリシドールの重合は、水酸基を有するコア分子を塩基性触媒の存在下でグリシドールの希薄溶液を加え、その後、希釈溶媒を留去させることにより進行する。このため1工程で自動的に高分岐ポリマーが得られることとなり、デンドリマーの製造のように、工程数が多くなく、製造が容易で手間がかからず、製造コストを低廉化することができる。また、重合度は、コア分子に対するグリシドールの添加割合を調整することにより、容易に調節をすることができる。 In the polymerization step, the hydroxyl group of the core molecule reacts and bonds with the epoxy group of glycidol, thereby forming a hydroxyl group from the ring-opened epoxy. For this reason, when one molecule of glycidol is bonded to the hydroxyl group of the core molecule, two hydroxyl groups are formed. Furthermore, glycidol is bonded to each of the two hydroxyl groups to form four hydroxyl groups. In this way, glycidol is successively polymerized in a branched manner to form a highly branched polymer. The polymerization of glycidol proceeds by adding a dilute solution of glycidol to a core molecule having a hydroxyl group in the presence of a basic catalyst, and then distilling off the diluting solvent. For this reason, a hyperbranched polymer is automatically obtained in one process, and the number of processes is not large as in the production of dendrimers, and the production is easy and labor-saving, and the production cost can be reduced. The degree of polymerization can be easily adjusted by adjusting the ratio of glycidol added to the core molecule.
そして、さらに修飾工程では、高分岐ポリマー生成時にエポキシ基の開環によって形成された水酸基に重合可能な炭素−炭素二重結合を有するグリシジルエーテルが修飾される。こうして、第1発明の重合性高分岐ポリマーを容易かつ低コストで製造することができる。 Further, in the modification step, glycidyl ether having a carbon-carbon double bond that can be polymerized to a hydroxyl group formed by ring opening of an epoxy group when a highly branched polymer is produced is modified. Thus, the polymerizable hyperbranched polymer of the first invention can be produced easily and at low cost.
なお、第1発明の重合性高分岐ポリマーの製造方法では、重合工程を途中まで行なった後、さらに重合工程と修飾工程とを同時に並行して行うこともできる。すなわち、コア分子の水酸基を基点としてグリシドールを分岐状に重合して高分岐ポリマーとした後、グリシドールと重合可能な炭素−炭素二重結合を有するグリシジルエーテルとを並存させることにより、高分岐をさらに延ばしながら、重合可能な炭素−炭素二重結合が導入される。この場合には、重合可能な炭素−炭素二重結合の導入後も2級の水酸基のみならず、1級水酸基も残存するという特徴を有することとなる。 In the method for producing a polymerizable hyperbranched polymer of the first invention, the polymerization step and the modification step can be simultaneously performed in parallel after the polymerization step is performed halfway. That is, after the glycidol is polymerized in a branched form with the hydroxyl group of the core molecule as a starting point to form a highly branched polymer, the glycidol and the glycidyl ether having a polymerizable carbon-carbon double bond coexist, thereby further increasing the hyperbranching. While extending, a polymerizable carbon-carbon double bond is introduced. In this case, not only the secondary hydroxyl group but also the primary hydroxyl group remains after the introduction of the polymerizable carbon-carbon double bond.
以上のように、第1発明の重合性高分岐ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した構造とされているが、エポキシ基への付加における開環によって生じた水酸基のエーテル化により、新たな構造の重合性高分岐ポリマーとなる。 As described above, the polymerizable hyperbranched polymer of the first invention is a glycidyl ether having a carbon-carbon double bond capable of polymerizing a terminal hydroxyl group of a hyperbranched polymer in which glycidol is polymerized in a branched manner starting from the hydroxyl group of the core molecule. However, by the etherification of the hydroxyl group generated by ring opening in the addition to the epoxy group, it becomes a polymerizable hyperbranched polymer having a new structure.
すなわち、第2発明の重合性高分岐ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した構造とされており、さらに該付加における該エポキシ基の開環によって生じた水酸基がエーテル化された構造とされていることを特徴とする。 That is, the polymerizable hyperbranched polymer of the second invention is an epoxy group of a glycidyl ether having a carbon-carbon double bond capable of polymerizing a terminal hydroxyl group of a highly branched polymer in which glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as a starting point. Further, the structure is characterized in that the hydroxyl group generated by the ring opening of the epoxy group in the addition is an etherified structure.
第2発明の分岐状ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合して高分岐ポリマーとなっており、更に高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルによって修飾されているため、大きな分子量を有する割には粘度が小さいという性質を有している。またこのような高分岐ポリマーは、修飾された重合可能な炭素−炭素二重結合をラジカル開始剤によってラジカル重合させたり、酸によってカチオン重合させたりすることができる。 The branched polymer of the second invention is a highly branched polymer in which glycidol is polymerized in a branched manner starting from the hydroxyl group of the core molecule, and further has a carbon-carbon double bond capable of polymerizing the terminal hydroxyl group of the highly branched polymer. Since it is modified with glycidyl ether, it has the property of having a low viscosity for a large molecular weight. In addition, such a hyperbranched polymer can be subjected to radical polymerization of a modified polymerizable carbon-carbon double bond with a radical initiator or cationic polymerization with an acid.
重合可能な炭素−炭素二重結合を有するグリシジルエーテルとしては、酸素を挟んでグリシジル基と反対側に重合可能な炭素−炭素二重結合を有する非対象エーテルであれば用いることができる。このようなグリシジルエーテルとして、例えばアリルグルシジルエーテルや、3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル等が挙げられる。 As the glycidyl ether having a polymerizable carbon-carbon double bond, any non-target ether having a polymerizable carbon-carbon double bond on the opposite side of the glycidyl group across oxygen can be used. Examples of such glycidyl ether include allyl glycidyl ether and 3,5-bis (3-butenyloxy) benzyl glycidyl ether.
また、エーテル化としては、水酸基に容易に修飾できるものが好ましく、例えば、アリルエーテル化やメチルエーテル化、3,5−ビス(ブテニルオキシ)ベンジルエーテル化等が挙げられる。 The etherification is preferably one that can be easily modified to a hydroxyl group, and examples thereof include allyl etherification, methyl etherification, and 3,5-bis (butenyloxy) benzyl etherification.
さらに、コア分子としては、グリシドールのエポキシ基と反応可能な水酸基を有する分子であれば、用いることができる。このようなコア分子としては、グリセロール、ジグリセリン、チオグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリトリトール、ジペンタエリトリトール、meso−エリトリトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,2−プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,2,4−ブタントリオール、ヘキサメチレングリコール、トリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン、N−フェニルジエタノールアミン、2−フェニル−1,3−プロパンジオール、3−メチルペンタン−1,3,5−トリオール、1,2,3−ブタントリオール、アラビトール、リビトール、フロログルシノール、ピロガロール、1,2,4−トリヒドロキシベンゼン、ヘキサヒドロキシベンゼン、ロイコキニザリン、キニザリン、アントラルフィン、クリサジン、ビスフェノールA、2,6−ジヒドロキシアントラキノン、プルプリン、アリザリン、1,8,9−トリヒドロキシアントラセン、ビス(3−ヒドロキシフェニル)ジスルフィド、4,4’−ジヒドロキシジフェニルエーテル−4,4’−ビフェノール、1,3,5−シクロヘキサントリオール、及びトレイトール等が挙げられる。 Furthermore, as the core molecule, any molecule having a hydroxyl group capable of reacting with the epoxy group of glycidol can be used. Examples of such core molecules include glycerol, diglycerin, thioglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, meso-erythritol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol. 1,2-propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol, 1,2,4-butanetriol, hexamethylene glycol, triethanolamine, N, N-bis (2,3-dihydroxy Propyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) Range amine, N-phenyldiethanolamine, 2-phenyl-1,3-propanediol, 3-methylpentane-1,3,5-triol, 1,2,3-butanetriol, arabitol, ribitol, phloroglucinol, pyrogallol 1,2,4-trihydroxybenzene, hexahydroxybenzene, leucoquinizarin, quinizarin, anthralphine, chrysazine, bisphenol A, 2,6-dihydroxyanthraquinone, purpurine, alizarin, 1,8,9-trihydroxyanthracene, bis ( 3-hydroxyphenyl) disulfide, 4,4′-dihydroxydiphenyl ether-4,4′-biphenol, 1,3,5-cyclohexanetriol, and threitol.
第2発明の重合性高分岐ポリマーは、次のようにして製造することができる。すなわち、本発明の第2発明の重合性高分岐ポリマーの製造方法は、コア分子の水酸基を基点としてグリシドールを分岐状に重合して高分岐ポリマーとする重合工程と、該高分岐ポリマーの水酸基を重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加させて重合性官能基を導入する修飾工程と、該付加における該エポキシ基の開環によって生じた水酸基をエーテル化するエーテル化工程と、を含むことを特徴とする。 The polymerizable hyperbranched polymer of the second invention can be produced as follows. That is, the method for producing a polymerizable hyperbranched polymer according to the second invention of the present invention comprises a polymerization step in which glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as a base point to form a highly branched polymer, and the hydroxyl group of the hyperbranched polymer is A modification step for introducing a polymerizable functional group by adding to an epoxy group of a glycidyl ether having a polymerizable carbon-carbon double bond, and etherification for etherifying a hydroxyl group generated by ring opening of the epoxy group in the addition And a process.
重合工程では、コア分子の水酸基がグリシドールのエポキシ基と反応して結合し、これによって開環したエポキシから水酸基が形成される。このため、コア分子の水酸基へグリシドールが1分子結合することにより、2つの水酸基が形成される。さらに、その2つの水酸基のそれぞれにグリシドールが結合して、水酸基が4つ形成される。こうして、グリシドールが次々と分岐状に重合していき、高分岐ポリマーが形成される。グリシドールの重合は、水酸基を有するコア分子を塩基性触媒の存在下でグリシドールの希薄溶液を加え、その後、希釈溶媒を留去させることにより進行する。このため1工程で自動的に高分岐ポリマーが得られることとなり、デンドリマーの製造のように、工程数が多くなく、製造が容易で手間がかからず、製造コストを低廉化することができる。また、重合度は、コア分子に対するグリシドールの添加割合を調整することにより、容易に調節をすることができる。 In the polymerization step, the hydroxyl group of the core molecule reacts and bonds with the epoxy group of glycidol, thereby forming a hydroxyl group from the ring-opened epoxy. For this reason, when one molecule of glycidol is bonded to the hydroxyl group of the core molecule, two hydroxyl groups are formed. Furthermore, glycidol is bonded to each of the two hydroxyl groups to form four hydroxyl groups. In this way, glycidol is successively polymerized in a branched manner to form a highly branched polymer. The polymerization of glycidol proceeds by adding a dilute solution of glycidol to a core molecule having a hydroxyl group in the presence of a basic catalyst, and then distilling off the diluting solvent. For this reason, a highly branched polymer is automatically obtained in one step, and the number of steps is not large as in the production of dendrimers, and the production is easy and labor-saving, and the production cost can be reduced. The degree of polymerization can be easily adjusted by adjusting the ratio of glycidol added to the core molecule.
そして、修飾工程では、高分岐ポリマー生成時にエポキシ基の開環によって形成された水酸基に重合可能な炭素−炭素二重結合を有するグリシジルエーテルが修飾され、重合性の官能基が導入される。 In the modification step, a glycidyl ether having a polymerizable carbon-carbon double bond is modified to a hydroxyl group formed by ring-opening of an epoxy group when a highly branched polymer is formed, and a polymerizable functional group is introduced.
さらに、エーテル化工程において、グリシドールの付加におけるエポキシ基の開環によって生じた水酸基が置換基で置換される。こうして、本発明の重合性高分岐ポリマーを容易かつ低コストで製造することができる。 Further, in the etherification step, the hydroxyl group generated by the ring opening of the epoxy group in the addition of glycidol is substituted with a substituent. Thus, the polymerizable hyperbranched polymer of the present invention can be produced easily and at low cost.
なお、第2発明の重合性高分岐ポリマーの製造方法では、第1発明の重合性高分岐ポリマーの製造方法の場合と同様、重合工程を途中まで行なった後、さらに重合工程と修飾工程とを同時に並行して行うこともできる。すなわち、コア分子の水酸基を基点としてグリシドールを分岐状に重合して高分岐ポリマーとした後、グリシドールと重合可能な炭素−炭素二重結合を有するグリシジルエーテルとを並存させることにより、高分岐をさらに延ばしながら、重合性の官能基が導入される。この場合には、重合可能な炭素−炭素二重結合の導入が2級の水酸基のみならず、1級水酸基にも導入されるという特徴を有することとなる。 In the method for producing a polymerizable hyperbranched polymer of the second invention, as in the case of the method for producing a polymerizable hyperbranched polymer of the first invention, after the polymerization step is performed halfway, a polymerization step and a modification step are further performed. It can also be done in parallel. That is, after the glycidol is polymerized in a branched form based on the hydroxyl group of the core molecule to form a highly branched polymer, the glycidol and the glycidyl ether having a polymerizable carbon-carbon double bond coexist, thereby further increasing the hyperbranching. While extending, a polymerizable functional group is introduced. In this case, the introduction of the polymerizable carbon-carbon double bond is introduced not only into the secondary hydroxyl group but also into the primary hydroxyl group.
以下、本発明を具体化した実施例について詳細に述べる。
(実施例1)
実施例1では、コア分子としてトリメチロールプロパンを用い、下記化学式に示す反応を行なった。トリメチロールプロパン:グリシドール:アリルグリシジルエーテルは1:3:12の割合(モル比)とした。
Example 1
In Example 1, trimethylolpropane was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio (molar ratio) of trimethylolpropane: glycidol: allyl glycidyl ether was 1: 3: 12.
重合工程
トリメチロールプロパン 3.42 g (0.025 mol)を90℃に加熱、溶融した。これにカリウムメトキシド (30% メタノール溶液) 1.98 mlを加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。アルゴン雰囲気下脱水ジグライム 7.5 mlを加えて140℃に昇温した。グリシドール 5.67 g (0.0765 mol)を10 mlの脱水THFに溶解し、THFを留去しながら約4時間で滴下した。
Polymerization Step 3.42 g (0.025 mol) of trimethylolpropane was heated to 90 ° C. and melted. To this, 1.98 ml of potassium methoxide (30% methanol solution) was added and stirred for several minutes, and then the pressure was gradually reduced to distill off the methanol. Under argon atmosphere, 7.5 ml of dehydrated diglyme was added and the temperature was raised to 140 ° C. 5.67 g (0.0765 mol) of glycidol was dissolved in 10 ml of dehydrated THF and added dropwise in about 4 hours while distilling off the THF.
修飾工程
続いて修飾工程として、アリルグリシジルエーテル 34.92 g (0.306 mol)を40 mlの脱水THFに溶解して、THFを留去しながら約16時間で滴下した。同温度で1時間攪拌した後冷却し、メタノール70 mlで希釈してアンバーライトIR 120B H AG 50 mlのカラムに通液して中和した。減圧下濃縮し、得られた褐色油状物42.58 gのうち15.0 gをシリカゲル(Merck Silicagel 60 70-200 mesh) 1100 mlを充填したガラスカラム(80 mm ID×500 mm H)を用いたクロマトグラフィー(トルエン/エタノール=8/2)により精製した。得られた黄色液13.06 g の内 2.0 gを再度シリカゲル400 mlを用いたクロマトグラフィー(クロロホルム/メタノール=10/1)により精製した。精製物をメタノール溶液として0.2μmメンブランフィルターにより濾過した後80℃水浴上減圧下濃縮し、淡黄色液として1.95 g得た。このもののNMRを測定し、以下の結果を得た。
1H-NMR (600 MHz, methanol-d4) δ:0.88 (3H, bs), 1.39 (2H, br), 3.43-3.68(73H, m), 3.87, (4H, s), 4.01(24H, s), 4.77 (6H, s), 5.17 (12H, d, J = 9.3 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.90-5.94 (12H, m)
13C-NMR ((600 MHz, methanol-d4) δ: 7.0, 22.4, 43.4, 69.3, 69.6, 69.7, 70.1, 71.4, 71.8, 72.0, 72.7, 72.9, 78.6, 78.9, 116.1, 134.9, 135.0
Modification Step Subsequently, as a modification step, 34.92 g (0.306 mol) of allyl glycidyl ether was dissolved in 40 ml of dehydrated THF and added dropwise in about 16 hours while distilling off the THF. The mixture was stirred at the same temperature for 1 hour, cooled, diluted with 70 ml of methanol, and neutralized by passing through a column of 50 ml of Amberlite IR 120B H AG. Concentration under reduced pressure and chromatography using a glass column (80 mm ID × 500 mm H) packed with 1100 ml of silica gel (Merck Silicagel 60 70-200 mesh) out of 42.58 g of the brown oil obtained ( Toluene / ethanol = 8/2). Of the obtained yellow liquid (13.06 g), 2.0 g was purified again by chromatography (chloroform / methanol = 10/1) using 400 ml of silica gel. The purified product was filtered through a 0.2 μm membrane filter as a methanol solution and then concentrated under reduced pressure on an 80 ° C. water bath to obtain 1.95 g as a pale yellow liquid. NMR of this product was measured, and the following results were obtained.
1 H-NMR (600 MHz, methanol-d 4 ) δ: 0.88 (3H, bs), 1.39 (2H, br), 3.43-3.68 (73H, m), 3.87, (4H, s), 4.01 (24H, s), 4.77 (6H, s), 5.17 (12H, d, J = 9.3 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.90-5.94 (12H, m)
13 C-NMR ((600 MHz, methanol-d 4 ) δ: 7.0, 22.4, 43.4, 69.3, 69.6, 69.7, 70.1, 71.4, 71.8, 72.0, 72.7, 72.9, 78.6, 78.9, 116.1, 134.9, 135.0
(実施例2)
実施例2では、コア分子としてトリメチロールプロパンを用い、下記化学式に示す反応を行なった。トリメチロールプロパン:グリシドール:アリルグリシジルエーテルは1:6:12の割合(モル比)とした。
In Example 2, the reaction represented by the following chemical formula was carried out using trimethylolpropane as the core molecule. The ratio (molar ratio) of trimethylolpropane: glycidol: allyl glycidyl ether was 1: 6: 12.
重合工程
トリメチロールプロパン 1.34 g (0.01 mol)を90℃に加熱、溶融した。これにカリウムメトキシド (30% メタノール溶液) 0.78 mlを加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。アルゴン雰囲気下脱水トルエン 10 mlを加え、同温度でグリシドール 4.44 g (0.06 mol)を12 mlの脱水THFに溶解して、THFを留去しながら4時間で滴下した。
Polymerization process 1.34 g (0.01 mol) of trimethylolpropane was heated to 90 ° C. and melted. To this, 0.78 ml of potassium methoxide (30% methanol solution) was added and stirred for several minutes, and then the pressure was gradually reduced to distill off the methanol. Under an argon atmosphere, 10 ml of dehydrated toluene was added, 4.44 g (0.06 mol) of glycidol was dissolved in 12 ml of dehydrated THF at the same temperature, and dropwise added over 4 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル13.7 g (0.12 mol)を38 mlの脱水THFに溶解して、THFを留去しながら滴下した。同温度で約2時間攪拌した後緩く減圧し、残存THFを留去した。反応液をメタノール70 mlで希釈してアンバーライトIR 120B H AG 25 mlのカラムに通液して中和した後減圧下濃縮した。得られた淡褐色油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)で精製した。精製物をメタノール溶液として0.2μmメンブランフィルターにより濾過した後80℃水浴上減圧下濃縮し、表題化合物を淡黄色液として14.09 g得た。このもののNMRを測定し、以下の結果を得た。
1H-NMR (600 MHz, methanol-d4) δ: 0.88 (3H, bs), 1.38 (2H, br), 3.44-3.67 (87H, m), 3.87 (9H, s), 4.01(24H, s), 4.79 (9H, s), 5.17 (12H, d, J = 9.9 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.90-5.94 (12H, m)
13C-NMR ((600 MHz, methanol-d4) δ: 6.9, 22.3, 43.5, 69.3, 69.6, 69.7, 70.0, 71.4, 71.8, 72.0, 72.7, 72.9, 78.6, 78.9, 116.0, 134.8 , 135.0
In the modification step, 13.7 g (0.12 mol) of allyl glycidyl ether was dissolved in 38 ml of dehydrated THF and added dropwise while distilling off THF. After stirring at the same temperature for about 2 hours, the pressure was gently reduced and the remaining THF was distilled off. The reaction solution was diluted with 70 ml of methanol, passed through a column of Amberlite IR 120B H AG 25 ml, neutralized, and then concentrated under reduced pressure. The resulting light brown oil was purified by silica gel column chromatography (chloroform / methanol = 10/1). The purified product was filtered as a methanol solution through a 0.2 μm membrane filter and then concentrated under reduced pressure on a water bath at 80 ° C. to obtain 14.09 g of the title compound as a pale yellow liquid. NMR of this product was measured, and the following results were obtained.
1 H-NMR (600 MHz, methanol-d 4 ) δ: 0.88 (3H, bs), 1.38 (2H, br), 3.44-3.67 (87H, m), 3.87 (9H, s), 4.01 (24H, s ), 4.79 (9H, s), 5.17 (12H, d, J = 9.9 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.90-5.94 (12H, m)
13 C-NMR ((600 MHz, methanol-d 4 ) δ: 6.9, 22.3, 43.5, 69.3, 69.6, 69.7, 70.0, 71.4, 71.8, 72.0, 72.7, 72.9, 78.6, 78.9, 116.0, 134.8, 135.0
(実施例3)
実施例3では、コア分子としてトリメチロールプロパンを用い、下記化学式に示す反応を行なった。トリメチロールプロパン:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 3, using trimethylolpropane as the core molecule, the reaction represented by the following chemical formula was performed. The ratio (molar ratio) of trimethylolpropane: glycidol: allyl glycidyl ether was 1: 9: 12.
重合工程
トリメチロールプロパン 1.34 g (0.01 mol)を90℃に加熱、溶融した。これにカリウムメトキシド (30% メタノール溶液) 0.78 mlを加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。アルゴン雰囲気下脱水ジグライム 7.5 mlを加えて140℃に昇温した。グリシドール6.67 g (0.09 mol)を17 mlの脱水THFに溶解し、THFを留去しながら約5.5時間で滴下した。
Polymerization process 1.34 g (0.01 mol) of trimethylolpropane was heated to 90 ° C. and melted. To this, 0.78 ml of potassium methoxide (30% methanol solution) was added and stirred for several minutes, and then the pressure was gradually reduced to distill off the methanol. Under argon atmosphere, 7.5 ml of dehydrated diglyme was added and the temperature was raised to 140 ° C. 6.67 g (0.09 mol) of glycidol was dissolved in 17 ml of dehydrated THF, and added dropwise over about 5.5 hours while distilling off the THF.
修飾工程
続いてアリルグリシジルエーテル13.7 g (0.12 mol)を33 mlの脱水THFに溶解して、THFを留去しながら約11時間で滴下した。同温度で4時間攪拌した後冷却し、メタノール70 mlで希釈してアンバーライトIR 120B H AG 25 mlのカラムに通液して中和した。減圧下濃縮し、褐色油状物を19.09 g得た。このうち11.97 gをシリカゲル(Merck Silicagel 60 70-200 mesh) 1200 mlを充填したガラスカラム(80 mm ID×500 mm H)を用いたクロマトグラフィー(クロロホルム/メタノール=10/1)により精製した。得られた黄褐色液8.3 gを再度シリカゲル800 mlを用いたクロマトグラフィー(トルエン/メタノール=8/2)により精製した。精製物をメタノール溶液として0.2μmメンブランフィルターにより濾過した後80℃水浴上減圧下濃縮し、表題化合物を淡黄色液として5.96 g得た。このもののNMRの測定結果を以下に示す。
1H-NMR (600 MHz, methanol-d4) δ: 0.87 (3H, bs), 1.38 (2H, br), 3.46-3.67 (94H, m), 3.87 (12H, s), 4.02(12H, s), 4.72 (12H, s), 5.16 (12H, d, J = 9.9 Hz), 5.29 (12H, d, J = 17.6 Hz), 5.91-5.93 (12H, m)
13C-NMR ((600 MHz, methanol-d4) δ: 8.0, 23.5, 43.5, 69.4, 69.7, 70.0, 71.4, 71.8, 72.0, 72.7, 72.9, 78.6, 78.9, 116.1, 134.8, 135.0
Modification Step Subsequently, 13.7 g (0.12 mol) of allyl glycidyl ether was dissolved in 33 ml of dehydrated THF, and dropwise added in about 11 hours while distilling off the THF. The mixture was stirred at the same temperature for 4 hours, cooled, diluted with 70 ml of methanol, and passed through a column of Amberlite IR 120B H AG 25 ml for neutralization. Concentration under reduced pressure gave 19.09 g of a brown oil. Of this, 11.97 g was purified by chromatography (chloroform / methanol = 10/1) using a glass column (80 mm ID × 500 mm H) packed with 1200 ml of silica gel (Merck Silicagel 60 70-200 mesh). The resulting yellow-brown solution (8.3 g) was purified again by chromatography using 800 ml of silica gel (toluene / methanol = 8/2). The purified product was filtered through a 0.2 μm membrane filter as a methanol solution and then concentrated under reduced pressure on an 80 ° C. water bath to obtain 5.96 g of the title compound as a pale yellow liquid. The NMR measurement results of this product are shown below.
1 H-NMR (600 MHz, methanol-d 4 ) δ: 0.87 (3H, bs), 1.38 (2H, br), 3.46-3.67 (94H, m), 3.87 (12H, s), 4.02 (12H, s ), 4.72 (12H, s), 5.16 (12H, d, J = 9.9 Hz), 5.29 (12H, d, J = 17.6 Hz), 5.91-5.93 (12H, m)
13 C-NMR ((600 MHz, methanol-d 4 ) δ: 8.0, 23.5, 43.5, 69.4, 69.7, 70.0, 71.4, 71.8, 72.0, 72.7, 72.9, 78.6, 78.9, 116.1, 134.8, 135.0
(実施例4)
エーテル化工程
実施例4では、実施例3で得た化合物について、さらにエーテル化工程として、下記化学式に示すように、エポキシの開環で生成した水酸基を臭化アリルでアリルエーテル化した。
1H -NMR (600 MHz, methanol-d4) δ: 0.88 (3H, bs), 1.42 (2H, br), 3.48-3.67 (111H, m), 4.01(24H, s), 4.15(24H, s), 5.14 (12H, d, J = 12.6 Hz), 5.16 (12H d, J = 11.0 Hz), 5.29 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 8.0, 24.0, 44.3, 71.3, 72.2, 72.6, 73.2, 78.5, 78.8, 80.0 80.2, 117.0, 117.1, 136.2, 136.7
Example 4
Etherification Step In Example 4, the compound obtained in Example 3 was further etherified with allyl bromide as the etherification step, as shown in the following chemical formula.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.88 (3H, bs), 1.42 (2H, br), 3.48-3.67 (111H, m), 4.01 (24H, s), 4.15 (24H, s ), 5.14 (12H, d, J = 12.6 Hz), 5.16 (12H d, J = 11.0 Hz), 5.29 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 8.0, 24.0, 44.3, 71.3, 72.2, 72.6, 73.2, 78.5, 78.8, 80.0 80.2, 117.0, 117.1, 136.2, 136.7
(実施例5)
実施例5では、実施例3における修飾工程で得られた化合物の水酸基をメトキシ基とした(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 0.85 (3H, bs), 1.38 (2H, br), 3.27-3.67(111H, m), 3.41 (36H, s), 3.98, (24H, s), 5.14 (12H, d, J = 9.9 Hz), 5.26 (12H, d, J = 17.0 Hz), 5.86-5.91 (12H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 7.0, 22.9, 43.2, 57.1, 58.4, 69.6, 70.1, 71.0, 71.3, 72.0, 78.7, 79.0, 79.5, 79.7, 116.0, 135.0
(Example 5)
In Example 5, the hydroxyl group of the compound obtained in the modification step in Example 3 was a methoxy group (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.85 (3H, bs), 1.38 (2H, br), 3.27-3.67 (111H, m), 3.41 (36H, s), 3.98, (24H, s), 5.14 (12H, d, J = 9.9 Hz), 5.26 (12H, d, J = 17.0 Hz), 5.86-5.91 (12H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 7.0, 22.9, 43.2, 57.1, 58.4, 69.6, 70.1, 71.0, 71.3, 72.0, 78.7, 79.0, 79.5, 79.7, 116.0, 135.0
(実施例6)
実施例6では、コア分子としてペンタエリスリトールを用い、重合工程及び修飾工程として、下記化学式に示す反応を行なった。ペンタエリスリトール:グリシドール:アリルグリシジルエーテルは1:8:12の割合(モル比)とした。また、反応溶媒としてジグライムを用いた。
In Example 6, pentaerythritol was used as a core molecule, and a reaction represented by the following chemical formula was performed as a polymerization step and a modification step. The ratio of pentaerythritol: glycidol: allyl glycidyl ether was 1: 8: 12 (molar ratio). Moreover, diglyme was used as a reaction solvent.
重合工程
ペンタエリスリトール 0.68 g (0.005 mol)をジグライム 5 mlおよびメタノール 5 mlに懸濁した。90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.52 mlを加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。アルゴン雰囲気下ジグライム 3 mlを追加し、125℃に昇温した後グリシドール 2.96 g (0.04 mol)を7.5 mlの脱水THFに溶解して、THFを留去しながら約1時間を要して滴下した。
Polymerization Step 0.68 g (0.005 mol) of pentaerythritol was suspended in 5 ml of diglyme and 5 ml of methanol. The mixture was heated to 90 ° C., 0.52 ml of potassium methoxide (30% methanol solution) was added thereto and stirred for several minutes, and then the pressure was gradually reduced to distill off the methanol. Add 3 ml of diglyme under argon atmosphere, raise the temperature to 125 ° C, dissolve 2.96 g (0.04 mol) of glycidol in 7.5 ml of dehydrated THF, and add dropwise over about 1 hour while distilling off THF. .
修飾工程
1時間攪拌後アリルグリシジルエーテル 6.85 g (0.06 mol)を17.5 mlの脱水THFに溶解して、THFを留去しながら約2時間を要して滴下した。同温度で約1時間攪拌した後得られた淡褐色液をメタノール25 mlで希釈してアンバーライトIR 120B H AG 10 mlのカラムに通液して中和した。カラムを20 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。淡褐色油状物を10.18 g得た。 この内2.2 gをシリカゲルカラムクロマトグラフィー(トルエン/メタノール=3/1)で精製した。精製物をメタノール溶液として0.2μmメンブランフィルターにより濾過した後濃縮し(浴温80℃)、表題ポリマーを淡黄色液として1.44 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.45-3.67 (96H, m), 3.87 (12H, s), 4.01(24H, s), 4.77 (12H, s), 5.17 (12H, d, J = 10.5 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.89-5.95 (12H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 45.9, 69.3, 69.6, 69.7, 70.0, 70.3, 71.4, 71.5, 71.8, 72.0, 72.9, 78.6, 78.8, 116.1, 134.8, 134.9
Modification process
After stirring for 1 hour, 6.85 g (0.06 mol) of allyl glycidyl ether was dissolved in 17.5 ml of dehydrated THF and added dropwise over about 2 hours while distilling off the THF. The light brown liquid obtained after stirring at the same temperature for about 1 hour was diluted with 25 ml of methanol and neutralized by passing through a column of Amberlite IR 120B H AG 10 ml. The column was washed with 20 ml of methanol, and both washing solutions were concentrated under reduced pressure. 10.18 g of a light brown oil was obtained. Of this, 2.2 g was purified by silica gel column chromatography (toluene / methanol = 3/1). The purified product was filtered through a 0.2 μm membrane filter as a methanol solution and concentrated (bath temperature 80 ° C.) to obtain 1.44 g of the title polymer as a pale yellow liquid. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.45-3.67 (96H, m), 3.87 (12H, s), 4.01 (24H, s), 4.77 (12H, s), 5.17 (12H, d , J = 10.5 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.89-5.95 (12H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 45.9, 69.3, 69.6, 69.7, 70.0, 70.3, 71.4, 71.5, 71.8, 72.0, 72.9, 78.6, 78.8, 116.1, 134.8, 134.9
(実施例7)
エーテル化工程
実施例7では、実施例6で得た化合物について、さらにエーテル化工程として、上記修飾工程で得られた化合物の水酸基を臭化アリルで修飾した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.44-3.68 (108H, m), 4.00, 4.01 (各12H, S), 4.15 (24H, s), 5.14 (12H, d, J = 12.1 Hz), 5.16 (12H, d, J = 11.0 Hz), 5.29 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 46.8, 71.3, 72.1, 72.5, 73.2, 78.5, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.64
(Example 7)
Etherification Step In Example 7, the hydroxyl group of the compound obtained in the above modification step was modified with allyl bromide as the etherification step for the compound obtained in Example 6 (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.44-3.68 (108H, m), 4.00, 4.01 (12H, S each), 4.15 (24H, s), 5.14 (12H, d, J = 12.1 Hz), 5.16 (12H, d, J = 11.0 Hz), 5.29 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 46.8, 71.3, 72.1, 72.5, 73.2, 78.5, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.64
(実施例8)
実施例8では、コア分子としてトリエタノールアミンを用い、下記化学式に示す反応を行なった。トリエタノールアミン:グリシドール:アリルグリシジルエーテルは1:6:9の割合(モル比)とした。また、反応溶媒としてジグライムを用いた。
In Example 8, the reaction represented by the following chemical formula was performed using triethanolamine as the core molecule. The ratio (molar ratio) of triethanolamine: glycidol: allyl glycidyl ether was 1: 6: 9. Moreover, diglyme was used as a reaction solvent.
重合工程
アルゴン雰囲気下トリエタノールアミン 1.86 g (12.47 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.87 g (3.72 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 10 mlを加え、グリシドール 5.54 g (74.78 mmol)を18 mlの脱水THFに溶解して、THFを留去しながら約5.5時間を要して滴下した。
Polymerization step 1.86 g (12.47 mmol) of triethanolamine was heated to 90 ° C under an argon atmosphere, 0.87 g (3.72 mmol) of potassium methoxide (30% methanol solution) was added thereto, and the mixture was stirred for several minutes and then gradually reduced in pressure. The methanol was distilled off. 10 ml of diglyme was added, 5.54 g (74.78 mmol) of glycidol was dissolved in 18 ml of dehydrated THF, and dropwise added over about 5.5 hours while distilling off the THF.
修飾工程
30分攪拌後アリルグリシジルエーテル 12.82 g (112.32 mmol)を35 mlの脱水THFに溶解して、THFを留去しながら約11.5時間を要して滴下した。同温度で約4時間攪拌した後冷却し、メタノール30 mlで希釈してアンバーライトIR 120B HAG 30 mlのカラムに通液して中和した。カラムを30 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。残留液15.1 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=6/1)で精製した。表題化合物を無色油状物を3.13 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.82 (6H, m), 3.44-3.67 (72H, br), 3.87 (9H, s), 4.01 and 4.02 (18H, each s), 4.83 (9H, s), 5.16 (9H, d, J = 9.9 Hz), 5.30 (9H, d, J = 17.0 Hz), 5.90-5.94 (9H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 54.2, 63.1, 69.2, 69.6, 70.9, 71.1, 71.3, 71.6, 72.0, 72.6, 78.6, 78.9, 80.1, 80.3, 116.0, 134.9
Modification process
After stirring for 30 minutes, 12.82 g (112.32 mmol) of allyl glycidyl ether was dissolved in 35 ml of dehydrated THF and added dropwise over about 11.5 hours while distilling off the THF. The mixture was stirred for about 4 hours at the same temperature, cooled, diluted with 30 ml of methanol, and passed through a 30 ml column of Amberlite IR 120B HAG to neutralize. The column was washed with 30 ml of methanol, and both washing solutions were concentrated under reduced pressure. The residual liquid 15.1 g was purified by silica gel column chromatography (chloroform / methanol = 6/1). The title compound was obtained as a colorless oil (3.13 g). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.82 (6H, m), 3.44-3.67 (72H, br), 3.87 (9H, s), 4.01 and 4.02 (18H, each s), 4.83 ( 9H, s), 5.16 (9H, d, J = 9.9 Hz), 5.30 (9H, d, J = 17.0 Hz), 5.90-5.94 (9H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 54.2, 63.1, 69.2, 69.6, 70.9, 71.1, 71.3, 71.6, 72.0, 72.6, 78.6, 78.9, 80.1, 80.3, 116.0, 134.9
(実施例9)
エーテル化工程
実施例9では、実施例8で得た化合物について、上記修飾工程で得られた化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 2.79 (6H, s), 3.50-3.71 (81H, br), 3.99 and 4.00 (18H, each s), 4.13 (18H, s), 5.12-5.16 (18H, m), 5.27 (18H, d, J = 17.0 Hz), 5.87-5.95 (18H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 55.6, 71.3, 72.1, 72.6, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6
Example 9
Etherification Step In Example 9, the hydroxyl group of the compound obtained in the above modification step was allyl etherified with allyl bromide for the compound obtained in Example 8 (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.79 (6H, s), 3.50-3.71 (81H, br), 3.99 and 4.00 (18H, each s), 4.13 (18H, s), 5.12- 5.16 (18H, m), 5.27 (18H, d, J = 17.0 Hz), 5.87-5.95 (18H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 55.6, 71.3, 72.1, 72.6, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6
(実施例10)
実施例10では、コア分子としてトリエタノールアミンを用い、下記化学式に示す反応を行なった。トリエタノールアミン:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。また、反応溶媒としてジグライムを用いた。
In Example 10, the reaction represented by the following chemical formula was performed using triethanolamine as the core molecule. The ratio (molar ratio) of triethanolamine: glycidol: allyl glycidyl ether was 1: 9: 12. Moreover, diglyme was used as a reaction solvent.
重合工程
アルゴン雰囲気下トリエタノールアミン 1.49 g (0.01 mol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.78 mlを加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 7.5 mlを加え、グリシドール 6.67 g (0.09 mol)を17 mlの脱水THFに溶解して、THFを留去しながら約5.5時間を要して滴下した。
Polymerization step 1.49 g (0.01 mol) of triethanolamine was heated to 90 ° C under an argon atmosphere, 0.78 ml of potassium methoxide (30% methanol solution) was added thereto, and the mixture was stirred for several minutes. Left. 7.5 ml of diglyme was added, and 6.67 g (0.09 mol) of glycidol was dissolved in 17 ml of dehydrated THF, and dropwise added over about 5.5 hours while distilling off the THF.
修飾工程
そして、30分攪拌後アリルグリシジルエーテル 13.7 g (0.12 mol)を33 mlの脱水THFに溶解して、THFを留去しながら約11.5時間を要して滴下した。同温度で約5.5時間攪拌した後冷却し、メタノール50 mlで希釈してアンバーライトIR 120B H AG 30 mlのカラムに通液して中和した。カラムを40 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。表題化合物を褐色油状物を14.4 g得た。このもののNMRを測定し、以下の結果を得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.83 (6H, b), 3.43-3.67 (99H, m), 3.88 (12H, s), 4.01, 4.02 (各12H, s), 4.84 (12H, s), 5.17 (12H, d, J = 9.9 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.90-5.94 (12H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 54.1, 69.3, 69.7, 70.0, 70.9, 71.2, 71.3, 71.7, 72.0, 72.8, 78.6, 78.8, 80.2, 80.4, 116.0, 134.8, 134.9
Modification Step Then, after stirring for 30 minutes, 13.7 g (0.12 mol) of allyl glycidyl ether was dissolved in 33 ml of dehydrated THF, and dropwise added over about 11.5 hours while distilling off THF. The mixture was stirred at the same temperature for about 5.5 hours, cooled, diluted with 50 ml of methanol, and neutralized by passing through a column of Amberlite IR 120B H AG 30 ml. The column was washed with 40 ml of methanol, and both washing solutions were concentrated under reduced pressure. 14.4 g of the title compound was obtained as a brown oil. NMR of this product was measured, and the following results were obtained. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.83 (6H, b), 3.43-3.67 (99H, m), 3.88 (12H, s), 4.01, 4.02 (each 12H, s), 4.84 ( 12H, s), 5.17 (12H, d, J = 9.9 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.90-5.94 (12H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 54.1, 69.3, 69.7, 70.0, 70.9, 71.2, 71.3, 71.7, 72.0, 72.8, 78.6, 78.8, 80.2, 80.4, 116.0, 134.8, 134.9
(実施例11)
エーテル化工程
実施例11では、実施例10で得た化合物にの水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
Etherification Step In Example 11, the hydroxyl group of the compound obtained in Example 10 was allyl etherified with allyl bromide (see the following chemical formula).
すなわち、上記修飾工程で得た化合物 6.5gをトルエン13 mlに溶解しこれに臭化テトラブチルアンモニウム 1.55 g (4.8 mmol) および水12 mlに溶解した水酸化ナトリウム9.59 g (239.8 mmol) を加えた。アルゴン雰囲気下40℃に加温、攪拌しながら臭化アリル 6.48 g (53.5 mmol)を4 mlのトルエンに溶解して約1時間で滴下した。同温度で17時間攪拌した後水20 mlを加えて分液した。水層を20 mlのトルエンで抽出し、有機層を併せて水で2回洗浄後無水硫酸ナトリウムで脱水し、濃縮した。微黄色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=15/1)で精製した。表題化合物を微黄色油状物を4.13 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.79 (6H, bs), 3.51-3.71 (111H, m), 4.00 and 4.01(24H, each s) 4.15 (24H, s), 5.15 (12H, d, J = 12.1 Hz), 5.17 (12H, d, J = 11.5 Hz), 5.29 (24H, d, J = 17.1 Hz), 5.91-5.96 (24H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 55.6, 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6
That is, 6.5 g of the compound obtained in the above modification step was dissolved in 13 ml of toluene, and 1.55 g (4.8 mmol) of tetrabutylammonium bromide and 9.59 g (239.8 mmol) of sodium hydroxide dissolved in 12 ml of water were added thereto. . With heating and stirring at 40 ° C. under an argon atmosphere, 6.48 g (53.5 mmol) of allyl bromide was dissolved in 4 ml of toluene and added dropwise in about 1 hour. After stirring at the same temperature for 17 hours, 20 ml of water was added to separate the layers. The aqueous layer was extracted with 20 ml of toluene, and the organic layers were combined, washed twice with water, dried over anhydrous sodium sulfate, and concentrated. The slightly yellow residue was purified by silica gel column chromatography (chloroform / methanol = 15/1). 4.13 g of the title compound was obtained as a pale yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.79 (6H, bs), 3.51-3.71 (111H, m), 4.00 and 4.01 (24H, each s) 4.15 (24H, s), 5.15 (12H , d, J = 12.1 Hz), 5.17 (12H, d, J = 11.5 Hz), 5.29 (24H, d, J = 17.1 Hz), 5.91-5.96 (24H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 55.6, 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6
(実施例12)
実施例12では、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン:グリシドール:アリルグリシジルエーテルは1:4:8の割合(モル比)とした。
In Example 12, N, N-bis (2,3-dihydroxypropyl) octylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: allyl glycidyl ether was 1: 4: 8 (molar ratio).
重合工程
アルゴン気流下N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン 1.88 g (6.77 mol)を80℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.63 g (2.69 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて90℃に加熱しながらグリシドール 2.01 g (27.1 mmol)を脱水THF 11 mlに溶解して、THFを留去しながら約2.5時間を要して滴下した。
Polymerization Step N, N-bis (2,3-dihydroxypropyl) octylamine 1.88 g (6.77 mol) in an argon stream was stirred in an oil bath at 80 ° C. and potassium methoxide (30% methanol solution) 0.63 g (2.69 mmol) Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 5 ml of dehydrated diglyme and heating to 90 ° C., 2.01 g (27.1 mmol) of glycidol was dissolved in 11 ml of dehydrated THF and added dropwise over about 2.5 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 6.19 g (54.2 mmol)を脱水THF 22 mlに溶解して、THFを留去しながら約5.5 時間を要して滴下した。同温度で2.5時間攪拌した後冷却し、メタノール30 mlを加えてアンバーライトIR 120B H AG 25 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=2/1)により精製し、さらに活性炭で処理した後0.2 μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、淡黄色油状物を3.57 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.49 (2H, bs), 2.59, 3.44-3.77 (58H, m,), 3.88 (8H, s), 4.02 (16H, s), 4.85 (8H, s), 5.16 (8H, d, J = 9.3 Hz), 5.28 8H, d, J = 17.6 Hz), 5.88-5.94 (8H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.3, 23.7, 28.5, 30.4, 30.6, 33.0, 57.0, 62.8, 64.6, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.2, 117.3,136.0, 136.1
Modification Step Subsequently, 6.19 g (54.2 mmol) of allyl glycidyl ether was dissolved in 22 ml of dehydrated THF, and dropwise added over about 5.5 hours while distilling off the THF. After stirring at the same temperature for 2.5 hours, the mixture was cooled, 30 ml of methanol was added, and neutralized through a column of 25 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 2/1), further treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 3.57 g of a pale yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.49 (2H, bs), 2.59, 3.44-3.77 (58H, m,), 3.88 ( 8H, s), 4.02 (16H, s), 4.85 (8H, s), 5.16 (8H, d, J = 9.3 Hz), 5.28 8H, d, J = 17.6 Hz), 5.88-5.94 (8H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.3, 23.7, 28.5, 30.4, 30.6, 33.0, 57.0, 62.8, 64.6, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.2, 117.3,136.0, 136.1
(実施例13)
エーテル化工程
実施例13では、実施例12で得た化合物にの水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 0.90 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.50-2.59 (6H, m), 3.48-3.72 (66H, m), 4.00 and 4.01(32H, each s), 4.15 (16H, s), 5.14 (8H, d, J = 11.5 Hz), 5.16 (8H, d, J = 11.6 Hz,), 5.29 (16H, d, J = 17.0 Hz), 5.88-5.95 (16H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.3, 23.7, 28.6, 30.6, 30.8, 33.1, 57.0, 57.8, 71.3, 72.2, 72.6, 73.3, 78.5, 78.8, 80.0, 80.2, 117.0, 117.1, 136.2, 136.6
(Example 13)
Etherification Step In Example 13, the hydroxyl group of the compound obtained in Example 12 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.90 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.50-2.59 (6H, m), 3.48-3.72 (66H , m), 4.00 and 4.01 (32H, each s), 4.15 (16H, s), 5.14 (8H, d, J = 11.5 Hz), 5.16 (8H, d, J = 11.6 Hz,), 5.29 (16H, d, J = 17.0 Hz), 5.88-5.95 (16H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.3, 23.7, 28.6, 30.6, 30.8, 33.1, 57.0, 57.8, 71.3, 72.2, 72.6, 73.3, 78.5, 78.8, 80.0, 80.2, 117.0, 117.1, 136.2, 136.6
(実施例14)
実施例14では、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン:グリシドール:アリルグリシジルエーテルは1:12:16の割合(モル比)とした。
In Example 14, N, N-bis (2,3-dihydroxypropyl) octylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: allyl glycidyl ether was in a ratio (molar ratio) of 1:12:16.
重合工程
アルゴン気流下N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン1.09 g (3.91 mmol)を80℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.364 g (1.56 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて90℃に加熱しながら、グリシドール 3.47 g (46.9 mmol)を脱水THF 11 mlに溶解して、THFを留去しながら約3.5時間を要して滴下した。
Polymerization step While stirring 1.90 g (3.91 mmol) of N, N-bis (2,3-dihydroxypropyl) octylamine in an 80 ° C. oil bath under an argon stream, 0.364 g (1.56 mmol) of potassium methoxide (30% methanol solution) Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 5 ml of dehydrated diglyme and heating to 90 ° C., 3.47 g (46.9 mmol) of glycidol was dissolved in 11 ml of dehydrated THF and added dropwise over about 3.5 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 7.14 g (62.6 mmol)を脱水THF 22 mlに溶解して、THFを留去しながら約7 時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール30 mlを加えてアンバーライトIR 120B H AG 25 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=3/1)により精製し、さらに活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、淡黄色油状物を3.61 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.50 (2H, bs), 2.59 (6H, b), 3.42-3.77 (180H, m), 3.88 (16H, s), 4.01 (32H, s), 4.84 (16H, s), 5.17 (16H, d, J = 9.3 Hz), 5.30 (16H, d, J = 17.6 Hz), 5.90-5.94 (16H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.5, 23.7, 28.5, 30.6, 30.8, 33.0, 57.0, 62.8, 64.3, 70.6, 70.9, 71.2, 72.2, 72.4, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.4, 136.0, 136.1
Modification Step Subsequently, 7.14 g (62.6 mmol) of allyl glycidyl ether was dissolved in 22 ml of dehydrated THF, and dropwise added over about 7 hours while distilling off the THF. The mixture was stirred at the same temperature for 3 hours, cooled, neutralized through a column of 25 ml of Amberlite IR 120B H AG by adding 30 ml of methanol. The solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 3/1), further treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 3.61 g of a pale yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.50 (2H, bs), 2.59 (6H, b), 3.42-3.77 (180H, m ), 3.88 (16H, s), 4.01 (32H, s), 4.84 (16H, s), 5.17 (16H, d, J = 9.3 Hz), 5.30 (16H, d, J = 17.6 Hz), 5.90-5.94 (16H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.5, 23.7, 28.5, 30.6, 30.8, 33.0, 57.0, 62.8, 64.3, 70.6, 70.9, 71.2, 72.2, 72.4, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.4, 136.0, 136.1
(実施例15)
エーテル化工程
実施例15では、実施例14で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.51-2.59 (6H, m), 3.49-3.70 (146H, m), 4.01 (32H, s), 4.15 (32H, s), 5.14 (16H, d, J = 11.0 Hz), 5.16 (16H, d, J = 11.5 Hz), 5.29 (32H, d, J = 17.0 Hz,), 5.85-5.91 (32H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.6
(Example 15)
Etherification Step In Example 15, the hydroxyl group of the compound obtained in Example 14 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.51-2.59 (6H, m), 3.49-3.70 (146H , m), 4.01 (32H, s), 4.15 (32H, s), 5.14 (16H, d, J = 11.0 Hz), 5.16 (16H, d, J = 11.5 Hz), 5.29 (32H, d, J = 17.0 Hz,), 5.85-5.91 (32H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.6
(実施例16)
実施例16では、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン:グリシドール:アリルグリシジルエーテル:臭化アリルは1:28:32:32の割合(モル比)とした。
In Example 16, N, N-bis (2,3-dihydroxypropyl) octylamine was used as the core molecule, and the reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: allyl glycidyl ether: allyl bromide was in a ratio (molar ratio) of 1: 28: 32: 32.
重合工程
アルゴン気流下N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン 0.4 g (1.44 mmol)を80℃油浴上で攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.134 g (0.576 mmol)を加えた。数分間攪拌した後減圧下メタノールを留去した。脱水ジグライム 5 mlを加えて100℃に加熱しながらグリシドール 2.99 g (40.37 mmol)を脱水THF 10 mlに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization Step N, N-Bis (2,3-dihydroxypropyl) octylamine 0.4 g (1.44 mmol) was stirred in an 80 ° C. oil bath under an argon stream, and potassium methoxide (30% methanol solution) 0.134 g (0.576 mmol) ) Was added. After stirring for several minutes, methanol was distilled off under reduced pressure. While adding 5 ml of dehydrated diglyme and heating to 100 ° C., 2.99 g (40.37 mmol) of glycidol was dissolved in 10 ml of dehydrated THF and added dropwise over about 3 hours while distilling off THF.
修飾工程
1時間攪拌後アリルグリシジルエーテル 5.27 g (46.14 mmol)を脱水THF 20 mlに溶解して、THFを留去しながら約6時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール25 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下80℃で溶媒を留去して橙色油状物を6.53 g得た。
Modification Step After stirring for 1 hour, 5.27 g (46.14 mmol) of allyl glycidyl ether was dissolved in 20 ml of dehydrated THF and added dropwise over about 6 hours while distilling off the THF. The mixture was stirred at the same temperature for 3 hours, cooled, added with 25 ml of methanol, and neutralized through a column of 20 ml of Amberlite IR 120B H AG. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 6.53 g of an orange oil.
エーテル化工程
さらにエーテル化工程として、修飾工程で得られた油状物 3.0 gをトルエン7 mlに溶解し、これにアルゴン気流下臭化テトラブチルアンモニウム 0.69 g (2.14 mmol) および水酸化ナトリウム4.32 g (108.0 mmol) を水5 mlに溶解して加えた。40℃に加温、攪拌下臭化アリル 2.90 g (24.0 mmol)を1 mlのトルエンに溶解して1.5時間で滴下した。同温度で18時間攪拌した後水、トルエン各10 mlを加えて抽出、分液した。水層を再度10 mlのトルエンで抽出し、有機層を併せて水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=30/1)で精製し、主留部1.4 gを得た。これを再度シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1)で精製し、次いでメタノール溶液として0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、無色油状物を0.59 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.52-2.60 (6H, m), 3.33 and 3.52-.3.66 (306H, m), 4.01(64H, s), 4.15 (64H, s), 5.14 (32H, d, J = 11.0 Hz), 5.16 (32H, d, J = 11.5 Hz), 5.29 (64H, d, J = 15.9.0 Hz), 5.91-5.92 (64H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.7
Etherification step Further, as an etherification step, 3.0 g of the oily substance obtained in the modification step was dissolved in 7 ml of toluene, and 0.69 g (2.14 mmol) of tetrabutylammonium bromide and 4.32 g of sodium hydroxide ( 108.0 mmol) was dissolved in 5 ml of water and added. The mixture was heated to 40 ° C., and 2.90 g (24.0 mmol) of allyl bromide was dissolved in 1 ml of toluene with stirring and added dropwise over 1.5 hours. After stirring at the same temperature for 18 hours, 10 ml each of water and toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 10 ml of toluene, and the organic layers were combined and washed twice with water. After dehydrating with anhydrous sodium sulfate and concentrating, the residual liquid was purified by silica gel column chromatography (chloroform / methanol = 30/1) to obtain 1.4 g of a main fraction. This was purified again by silica gel column chromatography (chloroform / methanol = 20/1), and then filtered through a 0.2 μm filter as a methanol solution. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 0.59 g of a colorless oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.52-2.60 (6H, m), 3.33 and 3.52-. 3.66 (306H, m), 4.01 (64H, s), 4.15 (64H, s), 5.14 (32H, d, J = 11.0 Hz), 5.16 (32H, d, J = 11.5 Hz), 5.29 (64H, d , J = 15.9.0 Hz), 5.91-5.92 (64H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.7
(実施例17)
実施例17では、コア分子としてN,N,N’,N’-テトラキス(2,3-ジヒドロキシプロピル)エチレンジアミンを用い、下記化学式に示す反応を行なった。N,N,N’,N’-テトラキス(2,3-ジヒドロキシプロピル)エチレンジアミン:グリシドール:アリルグリシジルエーテルは1:8:16の割合(モル数比)とした。
In Example 17, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine: glycidol: allyl glycidyl ether was in a ratio (molar ratio) of 1: 8: 16.
重合工程
アルゴン気流下N,N,N’,N’-テトラキス(2,3-ジヒドロキシプロピル)エチレンジアミン1.67 g (4.7 mmol)を90℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.88 g (3.76 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 10 mlおよびDMF 5 mlを加えて110℃に加熱しながらグリシドール2.78 g (37.5 mmol)を脱水THF 9 mlに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization Step N, N, N ′, N′-Tetrakis (2,3-dihydroxypropyl) ethylenediamine 1.67 g (4.7 mmol) in an argon gas stream with stirring in a 90 ° C. oil bath, potassium methoxide (30% methanol solution) 0.88 g (3.76 mmol) was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 10 ml of dehydrated diglyme and 5 ml of DMF and heating to 110 ° C., 2.78 g (37.5 mmol) of glycidol was dissolved in 9 ml of dehydrated THF and added dropwise over about 3 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 8.58 g (75.2 mmol)を脱水THF 26 mlに溶解して、THFを留去しながら約6 時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール30 mlを加えてアンバーライトIR 120B H AG 30 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=3/1)により精製し、さらに活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、表題化合物を黄色油状物を3.67 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.66 (12H, br), 3.47-3.67 (116H, m), 3.86 (16H, s), 4.01 (32H, s), 4.85 (16H, s), 5.15-5.17 (16H, m), 5.28 (16H, d, J = 17.6 Hz), 5.88-5.94 (16H, m)
13C -NMR (600 MHz, methanol-d4) δ: 54.5, 59.3, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.0, 79.9, 80.2, 117.2, 136.2
Modification Step Subsequently, 8.58 g (75.2 mmol) of allyl glycidyl ether was dissolved in 26 ml of dehydrated THF, and dropwise added over about 6 hours while distilling off the THF. After stirring at the same temperature for 3 hours, the mixture was cooled, 30 ml of methanol was added and neutralized through a column of 30 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 3/1), further treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 3.67 g of the title compound as a yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.66 (12H, br), 3.47-3.67 (116H, m), 3.86 (16H, s), 4.01 (32H, s), 4.85 (16H, s ), 5.15-5.17 (16H, m), 5.28 (16H, d, J = 17.6 Hz), 5.88-5.94 (16H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 54.5, 59.3, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.0, 79.9, 80.2, 117.2, 136.2
(実施例18)
エーテル化工程
実施例18では、実施例17で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 2.60-2.66 (12H, br), 3.49-3.66 (132H, m), 4.00 (32H, s), 4.14 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.5 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.87-5.92 (32H, m)
13C -NMR (600 MHz, methanol-d4) δ: 54.0, 56.8, 70.1, 70.9, 71.4, 72.0, 77.3, 77.6, 78.7, 79.0, 115.8, 115.9, 135.0, 135.5
(実施例19)
実施例19では、コア分子としてN,N-ビス(2,3-ジヒドロキシプロピル)ベンジルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3-ジヒドロキシプロピル)ベンジルアミン:グリシドール:アリルグリシジルエーテルは1:12:16の割合(モル数比)とした。また、
Etherification Step In Example 18, the hydroxyl group of the compound obtained in Example 17 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.60-2.66 (12H, br), 3.49-3.66 (132H, m), 4.00 (32H, s), 4.14 (32H, s), 5.13 (16H , d, J = 12.1 Hz), 5.15 (16H, d, J = 11.5 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.87-5.92 (32H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 54.0, 56.8, 70.1, 70.9, 71.4, 72.0, 77.3, 77.6, 78.7, 79.0, 115.8, 115.9, 135.0, 135.5
Example 19
In Example 19, N, N-bis (2,3-dihydroxypropyl) benzylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of N, N-bis (2,3-dihydroxypropyl) benzylamine: glycidol: allyl glycidyl ether was 1:12:16 (molar ratio). Also,
重合工程
アルゴン気流下N,N-ビス(2,3-ジヒドロキシプロピル)ベンジルアミン2.05 g (8.0 mmol)を100℃に加熱、攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.75 g (3.2 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 7 mlおよびDMF 5 mlを加えてグリシドール 7.12 g (96.2 mmol)を脱水THF 13 mlに溶解して、THFを留去しながら約3.6時間を要して滴下した。
Polymerization process N, N-bis (2,3-dihydroxypropyl) benzylamine (2.05 g, 8.0 mmol) was heated to 100 ° C under argon flow, and potassium methoxide (30% methanol solution) 0.75 g (3.2 mmol) with stirring. Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. 7 ml of dehydrated diglyme and 5 ml of DMF were added, 7.12 g (96.2 mmol) of glycidol was dissolved in 13 ml of dehydrated THF, and the mixture was added dropwise over about 3.6 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 14.6 g (128.2 mmol)を脱水THF 26 mlに溶解して、THFを留去しながら約7.4 時間を要して滴下した。同温度で2時間攪拌した後冷却し、メタノール40 mlを加えてアンバーライトIR 120B H AG 30 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物21.65 g中10 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=7/3)により精製し、さらにメタノール溶液として活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、黄色油状物を7.5 g得た。(収率68.2%)このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.63-2.66 (4H, br), 3.45-3.67 (132H, m), 3.87 (16H, s), 4.01 (32H, s,), 4.77 (16H, s), 5.17 (16H, d, J = 9.9 Hz), 5.30 (16H, d, J = 17.0 Hz), 5.90-5.93 (16H, m), 7.25-7.34 (5H, m)
13C -NMR (600 MHz, methanol-d4) δ: 61.4, 62.8, 64.5, 70.5, 70.9, 71.2, 72.6, 73.0, 73.2, 74.0, 79.8, 80.1, 117.2, 128.1, 129.4, 130.3, 130.4, 136.0, 136.2,
Modification Step Subsequently, 14.6 g (128.2 mmol) of allyl glycidyl ether was dissolved in 26 ml of dehydrated THF, and dropwise added over about 7.4 hours while distilling off THF. The mixture was stirred at the same temperature for 2 hours and then cooled, and 40 ml of methanol was added and neutralized through a column of 30 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), and 10 g of 21.65 g of the residual oil was purified by silica gel column chromatography (chloroform / methanol = 7/3). Filtered. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 7.5 g of a yellow oily substance. (Yield 68.2%) NMR of this product was measured and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.63-2.66 (4H, br), 3.45-3.67 (132H, m), 3.87 (16H, s), 4.01 (32H, s,), 4.77 ( 16H, s), 5.17 (16H, d, J = 9.9 Hz), 5.30 (16H, d, J = 17.0 Hz), 5.90-5.93 (16H, m), 7.25-7.34 (5H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 61.4, 62.8, 64.5, 70.5, 70.9, 71.2, 72.6, 73.0, 73.2, 74.0, 79.8, 80.1, 117.2, 128.1, 129.4, 130.3, 130.4, 136.0 , 136.2,
(実施例20)
エーテル化工程
実施例20では、実施例19で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 2.62 (4H, br), 3.50-3.65 (148H, m), 3.99 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m), 7.24-7.33 (5H, m)
13C -NMR (600 MHz, methanol-d4) δ: 57.6, 61.5, 71.2, 72.5, 73.2, 72.1, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6, 128.0, 129.3, 130.2, 141.0
(Example 20)
Etherification Step In Example 20, the hydroxyl group of the compound obtained in Example 19 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.62 (4H, br), 3.50-3.65 (148H, m), 3.99 (32H, s), 4.13 (32H, s), 5.13 (16H, d , J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m), 7.24-7.33 (5H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 57.6, 61.5, 71.2, 72.5, 73.2, 72.1, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6, 128.0, 129.3, 130.2, 141.0
(実施例21)
実施例21では、コア分子としてN-フェニルジエタノールアミンを用い、下記化学式に示す反応を行なった。N-フェニルジエタノールアミン:グリシドール:アリルグリシジルエーテルは1:6:8の割合(モル比)とした。
In Example 21, N-phenyldiethanolamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio (molar ratio) of N-phenyldiethanolamine: glycidol: allyl glycidyl ether was 1: 6: 8.
重合工程
アルゴン気流下N-フェニルジエタノールアミン 1.0 g (5.52 mmol)を90℃に加熱、溶融し、これにカリウムメトキシド (30% メタノール溶液) 0.26 g (1.11 mmol)を加えた。数分間攪拌した後徐々に減圧してメタノールを留去し、脱水ジグライム 5 mlを加えた。90℃に加熱しながらグリシドール 2.45 g (33.1 mmol)を脱水THF 10 mlに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization step Under an argon stream, N-phenyldiethanolamine 1.0 g (5.52 mmol) was heated to 90 ° C and melted, and potassium methoxide (30% methanol solution) 0.26 g (1.11 mmol) was added thereto. After stirring for several minutes, the pressure was gradually reduced to distill off methanol, and 5 ml of dehydrated diglyme was added. While being heated to 90 ° C., 2.45 g (33.1 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and added dropwise over about 3 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 5.04 g (44.2 mmol)を脱水THF 20 mlに溶解して、THFを留去しながら約6 時間を要して滴下した。同温度で5時間攪拌した後冷却し、メタノール25 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、再度メタノール30 mlに溶解して活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、黄色油状物を5.06 g得た(収率60.2%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.40-3.66 (68H, m), 3.86 (8H, s), 4.00 (16H, s), 4.75 (8H, s), 5.16 (8H, d, J = 9.4 Hz), 5.28 (8H, d, J = 17.0 Hz), 5.89-5.92 (8H, m), 6.60-6.61 (1H, m), 6.72-6.73 (2H, m), 7.13-7.16 (2H, m)
13C -NMR (600 MHz, methanol-d4) δ: 50.7, 61.5, 63.2, 69.0, 69.3, 69.6, 70.0, 71.2, 71.4, 71.8, 72.0, 72.9, 78.6, 78.8, 80.1, 80.3, 117.2, 113.1, 117.2, 130.1, 149.1, 135.9, 136.1
Modification Step Subsequently, 5.04 g (44.2 mmol) of allyl glycidyl ether was dissolved in 20 ml of dehydrated THF, and dropwise added over about 6 hours while distilling off the THF. The mixture was stirred at the same temperature for 5 hours, cooled, added with 25 ml of methanol, and neutralized through a column of 20 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), dissolved in 30 ml of methanol again, treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 5.06 g of a yellow oil (yield 60.2%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.40-3.66 (68H, m), 3.86 (8H, s), 4.00 (16H, s), 4.75 (8H, s), 5.16 (8H, d , J = 9.4 Hz), 5.28 (8H, d, J = 17.0 Hz), 5.89-5.92 (8H, m), 6.60-6.61 (1H, m), 6.72-6.73 (2H, m), 7.13-7.16 ( 2H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 50.7, 61.5, 63.2, 69.0, 69.3, 69.6, 70.0, 71.2, 71.4, 71.8, 72.0, 72.9, 78.6, 78.8, 80.1, 80.3, 117.2, 113.1 , 117.2, 130.1, 149.1, 135.9, 136.1
(実施例22)
エーテル化工程
実施例22では、実施例21で得た化合物のの水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
Etherification Step In Example 22, the hydroxyl group of the compound obtained in Example 21 was allyl etherified with allyl bromide (see the following chemical formula).
すなわち、上記修飾工程で得た化合物2.0 gをトルエン5 mlに溶解し、これに臭化テトラブチルアンモニウム 0.45 g (1.40mmol) および水3 mlに溶解した水酸化ナトリウム2.83 g (70.8 mmol)を加えた。40℃に加温、攪拌下臭化アリル 1.90 g (15.7 mmol)を0.5 mlのトルエンに溶解して50分で滴下した。同温度で16.5時間攪拌した後水10 ml、トルエン15 mlを加えて抽出、分液した。水層を再度15 mlのトルエンで抽出し、抽出液を併せて飽和食塩水で洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1)で精製し、次いで0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、表題化合物を無色油状物を1.48 g得た。(収率61.5%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.50-3.64 (68H, m), 3.99 (16H, s), 4.13 (16H, s), 5.13 (8H, d, J = 11.0 Hz,), 5.15 (8H, d, J = 11.5 Hz), 5.27 (16H, d, J = 17.1 Hz), 5.89-5.90 (16H, m), 6.58-6.61 (1H, m,), 6.71-6.72 (2H, m,), 7.13-7.15 (2H, m)
13C -NMR (600 MHz, methanol-d4) δ: 52.0, 70.2, 71.2, 72.1, 72.5, 73.1, 78.4, 78.7, 79.8, 80.1, 116.9, 113.0, 117.1, 130.2, 149.1, 136.2, 136.6
That is, 2.0 g of the compound obtained in the modification step was dissolved in 5 ml of toluene, and 0.45 g (1.40 mmol) of tetrabutylammonium bromide and 2.83 g (70.8 mmol) of sodium hydroxide dissolved in 3 ml of water were added thereto. It was. The mixture was heated to 40 ° C., and 1.90 g (15.7 mmol) of allyl bromide was dissolved in 0.5 ml of toluene with stirring and added dropwise over 50 minutes. After stirring at the same temperature for 16.5 hours, 10 ml of water and 15 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 15 ml of toluene, and the extracts were combined and washed with saturated brine. The mixture was dehydrated with anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform / methanol = 20/1), and then filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 1.48 g of the title compound as a colorless oil. (Yield 61.5%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.50-3.64 (68H, m), 3.99 (16H, s), 4.13 (16H, s), 5.13 (8H, d, J = 11.0 Hz,) , 5.15 (8H, d, J = 11.5 Hz), 5.27 (16H, d, J = 17.1 Hz), 5.89-5.90 (16H, m), 6.58-6.61 (1H, m,), 6.71-6.72 (2H, m,), 7.13-7.15 (2H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 52.0, 70.2, 71.2, 72.1, 72.5, 73.1, 78.4, 78.7, 79.8, 80.1, 116.9, 113.0, 117.1, 130.2, 149.1, 136.2, 136.6
(実施例23)
実施例23では、コア分子として2-フェニル-1,3-プロパンジオールを用い、下記化学式に示す反応を行なった。2-フェニル-1,3-プロパンジオール:グリシドール:アリルグリシジルエーテルは1:6:8の割合(モル比)とした。
In Example 23, 2-phenyl-1,3-propanediol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio (molar ratio) of 2-phenyl-1,3-propanediol: glycidol: allyl glycidyl ether was 1: 6: 8.
重合工程
2-フェニル-1,3-プロパンジオール 1.52 g (10.0 mmol)を90℃に加熱、溶融し、これにカリウムメトキシド (30% メタノール溶液) 0.47 g (2.0 mmol)を加えた。数分間攪拌した後徐々に減圧してメタノールを留去し、脱水ジグライム 5 mlを加えた。90℃に加熱しながらグリシドール 4.44 g (60.0 mmol)を脱水THF 13 mlに溶解して、THFを留去しながら約4時間を要して滴下した。
Polymerization process
1.52 g (10.0 mmol) of 2-phenyl-1,3-propanediol was heated to 90 ° C. and melted, and 0.47 g (2.0 mmol) of potassium methoxide (30% methanol solution) was added thereto. After stirring for several minutes, the pressure was gradually reduced to distill off methanol, and 5 ml of dehydrated diglyme was added. While heating at 90 ° C., 4.44 g (60.0 mmol) of glycidol was dissolved in 13 ml of dehydrated THF, and added dropwise over about 4 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 9.13 g (80.0 mmol)を脱水THF 27 mlに溶解して、THFを留去しながら約8 時間を要して滴下した。同温度で2.5時間攪拌した後冷却し、メタノール40 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留黄色液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=8/1)により精製した。次いでメタノール溶液として活性炭で処理した後0.2μmフィルターで濾過し、減圧下80℃にて溶媒を留去して微黄色油状物を5.78 g得た(収率38.3%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ3.15 (1H, s), 3.42-3.68 (62H, m), 3.76 (2H, bs), 3.88 (8H, s), 3.95 (2H, m,), 4.01 (16H, s), 4.79 (8H, s), 5.14 (8H, d, J = 16.9 Hz), 5.26 (8H, d, J = 15.4 Hz), 5.89-5.94 (8H, m), 7.20-7.29 (5H, m)
13C -NMR (600 MHz, methanol-d4) δ: 46.1(CH), 61.6, 63.3, 63.6, 69.3, 69.9, 70.0, 71.2, 71.4, 71.8, 72.0, 72.8, 78.6, 78.8, 80.2, 116.1, 134.8, 135.0, 126.4, 128.1, 141.0
Modification Step Subsequently, 9.13 g (80.0 mmol) of allyl glycidyl ether was dissolved in 27 ml of dehydrated THF and added dropwise over about 8 hours while distilling off the THF. The mixture was stirred at the same temperature for 2.5 hours, then cooled, neutralized through a column of 20 ml of Amberlite IR 120B H AG by adding 40 ml of methanol. The solvent was distilled off under reduced pressure (80 ° C.), and the residual yellow liquid was purified by silica gel column chromatography (chloroform / methanol = 8/1). Next, the solution was treated with activated carbon as a methanol solution, filtered through a 0.2 μm filter, and the solvent was distilled off at 80 ° C. under reduced pressure to obtain 5.78 g of a slightly yellow oily substance (yield 38.3%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ3.15 (1H, s), 3.42-3.68 (62H, m), 3.76 (2H, bs), 3.88 (8H, s), 3.95 (2H, m ,), 4.01 (16H, s), 4.79 (8H, s), 5.14 (8H, d, J = 16.9 Hz), 5.26 (8H, d, J = 15.4 Hz), 5.89-5.94 (8H, m), 7.20-7.29 (5H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 46.1 (CH), 61.6, 63.3, 63.6, 69.3, 69.9, 70.0, 71.2, 71.4, 71.8, 72.0, 72.8, 78.6, 78.8, 80.2, 116.1, 134.8, 135.0, 126.4, 128.1, 141.0
(実施例24)
エーテル化工程
実施例24では、実施例23で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.13 (1H, br), 3.46-3.65 (70H, m), 3.74 and 3.94 (each 2H, m), 3.99 (16H, s), 4.13 (16H, s), 5.13 (8H, d, J = 11.0 Hz), 5.15 (8H, d, J = 11.0 Hz), 5.27 (16H, d, J = 17.6 Hz), 5.89-5.91 (16H, m), 7.19-7.27 (5H, m)
13C -NMR (600 MHz, methanol-d4) δ: 47.4, 71.2, 72.1, 72.5, 73.8, 73.2, 78.4, 78.7, 79.8, 80.12, 116.9, 117.1, 136.1, 136.6, 127.6, 129.2, 129.3, 142.3
(Example 24)
Etherification Step In Example 24, the hydroxyl group of the compound obtained in Example 23 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.13 (1H, br), 3.46-3.65 (70H, m), 3.74 and 3.94 (each 2H, m), 3.99 (16H, s), 4.13 ( 16H, s), 5.13 (8H, d, J = 11.0 Hz), 5.15 (8H, d, J = 11.0 Hz), 5.27 (16H, d, J = 17.6 Hz), 5.89-5.91 (16H, m), 7.19-7.27 (5H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 47.4, 71.2, 72.1, 72.5, 73.8, 73.2, 78.4, 78.7, 79.8, 80.12, 116.9, 117.1, 136.1, 136.6, 127.6, 129.2, 129.3, 142.3
(実施例25)
実施例25では、コア分子としてグリセロールを用い、下記化学式に示す反応を行なった。グリセロール:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 25, glycerol was used as the core molecule, and a reaction represented by the following chemical formula was performed. The ratio (molar ratio) of glycerol: glycidol: allyl glycidyl ether was 1: 9: 12.
重合工程
アルゴン気流下グリセロール 0.69 g (7.5 mmol)を90℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.53 g (2.25 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 9 mlを加えて130℃に加熱しながらグリシドール 5.0 g (67.5 mmol)を脱水THF20 mlに溶解して、THFを留去しながら約5.5時間を要して滴下した。
Polymerization step 0.59 g (2.25 mmol) of potassium methoxide (30% methanol solution) was added while stirring 0.69 g (7.5 mmol) of glycerol in a 90 ° C. oil bath under an argon stream. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 9 ml of dehydrated diglyme and heating to 130 ° C., 5.0 g (67.5 mmol) of glycidol was dissolved in 20 ml of dehydrated THF and added dropwise over about 5.5 hours while distilling off THF.
修飾工程
続いてアリルグリシジルエーテル 10.3 g (90.0 mmol)を脱水THF 30 mlに溶解して、THFを留去しながら約10.5 時間を要して滴下した。同温度で4時間攪拌した後冷却し、メタノール20 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。活性炭処理した後減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)により精製し、淡褐色油状物を10.56 g得た(収率66.2%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, Methanol-d4) δ: 3.44-3.66 (98H, m), 3.86 (12H, s), 4.01 (24H, s), 4.77 (12H, s), 5.16 (12H, d, J = 9.9 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.89-5.93 (12H, m)
13C -NMR (600 MHz, methanol-d4) δ: 61.5, 69.3, 69.6, 69.7, 70.0, 71.2, 71.4 and 71.8, 72.0, 72.9, 78.6, 78., 116.0, 134.8, 135.0
Following the modification step, 10.3 g (90.0 mmol) of allyl glycidyl ether was dissolved in 30 ml of dehydrated THF and added dropwise over about 10.5 hours while distilling off THF. After stirring at the same temperature for 4 hours, the mixture was cooled, 20 ml of methanol was added and neutralized through a column of 20 ml of Amberlite IR 120B H AG. After activated carbon treatment, the solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 5/1) to obtain 10.56 g of a light brown oil (yield 66.2). %). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, Methanol-d 4 ) δ: 3.44-3.66 (98H, m), 3.86 (12H, s), 4.01 (24H, s), 4.77 (12H, s), 5.16 (12H, d , J = 9.9 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.89-5.93 (12H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 61.5, 69.3, 69.6, 69.7, 70.0, 71.2, 71.4 and 71.8, 72.0, 72.9, 78.6, 78., 116.0, 134.8, 135.0
(実施例26)
エーテル化工程
実施例26では、実施例25で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, Methanol-d4) δ: 3.51-3.71 (110H, m), 4.01 (24H, s), 4.15 (24H, s), 5.15 (12H, d, J = 12.1 Hz), 5.16 (12H, d, J = 11.0 Hz), 5.28 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13C -NMR (600 MHz, methanol-d4) δ: 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.2, 116.9, 117.1, 136.2, 136.6
(Example 26)
Etherification Step In Example 26, the hydroxyl group of the compound obtained in Example 25 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, Methanol-d 4 ) δ: 3.51-3.71 (110H, m), 4.01 (24H, s), 4.15 (24H, s), 5.15 (12H, d, J = 12.1 Hz), 5.16 (12H, d, J = 11.0 Hz), 5.28 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.2, 116.9, 117.1, 136.2, 136.6
(実施例27)
実施例27では、コア分子としてN,N-ビス(2,3-ジヒドロキシプロピル) ベンジルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3-ジヒドロキシプロピル) ベンジルアミン:グリシドール:アリルグリシジルエーテル:3-グリシジルオキシプロピル(ジメトキシ)メチルシランは1:4:4:4の割合(モル比)とした。
In Example 27, N, N-bis (2,3-dihydroxypropyl) benzylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) benzylamine: glycidol: allyl glycidyl ether: 3-glycidyloxypropyl (dimethoxy) methylsilane was in a ratio (molar ratio) of 1: 4: 4: 4.
重合工程
アルゴン気流下N,N-ビス(2,3-ジヒドロキシプロピル) ベンジルアミン 1.02 g (4.0 mmol)を95℃に加熱、攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.37 g (1.58 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 7 mlを加えて110℃に昇温し、グリシドール 1.19 g (16.1 mmol)を脱水THF 10 mlに溶解して、THFを留去しながら約2.5時間を要して滴下した。
Polymerization step N, N-bis (2,3-dihydroxypropyl) benzylamine 1.02 g (4.0 mmol) was heated to 95 ° C under argon flow, and potassium methoxide (30% methanol solution) 0.37 g (1.58 mmol) with stirring. Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. 7 ml of dehydrated diglyme was added, the temperature was raised to 110 ° C., 1.19 g (16.1 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and about 2.5 hours were added dropwise while removing THF.
修飾工程
続いてアリルグリシジルエーテル 1.83 g (16.0 mmol)を脱水THF 10 mlに溶解して、THFを留去しながら約3 時間を要して滴下した。
さらに3-グリシジルオキシプロピル(ジメトキシ)メチルシラン 3.53 g (16.0 mmol) を脱水THF 15 mlに溶解して約4.3 時間を要して滴下した。同温度で2時間攪拌した後冷却し、ゲル状生成物にメタノール30 mlを加えて溶解した。これをアンバーライトIR 120B H AG 10 mlのカラムを通して中和した後減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=6/1)により精製し、微黄色油状物を1.17 g得た(収率15.5%)。このもののNMRを測定し、以下の結果を得た。
1H-NMR (600 MHz, methanol-d4) δ: 0.11 (12H, s), 0.64 (8H, t, J = 8.2 Hz), 1.62-1.66 (8H, m), 2.55-2.66 (4H, br), 3.42-3.67 (68H, m), 3.50 (24H, s), 3.85 (8H, s), 4.01 (8H, s), 4.80 (8H, s), 5.17 (4H, d, J = 8.3 Hz), 5.29 (4H, d, J = 17.0 Hz), 5.91 (4H, br), 7.25-7.35 (5H, m)
13C-NMR (600 MHz, methanol-d4) δ: 10.0, 23.9, 44.4, 50.4, 51.9, 59.4, 61.5, 64.5, 70.4-75.3(m), 79.8, 80.0, 117.2, 136.0, 136.2, 128.1, 129.3, 130.3, 130.4
Modification step Subsequently, 1.83 g (16.0 mmol) of allyl glycidyl ether was dissolved in 10 ml of dehydrated THF and added dropwise over about 3 hours while distilling off the THF.
Further, 3.53 g (16.0 mmol) of 3-glycidyloxypropyl (dimethoxy) methylsilane was dissolved in 15 ml of dehydrated THF and added dropwise over about 4.3 hours. The mixture was stirred at the same temperature for 2 hours and then cooled. The gel product was dissolved by adding 30 ml of methanol. This was neutralized through a column of Amberlite IR 120B H AG 10 ml, the solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 6/1). 1.17 g of a slightly yellow oily substance was obtained (yield 15.5%). NMR of this product was measured, and the following results were obtained.
1 H-NMR (600 MHz, methanol-d 4 ) δ: 0.11 (12H, s), 0.64 (8H, t, J = 8.2 Hz), 1.62-1.66 (8H, m), 2.55-2.66 (4H, br ), 3.42-3.67 (68H, m), 3.50 (24H, s), 3.85 (8H, s), 4.01 (8H, s), 4.80 (8H, s), 5.17 (4H, d, J = 8.3 Hz) , 5.29 (4H, d, J = 17.0 Hz), 5.91 (4H, br), 7.25-7.35 (5H, m)
13 C-NMR (600 MHz, methanol-d 4 ) δ: 10.0, 23.9, 44.4, 50.4, 51.9, 59.4, 61.5, 64.5, 70.4-75.3 (m), 79.8, 80.0, 117.2, 136.0, 136.2, 128.1, 129.3, 130.3, 130.4
(実施例28)
実施例28では、コア分子としてエチレングリコールを用い、下記化学式に示す反応を行なった。エチレングリコール:グリシドール:アリルグリシジルエーテルは1:14:16の割合(モル比)とした。
In Example 28, ethylene glycol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of ethylene glycol: glycidol: allyl glycidyl ether was 1:14:16 (molar ratio).
重合工程
アルゴン気流下エチレングリコール 0.31 g (5.0 mmol)を80℃に加熱、攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.35 g (1.5 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて100℃に昇温し、グリシドール 5.19 g (70.1 mmol)を脱水THF 15 mlに溶解して、THFを留去しながら約5時間を要して滴下した。
Polymerization step Under an argon stream, 0.35 g (1.5 mmol) of potassium methoxide (30% methanol solution) was added while stirring and stirring ethylene glycol 0.31 g (5.0 mmol) at 80 ° C. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. 5 ml of dehydrated diglyme was added, the temperature was raised to 100 ° C., 5.19 g (70.1 mmol) of glycidol was dissolved in 15 ml of dehydrated THF, and about 5 hours were added dropwise while removing THF.
修飾工程
続いてアリルグリシジルエーテル 9.13 g (80.0 mmol)を脱水THF 25 mlに溶解して、THFを留去しながら約3 時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール25 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下溶媒を留去し、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=7/1)により精製した。メタノール溶液として0.2μmフィルターでろ過し、減圧下(80℃)濃縮して微黄色油状物を8.84 g得た(収率60.4%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ:3.43-3.67 (154H, m), 3.87 (16H, s), 4.01 (16H, s), 4.73 (16H, s), 5.16 (16H, d, J = 8.8 Hz), 5.28 (16H, d, J = 17.0 Hz), 5.88-5.93 (16H, br)
13C -NMR (600 MHz, methanol-d4) δ: 59.3, 64.5, 70.4, 70.8, 71.1, 72.5, 72.9, 73.2, 74.0, 79.8, 80.0, 117.2, 136.0, 136.1
Modification Step Subsequently, 9.13 g (80.0 mmol) of allyl glycidyl ether was dissolved in 25 ml of dehydrated THF and added dropwise over about 3 hours while distilling off the THF. The mixture was stirred at the same temperature for 3 hours, cooled, added with 25 ml of methanol, and neutralized through a column of 20 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure, and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 7/1). Filtration through a 0.2 μm filter as a methanol solution and concentration under reduced pressure (80 ° C.) gave 8.84 g of a pale yellow oil (yield 60.4%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.43-3.67 (154H, m), 3.87 (16H, s), 4.01 (16H, s), 4.73 (16H, s), 5.16 (16H, d , J = 8.8 Hz), 5.28 (16H, d, J = 17.0 Hz), 5.88-5.93 (16H, br)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 59.3, 64.5, 70.4, 70.8, 71.1, 72.5, 72.9, 73.2, 74.0, 79.8, 80.0, 117.2, 136.0, 136.1
(実施例29)
エーテル化工程
実施例29では、実施例28で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.50-3.70 (154H, m), 4.00 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m)
13C -NMR (600 MHz, methanol-d4) δ: 59.5, 71.2, 71.9, 72.1, 72.5, 73.2, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.6
(Example 29)
Etherification Step In Example 29, the hydroxyl group of the compound obtained in Example 28 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.50-3.70 (154H, m), 4.00 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 59.5, 71.2, 71.9, 72.1, 72.5, 73.2, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.6
(実施例30)
実施例30では、コア分子としてポリエチレングリコール200を用い、下記化学式に示す反応を行なった。ポリエチレングリコール200:グリシドール:アリルグリシジルエーテルは1:14:16の割合(モル比)とした。
In Example 30, a reaction represented by the following chemical formula was performed using polyethylene glycol 200 as the core molecule. The ratio (molar ratio) of polyethylene glycol 200: glycidol: allyl glycidyl ether was 1:14:16.
重合工程
アルゴン気流下ポリエチレングリコール 200 0.8 g (ca. 4 mmol)を80℃に加熱、攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.19 g (0.8 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて100℃に昇温し、グリシドール 4.15 g (56.0 mmol)を脱水THF 12 mlに溶解して、THFを留去しながら約4時間を要して滴下した。
Polymerization step Under a stream of argon, polyethylene glycol 200 0.8 g (ca. 4 mmol) was heated to 80 ° C., and potassium methoxide (30% methanol solution) 0.19 g (0.8 mmol) was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. 5 ml of dehydrated diglyme was added, the temperature was raised to 100 ° C., 4.15 g (56.0 mmol) of glycidol was dissolved in 12 ml of dehydrated THF, and about 4 hours were added dropwise while removing THF.
修飾工程
続いてアリルグリシジルエーテル 7.3 g (64.0 mmol)を脱水THF 20 mlに溶解して、THFを留去しながら約6.5 時間を要して滴下した。同温度で3.5時間攪拌した後冷却し、メタノール20 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下溶媒を留去し、淡褐色油状物を10.56 g得た。このうち5.0 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=6/1〜2/1)により精製した。次いでメタノール溶液として0.2μmフィルターでろ過し、減圧下(80℃)濃縮して表題化合物を微黄色油状物を0.66 g得た(収率11.4%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ:3.45-3.67 (166H, m), 3.87 (16H, s), 4.01 (16H, s), 4.76 (16H, s), 5.16 (16H, d, J = 9.9 Hz), 5.28 (16H, d, J = 17.0 Hz), 5.89-5.94 (16H, b)
13C -NMR (600 MHz, methanol-d4) δ: 62.1, 62.8, 64.4, 70.5, 70.9, 71.1, 71.5, 71.7, 71.8, 72.1, 72.4, 72.6, 72.9, 73.2, 74.0, 79.8, 80.0, 81.3, 117.2, 136.0, 136.2
Modification Step Subsequently, 7.3 g (64.0 mmol) of allyl glycidyl ether was dissolved in 20 ml of dehydrated THF, and dropwise added over about 6.5 hours while distilling off the THF. The mixture was stirred at the same temperature for 3.5 hours, cooled, neutralized through a column of 20 ml of Amberlite IR 120B H AG by adding 20 ml of methanol. The solvent was distilled off under reduced pressure to obtain 10.56 g of a light brown oil. Of this, 5.0 g was purified by silica gel column chromatography (chloroform / methanol = 6/1 to 2/1). Subsequently, the solution was filtered through a 0.2 μm filter as a methanol solution and concentrated under reduced pressure (80 ° C.) to obtain 0.66 g of the title compound as a pale yellow oil (yield 11.4%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.45-3.67 (166H, m), 3.87 (16H, s), 4.01 (16H, s), 4.76 (16H, s), 5.16 (16H, d , J = 9.9 Hz), 5.28 (16H, d, J = 17.0 Hz), 5.89-5.94 (16H, b)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 62.1, 62.8, 64.4, 70.5, 70.9, 71.1, 71.5, 71.7, 71.8, 72.1, 72.4, 72.6, 72.9, 73.2, 74.0, 79.8, 80.0, 81.3 , 117.2, 136.0, 136.2
(実施例31)
エーテル化工程
実施例31では、実施例30で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.53-3.65 (166H, m), 3.99 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 10.0 Hz), 5.15 (16H, d, J = 10.5 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90 (32H, m)
13C -NMR (600 MHz, methanol-d4) δ: 59.5, 70.5, 70.8, 71.2, 71.5, 71.8, 72.5, 72.1, 73.2, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.6
(Example 31)
Etherification Step In Example 31, the hydroxyl group of the compound obtained in Example 30 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.53-3.65 (166H, m), 3.99 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 10.0 Hz), 5.15 (16H, d, J = 10.5 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90 (32H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 59.5, 70.5, 70.8, 71.2, 71.5, 71.8, 72.5, 72.1, 73.2, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.6
(実施例32)
実施例32では、コア分子として1,4-ブタンジオールを用い、下記化学式に示す反応を行なった。1,4-ブタンジオール:グリシドール:アリルグリシジルエーテルは1:14:16の割合(モル比)とした。
In Example 32, 1,4-butanediol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of 1,4-butanediol: glycidol: allyl glycidyl ether was 1:14:16 (molar ratio).
重合工程
アルゴン雰囲気下1,4-ブタンジオール 0.27 g (3 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.21 g (0.9 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 4 mlを加え、110℃に昇温した後グリシドール 3.11 g (42 mmol)を9 mlの脱水THFに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization process Under argon atmosphere, 1,4-butanediol 0.27 g (3 mmol) was heated to 90 ° C, potassium methoxide (30% methanol solution) 0.21 g (0.9 mmol) was added thereto, and the mixture was stirred for several minutes and then gradually. The methanol was distilled off. After 4 ml of diglyme was added and the temperature was raised to 110 ° C., 3.11 g (42 mmol) of glycidol was dissolved in 9 ml of dehydrated THF and added dropwise over about 3 hours while distilling off the THF.
修飾工程
20分攪拌後アリルグリシジルエーテル 5.48 g (48 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約5時間を要して滴下した。同温度で約3.5時間攪拌した後反応液をメタノール25 mlで希釈してアンバーライトIR 120B HAG 25 mlのカラムに通液して中和した。カラムを30 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。残留液8.67 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=7/1)で精製し、淡黄色油状物を2.96 g得た(収率33.4%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 1.63 (4H, s), 3.43-3.67 (138H,br), 3.87 (16H, s), 4.01 (32H, s), 4.74 (16H, s), 5.17 (16H, d, J = 3.8 Hz), 5.28 (16H, d, J = 17.1 Hz), 5.89-5.93 (16H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 27.5, 70.5, 70.9, 71.2, 71.3, 72.6, 73.0, 73.2、74.0, 79.8, 80.1, 117.2, 136.2
Modification process
After stirring for 20 minutes, 5.48 g (48 mmol) of allyl glycidyl ether was dissolved in 15 ml of dehydrated THF and added dropwise over about 5 hours while distilling off the THF. After stirring for about 3.5 hours at the same temperature, the reaction solution was diluted with 25 ml of methanol and passed through a column of Amberlite IR 120B HAG 25 ml to neutralize. The column was washed with 30 ml of methanol, and both washing solutions were concentrated under reduced pressure. The residual liquid 8.67 g was purified by silica gel column chromatography (chloroform / methanol = 7/1) to obtain 2.96 g of a pale yellow oil (yield 33.4%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 1.63 (4H, s), 3.43-3.67 (138H, br), 3.87 (16H, s), 4.01 (32H, s), 4.74 (16H, s ), 5.17 (16H, d, J = 3.8 Hz), 5.28 (16H, d, J = 17.1 Hz), 5.89-5.93 (16H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 27.5, 70.5, 70.9, 71.2, 71.3, 72.6, 73.0, 73.2, 74.0, 79.8, 80.1, 117.2, 136.2
(実施例33)
エーテル化工程
実施例33では、実施例32で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 1.62 (4H, s), 3.50-3.66 (154H, m), 4.00 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.6 Hz), 5.15 (16H, d, J = 11.5 Hz), 5.28 (32H, d, J = 17.1 Hz), 5.87-5.92 (32H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 27.5, 71.3, 71.7, 72.1, 72.6, 73.2, 78.5, 78.8, 79.9, 80.2, 116.9, 117.1, 136.2, 136.7
(Example 33)
Etherification Step In Example 33, the hydroxyl group of the compound obtained in Example 32 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 1.62 (4H, s), 3.50-3.66 (154H, m), 4.00 (32H, s), 4.13 (32H, s), 5.13 (16H, d , J = 12.6 Hz), 5.15 (16H, d, J = 11.5 Hz), 5.28 (32H, d, J = 17.1 Hz), 5.87-5.92 (32H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 27.5, 71.3, 71.7, 72.1, 72.6, 73.2, 78.5, 78.8, 79.9, 80.2, 116.9, 117.1, 136.2, 136.7
(実施例34)
実施例34では、コア分子として1,2,4-ブタントリオールを用い、下記化学式に示す反応を行なった。1,2,4-ブタントリオール:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 34, 1,2,4-butanetriol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of 1,2,4-butanetriol: glycidol: allyl glycidyl ether was 1: 9: 12 (molar ratio).
重合工程
アルゴン雰囲気下1,2,4-ブタントリオール 0.4 g (3.77 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.26 g (1.13 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 5 mlを加え、グリシドール 2.52 g (33.9 mmol)を10 mlの脱水THFに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization step Under argon atmosphere, 1,2,4-butanetriol 0.4 g (3.77 mmol) was heated to 90 ° C, potassium methoxide (30% methanol solution) 0.26 g (1.13 mmol) was added thereto, and the mixture was stirred for several minutes. Thereafter, the pressure was gradually reduced, and methanol was distilled off. 5 ml of diglyme was added, 2.52 g (33.9 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and about 3 hours were added dropwise while removing THF.
修飾工程
15分攪拌後アリルグリシジルエーテル 5.16 g (45.2 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約4.5時間を要して滴下した。同温度で約3.5時間攪拌した後反応液をメタノール20 mlで希釈してアンバーライトIR 120B HAG 20 mlのカラムに通液して中和した。カラムを30 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。残留液7.56 g から4.0を採り、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)で精製した。さらにメタノール溶液として活性炭処理した後0.2μmフィルターでろ過し、減圧下80℃で濃縮し、微黄色油状物を2.35 g得た(収率55.0%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, Methanol-d4) δ: 1.62, 1.71 and 1.78 (2H, each br), 3.43-3.66 (98H, b), 3.86 (12H, s), 4.01 (24H, s), 4.73 (12H, s), 5.16 (12H, d, J = 9.9 Hz), 5.28 (12H, d, J = 17.0 Hz), 5.89-5.93 (12H, m)
13C -NMR ((600 MHz, Methanol-d4) δ: 33.0, 70.5, 70.8, 71.1, 72.5, 72.9, 74.0, 79.8, 80.0, 73.2, 116.9, 117.2, 136.0, 136.1
Modification process
After stirring for 15 minutes, 5.16 g (45.2 mmol) of allyl glycidyl ether was dissolved in 15 ml of dehydrated THF and added dropwise over about 4.5 hours while distilling off the THF. After stirring at the same temperature for about 3.5 hours, the reaction solution was diluted with 20 ml of methanol and passed through a 20 ml column of Amberlite IR 120B HAG to neutralize. The column was washed with 30 ml of methanol, and both washing solutions were concentrated under reduced pressure. The residue was taken from 7.56 g to 4.0 and purified by silica gel column chromatography (chloroform / methanol = 5/1). The solution was further treated with activated carbon as a methanol solution, filtered through a 0.2 μm filter, and concentrated at 80 ° C. under reduced pressure to obtain 2.35 g of a slightly yellow oil (yield 55.0%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, Methanol-d 4 ) δ: 1.62, 1.71 and 1.78 (2H, each br), 3.43-3.66 (98H, b), 3.86 (12H, s), 4.01 (24H, s), 4.73 (12H, s), 5.16 (12H, d, J = 9.9 Hz), 5.28 (12H, d, J = 17.0 Hz), 5.89-5.93 (12H, m)
13 C -NMR ((600 MHz, Methanol-d 4 ) δ: 33.0, 70.5, 70.8, 71.1, 72.5, 72.9, 74.0, 79.8, 80.0, 73.2, 116.9, 117.2, 136.0, 136.1
(実施例35)
エーテル化工程
実施例35では、実施例34で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 1.62, 1.70 and 1.78 (2H, each br), 3.50-3.70 (110H, br), 3.99 and 4.00 (24H, each s), 4.13 (24H, s), 5.13 (12H, d, J = 12.1 Hz), 5.15 (12H, d, J = 11.5 Hz), 5.27 (24H, d, J = 17.0 Hz), 5.90-5.92 (24H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 33.2, 71.3, 72.1, 72.5, 73.2, 78.5, 78.7, 79.8, 80.1, 116.9, 117.1, 136.2, 136.6
(Example 35)
Etherification Step In Example 35, the hydroxyl group of the compound obtained in Example 34 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 1.62, 1.70 and 1.78 (2H, each br), 3.50-3.70 (110H, br), 3.99 and 4.00 (24H, each s), 4.13 (24H, s), 5.13 (12H, d, J = 12.1 Hz), 5.15 (12H, d, J = 11.5 Hz), 5.27 (24H, d, J = 17.0 Hz), 5.90-5.92 (24H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 33.2, 71.3, 72.1, 72.5, 73.2, 78.5, 78.7, 79.8, 80.1, 116.9, 117.1, 136.2, 136.6
(実施例36)
実施例36では、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)ジフェニルメチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)ジフェニルメチルアミン:グリシドール:アリルグリシジルエーテルは1:12:24の割合(モル比)とした。
In Example 36, N, N-bis (2,3-dihydroxypropyl) diphenylmethylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) diphenylmethylamine: glycidol: allyl glycidyl ether was in a ratio (molar ratio) of 1:12:24.
重合工程
アルゴン雰囲気下N,N-ビス(2,3−ジヒドロキシプロピル)ジフェニルメチルアミン0.83 g (2.5 mmol)を135℃に加熱し、これにカリウムメトキシド (30% メタノール溶液)) 0.234 g (1.0 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 7 mlを加えてグリシドール 2.23 g (30.05 mmol)を10 mlの脱水THFに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization Step Under argon atmosphere, N, N-bis (2,3-dihydroxypropyl) diphenylmethylamine 0.83 g (2.5 mmol) was heated to 135 ° C., and potassium methoxide (30% methanol solution)) 0.234 g (1.0 mmol) was added and stirred for several minutes, then the pressure was gradually reduced and methanol was distilled off. 7 ml of diglyme was added, and 2.23 g (30.05 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and added dropwise over about 3 hours while distilling off the THF.
修飾工程
次いでアリルグリシジルエーテル 4.57 g (40.07 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約5時間を要して滴下した。同温度で2時間攪拌した後冷却し、メタノール25 mlで希釈してアンバーライトIR-120 HAG 20 mlのカラムを通して中和した。減圧下濃縮し、褐色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=7/1)で精製し、淡褐色油状物を2.85 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.63-2.78 (4H, br), 3.45-3.67 (170H, m), 3.87 (16H, s), 4.01 (48H, s), 4.84 (16H, s), 5.17 (25H, m), 5.27-5.30 (24H, m), 5.89-5.95 (24H, m), 7.26-7.39 (10H, br)
13C -NMR ((600 MHz, methanol-d4) δ: 70.6, 70.9, 71.3, 72.6, 73.0, 73.3, 74.0, 74.1, 79.9, 80.1, 117.2, 117.3, 136.2, 128.1, 129.4, 130.5
Modification Step Next, 4.57 g (40.07 mmol) of allyl glycidyl ether was dissolved in 15 ml of dehydrated THF, and dropwise added over about 5 hours while distilling off the THF. The mixture was stirred at the same temperature for 2 hours, cooled, diluted with 25 ml of methanol, and neutralized through a column of Amberlite IR-120 HAG 20 ml. After concentration under reduced pressure, the brown residual liquid was purified by silica gel column chromatography (chloroform / methanol = 7/1) to obtain 2.85 g of a light brown oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.63-2.78 (4H, br), 3.45-3.67 (170H, m), 3.87 (16H, s), 4.01 (48H, s), 4.84 (16H , s), 5.17 (25H, m), 5.27-5.30 (24H, m), 5.89-5.95 (24H, m), 7.26-7.39 (10H, br)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 70.6, 70.9, 71.3, 72.6, 73.0, 73.3, 74.0, 74.1, 79.9, 80.1, 117.2, 117.3, 136.2, 128.1, 129.4, 130.5
(実施例37)
エーテル化工程
実施例37では、実施例36で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 2.63-2.83 (4H, br), 3.51-3.66 (202H, m), 4.01 (48H, s), 4.14 (32H, s), 5.3-5.17 (41H, m), 5.27-5.30 (40H, m), 5.91 (40H, m), 7.25-7.39 (10H, br)
13C -NMR ((600 MHz, methanol-d4) δ: 70.6, 70.9, 71.3, 72.6, 73.0, 73.3, 74.0, 74.1, 79.9, 80.1, 117.2, 117.3, 136.2, 128.1, 129.4, 130.5
(Example 37)
Etherification Step In Example 37, the hydroxyl group of the compound obtained in Example 36 was allyl etherified with allyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.63-2.83 (4H, br), 3.51-3.66 (202H, m), 4.01 (48H, s), 4.14 (32H, s), 5.3-5.17 (41H, m), 5.27-5.30 (40H, m), 5.91 (40H, m), 7.25-7.39 (10H, br)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 70.6, 70.9, 71.3, 72.6, 73.0, 73.3, 74.0, 74.1, 79.9, 80.1, 117.2, 117.3, 136.2, 128.1, 129.4, 130.5
(実施例38)
実施例38では、コア分子として1,3,5-ベンゼントリメタノールを用い、下記化学式に示す反応を行なった。1,3,5-ベンゼントリメタノール:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 38, 1,3,5-benzenetrimethanol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of 1,3,5-benzenetrimethanol: glycidol: allyl glycidyl ether was 1: 9: 12 (molar ratio).
重合工程
アルゴン雰囲気下1,3,5-ベンゼントリメタノール 0.5 g (2.97 mmol)を120℃に加熱溶融し、これにカリウムメトキシド (30% メタノール溶液) 0.417 g (1.78 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 7 mlを加え、140℃に昇温してグリシドール 1.98 g (26.76 mmol)を10 mlの脱水THFに溶解して、THFを留去しながら約2.5時間で滴下した。
Polymerization process Under argon atmosphere, 1,3,5-benzenetrimethanol 0.5 g (2.97 mmol) is heated and melted to 120 ° C, and potassium methoxide (30% methanol solution) 0.417 g (1.78 mmol) is added thereto for several minutes. After stirring, the pressure was gradually reduced and methanol was distilled off. 7 ml of diglyme was added, the temperature was raised to 140 ° C., 1.98 g (26.76 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and dropwise added in about 2.5 hours while distilling off THF.
修飾工程
次いでアリルグリシジルエーテル 4.07 g (35.67 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約5時間を要して滴下した。同温度で2.5時間攪拌した後冷却し、メタノール20 mlで希釈してアンバーライトIR-120 HAG 20 mlのカラムを通して中和した。減圧下濃縮し、褐色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)で精製し、淡褐色油状物を1.43 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.44-3.67 (94H, m), 3.86 (12H, s), 4.00 (24H, s), 4.56 (6H, s), 4.85 (12H, s), 5.16 (12H, d, J = 7.2 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.89-5.91 (12H, m), 7.28 (3H, s)
13C -NMR ((600 MHz, methanol-d4) δ: 62.9, 70.6, 70.9, 71.2, 72.4, 72.6, 73.0, 73.3, 74.2, 79.9, 80.1, 117.2, 136.2, 127.4, 140.0
Modification Step Next, 4.07 g (35.67 mmol) of allyl glycidyl ether was dissolved in 15 ml of dehydrated THF, and dropwise added over about 5 hours while distilling off the THF. The mixture was stirred at the same temperature for 2.5 hours, cooled, diluted with 20 ml of methanol and neutralized through a column of 20 ml of Amberlite IR-120 HAG. After concentration under reduced pressure, the brown residual liquid was purified by silica gel column chromatography (chloroform / methanol = 5/1) to obtain 1.43 g of a light brown oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.44-3.67 (94H, m), 3.86 (12H, s), 4.00 (24H, s), 4.56 (6H, s), 4.85 (12H, s ), 5.16 (12H, d, J = 7.2 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.89-5.91 (12H, m), 7.28 (3H, s)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 62.9, 70.6, 70.9, 71.2, 72.4, 72.6, 73.0, 73.3, 74.2, 79.9, 80.1, 117.2, 136.2, 127.4, 140.0
(実施例39)
エーテル化工程
実施例39では、実施例38で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.49-3.64 (94H, m), 3.98 and 4.12 (each 24H, s), 4.54 (6H, s), 5.14-5.15 (24H, m), 5.25-5.28 (24H, m), 5.89-5.90 (12H, m), 7.26 (3H, s)
13C -NMR ((600 MHz, methanol-d4) δ: 71.2, 72.1, 72.5, 73.3, 74.1, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 127.1, 136.1, 136.6, 140.0
(Example 39)
Etherification Step In Example 39, the hydroxyl group of the compound obtained in Example 38 was allyl etherified with allyl bromide (see the chemical formula below).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.49-3.64 (94H, m), 3.98 and 4.12 (each 24H, s), 4.54 (6H, s), 5.14-5.15 (24H, m), 5.25-5.28 (24H, m), 5.89-5.90 (12H, m), 7.26 (3H, s)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 71.2, 72.1, 72.5, 73.3, 74.1, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 127.1, 136.1, 136.6, 140.0
(実施例40)
実施例40では、実施例25の修飾工程で得られた化合物に、エーテル化工程として、3,5-ビス(ブテニルオキシ)ベンジルブロミドを用い、下記化学式に示す反応を行なった。
1H -NMR (600 MHz, CDCl3) δ: 2.49 (48H, s), 3.51-3.69 (110H, m), 3.96 (72H, s), 4.59 (24H, s), 5.08-5.16 and 5.23-5.25 (72H, m), 5.86-5.89 (36H, bs), 6.34 (12H, s), 6.50 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.3, 70.3, 70.5, 72.1, 72.4, 73.0, 78.8, 79.1, 100.7, 106.2, 141.3, 160.1, 117.1, 134.6
(Example 40)
In Example 40, 3,5-bis (butenyloxy) benzyl bromide was used as the etherification step for the compound obtained in the modification step of Example 25, and the reaction represented by the following chemical formula was performed.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.49 (48H, s), 3.51-3.69 (110H, m), 3.96 (72H, s), 4.59 (24H, s), 5.08-5.16 and 5.23-5.25 (72H, m), 5.86-5.89 (36H, bs), 6.34 (12H, s), 6.50 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.3, 70.3, 70.5, 72.1, 72.4, 73.0, 78.8, 79.1, 100.7, 106.2, 141.3, 160.1, 117.1, 134.6
(実施例41)
実施例41では、実施例10の修飾工程で得られた化合物に、エーテル化工程として、3,5-ビス(ブテニルオキシ)ベンジルブロミドを用い、下記化学式に示す反応を行なった。
1H -NMR (600 MHz, CDCl3) δ: 2.50 (48H, s), 2.72 (6H, br), 3.47-3.69 (111H, m), 3.95 (72H, s), 4.42 and 4.59 (24H, s), 5.08-5.15 and 5.23-5.26 (72H, m), 5.86-5.92 (36H, br), 6.35 (12H, s), 6.50 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 54.8, 67.3, 70.6, 72.2, 72.3, 73.5, 78.8, 79.1, 100.7, 106.2, 141.3, 160.1, 117.0, 134.6
(Example 41)
In Example 41, the compound obtained in the modification step of Example 10 was subjected to a reaction represented by the following chemical formula using 3,5-bis (butenyloxy) benzyl bromide as an etherification step.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.50 (48H, s), 2.72 (6H, br), 3.47-3.69 (111H, m), 3.95 (72H, s), 4.42 and 4.59 (24H, s ), 5.08-5.15 and 5.23-5.26 (72H, m), 5.86-5.92 (36H, br), 6.35 (12H, s), 6.50 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 54.8, 67.3, 70.6, 72.2, 72.3, 73.5, 78.8, 79.1, 100.7, 106.2, 141.3, 160.1, 117.0, 134.6
(実施例42)
実施例42では、コア分子としてグリセロールを用い、下記化学式に示す反応を行なった。グリセロール:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 42, glycerol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of glycerol: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was 1: 9: 12 (molar ratio).
重合工程
アルゴン雰囲気下グリセロール0.4 g (3.77 mmol)を90℃に加熱し、カリウムメトキシド (30% メタノール溶液) 0.26 g (1.13 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 5 mlを加え、グリシドール 2.52 g (33.9 mmol)を10 mlの脱水THFに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization step Glycerol 0.4 g (3.77 mmol) was heated to 90 ° C under an argon atmosphere, potassium methoxide (30% methanol solution) 0.26 g (1.13 mmol) was added and stirred for several minutes. Left. 5 ml of diglyme was added, 2.52 g (33.9 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and about 3 hours were added dropwise while removing THF.
修飾工程
15分攪拌後3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 5.16 g (45.2 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約4.5時間を要して滴下した。同温度で約3.5時間攪拌した後反応液をメタノール20 mlで希釈してアンバーライトIR 120B H AG 20 mlのカラムに通液して中和した。カラムを30 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。残留液7.56 gから4.0を採り、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)で精製した。さらにメタノール溶液として活性炭処理した後0.2μmフィルターでろ過し、減圧下80℃で濃縮し、微黄色油状物を2.35 g得た(収率55.0%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.50 (48H, s), 3.46-3.70 (110H, m), 3.96 and 3.97 (48H, s), 3.98 (12H, s), 4.43 (24H, s), 5.08-5.16 (48H, m), 5.87-5.89 (24H, m), 6.37 (12H, s), 6.46 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.3, 69.5, 71.3, 71.9, 78.5, 78.8, 79.8, 73.5, 100.7, 106.2, 140.7, 160.2, 117.1, 134.5
Modification process
After stirring for 15 minutes, 5.16 g (45.2 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 15 ml of dehydrated THF, and added dropwise over about 4.5 hours while distilling off THF. After stirring at the same temperature for about 3.5 hours, the reaction solution was diluted with 20 ml of methanol and passed through a 20 ml column of Amberlite IR 120B H AG to neutralize. The column was washed with 30 ml of methanol, and both washing solutions were concentrated under reduced pressure. The residue was taken from 7.56 g to 4.0 and purified by silica gel column chromatography (chloroform / methanol = 5/1). The solution was further treated with activated carbon as a methanol solution, filtered through a 0.2 μm filter, and concentrated at 80 ° C. under reduced pressure to obtain 2.35 g of a slightly yellow oil (yield 55.0%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.50 (48H, s), 3.46-3.70 (110H, m), 3.96 and 3.97 (48H, s), 3.98 (12H, s), 4.43 (24H, s ), 5.08-5.16 (48H, m), 5.87-5.89 (24H, m), 6.37 (12H, s), 6.46 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.3, 69.5, 71.3, 71.9, 78.5, 78.8, 79.8, 73.5, 100.7, 106.2, 140.7, 160.2, 117.1, 134.5
(実施例43)
エーテル化工程
実施例43では、実施例42で得た化合物の水酸基をヨウ化メチルでメトキシ化した(下記化学式参照)。
1H -NMR (600 MHz, CDCl3) δ: 2.50 (48H, s), 3.31-3.65 (166H, m), 3.96 (48H, s), 4.44 (24H, s), 5.09 (24H, d, J = 7.7 Hz), 5.15 (24H, d, J = 17.0 Hz), 5.87 (24H, bs), 6.36 (12H, s), 6.47 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 58.1, 58.2, 59.3, 67.2, 70.1, 70.4, 71.5, 71.6, 78.8, 79.1, 79.5, 79.7, 79.8, 73.4, 100.7,106.1, 140.8, 160.2, 117.1, 134.5
(Example 43)
Etherification Step In Example 43, the hydroxyl group of the compound obtained in Example 42 was methoxylated with methyl iodide (see the following chemical formula).
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.50 (48H, s), 3.31-3.65 (166H, m), 3.96 (48H, s), 4.44 (24H, s), 5.09 (24H, d, J = 7.7 Hz), 5.15 (24H, d, J = 17.0 Hz), 5.87 (24H, bs), 6.36 (12H, s), 6.47 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 58.1, 58.2, 59.3, 67.2, 70.1, 70.4, 71.5, 71.6, 78.8, 79.1, 79.5, 79.7, 79.8, 73.4, 100.7,106.1, 140.8, 160.2, 117.1, 134.5
(実施例44)
実施例44では、コア分子としてトリエタノールアミンを用い、下記化学式に示す反応を行なった。トリエタノールアミン:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 44, triethanolamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. Triethanolamine: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was in a ratio (molar ratio) of 1: 9: 12.
重合工程
アルゴン雰囲気下トリエタノールアミン 0.2 g (1.34 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.09 g (0.385 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 4 mlを加え、130℃に昇温した後グリシドール 0.91 g (12.2 mmol)を4.5 mlの脱水THFに溶解して、THFを留去しながら約1.5時間で滴下した。
Polymerization step Under argon atmosphere, triethanolamine 0.2 g (1.34 mmol) was heated to 90 ° C, potassium methoxide (30% methanol solution) 0.09 g (0.385 mmol) was added thereto, and the mixture was stirred for several minutes and then gradually reduced in pressure. The methanol was distilled off. After 4 ml of diglyme was added and the temperature was raised to 130 ° C., 0.91 g (12.2 mmol) of glycidol was dissolved in 4.5 ml of dehydrated THF, and dropwise added in about 1.5 hours while distilling off THF.
修飾工程
30分攪拌後3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 5.0 g (1.4 mmol)を7 mlの脱水THFに溶解して、THFを留去しながら約3.5時間を要して滴下した。同温度で約2.5時間攪拌した後冷却し、トルエン25 mlで希釈して0.5% 蓚酸20 mlで洗浄した。さらに飽和食塩水で2回洗浄した後減圧下濃縮した。残留液6.28 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)で精製し、黄色油状物を4.65 g得た(収率77.6%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.50 (48H, s), 2.72 (6H, s), 3.30-3.70 (123H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 8.2 Hz), 5.15 (24H, d, J = 16.5 Hz), 5.86 (24H, bs), 6.36 (12H, s), 6.45 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 58.1, 58.2, 67.3, 69.5, 69.8, 70.4, 71.9, 72.2, 72.8, 78.7, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6)
Modification process
After stirring for 30 minutes, 5.0 g (1.4 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 7 ml of dehydrated THF, and dropwise added over about 3.5 hours while distilling off THF. The mixture was stirred at the same temperature for about 2.5 hours, cooled, diluted with 25 ml of toluene and washed with 20 ml of 0.5% oxalic acid. The mixture was further washed twice with saturated brine and concentrated under reduced pressure. 6.28 g of the residual liquid was purified by silica gel column chromatography (chloroform / methanol = 10/1) to obtain 4.65 g of a yellow oil (yield 77.6%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.50 (48H, s), 2.72 (6H, s), 3.30-3.70 (123H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 8.2 Hz), 5.15 (24H, d, J = 16.5 Hz), 5.86 (24H, bs), 6.36 (12H, s), 6.45 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 58.1, 58.2, 67.3, 69.5, 69.8, 70.4, 71.9, 72.2, 72.8, 78.7, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6)
(実施例45)
エーテル化工程
実施例45では、実施例44で得た化合物の水酸基を水酸基をヨウ化メチルでメトキシ化した(下記化学式参照)。
1H -NMR (600 MHz, CDCl3) δ: 2.49 (48H, s), 3.31-3.70 (153H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 9.4 Hz), 5.14 (24H, d, J = 16.5 Hz), 5.87 (24H, bs), 6.35 (12H, s), 6.46 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 58.1, 58.2, 67.3, 70.1, 71.6, 78.8, 79.1, 79.5, 79.6, 79.8, 73.4, 100.7, 106.2, 140.8, 160.2, 117.1, 134.5
(Example 45)
Etherification Step In Example 45, the hydroxyl group of the compound obtained in Example 44 was methoxylated with methyl iodide (see the following chemical formula).
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.49 (48H, s), 3.31-3.70 (153H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 9.4 Hz), 5.14 (24H, d, J = 16.5 Hz), 5.87 (24H, bs), 6.35 (12H, s), 6.46 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 58.1, 58.2, 67.3, 70.1, 71.6, 78.8, 79.1, 79.5, 79.6, 79.8, 73.4, 100.7, 106.2, 140.8, 160.2, 117.1, 134.5
(実施例46)
実施例46では、実施例44の修飾工程で得られた化合物に、エーテル化工程として、3,5-ビス(ブテニルオキシ)ベンジルブロミドを用い、下記化学式に示す反応を行なった。
1H -NMR (600 MHz, CDCl3) δ: 2.45 (96H, s), 2.69 (6H, bs), 3.38-3.70 (101H, m), 3.89 (96H, s), 4.38 and 4.56 (each 24H, s), 5.05 and 5.10 (each 48H, bs), 5.83 (48H, bs), 6.31 (24H, s), 6.43 and 6.46 (48H, each s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.2, 70.6, 71.0, 72.1, 77.8, 78.7, 79.1, 73.3, 100.6, 106.0, 141.0, 141.4, 160.2, 117.0, 134.6
(Example 46)
In Example 46, 3,5-bis (butenyloxy) benzyl bromide was used as the etherification step for the compound obtained in the modification step of Example 44, and the reaction represented by the following chemical formula was performed.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.45 (96H, s), 2.69 (6H, bs), 3.38-3.70 (101H, m), 3.89 (96H, s), 4.38 and 4.56 (each 24H, s), 5.05 and 5.10 (each 48H, bs), 5.83 (48H, bs), 6.31 (24H, s), 6.43 and 6.46 (48H, each s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.2, 70.6, 71.0, 72.1, 77.8, 78.7, 79.1, 73.3, 100.6, 106.0, 141.0, 141.4, 160.2, 117.0, 134.6
(実施例47)
実施例47では、コア分子としてN,N-ビス(2,3-ジヒドロキシプロピル)オクチルアミンを用い、重合可能な炭素−炭素二重結合を有するグリシジルエーテルとして3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3-ジヒドロキシプロピル)オクチルアミン:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:12:16の割合(モル比)とした。
In Example 47, N, N-bis (2,3-dihydroxypropyl) octylamine is used as a core molecule, and 3,5-bis (3-butenyloxy) is used as a glycidyl ether having a polymerizable carbon-carbon double bond. Using benzyl glycidyl ether, a reaction represented by the following chemical formula was carried out. N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was in a ratio (molar ratio) of 1:12:16.
重合工程
アルゴン雰囲気下N,N-ビス(2,3-ジヒドロキシプロピル)オクチルアミン0.29 g (1.04 mmol)を90℃に加熱し、カリウムメトキシド (30% メタノール溶液) 0.096 g (0.41 mmol)を加えて数分間攪拌した。徐々に減圧し、メタノールを留去した後ジグライム 5 mlを加えて140℃に昇温した。グリシドール 0.91 g (12.3 mmol)を5 mlの脱水THFに溶解して、THFを留去しながら約2時間を要して滴下した。
Polymerization process Under argon atmosphere, N, N-bis (2,3-dihydroxypropyl) octylamine 0.29 g (1.04 mmol) was heated to 90 ° C and potassium methoxide (30% methanol solution) 0.096 g (0.41 mmol) was added. And stirred for several minutes. The pressure was gradually reduced, methanol was distilled off, 5 ml of diglyme was added, and the temperature was raised to 140 ° C. 0.91 g (12.3 mmol) of glycidol was dissolved in 5 ml of dehydrated THF and added dropwise over about 2 hours while distilling off the THF.
修飾工程
次いで3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 5.0 g (16.4 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約6時間を要して滴下した。同温度で2.5時間攪拌した後反応液をクロロホルム20 mlで希釈して0.5%蓚酸20 ml、次いで水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)で2回精製した。さらにクロロホルム溶液として0.2μmフィルターでろ過し、減圧下80℃で濃縮した。表題化合物を淡褐色油状物を1.35 g得た(収率21.8%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 0.87 (3H, bs), 1.25 (10H, bs), 1.42 (2H, bs), 2.49 (64H, s), 2.61(6H, b), 3.45-3.66 (146H, m), 3.95 (64H, s), 3.98 (16H, s), 4.42 (32H, s), 5.08-5.14 (64H, m), 5.86 (32H, bs), 6.35 (16H, s), 6.45 (32H, s)
13C -NMR ((600 MHz, CDCl3) δ: 14.1, 22.8, 27.7, 29.5, 32.0, 33.7, 67.3, 69.5, 71.3, 71.4, 78.8, 73.5, 100.7, 106.2, 140.6, 160.2, 117.1, 134.6
Modification Step Next, 5.0 g (16.4 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 15 ml of dehydrated THF, and added dropwise over about 6 hours while distilling off THF. After stirring for 2.5 hours at the same temperature, the reaction solution was diluted with 20 ml of chloroform and washed twice with 20 ml of 0.5% oxalic acid and then with water. The mixture was dehydrated with anhydrous sodium sulfate, concentrated, and purified twice by silica gel column chromatography (chloroform / methanol = 10/1). Furthermore, it filtered with a 0.2 micrometer filter as a chloroform solution, and concentrated under reduced pressure at 80 degreeC. 1.35 g of the title compound was obtained as a light brown oil (yield 21.8%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 0.87 (3H, bs), 1.25 (10H, bs), 1.42 (2H, bs), 2.49 (64H, s), 2.61 (6H, b), 3.45- 3.66 (146H, m), 3.95 (64H, s), 3.98 (16H, s), 4.42 (32H, s), 5.08-5.14 (64H, m), 5.86 (32H, bs), 6.35 (16H, s) , 6.45 (32H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 14.1, 22.8, 27.7, 29.5, 32.0, 33.7, 67.3, 69.5, 71.3, 71.4, 78.8, 73.5, 100.7, 106.2, 140.6, 160.2, 117.1, 134.6
(実施例48)
エーテル化工程
実施例48では、実施例47で得た化合物の水酸基を水酸基を3,5-ビス(ブテニルオキシ)ベンジルブロミドでエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, CDCl3) δ: 0.84 (3H, bs), 1.26 (10H, bs), 1.36 (2H, bs), 2.44 (128H, bs), 3.40-3.70 (146H, m), 3.88 (128H, s), 4.38 (32H, s), 4.56 (32H, s), (5.06-5.11 (128H, m), 5.82 (64H, bs), 6.31 (32H, s), 6.42 - 6.45 (64H, m)
13C -NMR ((600 MHz, CDCl3) δ: 33.7 (CH2), 67.2 (OCH2), 70.9, 72.2, 78.8, 73.2, 100.7, 106.0, 140.6, 160.2, 117.0, 134.6
(Example 48)
Etherification Step In Example 48, the hydroxyl group of the compound obtained in Example 47 was etherified with 3,5-bis (butenyloxy) benzyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, CDCl 3 ) δ: 0.84 (3H, bs), 1.26 (10H, bs), 1.36 (2H, bs), 2.44 (128H, bs), 3.40-3.70 (146H, m), 3.88 (128H, s), 4.38 (32H, s), 4.56 (32H, s), (5.06-5.11 (128H, m), 5.82 (64H, bs), 6.31 (32H, s), 6.42-6.45 (64H , m)
13 C -NMR ((600 MHz, CDCl 3 ) δ: 33.7 (CH2), 67.2 (OCH2), 70.9, 72.2, 78.8, 73.2, 100.7, 106.0, 140.6, 160.2, 117.0, 134.6
(実施例49)
実施例49では、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)ベンジルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)ベンジルアミン:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:12:16の割合(モル比)とした。
In Example 49, N, N-bis (2,3-dihydroxypropyl) benzylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) benzylamine: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was in a ratio (molar ratio) of 1:12:16.
重合工程
アルゴン雰囲気下N,N-ビス(2,3−ジヒドロキシプロピル)ベンジルアミン0.37 g (1.44 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.13 g (0.56 mmol)を加えて数分間攪拌した。徐々に減圧し、メタノールを留去した後ジグライム 5 mlを加えて130℃に昇温した。グリシドール 1.28 g (17.3 mmol)を5 mlの脱水THFに溶解して、THFを留去しながら約2時間を要して滴下した。
Polymerization process Under argon atmosphere, N, N-bis (2,3-dihydroxypropyl) benzylamine 0.37 g (1.44 mmol) was heated to 90 ° C., and potassium methoxide (30% methanol solution) 0.13 g (0.56 mmol) And stirred for several minutes. The pressure was gradually reduced, methanol was distilled off, 5 ml of diglyme was added, and the temperature was raised to 130 ° C. 1.28 g (17.3 mmol) of glycidol was dissolved in 5 ml of dehydrated THF and added dropwise over about 2 hours while distilling off the THF.
修飾工程
次いで3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 7.0 g (23.0 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約7時間を要して滴下した。同温度で3時間攪拌した後反応液をトルエン50 mlで希釈して0.5% 蓚酸 30 ml、次いで飽和食塩水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=15/1)で2回精製した。さらにクロロホルム溶液として0.2μmフィルターでろ過し、減圧下80℃で濃縮した。表題化合物を淡褐色油状物を4.6 g得た (収率53.5%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.49 (64H, s), 2.58(4H, br), 3.45-3.65 (148H, m), 3.94 (80H, bs), 4.41 (32H, s), 5.07-5.15 (64H, m), 5.85 (32H, bs), 6.35 (16H, s), 6.41 (32H, s), 7.20 (1H, b), 7.26 (4H, br)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.3, 69.3, 71.3, 78.8, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6
Modification Step Next, 7.0 g (23.0 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 15 ml of dehydrated THF, and added dropwise over about 7 hours while distilling off THF. After stirring at the same temperature for 3 hours, the reaction solution was diluted with 50 ml of toluene and washed twice with 30 ml of 0.5% oxalic acid and then with saturated saline. The mixture was dehydrated with anhydrous sodium sulfate, concentrated, and purified twice by silica gel column chromatography (chloroform / methanol = 15/1). Furthermore, it filtered with a 0.2 micrometer filter as a chloroform solution, and concentrated under reduced pressure at 80 degreeC. 4.6 g of the title compound was obtained as a light brown oil (yield 53.5%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.49 (64H, s), 2.58 (4H, br), 3.45-3.65 (148H, m), 3.94 (80H, bs), 4.41 (32H, s), 5.07-5.15 (64H, m), 5.85 (32H, bs), 6.35 (16H, s), 6.41 (32H, s), 7.20 (1H, b), 7.26 (4H, br)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.3, 69.3, 71.3, 78.8, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6
(実施例50)
エーテル化工程
実施例50では、実施例49で得た化合物の水酸基を水酸基を3,5-ビス(ブテニルオキシ)ベンジルブロミドでエーテル化した(下記化学式参照)。
1H -NMR (600 MHz, CDCl3) δ: 2.41 (132H, s), 3.40-3.67 (148H, m), 3.85 (128H, bs), 4.35 (32H, s), 4.53 (32H, bs), 5.04 (128H, bs), 5.80 (64H, bs), 6.28 (32H, bs), 6.40 (64H, bs), 7.20 (1H, b), 7.26 (4H, br)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.2, 71.0, 72.1, 79.0, 73.2, 100.6, 105.8, 106.0, 141.0, 141.4, 160.1, 117.0, 134.6
(Example 50)
Etherification Step In Example 50, the hydroxyl group of the compound obtained in Example 49 was etherified with 3,5-bis (butenyloxy) benzyl bromide (see the following chemical formula).
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.41 (132H, s), 3.40-3.67 (148H, m), 3.85 (128H, bs), 4.35 (32H, s), 4.53 (32H, bs), 5.04 (128H, bs), 5.80 (64H, bs), 6.28 (32H, bs), 6.40 (64H, bs), 7.20 (1H, b), 7.26 (4H, br)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.2, 71.0, 72.1, 79.0, 73.2, 100.6, 105.8, 106.0, 141.0, 141.4, 160.1, 117.0, 134.6
(実施例51)
実施例51では、コア分子としてトリス(ヒドロキシメチル)アミノメタンを用い、下記化学式に示す反応を行なった。トリス(ヒドロキシメチル)アミノメタン:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。
In Example 51, tris (hydroxymethyl) aminomethane was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of tris (hydroxymethyl) aminomethane: glycidol: allyl glycidyl ether was 1: 9: 12 (molar ratio).
重合工程
90℃に加熱し、激しく攪拌しながらアルゴン雰囲気下トリス(ヒドロキシメチル)アミノメタン0.3 g (2.48 mmol)をDMSO 5 mlに溶解した。90℃に加熱し、カリウムメトキシド (30% メタノール溶液) 0.174 g (0.74 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。次いでグリシドール 1.65 g (22.27 mmol)を8 mlの脱水THFに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization process
The mixture was heated to 90 ° C., and 0.3 g (2.48 mmol) of tris (hydroxymethyl) aminomethane was dissolved in 5 ml of DMSO under an argon atmosphere with vigorous stirring. The mixture was heated to 90 ° C., 0.174 g (0.74 mmol) of potassium methoxide (30% methanol solution) was added and stirred for several minutes, and then the pressure was gradually reduced to distill off methanol. Next, 1.65 g (22.27 mmol) of glycidol was dissolved in 8 ml of dehydrated THF and added dropwise over about 3 hours while distilling off the THF.
修飾工程
次いでアリルグリシジルエーテル3.39 g (29.7 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約4.5時間を要して滴下した。同温度で1.5時間攪拌した後冷却し、メタノール20 mlで希釈してアンバーライトIR-120B H AG 10 mlのカラムを通して中和した。減圧下濃縮し、褐色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=3/1)で精製し、淡褐色油状物を2.92 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.43-3.67 (99H, m), 3.87 (12H, s), 4.01 (24H, s), 4.84 (12H, s), 5.16 (12H, d, J = 10.4 Hz), 5.28 (12H, d, J = 17.0 Hz), 5.88-5.94 (12H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 69.3, 69.7, 69.9, 70.9, 71.3, 71.7, 72.9, 78.6, 78.9, 72.0, 116.0, 134.9, 135.0
Modification Step Next, 3.39 g (29.7 mmol) of allyl glycidyl ether was dissolved in 15 ml of dehydrated THF, and added dropwise over about 4.5 hours while distilling off the THF. The mixture was stirred at the same temperature for 1.5 hours, cooled, diluted with 20 ml of methanol, and neutralized through a column of Amberlite IR-120B H AG 10 ml. After concentration under reduced pressure, the brown residual liquid was purified by silica gel column chromatography (chloroform / methanol = 3/1) to obtain 2.92 g of a light brown oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.43-3.67 (99H, m), 3.87 (12H, s), 4.01 (24H, s), 4.84 (12H, s), 5.16 (12H, d , J = 10.4 Hz), 5.28 (12H, d, J = 17.0 Hz), 5.88-5.94 (12H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 69.3, 69.7, 69.9, 70.9, 71.3, 71.7, 72.9, 78.6, 78.9, 72.0, 116.0, 134.9, 135.0
(実施例52)
エーテル化工程
実施例52では、実施例51で得た化合物の水酸基を水酸基をヨウ化メチルでメトキシ化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.44 (36H, s), 3.50-3.70 (111H, m), 4.01 (24H, s), 5.17 (12H, d, J = 10.4 Hz), 5.28 (12H, d, J = 17.0 Hz), 5.90-5.92 (12H, m),
13C -NMR ((600 MHz, methanol-d4) δ: 58.1, 59.7, 70.8, 71.3, 72.1, 72.5, 73.3, 80.0, 80.4, 80.8, 81.0, 117.2, 136.2
(Example 52)
Etherification Step In Example 52, the hydroxyl group of the compound obtained in Example 51 was methoxylated with methyl iodide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.44 (36H, s), 3.50-3.70 (111H, m), 4.01 (24H, s), 5.17 (12H, d, J = 10.4 Hz), 5.28 (12H, d, J = 17.0 Hz), 5.90-5.92 (12H, m),
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 58.1, 59.7, 70.8, 71.3, 72.1, 72.5, 73.3, 80.0, 80.4, 80.8, 81.0, 117.2, 136.2
(実施例53)
実施例53では、コア分子としてジ[3,5-ビス(ヒドロキシメチル)フェニル]ジスルフィドを用い、下記化学式に示す反応を行なった。ジ[3,5-ビス(ヒドロキシメチル)フェニル]ジスルフィド:グリシドール:アリルグリシジルエーテルは1:12:16の割合(モル比)とした。
In Example 53, di [3,5-bis (hydroxymethyl) phenyl] disulfide was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of di [3,5-bis (hydroxymethyl) phenyl] disulfide: glycidol: allyl glycidyl ether was 1:12:16 (molar ratio).
重合工程
アルゴン雰囲気下DMSO 5 mlにジ[3,5-ビス(ヒドロキシメチル)フェニル]ジスルフィド0.51 g (1.5 mmol)を溶解し、90℃に加熱、攪拌しながカリウムメトキシド (30% メタノール溶液) 0.14 g (0.60 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。次いでグリシドール 1.34 g (18.1 mmol)を7 mlの脱水THFに溶解して、THFを留去しながら約2時間を要して滴下した。
Polymerization process Dissolve 0.51 g (1.5 mmol) of di [3,5-bis (hydroxymethyl) phenyl] disulfide in 5 ml of DMSO under an argon atmosphere, and heat to 90 ° C while stirring with potassium methoxide (30% methanol solution). 0.14 g (0.60 mmol) was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. Next, 1.34 g (18.1 mmol) of glycidol was dissolved in 7 ml of dehydrated THF and added dropwise over about 2 hours while distilling off the THF.
修飾工程
次いでアリルグリシジルエーテル 2.75 g (24.17 mmol)を12 mlの脱水THFに溶解して、THFを留去しながら約3.5時間を要して滴下した。同温度で1.5時間攪拌した後冷却し、メタノール30 mlで希釈してアンバーライトIR-120B HAG 10 mlのカラムを通して中和した。減圧下濃縮し、褐色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)で精製し、淡褐色油状物を1.21 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.42-3.70 (132H, m), 3.87 (16H, s), 4.00 (32H, s), 4.53 (8H, s), 4.81 (16H, s), 5.16 (16H, m), 5.27 (16H, m), 5.87-5.92 (16H, m), 7.16, 7.30 (6H, br)
13C -NMR ((600 MHz, methanol-d4) δ: 69.4, 69.6, 71.1, 71.3, 71.7, 72.0, 72.8, 78.6, 78.8, 74.7, 117.2, 136.0, 136.2, 125.6, 128.0, 138.2, 140.1
Modification Step Subsequently, 2.75 g (24.17 mmol) of allyl glycidyl ether was dissolved in 12 ml of dehydrated THF, and dropwise added over about 3.5 hours while distilling off the THF. The mixture was stirred at the same temperature for 1.5 hours, cooled, diluted with 30 ml of methanol, and neutralized through a column of 10 ml of Amberlite IR-120B HAG. After concentration under reduced pressure, the brown residue was purified by silica gel column chromatography (chloroform / methanol = 5/1) to obtain 1.21 g of a light brown oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.42-3.70 (132H, m), 3.87 (16H, s), 4.00 (32H, s), 4.53 (8H, s), 4.81 (16H, s ), 5.16 (16H, m), 5.27 (16H, m), 5.87-5.92 (16H, m), 7.16, 7.30 (6H, br)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 69.4, 69.6, 71.1, 71.3, 71.7, 72.0, 72.8, 78.6, 78.8, 74.7, 117.2, 136.0, 136.2, 125.6, 128.0, 138.2, 140.1
(実施例54)
エーテル化工程
実施例54では、実施例53で得た化合物の水酸基を水酸基をヨウ化メチルでメトキシ化した(下記化学式参照)。
1H -NMR (600 MHz, methanol-d4) δ: 3.42 (48H, s), 3.49-3.65 (140H, m), 3.99 (32H, s), 4.52 (8H, s), 5.16 (16H, m), 5.27 (16H, m), 5.88-5.90 (16H, m), 7.14, 7.29 (6H, br)
13C -NMR ((600 MHz, methanol-d4) δ: 57.0, 69.5, 69.9, 70.8, 71.3, 72.0, 72.6, 74.6, 78.5, 78.7, 115.9, 134.9, 124.1, 126.8, 137.2, 139.6
(Example 54)
Etherification Step In Example 54, the hydroxyl group of the compound obtained in Example 53 was methoxylated with methyl iodide (see the following chemical formula).
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.42 (48H, s), 3.49-3.65 (140H, m), 3.99 (32H, s), 4.52 (8H, s), 5.16 (16H, m ), 5.27 (16H, m), 5.88-5.90 (16H, m), 7.14, 7.29 (6H, br)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 57.0, 69.5, 69.9, 70.8, 71.3, 72.0, 72.6, 74.6, 78.5, 78.7, 115.9, 134.9, 124.1, 126.8, 137.2, 139.6
<評 価>
実施例1〜54の重合性高分岐ポリマーは、従来のプレポリマーと比べて粘性が低く、容器からの出し入れ等において、ハンドリングが容易であった。また、冷暗所に保存すれば、重合禁止剤を添加しなくても重合固化することはなく、安定に保存することができた。また、これらの重合性高分岐ポリマーに少量の開始剤を加えて光照射することにより、光ラジカル重合、光カチオン重合のいずれでも光硬化を行うことができた。
<Evaluation>
The polymerizable hyperbranched polymers of Examples 1 to 54 had a lower viscosity than conventional prepolymers and were easy to handle in and out of containers. Further, when stored in a cool and dark place, the polymer was not solidified without adding a polymerization inhibitor and could be stored stably. Moreover, by adding a small amount of an initiator to these polymerizable hyperbranched polymers and irradiating with light, photocuring could be carried out by either radical photopolymerization or cationic photopolymerization.
<粘度測定>
実施例7,9,11,18,20,26,29,31及び35の重合性高分岐ポリマーについて、振動式粘度計を用いて粘度の測定を行なった。その結果、表1に示すように170〜378mPa・sの範囲となり、従来のプレポリマーよりもはるかに粘度が低かった。
For the polymerizable hyperbranched polymers of Examples 7, 9, 11, 18, 20, 26, 29, 31 and 35, the viscosity was measured using a vibration viscometer. As a result, as shown in Table 1, it was in the range of 170 to 378 mPa · s, and the viscosity was much lower than that of the conventional prepolymer.
本発明は光リソグラフィーのための材料として電子デバイス作製等に利用可能である。 The present invention can be used as a material for photolithography in the production of electronic devices.
Claims (14)
該高分岐ポリマーの水酸基を重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加させて重合性官能基を導入する修飾工程とを含むことを特徴とする重合性高分岐ポリマーの製造方法。 A polymerization process in which a glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as a base point to form a highly branched polymer;
And a modification step of introducing a polymerizable functional group by adding a hydroxyl group of the hyperbranched polymer to an epoxy group of a glycidyl ether having a polymerizable carbon-carbon double bond. Production method.
該高分岐ポリマーの水酸基を重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加させて重合性官能基を導入する修飾工程と、
該付加における該エポキシ基の開環によって生じた水酸基をエーテル化するエーテル化工程と、
を含むことを特徴とする重合性高分岐ポリマーの製造方法。 A polymerization process in which a glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as a base point to form a highly branched polymer;
A modification step of introducing a polymerizable functional group by adding a hydroxyl group of the hyperbranched polymer to an epoxy group of a glycidyl ether having a polymerizable carbon-carbon double bond;
An etherification step of etherifying a hydroxyl group generated by ring opening of the epoxy group in the addition;
A process for producing a polymerizable hyperbranched polymer, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008099211A JP2009249500A (en) | 2008-04-07 | 2008-04-07 | Polymerizable highly-branched polymer and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008099211A JP2009249500A (en) | 2008-04-07 | 2008-04-07 | Polymerizable highly-branched polymer and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009249500A true JP2009249500A (en) | 2009-10-29 |
Family
ID=41310500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008099211A Pending JP2009249500A (en) | 2008-04-07 | 2008-04-07 | Polymerizable highly-branched polymer and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009249500A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013012961A2 (en) | 2011-07-19 | 2013-01-24 | Cellmosaic, Llc | Novel crosslinking reagents, macromolecules, therapeutic conjugates, and synthetic methods thereof |
JP2016029146A (en) * | 2014-06-30 | 2016-03-03 | ポール・コーポレーションPallCorporation | Fluorinated polymer and use thereof in preparation of hydrophilic membranes (vi) |
JP2016029147A (en) * | 2014-06-30 | 2016-03-03 | ポール・コーポレーションPallCorporation | Hydrophilic block copolymers and method of preparation thereof (iii) |
JP2017517586A (en) * | 2014-04-01 | 2017-06-29 | ダウ グローバル テクノロジーズ エルエルシー | Polyether polyols providing good expansion-gelling balance for polyurethane products made from polyether polyols |
CN114634618A (en) * | 2022-03-03 | 2022-06-17 | 福州大学 | Superplasticizer with composite topological structure and application of superplasticizer to electrolyte membrane of all-solid-state lithium metal battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02273584A (en) * | 1989-04-13 | 1990-11-08 | Mitsubishi Rayon Co Ltd | Formation of coating film |
JP2002533495A (en) * | 1998-12-22 | 2002-10-08 | バイエル アクチェンゲゼルシャフト | Process for producing hyperbranched polyols based on glycidol |
JP2003261659A (en) * | 2002-02-25 | 2003-09-19 | Dainippon Ink & Chem Inc | Process for producing highly branched polyester having unsaturated group at molecular end |
WO2006085485A1 (en) * | 2005-02-10 | 2006-08-17 | Daicel Chemical Industries, Ltd. | Ring-opening polymerization method and activated carbon catalyst for ring-opening polymerization |
JP2007016154A (en) * | 2005-07-08 | 2007-01-25 | Hakuto Co Ltd | Polymerizable dendrimer and polymerizable resin composition |
-
2008
- 2008-04-07 JP JP2008099211A patent/JP2009249500A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02273584A (en) * | 1989-04-13 | 1990-11-08 | Mitsubishi Rayon Co Ltd | Formation of coating film |
JP2002533495A (en) * | 1998-12-22 | 2002-10-08 | バイエル アクチェンゲゼルシャフト | Process for producing hyperbranched polyols based on glycidol |
JP2003261659A (en) * | 2002-02-25 | 2003-09-19 | Dainippon Ink & Chem Inc | Process for producing highly branched polyester having unsaturated group at molecular end |
WO2006085485A1 (en) * | 2005-02-10 | 2006-08-17 | Daicel Chemical Industries, Ltd. | Ring-opening polymerization method and activated carbon catalyst for ring-opening polymerization |
JP2007016154A (en) * | 2005-07-08 | 2007-01-25 | Hakuto Co Ltd | Polymerizable dendrimer and polymerizable resin composition |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013012961A2 (en) | 2011-07-19 | 2013-01-24 | Cellmosaic, Llc | Novel crosslinking reagents, macromolecules, therapeutic conjugates, and synthetic methods thereof |
JP2017517586A (en) * | 2014-04-01 | 2017-06-29 | ダウ グローバル テクノロジーズ エルエルシー | Polyether polyols providing good expansion-gelling balance for polyurethane products made from polyether polyols |
JP2016029146A (en) * | 2014-06-30 | 2016-03-03 | ポール・コーポレーションPallCorporation | Fluorinated polymer and use thereof in preparation of hydrophilic membranes (vi) |
JP2016029147A (en) * | 2014-06-30 | 2016-03-03 | ポール・コーポレーションPallCorporation | Hydrophilic block copolymers and method of preparation thereof (iii) |
KR101745516B1 (en) * | 2014-06-30 | 2017-06-09 | 폴 코포레이션 | Hydrophilic block copolymers and method of preparation thereof (iii) |
US9962662B2 (en) | 2014-06-30 | 2018-05-08 | Pall Corporation | Fluorinated polymer and use thereof in the preparation of hydrophilic membranes (vi) |
CN114634618A (en) * | 2022-03-03 | 2022-06-17 | 福州大学 | Superplasticizer with composite topological structure and application of superplasticizer to electrolyte membrane of all-solid-state lithium metal battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4049794B2 (en) | Calixarene compound, production method thereof, and composition thereof | |
JP6845851B2 (en) | Curable polymer | |
JP3074086B2 (en) | Photocurable oxetane composition | |
JP2009249500A (en) | Polymerizable highly-branched polymer and its manufacturing method | |
EP2107056B1 (en) | Fluorinated compounds, fluorinated polymers of the fluorinated compounds, and optical or electrical materials using the polymers | |
WO2018193979A1 (en) | Fluorine-containing epoxy-modified silsesquioxane and curable composition comprising same | |
CN104822715B (en) | The compound of phenolic hydroxy group, the compositionss of phenolic hydroxy group, the resin containing (methyl) acryloyl group, solidification compound, its solidfied material and anticorrosive additive material | |
JP2006312717A (en) | Silicone copolymer having fused polycyclic hydrocarbon group and method for producing the same | |
JP2009249605A (en) | Photopolymerizable composition | |
JP5525728B2 (en) | Polyethers and process for producing the same | |
KR101981364B1 (en) | Esterified epoxy resin, method for producing same, and curable composition comprising same | |
JP6330272B2 (en) | Photosensitive resin composition and pattern forming method using the same | |
CN109503527A (en) | Fluorenes photoinitiator and photosensitive polymer combination comprising it | |
JP5541902B2 (en) | Photocurable low shrinkage monomer compound | |
JP2010209045A (en) | Dendrimer compound having low refractive index, production method thereof, and raw material compound for synthesis thereof | |
JP2019192724A (en) | Curable composition for nanoimprint, and patterned substrate using the same | |
JP5167609B2 (en) | Silicone copolymer having oxetanyl group | |
JP5250208B2 (en) | Adamantane derivative, resin composition and resin cured product using the same | |
JP2008195908A (en) | Silicone copolymer having condensed polycyclic hydrocarbon group, and method for producing the same | |
CN112111062A (en) | Silicon-containing monomer containing dioxygen heterocycle and preparation and application thereof | |
JP2015044955A (en) | Polyglycerol (meth)acrylate and production method thereof, and composition containing the same | |
CN108897192A (en) | A kind of sulfydryl-alkene nano-imprint lithography glue and its application method | |
CN112457174B (en) | Prismatic aromatic hydrocarbon initiator and preparation method thereof | |
JP4297352B2 (en) | Multi-branched macromonomer having multiple hydroxyl groups | |
WO2023145580A1 (en) | Diepoxy compound, curable composition, cured product, and optical member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121023 |