JP2009249605A - Photopolymerizable composition - Google Patents

Photopolymerizable composition Download PDF

Info

Publication number
JP2009249605A
JP2009249605A JP2008102950A JP2008102950A JP2009249605A JP 2009249605 A JP2009249605 A JP 2009249605A JP 2008102950 A JP2008102950 A JP 2008102950A JP 2008102950 A JP2008102950 A JP 2008102950A JP 2009249605 A JP2009249605 A JP 2009249605A
Authority
JP
Japan
Prior art keywords
polymerizable
photopolymerizable composition
bis
mmol
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008102950A
Other languages
Japanese (ja)
Inventor
Kouji Taketsuji
耕治 竹辻
Shiyoshi Yokoyama
士吉 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Kyushu University NUC
Original Assignee
Hakuto Co Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd, Kyushu University NUC filed Critical Hakuto Co Ltd
Priority to JP2008102950A priority Critical patent/JP2009249605A/en
Publication of JP2009249605A publication Critical patent/JP2009249605A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photopolymerizable composition which has a low viscosity, is easily handled, and can be easily produced at low cost. <P>SOLUTION: The first photopolymerizable composition contains a polymerizable hyperbranched polymer which is formed by adding a terminal hydroxyl group of a hyperbranched polymer formed by branched-state polymerization of glycidol by using a hydroxyl group of a core molecule as a base point to an epoxy group of a polymerizable glycidyl ether having a carbon-carbon double bond, a polymerizable monomer, and a photopolymerization initiator. In the second photopolymerizable composition, a hydroxyl group of the polymerizable hyper-branched polymer of the first photopolymerizable composition is etherified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、紫外線や光や電子線等のエネルギー照射によって硬化する光重合性組成物に関する。   The present invention relates to a photopolymerizable composition that is cured by irradiation with energy such as ultraviolet rays, light, or an electron beam.

紫外線や電子線等のエネルギー照射によって硬化する樹脂は、様々な産業分野において利用されている。例えば、光照射によって硬化する樹脂は、リソグラフィーのための材料として電子デバイス作製等に利用されている。近年、電子デバイスの構造はますます微細化しており、光硬化性樹脂を用いたリソグラフィー技術において、加工精度の更なる向上が求められている。   Resins that are cured by irradiation with energy such as ultraviolet rays and electron beams are used in various industrial fields. For example, a resin that is cured by light irradiation is used for manufacturing an electronic device as a material for lithography. In recent years, the structure of electronic devices has been further miniaturized, and further improvement in processing accuracy has been demanded in lithography technology using a photocurable resin.

従来、光リソグラフィーに用いられる光重合性組成物には、光化学反応を起こす高分子樹脂(プレポリマー)と、プレポリマーの希釈剤としての重合性の低分子(モノマー)と、光化学反応を開始させるための開始剤とから構成されているものがある(例えば特許文献1〜3参照)。   Conventionally, a photopolymerizable composition used for photolithography starts a photochemical reaction with a polymer resin (prepolymer) that causes a photochemical reaction and a polymerizable low molecule (monomer) as a diluent for the prepolymer. For example (see Patent Documents 1 to 3).

プレポリマーには、アクリル酸/1,6−ヘキサンジオール/アクリル酸(下式1)、無水フタル酸/プロピレンオキサイド/アクリル酸(下式2)、トリメリット酸/ジエチレングリコール/アクリル酸(下式3)等の比較的大きな分子量からなるポリエステル系紫外線硬化樹脂がよく用いられている。

Figure 2009249605
Prepolymers include acrylic acid / 1,6-hexanediol / acrylic acid (formula 1), phthalic anhydride / propylene oxide / acrylic acid (formula 2), trimellitic acid / diethylene glycol / acrylic acid (formula 3 Polyester-based ultraviolet curable resins having a relatively large molecular weight such as
Figure 2009249605

しかし、プレポリマーは極めて粘度が高く、塗布等の取り扱いが困難なため、プレポリマーと共重合可能な多官能性のモノマーが希釈剤として加えられることが多い。この希釈剤は、プレポリマーよりも低分子量であり、これをプレポリマーに加えることにより、粘度を下げることができる。なお、プレポリマーを溶剤で希釈することによっても粘度を下げることは可能となるが、これでは光照射前に溶剤が揮発して表面に凹凸が生じてしまい、光硬化における加工精度が低下するという問題が生ずる。また、プレポリマーを溶剤で希釈した場合、溶剤の揮発によって粘度が変化してしまい、取り扱いも困難となる。   However, since the prepolymer has a very high viscosity and is difficult to handle such as coating, a polyfunctional monomer copolymerizable with the prepolymer is often added as a diluent. This diluent has a lower molecular weight than the prepolymer, and the viscosity can be lowered by adding it to the prepolymer. Although it is possible to reduce the viscosity by diluting the prepolymer with a solvent, this causes the solvent to volatilize before light irradiation, resulting in irregularities on the surface, which reduces the processing accuracy in photocuring. Problems arise. Further, when the prepolymer is diluted with a solvent, the viscosity changes due to volatilization of the solvent, and handling becomes difficult.

このため、本発明者らは、特異な分岐構造を有するデンドリティック高分子の末端に、重合可能な炭素−炭素二重結合やエポキシ基を修飾させた重合性デンドリティック高分子を既に開発している(特許文献4及び特許文献5)。これらの重合性デンドリティック高分子は、大きな分子量を有する割には粘度が小さいという性質を有しており、これをプレポリマーとして用いることにより、粘度が低くて取り扱いが容易な光重合性組成物となる。   For this reason, the present inventors have already developed a polymerizable dendritic polymer in which a polymerizable carbon-carbon double bond or an epoxy group is modified at the end of a dendritic polymer having a unique branched structure. (Patent Document 4 and Patent Document 5). These polymerizable dendritic polymers have the property of having a small viscosity for having a large molecular weight. By using this as a prepolymer, a photopolymerizable composition that has a low viscosity and is easy to handle. It becomes.

なお、本発明に関係する技術として、特許文献6には、グリシドールが分岐状に重合した高分岐ポリマーの製造方法が記載されている。
特開2001−270973号公報 特開平9−5997号公報 特開平10−60655号公報 特開2007−16154号公報 特開2007−246483号公報 特表2002−533495号公報
As a technique related to the present invention, Patent Document 6 describes a method for producing a highly branched polymer in which glycidol is polymerized in a branched form.
JP 2001-270973 A Japanese Patent Laid-Open No. 9-5997 Japanese Patent Laid-Open No. 10-60655 JP 2007-16154 A JP 2007-246483 A Special table 2002-533495 gazette

しかし、上記特許文献4及び5に記載の重合性デンドリティック高分子は、分岐構造を段階的に延ばして製造されるため、製造工程数が多くて手間がかかり、製造コストが高騰化するという問題があった。本発明は、このような従来の実情に鑑みてなされたものであって、粘度が低くて取り扱いが容易であり、製造が容易で安価に製造可能な光重合性組成物を提供することを解決すべき課題としている。   However, the polymerizable dendritic polymers described in Patent Documents 4 and 5 are produced by extending the branched structure step by step, so that the number of production steps is large and time-consuming, and the production cost increases. was there. The present invention has been made in view of such conventional circumstances, and solves the problem of providing a photopolymerizable composition that has low viscosity and is easy to handle, easy to manufacture and can be manufactured at low cost. It is an issue that should be done.

高度に分岐した構造を有するデンドリティック高分子には、多官能基を有するモノマーを一段階づつ化学反応させて分岐構造を形成させたデンドリマーと、ABx型モノマーを重縮合させて一気に分岐構造を形成する高分岐ポリマーとが知られている。上記特許文献4及び5に記載の重合性デンドリティック高分子はデンドリマーである。発明者らは、デンドリマーの代わりに、製造が容易な高分岐ポリマーに重合性の官能基を修飾させた重合性高分岐ポリマーを光樹脂組成物の重合性成分として用いることにより、上記従来の問題点を解決できるのではないかと考え、鋭意研究を行った結果、本発明を完成するに至った。   For dendritic polymers with a highly branched structure, a dendrimer formed by the chemical reaction of a monomer with a polyfunctional group step by step and an ABx type monomer are polycondensed to form a branched structure at once. Hyperbranched polymers are known. The polymerizable dendritic polymer described in Patent Documents 4 and 5 is a dendrimer. The inventors have used the above-mentioned conventional problem by using a polymerizable hyperbranched polymer obtained by modifying a polymerizable functional group in a hyperbranched polymer that is easy to produce instead of a dendrimer as a polymerizable component of an optical resin composition. The present invention was completed as a result of diligent research on the idea that the problem could be solved.

すなわち、本発明における第1発明の光重合性組成物は、コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した重合性高分岐ポリマーと、該重合性高分岐ポリマーと結合可能な重合性モノマーと、光重合開始剤とを含むことを特徴とする。   That is, the photopolymerizable composition of the first invention in the present invention is a glycidyl ether having a carbon-carbon double bond capable of polymerizing a terminal hydroxyl group of a highly branched polymer in which glycidol is polymerized in a branched manner starting from the hydroxyl group of the core molecule. It comprises a polymerizable hyperbranched polymer added to the epoxy group, a polymerizable monomer capable of binding to the polymerizable hyperbranched polymer, and a photopolymerization initiator.

第1発明の光重合性組成物は、重合可能な炭素−炭素二重結合が修飾された重合性高分岐ポリマーと、該重合性高分岐ポリマーと結合可能な重合性モノマーとが含まれており、さらに光重合開始剤が含まれている。このため、この光重合性組成物に紫外線や可視光線や電子線等のエネルギーが照射されると、光重合開始剤からラジカルやカチオン等の重合開始剤が発生し、高分岐ポリマーと重合性モノマーとが結合し、さらには重合性モノマーどうしが重合し、硬化する。このため、集積回路の回路形成用パターン印刷等に利用することができる。   The photopolymerizable composition of the first invention includes a polymerizable hyperbranched polymer modified with a polymerizable carbon-carbon double bond, and a polymerizable monomer capable of binding to the polymerizable hyperbranched polymer. Further, a photopolymerization initiator is included. For this reason, when this photopolymerizable composition is irradiated with energy such as ultraviolet rays, visible rays, and electron beams, a polymerization initiator such as a radical or a cation is generated from the photopolymerization initiator, and a highly branched polymer and a polymerizable monomer are generated. And further, the polymerizable monomers are polymerized and cured. For this reason, it can be used for printing a pattern for forming an integrated circuit.

また、第1発明の光重合性組成物に含まれている重合性高分岐ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合して高分岐ポリマーとなっているため、高分岐ポリマーの特徴である、大きな分子量を有する割には粘度が小さいという性質を有している。このため、プレポリマーを含有する光重合性組成物と比較して、粘度が小さくハンドリングが容易で、印刷した場合の精度も高めることができる。
また、重合性高分岐ポリマーはモノマーを重縮合させて一気に分岐構造を形成することができるため、製造工程数が少なくて合成が容易であり、製造コストを低廉化することができる。
The polymerizable hyperbranched polymer contained in the photopolymerizable composition of the first invention is a highly branched polymer because the glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as a base point. Although it has a large molecular weight, it has the property of low viscosity. For this reason, compared with the photopolymerizable composition containing a prepolymer, a viscosity is small and handling is easy, and the precision at the time of printing can also be improved.
In addition, since the polymerizable highly branched polymer can form a branched structure at a stretch by polycondensing monomers, the number of manufacturing steps is small, the synthesis is easy, and the manufacturing cost can be reduced.

また、重合性モノマーとは、重合性高分岐ポリマーと結合可能な化合物であればよく、モノマーが何個か結合したオリゴマーも含むものとする。重合性モノマーとしては、1分子に1つ以上の(メタ)クリル基を有するアクリル系モノマーを用いることがでる。具体的には、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシエチルアクリロイルフォスフェート、テトラヒドロフルフリールアクリレート、ジシクロペンテニルオキシアクリレート、ジシクロペンテニルオキシエチルアクリレート、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、1,3−ビス(3’−アクリルオキシエトキシ−2’−ヒドロキシプロピル)−5,5−ジメチルヒダントイン、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどを挙げることができる。発明者らは、アクリル系モノマーとしてトリメチロールプロパントリアクリレートを用いた光重合性組成物により、光照射で確実に重合物を得られることを確認している。   The polymerizable monomer may be any compound that can be bonded to the polymerizable hyperbranched polymer, and includes an oligomer in which several monomers are bonded. As the polymerizable monomer, an acrylic monomer having one or more (meth) acryl groups per molecule can be used. Specifically, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl acryloyl phosphate, tetrahydrofurfryl acrylate, dicyclopentenyloxy acrylate, dicyclopentenyloxyethyl acrylate, 1 , 3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, hydroxypivalate ester neopentyl glycol diacrylate, tripropylene glycol diacrylate Acrylate, 1,3-bis (3′-acryloxyethoxy-2′-hydroxypropyl) -5,5-dimethyl Dantoin, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and the like dipentaerythritol hexaacrylate. The inventors have confirmed that a polymer can be reliably obtained by light irradiation with a photopolymerizable composition using trimethylolpropane triacrylate as an acrylic monomer.

また、光重合開始剤は光照射によってラジカルを発生する光ラジカル発生剤が好ましい。光ラジカル発生剤としては、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4−(ジ−n−ブチルアミノ)−4’−(ジエチルアミノ)スチルベン、ビアセチル、アセトフェノン、ベンゾフェノン、ベンジル、ベンゾイン、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルパーオキサイドなどを挙げることができる。また、下記化学式(4)及び化学式(5)の光ラジカル発生剤を用いることも好ましい。これらの光ラジカル発生剤は、強度の弱い光に対しても効率よくラジカルを発生するため、高感度の光重合性樹脂組成物とすることができる。

Figure 2009249605
The photopolymerization initiator is preferably a photoradical generator that generates radicals by light irradiation. Examples of photo radical generators include 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4- (di-n-butylamino) -4 ′-(diethylamino) stilbene, biacetyl. Acetophenone, benzophenone, benzyl, benzoin, benzoin isobutyl ether, benzyl dimethyl ketal, tetramethyl thiuram sulfide, azobisisobutyronitrile, benzoyl peroxide, and the like. Moreover, it is also preferable to use the photoradical generator of following Chemical formula (4) and Chemical formula (5). Since these photoradical generators generate radicals efficiently even for light with low intensity, a highly sensitive photopolymerizable resin composition can be obtained.
Figure 2009249605

また、重合性モノマーとしては、1分子に1つ以上のエポキシ基を有するエポキシ系モノマーを用いることもできる。具体的には、3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(4-グリシジルオキシフェニル)プロパン、ビスフェノールAプロポキシレートジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールプロポキシレートトリグリシジルエーテル、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルジメチルエトキシシラン、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ジグリシジル1,2-シクロヘキサンジカルボキシレート、ポリエチレングリコールジグリシジルエーテル、1,3-ブタンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、N,N-ジグリシジルアニリン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ネオペンチルグリコールジグリシジルエーテル、ポリ(ジメチルシロキサン)ジグリシジルエーテル、ポリ(プロピレングリコール)ジグリシジルエーテル、レゾルシノールジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等を挙げることができる。その他、Poly[(phenyl glycidyl ether)-co-formaldehyde](ポリ[(フェニルグリシジルエーテル)-co-ホルムアルデヒド)やPoly(bisphenol A-co-epichlorohydrin), glycidyl end-caped(ポリ(ビスフェノールA-co-エピクロロヒドリン,グリシジルエンドキャップト)などを用いることもできる。Poly[(phenyl glycidyl ether)-co-formaldehyde](ポリ[(フェニルグリシジルエーテル)-co-ホルムアルデヒド)やPoly(bisphenol A-co-epichlorohydrin), glycidyl end-caped(ポリ(ビスフェノールA-co-エピクロロヒドリン,グリシジルエンドキャップト)などを用いることもできる。発明者らは、エポキシ系モノマーとして3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレートと2,2-ビス(4-グリシジルオキシフェニル)プロパンを用いた光重合性組成物により、光照射で確実に架橋物が得られることを確認している。   Moreover, as a polymerizable monomer, the epoxy-type monomer which has one or more epoxy groups in 1 molecule can also be used. Specifically, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 2,2-bis (4-glycidyloxyphenyl) propane, bisphenol A propoxylate diglycidyl ether, bisphenol F diglycidyl ether, glycerol Diglycidyl ether, glycerol propoxylate triglycidyl ether, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyldimethylethoxysilane, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, diglycidyl 1,2-cyclohexanedicarboxy Rate, polyethylene glycol diglycidyl ether, 1,3-butanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,4-cyclohexane Methanol diglycidyl ether, N, N-diglycidyl aniline, N, N-diglycidyl-4-glycidyl oxyaniline, neopentyl glycol diglycidyl ether, poly (dimethylsiloxane) diglycidyl ether, poly (propylene glycol) diglycidyl ether, Resorcinol diglycidyl ether, trimethylolethane triglycidyl ether, trimethylolpropane triglycidyl ether and the like can be mentioned. In addition, Poly [(phenyl glycidyl ether) -co-formaldehyde] (Poly [(phenyl glycidyl ether) -co-formaldehyde), Poly (bisphenol A-co-epichlorohydrin), glycidyl end-caped (Poly (bisphenol A-co-formaldehyde)) Epichlorohydrin, glycidyl endcapped), etc. Poly [(phenyl glycidyl ether) -co-formaldehyde] (Poly [(phenyl glycidyl ether) -co-formaldehyde) or Poly (bisphenol A-co-) epichlorohydrin), glycidyl end-caped (poly (bisphenol A-co-epichlorohydrin), glycidyl end-capped), etc. The inventors have used 3,4-epoxycyclohexylmethyl 3,4 as epoxy-based monomers. The photopolymerizable composition using 4-epoxycyclohexanecarboxylate and 2,2-bis (4-glycidyloxyphenyl) propane ensures that a cross-linked product is obtained by light irradiation. It is confirmed that

光重合開始剤は、光照射によって酸を発生する光酸発生剤が好ましい。このような光酸発生剤としては、例えば[4−[(2−ヒドロキシテトラデシル)オキシ]フェニル]フェニルヨードニウムヘキサフルオロアンチモネート、ビス(4-tert-ブチルフェニル)ヨードニウムパーフルオロ-1-ブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムp-トルエンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムトリフレート、ジフェニルヨードニウムp-トルエンスルホネート、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウム-9,10-ジメトキシアントラセン-2-スルホネート、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドパーフルオロ-1-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-1-ブタンスルホネート、トリス(4-tert-ブチルフェニル)スルホニウムパーフルオロ-1-ブタンスルホネート、トリス(4-tert-ブチルフェニル)スルホニウムトリフレート、トリアリールスルホニウムヘキサフルオロアンチモネート塩、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルホスホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムホスフェート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロルフェニルジスルフェニルジスルフェニルスルホニウムヘキサフルオロホスフェート、4−クロルフェニルジフェニルスルホニウムヘキサフルオルアンチモネート、ビス[4−ジフェニル−スルフォニオ]フェニル]スルフィド−ビス−ヘキサフルオロフォスフェート、ビス[4−ジフェニル−スルフォニオ]フェニル]スルフィド−ビス−ヘキサフルオロアンチモネート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe−ヘキサフルオロホスフェート等を挙げることができる。また、特開2004−255564号公報に記載されているオニウム性光酸発生剤、ヒドロキシ基含有芳香族スルホン酸のジフェニルヨードニウム塩類のイオン性光酸発生剤、DNQ(diazonaphthoquinone)類の光酸発生剤、ニトロベンジルスルホン酸類の非イオン性光酸発生剤を用いることもできる。光酸発生剤は触媒的に少量配合されるが、具体的な配合割合としては、0.5〜1.0重量%が好ましい。   The photopolymerization initiator is preferably a photoacid generator that generates an acid by light irradiation. Examples of such a photoacid generator include [4-[(2-hydroxytetradecyl) oxy] phenyl] phenyliodonium hexafluoroantimonate, bis (4-tert-butylphenyl) iodonium perfluoro-1-butanesulfonate. Bis (4-tert-butylphenyl) iodonium p-toluenesulfonate, bis (4-tert-butylphenyl) iodonium triflate, diphenyliodonium p-toluenesulfonate, diphenyliodonium triflate, diphenyliodonium-9,10-dimethoxyanthracene -2-sulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide perfluoro-1-butanesulfonate, triphenylsulfonium perfluoro-1-butanesulfonate, tris (4-tert-butylphenyl) sulfonium Fluoro-1-butanesulfonate , Tris (4-tert-butylphenyl) sulfonium triflate, triarylsulfonium hexafluoroantimonate salt, triphenylsulfonium hexafluoroantimonate, triphenylphosphonium hexafluoroantimonate, triphenylsulfonium phosphate, p- (phenylthio) phenyl Diphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluorophosphate, 4-chlorophenyldisulfenyldisulfenylsulfonium hexafluorophosphate, 4-chlorophenyldiphenylsulfonium hexafluoroantimonate, bis [4- Diphenyl-sulfonio] phenyl] sulfide-bis-hexafluorophosphate, bi S [4-diphenyl-sulfonio] phenyl] sulfide-bis-hexafluoroantimonate, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe-hexafluorophosphate, etc. Can do. Further, an onium photoacid generator, an ionic photoacid generator of a diphenyliodonium salt of a hydroxy group-containing aromatic sulfonic acid, and a photoacid generator of DNQ (diazonaphthoquinone) described in JP-A-2004-255564 A nonionic photoacid generator of nitrobenzyl sulfonic acids can also be used. Although a small amount of the photoacid generator is catalytically mixed, the specific mixing ratio is preferably 0.5 to 1.0% by weight.

さらに、第1発明の光重合性組成物は、光増感剤が含まれていることが好ましい。こうであれば、光照射によって光増感剤が励起され、さらに励起された光増感剤によって重合開始剤がカチオンやラジカルを発生させることとなる。このため、光に対する重合性の感度を高めることができる。このような光増感剤として例えば、イソプロピルチオキサントン等が挙げられる。   Furthermore, the photopolymerizable composition of the first invention preferably contains a photosensitizer. If it is like this, a photosensitizer will be excited by light irradiation and a polymerization initiator will generate | occur | produce a cation and a radical by the excited photosensitizer. For this reason, the sensitivity of the polymerizable property to light can be increased. Examples of such a photosensitizer include isopropylthioxanthone.

重合可能な炭素−炭素二重結合を有するグリシジルエーテルとしては、酸素を挟んでグリシジル基と反対側に重合可能な炭素−炭素二重結合を有する非対象エーテルであれば用いることができる。このようなグリシジルエーテルとして、例えばアリルグルシジルエーテルや、3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル等が挙げられる。   As the glycidyl ether having a polymerizable carbon-carbon double bond, any non-target ether having a polymerizable carbon-carbon double bond on the opposite side of the glycidyl group across oxygen can be used. Examples of such glycidyl ether include allyl glycidyl ether and 3,5-bis (3-butenyloxy) benzyl glycidyl ether.

また、コア分子としては、グリシドールのエポキシ基と反応可能な水酸基を有する分子であれば、用いることができる。このようなコア分子としては、グリセロール、ジグリセリン、チオグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリトリトール、ジペンタエリトリトール、meso−エリトリトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,2−プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,2,4−ブタントリオール、ヘキサメチレングリコール、トリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン、N−フェニルジエタノールアミン、2−フェニル−1,3−プロパンジオール、3−メチルペンタン−1,3,5−トリオール、1,2,3−ブタントリオール、アラビトール、リビトール、フロログルシノール、ピロガロール、1,2,4−トリヒドロキシベンゼン、ヘキサヒドロキシベンゼン、ロイコキニザリン、キニザリン、アントラルフィン、クリサジン、ビスフェノールA、2,6−ジヒドロキシアントラキノン、プルプリン、アリザリン、1,8,9−トリヒドロキシアントラセン、ビス(3−ヒドロキシフェニル)ジスルフィド、4,4’−ジヒドロキシジフェニルエーテル−4,4’−ビフェノール、1,3,5−シクロヘキサントリオール、及びトレイトール等が挙げられる。
発明者らは、コア分子としてトリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン及びN−フェニルジエタノールアミンを用い、さらに重合可能な重合性モノマーと、光重合開始剤とを混合して光重合性組成物としたものが、紫外線照射によって確実に硬化することを確認している。
As the core molecule, any molecule having a hydroxyl group capable of reacting with the epoxy group of glycidol can be used. Examples of such core molecules include glycerol, diglycerin, thioglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, meso-erythritol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol. 1,2-propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol, 1,2,4-butanetriol, hexamethylene glycol, triethanolamine, N, N-bis (2,3-dihydroxy Propyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethyl Diamine, N-phenyldiethanolamine, 2-phenyl-1,3-propanediol, 3-methylpentane-1,3,5-triol, 1,2,3-butanetriol, arabitol, ribitol, phloroglucinol, pyrogallol, 1,2,4-trihydroxybenzene, hexahydroxybenzene, leucoquinizarin, quinizarin, anthralphine, chrysazine, bisphenol A, 2,6-dihydroxyanthraquinone, purpurine, alizarin, 1,8,9-trihydroxyanthracene, bis (3 -Hydroxyphenyl) disulfide, 4,4'-dihydroxydiphenyl ether-4,4'-biphenol, 1,3,5-cyclohexanetriol, and threitol.
The inventors have used triethanolamine, N, N-bis (2,3-dihydroxypropyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′ as core molecules. , N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine and N-phenyldiethanolamine, and further a polymerizable monomer and a photopolymerization initiator are mixed to form a photopolymerizable composition. It has been confirmed that it is reliably cured by UV irradiation.

以上のように、第1発明の光重合性組成物では、コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した構造の重合性高分岐ポリマーが含まれているが、エポキシ基への付加における開環によって生じた水酸基のエーテル化により、新たな構造の重合性高分岐ポリマーとし、これを光重合性組成物を構成する成分としても良い。   As described above, in the photopolymerizable composition of the first invention, a glycidyl ether having a carbon-carbon double bond capable of polymerizing a terminal hydroxyl group of a highly branched polymer in which glycidol is polymerized in a branched manner starting from the hydroxyl group of the core molecule. A polymerizable hyperbranched polymer with a structure added to the epoxy group is included, but a polymerizable hyperbranched polymer with a new structure is obtained by etherification of the hydroxyl group generated by ring opening in the addition to the epoxy group. It is good also as a component which comprises a photopolymerizable composition.

すなわち、第2発明の光重合性組成物は、コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した構造とされており、さらに該付加における該エポキシ基の開環によって生じた水酸基がエーテル化された重合性高分岐ポリマーと、重合可能な重合性モノマーと、光重合開始剤とを含むことを特徴とする。   That is, the photopolymerizable composition of the second invention is an epoxy group of a glycidyl ether having a carbon-carbon double bond capable of polymerizing a terminal hydroxyl group of a highly branched polymer in which glycidol is polymerized in a branched manner starting from the hydroxyl group of the core molecule. A polymerizable hyperbranched polymer in which a hydroxyl group generated by ring opening of the epoxy group in the addition is etherified, a polymerizable monomer, and a photopolymerization initiator. It is characterized by that.

第2発明の光重合性組成物においても、重合可能な炭素−炭素二重結合が修飾された重合性高分岐ポリマーと、該重合性高分岐ポリマーと結合可能な重合性モノマーとが含まれており、さらに光重合開始剤が含まれている。このため、この光重合性組成物に紫外線や可視光線や電子線等のエネルギーが照射されると、光重合開始剤からラジカルやカチオン等の重合開始剤が発生し、高分岐ポリマーと重合性モノマーとが共重合し、硬化する。このため、集積回路の回路形成用パターン印刷等に利用することができる。   The photopolymerizable composition of the second invention also includes a polymerizable hyperbranched polymer in which a polymerizable carbon-carbon double bond is modified, and a polymerizable monomer capable of binding to the polymerizable hyperbranched polymer. In addition, a photopolymerization initiator is included. For this reason, when this photopolymerizable composition is irradiated with energy such as ultraviolet rays, visible rays, and electron beams, a polymerization initiator such as a radical or a cation is generated from the photopolymerization initiator, and a highly branched polymer and a polymerizable monomer are generated. Are copolymerized and cured. For this reason, it can be used for printing a pattern for forming an integrated circuit.

また、第2発明の光重合性組成物に含まれている重合性高分岐ポリマーは、コア分子の水酸基を基点としてグリシドールが分岐状に重合して高分岐ポリマーとなっているため、高分岐ポリマーの特徴である、大きな分子量を有する割には粘度が小さいという性質を有している。このため、プレポリマーを含有する光重合性組成物と比較して、粘度が小さくハンドリングが容易で、印刷した場合の精度も高めることができる。
また、重合性高分岐ポリマーはモノマーを重縮合させて一気に分岐構造を形成することができるため、製造工程数が少なくて合成が容易であり、製造コストを低廉化することができる。
The polymerizable hyperbranched polymer contained in the photopolymerizable composition of the second invention is a highly branched polymer because glycidol is polymerized in a branched form with the hydroxyl group of the core molecule as a base point. Although it has a large molecular weight, it has the property of low viscosity. For this reason, compared with the photopolymerizable composition containing a prepolymer, a viscosity is small and handling is easy, and the precision at the time of printing can also be improved.
In addition, since the polymerizable highly branched polymer can form a branched structure at a stretch by polycondensing monomers, the number of manufacturing steps is small, the synthesis is easy, and the manufacturing cost can be reduced.

また、重合性モノマーとは、重合性高分岐ポリマーと結合可能な化合物であればよく、モノマーが何個か結合したオリゴマーも含むものとする。重合性モノマーとしては、1分子に1つ以上の(メタ)アクリル基を有するアクリル系モノマーを用いることができ、この場合の光重合開始剤は光照射によってラジカルを発生する光ラジカル発生剤が好ましく、前述した光ラジカル発生剤を用いることができる。発明者らは、アクリル系モノマーとしてトリメチロールプロパントリアクリレートを用いた光重合性組成物により、光照射で確実に重合物を得られることを確認している。   The polymerizable monomer may be any compound that can be bonded to the polymerizable hyperbranched polymer, and includes an oligomer in which several monomers are bonded. As the polymerizable monomer, an acrylic monomer having one or more (meth) acryl groups per molecule can be used. In this case, the photopolymerization initiator is preferably a photoradical generator that generates radicals by light irradiation. The above-mentioned photo radical generator can be used. The inventors have confirmed that a polymer can be reliably obtained by light irradiation with a photopolymerizable composition using trimethylolpropane triacrylate as an acrylic monomer.

また、重合性モノマーとしては、1分子に1つ以上のエポキシ基を有するエポキシ系モノマーを用いることもできる。この場合の光重合開始剤は、光照射によって酸を発生する光酸発生剤が好ましく、前述した光酸発生剤を用いることができる。発明者らは、エポキシ系モノマーとして2,2-ビス(4-グリシジルオキシフェニル)プロパンと3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートを用いた光重合性組成物により、光照射で確実に重合物を得られることを確認している。   Moreover, as a polymerizable monomer, the epoxy-type monomer which has one or more epoxy groups in 1 molecule can also be used. In this case, the photopolymerization initiator is preferably a photoacid generator that generates an acid by light irradiation, and the photoacid generator described above can be used. The inventors have used a photopolymerizable composition comprising 2,2-bis (4-glycidyloxyphenyl) propane and 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate as an epoxy monomer to provide light irradiation. It has been confirmed that a polymer can be obtained reliably.

さらに、第2発明の光重合性組成物は、光増感剤が含まれていることが好ましい。こうであれば、光照射によって光増感剤が励起され、さらに励起された光増感剤によって重合開始剤がカチオンやラジカルを発生させることとなる。このため、光に対する重合性の感度を高めることができる。   Further, the photopolymerizable composition of the second invention preferably contains a photosensitizer. If it is like this, a photosensitizer will be excited by light irradiation and a polymerization initiator will generate | occur | produce a cation and a radical by the excited photosensitizer. For this reason, the sensitivity of the polymerizable property to light can be increased.

重合可能な炭素−炭素二重結合を有するグリシジルエーテルとしては、酸素を挟んでグリシジル基と反対側に重合可能な炭素−炭素二重結合を有する非対象エーテルであれば用いることができる。このようなグリシジルエーテルとして、例えばアリルグルシジルエーテルや、3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル等が挙げられる。   As the glycidyl ether having a polymerizable carbon-carbon double bond, any non-target ether having a polymerizable carbon-carbon double bond on the opposite side of the glycidyl group across oxygen can be used. Examples of such glycidyl ether include allyl glycidyl ether and 3,5-bis (3-butenyloxy) benzyl glycidyl ether.

また、エーテル化としては、水酸基に容易に修飾できるものが好ましく、例えば、アリルエーテル化やメチルエーテル化、3,5−ビス(ブテニルオキシ)ベンジルエーテル化等が挙げられる。   The etherification is preferably one that can be easily modified to a hydroxyl group, and examples thereof include allyl etherification, methyl etherification, and 3,5-bis (butenyloxy) benzyl etherification.

さらに、コア分子としては、グリシドールのエポキシ基と反応可能な水酸基を有する分子であれば、用いることができる。このようなコア分子としては、グリセロール、ジグリセリン、チオグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリトリトール、ジペンタエリトリトール、meso−エリトリトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,2−プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,2,4−ブタントリオール、ヘキサメチレングリコール、トリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン、N−フェニルジエタノールアミン、2−フェニル−1,3−プロパンジオール、3−メチルペンタン−1,3,5−トリオール、1,2,3−ブタントリオール、アラビトール、リビトール、フロログルシノール、ピロガロール、1,2,4−トリヒドロキシベンゼン、ヘキサヒドロキシベンゼン、ロイコキニザリン、キニザリン、アントラルフィン、クリサジン、ビスフェノールA、2,6−ジヒドロキシアントラキノン、プルプリン、アリザリン、1,8,9−トリヒドロキシアントラセン、ビス(3−ヒドロキシフェニル)ジスルフィド、4,4’−ジヒドロキシジフェニルエーテル−4,4’−ビフェノール、1,3,5−シクロヘキサントリオール、及びトレイトール等が挙げられる。
発明者らは、コア分子としてトリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン及びN−フェニルジエタノールアミンを用い、さらに重合可能な重合性モノマーと、光重合開始剤とを混合して光重合性組成物としたものが、紫外線照射によって確実に硬化することを確認している。
Furthermore, as the core molecule, any molecule having a hydroxyl group capable of reacting with the epoxy group of glycidol can be used. Examples of such core molecules include glycerol, diglycerin, thioglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, meso-erythritol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol. 1,2-propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol, 1,2,4-butanetriol, hexamethylene glycol, triethanolamine, N, N-bis (2,3-dihydroxy Propyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethyl Diamine, N-phenyldiethanolamine, 2-phenyl-1,3-propanediol, 3-methylpentane-1,3,5-triol, 1,2,3-butanetriol, arabitol, ribitol, phloroglucinol, pyrogallol, 1,2,4-trihydroxybenzene, hexahydroxybenzene, leucoquinizarin, quinizarin, anthralphine, chrysazine, bisphenol A, 2,6-dihydroxyanthraquinone, purpurine, alizarin, 1,8,9-trihydroxyanthracene, bis (3 -Hydroxyphenyl) disulfide, 4,4'-dihydroxydiphenyl ether-4,4'-biphenol, 1,3,5-cyclohexanetriol, and threitol.
The inventors have used triethanolamine, N, N-bis (2,3-dihydroxypropyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′ as core molecules. , N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine and N-phenyldiethanolamine, and further a polymerizable monomer and a photopolymerization initiator are mixed to form a photopolymerizable composition. It has been confirmed that it is reliably cured by UV irradiation.

以下、本発明を具体化した実施例について詳細に述べる。   Hereinafter, embodiments embodying the present invention will be described in detail.

本発明の光重合性組成物に用いるための重合性高分岐ポリマーを、以下の手順で調製した。
<重合性高分岐ポリマーの調製>
(合成例1)
合成例1では以下のようにして重合性高分岐ポリマーを調製した。
まず、コア分子としてトリエタノールアミンを用い、下記化学式に示す反応を行なった。トリエタノールアミン:グリシドール:アリルグリシジルエーテルは1:6:9の割合(モル比)とした。また、反応溶媒としてジグライムを用いた。

Figure 2009249605
A polymerizable hyperbranched polymer for use in the photopolymerizable composition of the present invention was prepared by the following procedure.
<Preparation of polymerizable hyperbranched polymer>
(Synthesis Example 1)
In Synthesis Example 1, a polymerizable hyperbranched polymer was prepared as follows.
First, triethanolamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio (molar ratio) of triethanolamine: glycidol: allyl glycidyl ether was 1: 6: 9. Moreover, diglyme was used as a reaction solvent.
Figure 2009249605

重合工程
アルゴン雰囲気下トリエタノールアミン 1.86 g (12.47 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.87 g (3.72 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 10 mlを加え、グリシドール 5.54 g (74.78 mmol)を18 mlの脱水THFに溶解して、THFを留去しながら約5.5時間を要して滴下した。
Polymerization step 1.86 g (12.47 mmol) of triethanolamine was heated to 90 ° C under an argon atmosphere, 0.87 g (3.72 mmol) of potassium methoxide (30% methanol solution) was added thereto, and the mixture was stirred for several minutes and then gradually reduced in pressure. The methanol was distilled off. 10 ml of diglyme was added, 5.54 g (74.78 mmol) of glycidol was dissolved in 18 ml of dehydrated THF, and dropwise added over about 5.5 hours while distilling off the THF.

修飾工程
30分攪拌後アリルグリシジルエーテル 12.82 g (112.32 mmol)を35 mlの脱水THFに溶解して、THFを留去しながら約11.5時間を要して滴下した。同温度で約4時間攪拌した後冷却し、メタノール30 mlで希釈してアンバーライトIR 120B HAG 30 mlのカラムに通液して中和した。カラムを30 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。残留液15.1 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=6/1)で精製した。表題化合物を無色油状物を3.13 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.82 (6H, m), 3.44-3.67 (72H, br), 3.87 (9H, s), 4.01 and 4.02 (18H, each s), 4.83 (9H, s), 5.16 (9H, d, J = 9.9 Hz), 5.30 (9H, d, J = 17.0 Hz), 5.90-5.94 (9H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 54.2, 63.1, 69.2, 69.6, 70.9, 71.1, 71.3, 71.6, 72.0, 72.6, 78.6, 78.9, 80.1, 80.3, 116.0, 134.9
Modification process
After stirring for 30 minutes, 12.82 g (112.32 mmol) of allyl glycidyl ether was dissolved in 35 ml of dehydrated THF and added dropwise over about 11.5 hours while distilling off the THF. The mixture was stirred for about 4 hours at the same temperature, cooled, diluted with 30 ml of methanol, and passed through a 30 ml column of Amberlite IR 120B HAG to neutralize. The column was washed with 30 ml of methanol, and both washing solutions were concentrated under reduced pressure. The residual liquid 15.1 g was purified by silica gel column chromatography (chloroform / methanol = 6/1). The title compound was obtained as a colorless oil (3.13 g). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.82 (6H, m), 3.44-3.67 (72H, br), 3.87 (9H, s), 4.01 and 4.02 (18H, each s), 4.83 ( 9H, s), 5.16 (9H, d, J = 9.9 Hz), 5.30 (9H, d, J = 17.0 Hz), 5.90-5.94 (9H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 54.2, 63.1, 69.2, 69.6, 70.9, 71.1, 71.3, 71.6, 72.0, 72.6, 78.6, 78.9, 80.1, 80.3, 116.0, 134.9

エーテル化工程
さらに、上記修飾工程で得られた化合物の水酸基を臭化アリルでアリルエーテル化して合成例1の重合性高分岐ポリマーを得た(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で化合物 3.13 gをトルエン6 mlに溶解しこれに臭化テトラブチルアンモニウム 0.75 g (2.33 mmol) および水5.5 mlに溶解した水酸化ナトリウム4.7 g (117.5 mmol) を加えた。40℃に加温、攪拌下臭化アリル 3.15 g (26.0 mmol)を2 mlのトルエンに溶解して約1時間で滴下した。同温度で18時間攪拌した後水20 ml、トルエン20 mlを加えて抽出、分液した。水層を再度20 mlのトルエンで抽出し、抽出液を併せて飽和食塩水で3回洗浄後無水硫酸ナトリウムで脱水し、濃縮した。微黄色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=15/1)で精製し、表題化合物を微黄色油状物を2.52 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.79 (6H, s), 3.50-3.71 (81H, br), 3.99 and 4.00 (18H, each s), 4.13 (18H, s), 5.12-5.16 (18H, m), 5.27 (18H, d, J = 17.0 Hz), 5.87-5.95 (18H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 55.6, 71.3, 72.1, 72.6, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6 Etherification Step Further, the hydroxyl group of the compound obtained in the modification step was allyl etherified with allyl bromide to obtain a polymerizable hyperbranched polymer of Synthesis Example 1 (see the following chemical formula).
Figure 2009249605
That is, in the modification step, 3.13 g of the compound was dissolved in 6 ml of toluene, and 0.75 g (2.33 mmol) of tetrabutylammonium bromide and 4.7 g (117.5 mmol) of sodium hydroxide dissolved in 5.5 ml of water were added thereto. The mixture was heated to 40 ° C., and 3.15 g (26.0 mmol) of allyl bromide was dissolved in 2 ml of toluene with stirring and added dropwise in about 1 hour. After stirring at the same temperature for 18 hours, 20 ml of water and 20 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 20 ml of toluene, and the extracts were combined, washed with saturated brine three times, dried over anhydrous sodium sulfate, and concentrated. The slightly yellow residual liquid was purified by silica gel column chromatography (chloroform / methanol = 15/1) to obtain 2.52 g of the title compound as a slightly yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.79 (6H, s), 3.50-3.71 (81H, br), 3.99 and 4.00 (18H, each s), 4.13 (18H, s), 5.12- 5.16 (18H, m), 5.27 (18H, d, J = 17.0 Hz), 5.87-5.95 (18H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 55.6, 71.3, 72.1, 72.6, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6

(合成例2)
合成例2では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてトリエタノールアミンを用い、下記化学式に示す反応を行なった。トリエタノールアミン:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。また、反応溶媒としてジグライムを用いた。

Figure 2009249605
(Synthesis Example 2)
In Synthesis Example 2, a polymerizable hyperbranched polymer was prepared as follows.
That is, the reaction shown in the following chemical formula was carried out using triethanolamine as the core molecule. The ratio (molar ratio) of triethanolamine: glycidol: allyl glycidyl ether was 1: 9: 12. Moreover, diglyme was used as a reaction solvent.
Figure 2009249605

重合工程
アルゴン雰囲気下トリエタノールアミン 1.49 g (0.01 mol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.78 mlを加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 7.5 mlを加え、グリシドール 6.67 g (0.09 mol)を17 mlの脱水THFに溶解して、THFを留去しながら約5.5時間を要して滴下した。
Polymerization step 1.49 g (0.01 mol) of triethanolamine was heated to 90 ° C under an argon atmosphere, 0.78 ml of potassium methoxide (30% methanol solution) was added thereto, and the mixture was stirred for several minutes. Left. 7.5 ml of diglyme was added, and 6.67 g (0.09 mol) of glycidol was dissolved in 17 ml of dehydrated THF, and dropwise added over about 5.5 hours while distilling off the THF.

修飾工程
そして、30分攪拌後アリルグリシジルエーテル 13.7 g (0.12 mol)を33 mlの脱水THFに溶解して、THFを留去しながら約11.5時間を要して滴下した。同温度で約5.5時間攪拌した後冷却し、メタノール50 mlで希釈してアンバーライトIR 120B H AG 30 mlのカラムに通液して中和した。カラムを40 mlのメタノールで洗浄し、洗浄液共に減圧下濃縮した。表題化合物を褐色油状物を14.4 g得た。このもののNMRを測定し、以下の結果を得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.83 (6H, b), 3.43-3.67 (99H, m), 3.88 (12H, s), 4.01, 4.02 (各12H, s), 4.84 (12H, s), 5.17 (12H, d, J = 9.9 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.90-5.94 (12H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 54.1, 69.3, 69.7, 70.0, 70.9, 71.2, 71.3, 71.7, 72.0, 72.8, 78.6, 78.8, 80.2, 80.4, 116.0, 134.8, 134.9
Modification Step Then, after stirring for 30 minutes, 13.7 g (0.12 mol) of allyl glycidyl ether was dissolved in 33 ml of dehydrated THF, and dropwise added over about 11.5 hours while distilling off THF. The mixture was stirred at the same temperature for about 5.5 hours, cooled, diluted with 50 ml of methanol, and neutralized by passing through a column of Amberlite IR 120B H AG 30 ml. The column was washed with 40 ml of methanol, and both washing solutions were concentrated under reduced pressure. 14.4 g of the title compound was obtained as a brown oil. NMR of this product was measured, and the following results were obtained. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.83 (6H, b), 3.43-3.67 (99H, m), 3.88 (12H, s), 4.01, 4.02 (each 12H, s), 4.84 ( 12H, s), 5.17 (12H, d, J = 9.9 Hz), 5.29 (12H, d, J = 17.0 Hz), 5.90-5.94 (12H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 54.1, 69.3, 69.7, 70.0, 70.9, 71.2, 71.3, 71.7, 72.0, 72.8, 78.6, 78.8, 80.2, 80.4, 116.0, 134.8, 134.9

エーテル化工程
さらに、上記修飾工程で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。

Figure 2009249605
Etherification Step Further, the hydroxyl group of the compound obtained in the modification step was allyl etherified with allyl bromide (see the following chemical formula).
Figure 2009249605

すなわち、上記修飾工程で得た化合物 6.5gをトルエン13 mlに溶解しこれに臭化テトラブチルアンモニウム 1.55 g (4.8 mmol) および水12 mlに溶解した水酸化ナトリウム9.59 g (239.8 mmol) を加えた。アルゴン雰囲気下40℃に加温、攪拌しながら臭化アリル 6.48 g (53.5 mmol)を4 mlのトルエンに溶解して約1時間で滴下した。同温度で17時間攪拌した後水20 mlを加えて分液した。水層を20 mlのトルエンで抽出し、有機層を併せて水で2回洗浄後無水硫酸ナトリウムで脱水し、濃縮した。微黄色残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=15/1)で精製し、微黄色油状物を4.13 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.79 (6H, bs), 3.51-3.71 (111H, m), 4.00 and 4.01(24H, each s) 4.15 (24H, s), 5.15 (12H, d, J = 12.1 Hz), 5.17 (12H, d, J = 11.5 Hz), 5.29 (24H, d, J = 17.1 Hz), 5.91-5.96 (24H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 55.6, 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6
That is, 6.5 g of the compound obtained in the above modification step was dissolved in 13 ml of toluene, and 1.55 g (4.8 mmol) of tetrabutylammonium bromide and 9.59 g (239.8 mmol) of sodium hydroxide dissolved in 12 ml of water were added thereto. . With heating and stirring at 40 ° C. under an argon atmosphere, 6.48 g (53.5 mmol) of allyl bromide was dissolved in 4 ml of toluene and added dropwise in about 1 hour. After stirring at the same temperature for 17 hours, 20 ml of water was added to separate the layers. The aqueous layer was extracted with 20 ml of toluene, and the organic layers were combined, washed twice with water, dried over anhydrous sodium sulfate, and concentrated. The slightly yellow residue was purified by silica gel column chromatography (chloroform / methanol = 15/1) to obtain 4.13 g of a slightly yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.79 (6H, bs), 3.51-3.71 (111H, m), 4.00 and 4.01 (24H, each s) 4.15 (24H, s), 5.15 (12H , d, J = 12.1 Hz), 5.17 (12H, d, J = 11.5 Hz), 5.29 (24H, d, J = 17.1 Hz), 5.91-5.96 (24H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 55.6, 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6

(合成例3)
合成例3では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン:グリシドール:アリルグリシジルエーテルは1:4:8の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 3)
In Synthesis Example 3, a polymerizable hyperbranched polymer was prepared as follows.
That is, N, N-bis (2,3-dihydroxypropyl) octylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio of N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: allyl glycidyl ether was 1: 4: 8 (molar ratio).
Figure 2009249605

重合工程
アルゴン気流下N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン 1.88 g (6.77 mol)を80℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.63 g (2.69 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて90℃に加熱しながらグリシドール 2.01 g (27.1 mmol)を脱水THF 11 mlに溶解して、THFを留去しながら約2.5時間を要して滴下した。
Polymerization Step N, N-bis (2,3-dihydroxypropyl) octylamine 1.88 g (6.77 mol) in an argon stream was stirred in an oil bath at 80 ° C. and potassium methoxide (30% methanol solution) 0.63 g (2.69 mmol) Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 5 ml of dehydrated diglyme and heating to 90 ° C., 2.01 g (27.1 mmol) of glycidol was dissolved in 11 ml of dehydrated THF and added dropwise over about 2.5 hours while distilling off THF.

修飾工程
続いてアリルグリシジルエーテル 6.19 g (54.2 mmol)を脱水THF 22 mlに溶解して、THFを留去しながら約5.5 時間を要して滴下した。同温度で2.5時間攪拌した後冷却し、メタノール30 mlを加えてアンバーライトIR 120B H AG 25 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=2/1)により精製し、さらに活性炭で処理した後0.2 μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、淡黄色油状物を3.57 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.49 (2H, bs), 2.59, 3.44-3.77 (58H, m,), 3.88 (8H, s), 4.02 (16H, s), 4.85 (8H, s), 5.16 (8H, d, J = 9.3 Hz), 5.28 8H, d, J = 17.6 Hz), 5.88-5.94 (8H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.3, 23.7, 28.5, 30.4, 30.6, 33.0, 57.0, 62.8, 64.6, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.2, 117.3,136.0, 136.1
Modification Step Subsequently, 6.19 g (54.2 mmol) of allyl glycidyl ether was dissolved in 22 ml of dehydrated THF, and dropwise added over about 5.5 hours while distilling off the THF. After stirring at the same temperature for 2.5 hours, the mixture was cooled, 30 ml of methanol was added, and neutralized through a column of 25 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 2/1), further treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 3.57 g of a pale yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.49 (2H, bs), 2.59, 3.44-3.77 (58H, m,), 3.88 ( 8H, s), 4.02 (16H, s), 4.85 (8H, s), 5.16 (8H, d, J = 9.3 Hz), 5.28 8H, d, J = 17.6 Hz), 5.88-5.94 (8H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.3, 23.7, 28.5, 30.4, 30.6, 33.0, 57.0, 62.8, 64.6, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.2, 117.3,136.0, 136.1

(合成例4)
合成例4では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン:グリシドール:アリルグリシジルエーテルは1:12:16の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 4)
In Synthesis Example 4, a polymerizable hyperbranched polymer was prepared as follows.
That is, N, N-bis (2,3-dihydroxypropyl) octylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: allyl glycidyl ether was in a ratio (molar ratio) of 1:12:16.
Figure 2009249605

重合工程
アルゴン気流下N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン1.09 g (3.91 mmol)を80℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.364 g (1.56 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて90℃に加熱しながら、グリシドール 3.47 g (46.9 mmol)を脱水THF 11 mlに溶解して、THFを留去しながら約3.5時間を要して滴下した。
Polymerization step While stirring 1.90 g (3.91 mmol) of N, N-bis (2,3-dihydroxypropyl) octylamine in an 80 ° C. oil bath under an argon stream, 0.364 g (1.56 mmol) of potassium methoxide (30% methanol solution) Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 5 ml of dehydrated diglyme and heating to 90 ° C., 3.47 g (46.9 mmol) of glycidol was dissolved in 11 ml of dehydrated THF and added dropwise over about 3.5 hours while distilling off THF.

修飾工程
続いてアリルグリシジルエーテル 7.14 g (62.6 mmol)を脱水THF 22 mlに溶解して、THFを留去しながら約7 時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール30 mlを加えてアンバーライトIR 120B H AG 25 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=3/1)により精製し、さらに活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、淡黄色油状物を3.61 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.50 (2H, bs), 2.59 (6H, b), 3.42-3.77 (180H, m), 3.88 (16H, s), 4.01 (32H, s), 4.84 (16H, s), 5.17 (16H, d, J = 9.3 Hz), 5.30 (16H, d, J = 17.6 Hz), 5.90-5.94 (16H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.5, 23.7, 28.5, 30.6, 30.8, 33.0, 57.0, 62.8, 64.3, 70.6, 70.9, 71.2, 72.2, 72.4, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.4, 136.0, 136.1
Modification Step Subsequently, 7.14 g (62.6 mmol) of allyl glycidyl ether was dissolved in 22 ml of dehydrated THF, and dropwise added over about 7 hours while distilling off the THF. The mixture was stirred at the same temperature for 3 hours, cooled, neutralized through a column of 25 ml of Amberlite IR 120B H AG by adding 30 ml of methanol. The solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 3/1), further treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 3.61 g of a pale yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.50 (2H, bs), 2.59 (6H, b), 3.42-3.77 (180H, m ), 3.88 (16H, s), 4.01 (32H, s), 4.84 (16H, s), 5.17 (16H, d, J = 9.3 Hz), 5.30 (16H, d, J = 17.6 Hz), 5.90-5.94 (16H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.5, 23.7, 28.5, 30.6, 30.8, 33.0, 57.0, 62.8, 64.3, 70.6, 70.9, 71.2, 72.2, 72.4, 72.6, 73.0, 73.3, 74.1, 79.8, 80.1, 81.4, 136.0, 136.1

(合成例5)
合成例5では、合成例4で得た化合物の水酸基を臭化アリルでアリルエーテル化して重合性高分岐ポリマーを調製した(下記化学式参照)。

Figure 2009249605
すなわち、水3 mlに水酸化ナトリウム2.8 g (70.6 mmol) を溶解し、これに臭化テトラブチルアンモニウム 0.45 g (1.40 mmol) および上記修飾工程で得た化合物1.95 gをトルエン3.5 mlに溶解して加えた。40℃に加温、攪拌下臭化アリル 1.90 g (15.7 mmol)を0.5 mlのトルエンに溶解して滴下した。同温度で21時間攪拌した後水10 ml、トルエン20 mlを加えて抽出、分液した。水層を再度15 mlのトルエンで抽出し、抽出液を併せて飽和食塩水で3回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/エタノール=25/1)で精製し、次いでメタノール溶液として0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、無色油状物を1.2 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.51-2.59 (6H, m), 3.49-3.70 (146H, m), 4.01 (32H, s), 4.15 (32H, s), 5.14 (16H, d, J = 11.0 Hz), 5.16 (16H, d, J = 11.5 Hz), 5.29 (32H, d, J = 17.0 Hz,), 5.85-5.91 (32H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.6 (Synthesis Example 5)
In Synthesis Example 5, a polymerizable hyperbranched polymer was prepared by allylating the hydroxyl group of the compound obtained in Synthesis Example 4 with allyl bromide (see the following chemical formula).
Figure 2009249605
That is, 2.8 g (70.6 mmol) of sodium hydroxide was dissolved in 3 ml of water, and 0.45 g (1.40 mmol) of tetrabutylammonium bromide and 1.95 g of the compound obtained in the modification step were dissolved in 3.5 ml of toluene. added. The mixture was heated to 40 ° C., and 1.90 g (15.7 mmol) of allyl bromide was dissolved in 0.5 ml of toluene with stirring. After stirring at the same temperature for 21 hours, 10 ml of water and 20 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 15 ml of toluene, and the extracts were combined and washed three times with saturated brine. The mixture was dehydrated with anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform / ethanol = 25/1), and then filtered through a 0.2 μm filter as a methanol solution. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 1.2 g of a colorless oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.51-2.59 (6H, m), 3.49-3.70 (146H , m), 4.01 (32H, s), 4.15 (32H, s), 5.14 (16H, d, J = 11.0 Hz), 5.16 (16H, d, J = 11.5 Hz), 5.29 (32H, d, J = 17.0 Hz,), 5.85-5.91 (32H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.6

(合成例6)
合成例6では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン:グリシドール:アリルグリシジルエーテル:臭化アリルは1:28:32:32の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 6)
In Synthesis Example 6, a polymerizable hyperbranched polymer was prepared as follows.
That is, N, N-bis (2,3-dihydroxypropyl) octylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: allyl glycidyl ether: allyl bromide was in a ratio (molar ratio) of 1: 28: 32: 32.
Figure 2009249605

重合工程
アルゴン気流下N,N-ビス(2,3−ジヒドロキシプロピル)オクチルアミン 0.4 g (1.44 mmol)を80℃油浴上で攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.134 g (0.576 mmol)を加えた。数分間攪拌した後減圧下メタノールを留去した。脱水ジグライム 5 mlを加えて100℃に加熱しながらグリシドール 2.99 g (40.37 mmol)を脱水THF 10 mlに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization Step N, N-Bis (2,3-dihydroxypropyl) octylamine 0.4 g (1.44 mmol) was stirred in an 80 ° C. oil bath under an argon stream, and potassium methoxide (30% methanol solution) 0.134 g (0.576 mmol) ) Was added. After stirring for several minutes, methanol was distilled off under reduced pressure. While adding 5 ml of dehydrated diglyme and heating to 100 ° C., 2.99 g (40.37 mmol) of glycidol was dissolved in 10 ml of dehydrated THF and added dropwise over about 3 hours while distilling off THF.

修飾工程
1時間攪拌後アリルグリシジルエーテル 5.27 g (46.14 mmol)を脱水THF 20 mlに溶解して、THFを留去しながら約6時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール25 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下80℃で溶媒を留去して橙色油状物を6.53 g得た。
Modification Step After stirring for 1 hour, 5.27 g (46.14 mmol) of allyl glycidyl ether was dissolved in 20 ml of dehydrated THF and added dropwise over about 6 hours while distilling off the THF. The mixture was stirred at the same temperature for 3 hours, cooled, added with 25 ml of methanol, and neutralized through a column of 20 ml of Amberlite IR 120B H AG. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 6.53 g of an orange oil.

エーテル化工程
さらにエーテル化工程として、修飾工程で得られた油状物 3.0 gをトルエン7 mlに溶解し、これにアルゴン気流下臭化テトラブチルアンモニウム 0.69 g (2.14 mmol) および水酸化ナトリウム4.32 g (108.0 mmol) を水5 mlに溶解して加えた。40℃に加温、攪拌下臭化アリル 2.90 g (24.0 mmol)を1 mlのトルエンに溶解して1.5時間で滴下した。同温度で18時間攪拌した後水、トルエン各10 mlを加えて抽出、分液した。水層を再度10 mlのトルエンで抽出し、有機層を併せて水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=30/1)で精製し、主留部1.4 gを得た。これを再度シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1)で精製し、次いでメタノール溶液として0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、無色油状物を0.59 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.52-2.60 (6H, m), 3.33 and 3.52-.3.66 (306H, m), 4.01(64H, s), 4.15 (64H, s), 5.14 (32H, d, J = 11.0 Hz), 5.16 (32H, d, J = 11.5 Hz), 5.29 (64H, d, J = 15.9.0 Hz), 5.91-5.92 (64H, m)
13C -NMR ((600 MHz, methanol-d4) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.7
Etherification step Further, as an etherification step, 3.0 g of the oily substance obtained in the modification step was dissolved in 7 ml of toluene, and 0.69 g (2.14 mmol) of tetrabutylammonium bromide and 4.32 g of sodium hydroxide ( 108.0 mmol) was dissolved in 5 ml of water and added. The mixture was heated to 40 ° C., and 2.90 g (24.0 mmol) of allyl bromide was dissolved in 1 ml of toluene with stirring and added dropwise over 1.5 hours. After stirring at the same temperature for 18 hours, 10 ml each of water and toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 10 ml of toluene, and the organic layers were combined and washed twice with water. After dehydrating with anhydrous sodium sulfate and concentrating, the residual liquid was purified by silica gel column chromatography (chloroform / methanol = 30/1) to obtain 1.4 g of a main fraction. This was purified again by silica gel column chromatography (chloroform / methanol = 20/1), and then filtered through a 0.2 μm filter as a methanol solution. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 0.59 g of a colorless oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 0.91 (3H, bs), 1.32 (10H, bs), 1.46 (2H, bs), 2.52-2.60 (6H, m), 3.33 and 3.52-. 3.66 (306H, m), 4.01 (64H, s), 4.15 (64H, s), 5.14 (32H, d, J = 11.0 Hz), 5.16 (32H, d, J = 11.5 Hz), 5.29 (64H, d , J = 15.9.0 Hz), 5.91-5.92 (64H, m)
13 C -NMR ((600 MHz, methanol-d 4 ) δ: 14.6, 23.8, 28.6, 30.6, 33.1, 57.0, 71.3, 72.2, 72.6, 73.3, 78.6, 78.8, 80.0, 80.2, 117.0, 117.2, 136.2, 136.7

(合成例7)
合成例7では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N,N’,N’-テトラキス(2,3-ジヒドロキシプロピル)エチレンジアミンを用い、下記化学式に示す反応を行なった。N,N,N’,N’-テトラキス(2,3-ジヒドロキシプロピル)エチレンジアミン:グリシドール:アリルグリシジルエーテルは1:8:16の割合(モル数比)とした。

Figure 2009249605
(Synthesis Example 7)
In Synthesis Example 7, a polymerizable hyperbranched polymer was prepared as follows.
Specifically, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine was used as the core molecule, and the reaction represented by the following chemical formula was performed. N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine: glycidol: allyl glycidyl ether was in a ratio (molar ratio) of 1: 8: 16.
Figure 2009249605

重合工程
アルゴン気流下N,N,N’,N’-テトラキス(2,3-ジヒドロキシプロピル)エチレンジアミン1.67 g (4.7 mmol)を90℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.88 g (3.76 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 10 mlおよびDMF 5 mlを加えて110℃に加熱しながらグリシドール2.78 g (37.5 mmol)を脱水THF 9 mlに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization Step N, N, N ′, N′-Tetrakis (2,3-dihydroxypropyl) ethylenediamine 1.67 g (4.7 mmol) in an argon gas stream with stirring in a 90 ° C. oil bath, potassium methoxide (30% methanol solution) 0.88 g (3.76 mmol) was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 10 ml of dehydrated diglyme and 5 ml of DMF and heating to 110 ° C., 2.78 g (37.5 mmol) of glycidol was dissolved in 9 ml of dehydrated THF and added dropwise over about 3 hours while distilling off THF.

修飾工程
続いてアリルグリシジルエーテル 8.58 g (75.2 mmol)を脱水THF 26 mlに溶解して、THFを留去しながら約6 時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール30 mlを加えてアンバーライトIR 120B H AG 30 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=3/1)により精製し、さらに活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、黄色油状物を3.67 g得た。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.66 (12H, br), 3.47-3.67 (116H, m), 3.86 (16H, s), 4.01 (32H, s), 4.85 (16H, s), 5.15-5.17 (16H, m), 5.28 (16H, d, J = 17.6 Hz), 5.88-5.94 (16H, m)
13C -NMR (600 MHz, methanol-d4) δ: 54.5, 59.3, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.0, 79.9, 80.2, 117.2, 136.2
Modification Step Subsequently, 8.58 g (75.2 mmol) of allyl glycidyl ether was dissolved in 26 ml of dehydrated THF, and dropwise added over about 6 hours while distilling off the THF. After stirring at the same temperature for 3 hours, the mixture was cooled, 30 ml of methanol was added and neutralized through a column of 30 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 3/1), further treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 3.67 g of a yellow oil. NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.66 (12H, br), 3.47-3.67 (116H, m), 3.86 (16H, s), 4.01 (32H, s), 4.85 (16H, s ), 5.15-5.17 (16H, m), 5.28 (16H, d, J = 17.6 Hz), 5.88-5.94 (16H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 54.5, 59.3, 70.6, 70.9, 71.2, 72.6, 73.0, 73.3, 74.0, 79.9, 80.2, 117.2, 136.2

(合成例8)
合成例8では合成例7で得た化合物の水酸基を臭化アリルでアリルエーテル化して重合性高分岐ポリマーを調製した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得た化合物4.8 g (1.73 mmol)をトルエン10 mlに溶解し、これに水9 mlに溶解した水酸化ナトリウム7.43 g (185.8 mmol) および臭化テトラブチルアンモニウム 1.2 g (3.72mmol)を加えた。40℃に加温、攪拌下臭化アリル 5.02 g (41.5 mmol)を3 mlのトルエンに溶解して1.5時間で滴下した。同温度で15時間攪拌した後水20 ml、トルエン20 mlを加えて抽出、分液した。水層を再度20 mlのトルエンで抽出し、抽出液を併せて水で洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=15/1)で精製し、次いで0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、黄色油状物を5.19 g得た(収率88.0%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.60-2.66 (12H, br), 3.49-3.66 (132H, m), 4.00 (32H, s), 4.14 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.5 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.87-5.92 (32H, m)
13C -NMR (600 MHz, methanol-d4) δ: 54.0, 56.8, 70.1, 70.9, 71.4, 72.0, 77.3, 77.6, 78.7, 79.0, 115.8, 115.9, 135.0, 135.5 (Synthesis Example 8)
In Synthesis Example 8, a hydroxyl group of the compound obtained in Synthesis Example 7 was allyl etherified with allyl bromide to prepare a polymerizable hyperbranched polymer (see the following chemical formula).
Figure 2009249605
That is, 4.8 g (1.73 mmol) of the compound obtained in the above modification step was dissolved in 10 ml of toluene, and 7.43 g (185.8 mmol) of sodium hydroxide and 1.2 g (3.72) of tetrabutylammonium bromide dissolved in 9 ml of water. mmol) was added. While warming to 40 ° C., 5.02 g (41.5 mmol) of allyl bromide was dissolved in 3 ml of toluene with stirring and added dropwise over 1.5 hours. After stirring at the same temperature for 15 hours, 20 ml of water and 20 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 20 ml of toluene, and the extracts were combined and washed with water. The mixture was dehydrated with anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform / methanol = 15/1), and then filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 5.19 g of a yellow oil (yield: 88.0%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.60-2.66 (12H, br), 3.49-3.66 (132H, m), 4.00 (32H, s), 4.14 (32H, s), 5.13 (16H , d, J = 12.1 Hz), 5.15 (16H, d, J = 11.5 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.87-5.92 (32H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 54.0, 56.8, 70.1, 70.9, 71.4, 72.0, 77.3, 77.6, 78.7, 79.0, 115.8, 115.9, 135.0, 135.5

(合成例9)
合成例9では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N-ビス(2,3-ジヒドロキシプロピル)ベンジルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3-ジヒドロキシプロピル)ベンジルアミン:グリシドール:アリルグリシジルエーテルは1:12:16の割合(モル数比)とした。

Figure 2009249605
(Synthesis Example 9)
In Synthesis Example 9, a polymerizable hyperbranched polymer was prepared as follows.
That is, N, N-bis (2,3-dihydroxypropyl) benzylamine was used as a core molecule, and the reaction represented by the following chemical formula was performed. The ratio of N, N-bis (2,3-dihydroxypropyl) benzylamine: glycidol: allyl glycidyl ether was 1:12:16 (molar ratio).
Figure 2009249605

重合工程
アルゴン気流下N,N-ビス(2,3-ジヒドロキシプロピル)ベンジルアミン2.05 g (8.0 mmol)を100℃に加熱、攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.75 g (3.2 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 7 mlおよびDMF 5 mlを加えてグリシドール 7.12 g (96.2 mmol)を脱水THF 13 mlに溶解して、THFを留去しながら約3.6時間を要して滴下した。
Polymerization process N, N-bis (2,3-dihydroxypropyl) benzylamine (2.05 g, 8.0 mmol) was heated to 100 ° C under argon flow, and potassium methoxide (30% methanol solution) 0.75 g (3.2 mmol) with stirring. Was added. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. 7 ml of dehydrated diglyme and 5 ml of DMF were added, 7.12 g (96.2 mmol) of glycidol was dissolved in 13 ml of dehydrated THF, and the mixture was added dropwise over about 3.6 hours while distilling off THF.

修飾工程
続いてアリルグリシジルエーテル 14.6 g (128.2 mmol)を脱水THF 26 mlに溶解して、THFを留去しながら約7.4 時間を要して滴下した。同温度で2時間攪拌した後冷却し、メタノール40 mlを加えてアンバーライトIR 120B H AG 30 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、残留油状物21.65 g中10 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=7/3)により精製し、さらにメタノール溶液として活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、黄色油状物を7.5 g得た。(収率68.2%)このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.63-2.66 (4H, br), 3.45-3.67 (132H, m), 3.87 (16H, s), 4.01 (32H, s,), 4.77 (16H, s), 5.17 (16H, d, J = 9.9 Hz), 5.30 (16H, d, J = 17.0 Hz), 5.90-5.93 (16H, m), 7.25-7.34 (5H, m)
13C -NMR (600 MHz, methanol-d4) δ: 61.4, 62.8, 64.5, 70.5, 70.9, 71.2, 72.6, 73.0, 73.2, 74.0, 79.8, 80.1, 117.2, 128.1, 129.4, 130.3, 130.4, 136.0, 136.2,
Modification Step Subsequently, 14.6 g (128.2 mmol) of allyl glycidyl ether was dissolved in 26 ml of dehydrated THF, and dropwise added over about 7.4 hours while distilling off THF. The mixture was stirred at the same temperature for 2 hours and then cooled, and 40 ml of methanol was added and neutralized through a column of 30 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), and 10 g of 21.65 g of the residual oil was purified by silica gel column chromatography (chloroform / methanol = 7/3). Filtered. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 7.5 g of a yellow oily substance. (Yield 68.2%) NMR of this product was measured and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.63-2.66 (4H, br), 3.45-3.67 (132H, m), 3.87 (16H, s), 4.01 (32H, s,), 4.77 ( 16H, s), 5.17 (16H, d, J = 9.9 Hz), 5.30 (16H, d, J = 17.0 Hz), 5.90-5.93 (16H, m), 7.25-7.34 (5H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 61.4, 62.8, 64.5, 70.5, 70.9, 71.2, 72.6, 73.0, 73.2, 74.0, 79.8, 80.1, 117.2, 128.1, 129.4, 130.3, 130.4, 136.0 , 136.2,

(合成例10)
合成例10では合成例9で得た化合物の水酸基を臭化アリルでアリルエーテル化して重合性高分岐ポリマーを調製した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得られた化合物4.39 gをトルエン8 mlに溶解し、これに水7.5 mlに溶解した水酸化ナトリウム6.35 g (158.7 mmol) および臭化テトラブチルアンモニウム 1.02 g (3.16mmol)を加えた。アルゴン気流下40℃に加温、攪拌しながら臭化アリル 4.29 g (35.47 mmol)を2 mlのトルエンに溶解して50分で滴下した。同温度で16時間攪拌した後水30 ml、トルエン30 mlを加えて抽出、分液した。水層を再度30 mlのトルエンで抽出し、抽出液を併せて水で洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=25/1)で精製し、次いで0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、表題化合物を微黄色油状物を4.78 g得た(収率89.6%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 2.62 (4H, br), 3.50-3.65 (148H, m), 3.99 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m), 7.24-7.33 (5H, m)
13C -NMR (600 MHz, methanol-d4) δ: 57.6, 61.5, 71.2, 72.5, 73.2, 72.1, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6, 128.0, 129.3, 130.2, 141.0 (Synthesis Example 10)
In Synthesis Example 10, a hydroxyl group of the compound obtained in Synthesis Example 9 was allyl etherified with allyl bromide to prepare a polymerizable hyperbranched polymer (see the following chemical formula).
Figure 2009249605
That is, 4.39 g of the compound obtained in the above modification step was dissolved in 8 ml of toluene, and 6.35 g (158.7 mmol) of sodium hydroxide and 1.02 g (3.16 mmol) of tetrabutylammonium bromide dissolved in 7.5 ml of water were added thereto. added. While being heated to 40 ° C. under an argon stream and stirring, 4.29 g (35.47 mmol) of allyl bromide was dissolved in 2 ml of toluene and added dropwise over 50 minutes. After stirring at the same temperature for 16 hours, 30 ml of water and 30 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 30 ml of toluene, and the extracts were combined and washed with water. The mixture was dehydrated with anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform / methanol = 25/1), and then filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 4.78 g of the title compound as a pale yellow oil (yield 89.6%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 2.62 (4H, br), 3.50-3.65 (148H, m), 3.99 (32H, s), 4.13 (32H, s), 5.13 (16H, d , J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m), 7.24-7.33 (5H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 57.6, 61.5, 71.2, 72.5, 73.2, 72.1, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.2, 136.6, 128.0, 129.3, 130.2, 141.0

(合成例11)
合成例11では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN-フェニルジエタノールアミンを用い、下記化学式に示す反応を行なった。N-フェニルジエタノールアミン:グリシドール:アリルグリシジルエーテルは1:6:8の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 11)
In Synthesis Example 11, a polymerizable hyperbranched polymer was prepared as follows.
That is, N-phenyldiethanolamine was used as the core molecule, and the reaction represented by the following chemical formula was performed. The ratio (molar ratio) of N-phenyldiethanolamine: glycidol: allyl glycidyl ether was 1: 6: 8.
Figure 2009249605

重合工程
アルゴン気流下N-フェニルジエタノールアミン 1.0 g (5.52 mmol)を90℃に加熱、溶融し、これにカリウムメトキシド (30% メタノール溶液) 0.26 g (1.11 mmol)を加えた。数分間攪拌した後徐々に減圧してメタノールを留去し、脱水ジグライム 5 mlを加えた。90℃に加熱しながらグリシドール 2.45 g (33.1 mmol)を脱水THF 10 mlに溶解して、THFを留去しながら約3時間を要して滴下した。
Polymerization step Under an argon stream, N-phenyldiethanolamine 1.0 g (5.52 mmol) was heated to 90 ° C and melted, and potassium methoxide (30% methanol solution) 0.26 g (1.11 mmol) was added thereto. After stirring for several minutes, the pressure was gradually reduced to distill off methanol, and 5 ml of dehydrated diglyme was added. While being heated to 90 ° C., 2.45 g (33.1 mmol) of glycidol was dissolved in 10 ml of dehydrated THF, and added dropwise over about 3 hours while distilling off THF.

修飾工程
続いてアリルグリシジルエーテル 5.04 g (44.2 mmol)を脱水THF 20 mlに溶解して、THFを留去しながら約6 時間を要して滴下した。同温度で5時間攪拌した後冷却し、メタノール25 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下溶媒を留去し(80℃)、再度メタノール30 mlに溶解して活性炭処理した後0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、黄色油状物を5.06 g得た(収率60.2%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.40-3.66 (68H, m), 3.86 (8H, s), 4.00 (16H, s), 4.75 (8H, s), 5.16 (8H, d, J = 9.4 Hz), 5.28 (8H, d, J = 17.0 Hz), 5.89-5.92 (8H, m), 6.60-6.61 (1H, m), 6.72-6.73 (2H, m), 7.13-7.16 (2H, m)
13C -NMR (600 MHz, methanol-d4) δ: 50.7, 61.5, 63.2, 69.0, 69.3, 69.6, 70.0, 71.2, 71.4, 71.8, 72.0, 72.9, 78.6, 78.8, 80.1, 80.3, 117.2, 113.1, 117.2, 130.1, 149.1, 135.9, 136.1
Modification Step Subsequently, 5.04 g (44.2 mmol) of allyl glycidyl ether was dissolved in 20 ml of dehydrated THF, and dropwise added over about 6 hours while distilling off the THF. The mixture was stirred at the same temperature for 5 hours, cooled, added with 25 ml of methanol, and neutralized through a column of 20 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure (80 ° C.), dissolved in 30 ml of methanol again, treated with activated carbon, and filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 5.06 g of a yellow oil (yield 60.2%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.40-3.66 (68H, m), 3.86 (8H, s), 4.00 (16H, s), 4.75 (8H, s), 5.16 (8H, d , J = 9.4 Hz), 5.28 (8H, d, J = 17.0 Hz), 5.89-5.92 (8H, m), 6.60-6.61 (1H, m), 6.72-6.73 (2H, m), 7.13-7.16 ( 2H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 50.7, 61.5, 63.2, 69.0, 69.3, 69.6, 70.0, 71.2, 71.4, 71.8, 72.0, 72.9, 78.6, 78.8, 80.1, 80.3, 117.2, 113.1 , 117.2, 130.1, 149.1, 135.9, 136.1

(合成例12)
合成例12では合成例11で得た化合物の水酸基を臭化アリルでアリルエーテル化して重合性高分岐ポリマーを調製した(下記化学式参照)。

Figure 2009249605
(Synthesis Example 12)
In Synthesis Example 12, a polymerizable hyperbranched polymer was prepared by allylating the hydroxyl group of the compound obtained in Synthesis Example 11 with allyl bromide (see the following chemical formula).
Figure 2009249605

すなわち、上記修飾工程で得た化合物2.0 gをトルエン5 mlに溶解し、これに臭化テトラブチルアンモニウム 0.45 g (1.40mmol) および水3 mlに溶解した水酸化ナトリウム2.83 g (70.8 mmol)を加えた。40℃に加温、攪拌下臭化アリル 1.90 g (15.7 mmol)を0.5 mlのトルエンに溶解して50分で滴下した。同温度で16.5時間攪拌した後水10 ml、トルエン15 mlを加えて抽出、分液した。水層を再度15 mlのトルエンで抽出し、抽出液を併せて飽和食塩水で洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1)で精製し、次いで0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、表題化合物を無色油状物を1.48 g得た。(収率61.5%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.50-3.64 (68H, m), 3.99 (16H, s), 4.13 (16H, s), 5.13 (8H, d, J = 11.0 Hz,), 5.15 (8H, d, J = 11.5 Hz), 5.27 (16H, d, J = 17.1 Hz), 5.89-5.90 (16H, m), 6.58-6.61 (1H, m,), 6.71-6.72 (2H, m,), 7.13-7.15 (2H, m)
13C -NMR (600 MHz, methanol-d4) δ: 52.0, 70.2, 71.2, 72.1, 72.5, 73.1, 78.4, 78.7, 79.8, 80.1, 116.9, 113.0, 117.1, 130.2, 149.1, 136.2, 136.6
That is, 2.0 g of the compound obtained in the modification step was dissolved in 5 ml of toluene, and 0.45 g (1.40 mmol) of tetrabutylammonium bromide and 2.83 g (70.8 mmol) of sodium hydroxide dissolved in 3 ml of water were added thereto. It was. The mixture was heated to 40 ° C., and 1.90 g (15.7 mmol) of allyl bromide was dissolved in 0.5 ml of toluene with stirring and added dropwise over 50 minutes. After stirring at the same temperature for 16.5 hours, 10 ml of water and 15 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 15 ml of toluene, and the extracts were combined and washed with saturated brine. The mixture was dehydrated with anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform / methanol = 20/1), and then filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 1.48 g of the title compound as a colorless oil. (Yield 61.5%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.50-3.64 (68H, m), 3.99 (16H, s), 4.13 (16H, s), 5.13 (8H, d, J = 11.0 Hz,) , 5.15 (8H, d, J = 11.5 Hz), 5.27 (16H, d, J = 17.1 Hz), 5.89-5.90 (16H, m), 6.58-6.61 (1H, m,), 6.71-6.72 (2H, m,), 7.13-7.15 (2H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 52.0, 70.2, 71.2, 72.1, 72.5, 73.1, 78.4, 78.7, 79.8, 80.1, 116.9, 113.0, 117.1, 130.2, 149.1, 136.2, 136.6

(合成例13)
合成例13では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてトリエタノールアミンを用い、下記化学式に示す反応を行なった。トリエタノールアミン:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:9:12の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 13)
In Synthesis Example 13, a polymerizable hyperbranched polymer was prepared as follows.
That is, the reaction shown in the following chemical formula was carried out using triethanolamine as the core molecule. Triethanolamine: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was in a ratio (molar ratio) of 1: 9: 12.
Figure 2009249605

重合工程
アルゴン雰囲気下トリエタノールアミン 0.2 g (1.34 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.09 g (0.385 mmol)を加えて数分間攪拌した後徐々に減圧し、メタノールを留去した。ジグライム 4 mlを加え、130℃に昇温した後グリシドール 0.91 g (12.2 mmol)を4.5 mlの脱水THFに溶解して、THFを留去しながら約1.5時間で滴下した。
Polymerization step Under argon atmosphere, triethanolamine 0.2 g (1.34 mmol) was heated to 90 ° C, potassium methoxide (30% methanol solution) 0.09 g (0.385 mmol) was added thereto, and the mixture was stirred for several minutes and then gradually reduced in pressure. The methanol was distilled off. After 4 ml of diglyme was added and the temperature was raised to 130 ° C., 0.91 g (12.2 mmol) of glycidol was dissolved in 4.5 ml of dehydrated THF, and dropwise added in about 1.5 hours while distilling off THF.

修飾工程
30分攪拌後3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 5.0 g (1.4 mmol)を7 mlの脱水THFに溶解して、THFを留去しながら約3.5時間を要して滴下した。同温度で約2.5時間攪拌した後冷却し、トルエン25 mlで希釈して0.5% 蓚酸20 mlで洗浄した。さらに飽和食塩水で2回洗浄した後減圧下濃縮した。残留液6.28 gをシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)で精製し、黄色油状物を4.65 g得た(収率77.6%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.50 (48H, s), 2.72 (6H, s), 3.30-3.70 (123H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 8.2 Hz), 5.15 (24H, d, J = 16.5 Hz), 5.86 (24H, bs), 6.36 (12H, s), 6.45 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 58.1, 58.2, 67.3, 69.5, 69.8, 70.4, 71.9, 72.2, 72.8, 78.7, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6)
Modification process
After stirring for 30 minutes, 5.0 g (1.4 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 7 ml of dehydrated THF, and dropwise added over about 3.5 hours while distilling off THF. The mixture was stirred at the same temperature for about 2.5 hours, cooled, diluted with 25 ml of toluene and washed with 20 ml of 0.5% oxalic acid. The mixture was further washed twice with saturated brine and concentrated under reduced pressure. 6.28 g of the residual liquid was purified by silica gel column chromatography (chloroform / methanol = 10/1) to obtain 4.65 g of a yellow oil (yield 77.6%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.50 (48H, s), 2.72 (6H, s), 3.30-3.70 (123H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 8.2 Hz), 5.15 (24H, d, J = 16.5 Hz), 5.86 (24H, bs), 6.36 (12H, s), 6.45 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 58.1, 58.2, 67.3, 69.5, 69.8, 70.4, 71.9, 72.2, 72.8, 78.7, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6)

(合成例14)
合成例14では合成例13で得た化合物の水酸基を水酸基をヨウ化メチルでメトキシ化した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得た化合物0.936 g (0.209 mmol)をトルエン3 mlに溶解し、これに臭化テトラブチルアンモニウム 0.09 g (0.28 mmol) および水3 mlに溶解した水酸化ナトリウム0.6 g (15.0 mmol) およびヨウ化メチル 1.07 g (7.54 mmolを加えた。35-37℃で8時間攪拌した後ヨウ化メチル 0.5 g (3.52 mmol)を追加してさらに16時間攪拌した。水、トルエン各10 mlを加えて抽出、分液し、水層を再度10 mlのトルエンで抽出した。抽出液を併せて水で3回洗浄後無水硫酸ナトリウムで脱水し、濃縮した。残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1)で精製し、次いでクロロホルム溶液として0.2μmフィルターでろ過した。減圧下80℃で濃縮し、表題化合物を淡黄色油状物を0.48 g得た(収率54.7%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.49 (48H, s), 3.31-3.70 (153H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 9.4 Hz), 5.14 (24H, d, J = 16.5 Hz), 5.87 (24H, bs), 6.35 (12H, s), 6.46 (24H, s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 58.1, 58.2, 67.3, 70.1, 71.6, 78.8, 79.1, 79.5, 79.6, 79.8, 73.4, 100.7, 106.2, 140.8, 160.2, 117.1, 134.5 (Synthesis Example 14)
In Synthesis Example 14, the hydroxyl group of the compound obtained in Synthesis Example 13 was methoxylated with methyl iodide (see the following chemical formula).
Figure 2009249605
That is, 0.936 g (0.209 mmol) of the compound obtained in the above modification step was dissolved in 3 ml of toluene, and 0.6 g (15.0 mg) of sodium hydroxide dissolved in 0.09 g (0.28 mmol) of tetrabutylammonium bromide and 3 ml of water. mmol) and 1.07 g (7.54 mmol) of methyl iodide. After stirring at 35-37 ° C. for 8 hours, 0.5 g (3.52 mmol) of methyl iodide was added and the mixture was further stirred for 16 hours. The aqueous layer was extracted again with 10 ml of toluene, and the combined extracts were washed three times with water, dehydrated with anhydrous sodium sulfate, and concentrated. Chloroform / methanol = 20/1) and then filtered through a 0.2 μm filter as a chloroform solution and concentrated under reduced pressure at 80 ° C. to obtain 0.48 g of the title compound as a pale yellow oil (yield 54.7%). The NMR of this product was measured and the following results were obtained. .
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.49 (48H, s), 3.31-3.70 (153H, m), 3.95 (48H, s), 4.43 (24H, s), 5.08 (24H, d, J = 9.4 Hz), 5.14 (24H, d, J = 16.5 Hz), 5.87 (24H, bs), 6.35 (12H, s), 6.46 (24H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 58.1, 58.2, 67.3, 70.1, 71.6, 78.8, 79.1, 79.5, 79.6, 79.8, 73.4, 100.7, 106.2, 140.8, 160.2, 117.1, 134.5

(合成例15)
合成例15では合成例13で得た化合物の修飾工程で得られた化合物に、エーテル化工程として、3,5-ビス(ブテニルオキシ)ベンジルブロミドを用い、下記化学式に示す反応を行なった。

Figure 2009249605
すなわち、合成例13での修飾工程で得た化合物0.84 g (0.188 mmol)をトルエン2 mlに溶解し、これに臭化テトラブチルアンモニウム 0.082 g (0.25 mmol)、3,5-ビス(ブテニルオキシ)ベンジルブロミド 0.88 g (2.83 mmol) および水0.7 mlに溶解した水酸化ナトリウム0.51 g (12.75 mmol) を加えた。40℃に加温して20時間攪拌した後水、トルエン各10 mlを加えて抽出、分液した。水層を再度10 mlのトルエンで抽出し、抽出液を併せて水で3回洗浄後無水硫酸ナトリウムで脱水し、濃縮した。残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0〜20/1)で精製し、次いでクロロホルム溶液として0.2μmフィルターでろ過した。減圧下80℃で濃縮し、黄色油状物を0.7 g得た(収率51.5%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.45 (96H, s), 2.69 (6H, bs), 3.38-3.70 (101H, m), 3.89 (96H, s), 4.38 and 4.56 (each 24H, s), 5.05 and 5.10 (each 48H, bs), 5.83 (48H, bs), 6.31 (24H, s), 6.43 and 6.46 (48H, each s)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.2, 70.6, 71.0, 72.1, 77.8, 78.7, 79.1, 73.3, 100.6, 106.0, 141.0, 141.4, 160.2, 117.0, 134.6 (Synthesis Example 15)
In Synthesis Example 15, the compound obtained in the modification step of the compound obtained in Synthesis Example 13 was subjected to the reaction represented by the following chemical formula using 3,5-bis (butenyloxy) benzyl bromide as the etherification step.
Figure 2009249605
That is, 0.84 g (0.188 mmol) of the compound obtained in the modification step in Synthesis Example 13 was dissolved in 2 ml of toluene, and 0.082 g (0.25 mmol) of tetrabutylammonium bromide and 3,5-bis (butenyloxy) benzyl were dissolved therein. Sodium bromide 0.51 g (12.75 mmol) dissolved in bromide 0.88 g (2.83 mmol) and water 0.7 ml was added. The mixture was heated to 40 ° C. and stirred for 20 hours, followed by extraction with 10 ml of water and toluene, followed by liquid separation. The aqueous layer was extracted again with 10 ml of toluene, and the extracts were combined, washed three times with water, dried over anhydrous sodium sulfate, and concentrated. The residual liquid was purified by silica gel column chromatography (chloroform / methanol = 100/0 to 20/1), and then filtered through a 0.2 μm filter as a chloroform solution. Concentration under reduced pressure at 80 ° C. gave 0.7 g of a yellow oil (yield 51.5%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.45 (96H, s), 2.69 (6H, bs), 3.38-3.70 (101H, m), 3.89 (96H, s), 4.38 and 4.56 (each 24H, s), 5.05 and 5.10 (each 48H, bs), 5.83 (48H, bs), 6.31 (24H, s), 6.43 and 6.46 (48H, each s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.2, 70.6, 71.0, 72.1, 77.8, 78.7, 79.1, 73.3, 100.6, 106.0, 141.0, 141.4, 160.2, 117.0, 134.6

(合成例16)
合成例16では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N-ビス(2,3-ジヒドロキシプロピル)オクチルアミンを用い、重合可能な炭素−炭素二重結合を有するグリシジルエーテルとして3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3-ジヒドロキシプロピル)オクチルアミン:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:12:16の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 16)
In Synthesis Example 16, a polymerizable hyperbranched polymer was prepared as follows.
Specifically, N, N-bis (2,3-dihydroxypropyl) octylamine is used as a core molecule, and 3,5-bis (3-butenyloxy) benzylglycidyl ether is used as a glycidyl ether having a polymerizable carbon-carbon double bond. The reaction shown in the chemical formula below was carried out. N, N-bis (2,3-dihydroxypropyl) octylamine: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was in a ratio (molar ratio) of 1:12:16.
Figure 2009249605

重合工程
アルゴン雰囲気下N,N-ビス(2,3-ジヒドロキシプロピル)オクチルアミン0.29 g (1.04 mmol)を90℃に加熱し、カリウムメトキシド (30% メタノール溶液) 0.096 g (0.41 mmol)を加えて数分間攪拌した。徐々に減圧し、メタノールを留去した後ジグライム 5 mlを加えて140℃に昇温した。グリシドール 0.91 g (12.3 mmol)を5 mlの脱水THFに溶解して、THFを留去しながら約2時間を要して滴下した。
Polymerization process Under argon atmosphere, N, N-bis (2,3-dihydroxypropyl) octylamine 0.29 g (1.04 mmol) was heated to 90 ° C and potassium methoxide (30% methanol solution) 0.096 g (0.41 mmol) was added. And stirred for several minutes. The pressure was gradually reduced, methanol was distilled off, 5 ml of diglyme was added, and the temperature was raised to 140 ° C. 0.91 g (12.3 mmol) of glycidol was dissolved in 5 ml of dehydrated THF and added dropwise over about 2 hours while distilling off the THF.

修飾工程
次いで3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 5.0 g (16.4 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約6時間を要して滴下した。同温度で2.5時間攪拌した後反応液をクロロホルム20 mlで希釈して0.5%蓚酸20 ml、次いで水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=10/1)で2回精製した。さらにクロロホルム溶液として0.2μmフィルターでろ過し、減圧下80℃で濃縮した。表題化合物を淡褐色油状物を1.35 g得た(収率21.8%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 0.87 (3H, bs), 1.25 (10H, bs), 1.42 (2H, bs), 2.49 (64H, s), 2.61(6H, b), 3.45-3.66 (146H, m), 3.95 (64H, s), 3.98 (16H, s), 4.42 (32H, s), 5.08-5.14 (64H, m), 5.86 (32H, bs), 6.35 (16H, s), 6.45 (32H, s)
13C -NMR ((600 MHz, CDCl3) δ: 14.1, 22.8, 27.7, 29.5, 32.0, 33.7, 67.3, 69.5, 71.3, 71.4, 78.8, 73.5, 100.7, 106.2, 140.6, 160.2, 117.1, 134.6
Modification Step Next, 5.0 g (16.4 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 15 ml of dehydrated THF, and added dropwise over about 6 hours while distilling off THF. After stirring for 2.5 hours at the same temperature, the reaction solution was diluted with 20 ml of chloroform and washed twice with 20 ml of 0.5% oxalic acid and then with water. The mixture was dehydrated with anhydrous sodium sulfate, concentrated, and purified twice by silica gel column chromatography (chloroform / methanol = 10/1). Furthermore, it filtered with a 0.2 micrometer filter as a chloroform solution, and concentrated under reduced pressure at 80 degreeC. 1.35 g of the title compound was obtained as a light brown oil (yield 21.8%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 0.87 (3H, bs), 1.25 (10H, bs), 1.42 (2H, bs), 2.49 (64H, s), 2.61 (6H, b), 3.45- 3.66 (146H, m), 3.95 (64H, s), 3.98 (16H, s), 4.42 (32H, s), 5.08-5.14 (64H, m), 5.86 (32H, bs), 6.35 (16H, s) , 6.45 (32H, s)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 14.1, 22.8, 27.7, 29.5, 32.0, 33.7, 67.3, 69.5, 71.3, 71.4, 78.8, 73.5, 100.7, 106.2, 140.6, 160.2, 117.1, 134.6

(合成例17)
合成例17では合成例16で得た化合物の修飾工程で得られた化合物の水酸基を3,5-ビス(ブテニルオキシ)ベンジルブロミドでエーテル化した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得た化合物0.85 g (0.14 mmol)をトルエン2.2 mlに溶解し、これに臭化テトラブチルアンモニウム 85 mg (0.26 mmol)、水0.7 mlに溶解した水酸化ナトリウム0.53 g (13.25 mmol)および3,5-ビス(ブテニルオキシ)ベンジルブロミド 0.91 g (2.92 mmol)を加えてアルゴン気流下43-45℃で18時間攪拌した。冷却後水5 ml、トルエン10 mlを加えて抽出、分液した。水層を再度5 mlのトルエンで抽出し、抽出液を併せて水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(トルエン/エタノール=100/1〜10/1)で2回精製した。次いでクロロホルム溶液として0.2μmフィルターでろ過した。減圧下80℃で濃縮し、淡褐色油状物を0.35 g得た(25.7%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 0.84 (3H, bs), 1.26 (10H, bs), 1.36 (2H, bs), 2.44 (128H, bs), 3.40-3.70 (146H, m), 3.88 (128H, s), 4.38 (32H, s), 4.56 (32H, s), (5.06-5.11 (128H, m), 5.82 (64H, bs), 6.31 (32H, s), 6.42 - 6.45 (64H, m)
13C -NMR ((600 MHz, CDCl3) δ: 33.7 (CH2), 67.2 (OCH2), 70.9, 72.2, 78.8, 73.2, 100.7, 106.0, 140.6, 160.2, 117.0, 134.6 (Synthesis Example 17)
In Synthesis Example 17, the hydroxyl group of the compound obtained in the modification step of the compound obtained in Synthesis Example 16 was etherified with 3,5-bis (butenyloxy) benzyl bromide (see the following chemical formula).
Figure 2009249605
That is, 0.85 g (0.14 mmol) of the compound obtained in the above modification step was dissolved in 2.2 ml of toluene, and 85 mg (0.26 mmol) of tetrabutylammonium bromide and 0.53 g (13.25) of sodium hydroxide dissolved in 0.7 ml of water. mmol) and 3,5-bis (butenyloxy) benzyl bromide (0.91 g, 2.92 mmol) were added, and the mixture was stirred at 43-45 ° C. for 18 hours under an argon stream. After cooling, 5 ml of water and 10 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 5 ml of toluene, and the extracts were combined and washed twice with water. The mixture was dehydrated with anhydrous sodium sulfate and concentrated, and the residue was purified twice by silica gel column chromatography (toluene / ethanol = 100/1 to 10/1). Subsequently, it filtered with the 0.2 micrometer filter as a chloroform solution. Concentration under reduced pressure at 80 ° C. gave 0.35 g of a light brown oil (25.7%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 0.84 (3H, bs), 1.26 (10H, bs), 1.36 (2H, bs), 2.44 (128H, bs), 3.40-3.70 (146H, m), 3.88 (128H, s), 4.38 (32H, s), 4.56 (32H, s), (5.06-5.11 (128H, m), 5.82 (64H, bs), 6.31 (32H, s), 6.42-6.45 (64H , m)
13 C -NMR ((600 MHz, CDCl 3 ) δ: 33.7 (CH2), 67.2 (OCH2), 70.9, 72.2, 78.8, 73.2, 100.7, 106.0, 140.6, 160.2, 117.0, 134.6

(合成例18)
合成例18では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてN,N-ビス(2,3−ジヒドロキシプロピル)ベンジルアミンを用い、下記化学式に示す反応を行なった。N,N-ビス(2,3−ジヒドロキシプロピル)ベンジルアミン:グリシドール:3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルは1:12:16の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 18)
In Synthesis Example 18, a polymerizable hyperbranched polymer was prepared as follows.
That is, N, N-bis (2,3-dihydroxypropyl) benzylamine was used as a core molecule, and a reaction represented by the following chemical formula was performed. N, N-bis (2,3-dihydroxypropyl) benzylamine: glycidol: 3,5-bis (3-butenyloxy) benzylglycidyl ether was in a ratio (molar ratio) of 1:12:16.
Figure 2009249605

重合工程
アルゴン雰囲気下N,N-ビス(2,3−ジヒドロキシプロピル)ベンジルアミン0.37 g (1.44 mmol)を90℃に加熱し、これにカリウムメトキシド (30% メタノール溶液) 0.13 g (0.56 mmol)を加えて数分間攪拌した。徐々に減圧し、メタノールを留去した後ジグライム 5 mlを加えて130℃に昇温した。グリシドール 1.28 g (17.3 mmol)を5 mlの脱水THFに溶解して、THFを留去しながら約2時間を要して滴下した。
Polymerization process Under argon atmosphere, N, N-bis (2,3-dihydroxypropyl) benzylamine 0.37 g (1.44 mmol) was heated to 90 ° C., and potassium methoxide (30% methanol solution) 0.13 g (0.56 mmol) And stirred for several minutes. The pressure was gradually reduced, methanol was distilled off, 5 ml of diglyme was added, and the temperature was raised to 130 ° C. 1.28 g (17.3 mmol) of glycidol was dissolved in 5 ml of dehydrated THF and added dropwise over about 2 hours while distilling off the THF.

修飾工程
次いで3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテル 7.0 g (23.0 mmol)を15 mlの脱水THFに溶解して、THFを留去しながら約7時間を要して滴下した。同温度で3時間攪拌した後反応液をトルエン50 mlで希釈して0.5% 蓚酸 30 ml、次いで飽和食塩水で2回洗浄した。無水硫酸ナトリウムで脱水後濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=15/1)で2回精製した。さらにクロロホルム溶液として0.2μmフィルターでろ過し、減圧下80℃で濃縮した。表題化合物を淡褐色油状物を4.6 g得た (収率53.5%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.49 (64H, s), 2.58(4H, br), 3.45-3.65 (148H, m), 3.94 (80H, bs), 4.41 (32H, s), 5.07-5.15 (64H, m), 5.85 (32H, bs), 6.35 (16H, s), 6.41 (32H, s), 7.20 (1H, b), 7.26 (4H, br)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.3, 69.3, 71.3, 78.8, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6
Modification Step Next, 7.0 g (23.0 mmol) of 3,5-bis (3-butenyloxy) benzylglycidyl ether was dissolved in 15 ml of dehydrated THF, and added dropwise over about 7 hours while distilling off THF. After stirring at the same temperature for 3 hours, the reaction solution was diluted with 50 ml of toluene and washed twice with 30 ml of 0.5% oxalic acid and then with saturated saline. The mixture was dehydrated with anhydrous sodium sulfate, concentrated, and purified twice by silica gel column chromatography (chloroform / methanol = 15/1). Furthermore, it filtered with a 0.2 micrometer filter as a chloroform solution, and concentrated under reduced pressure at 80 degreeC. 4.6 g of the title compound was obtained as a light brown oil (yield 53.5%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.49 (64H, s), 2.58 (4H, br), 3.45-3.65 (148H, m), 3.94 (80H, bs), 4.41 (32H, s), 5.07-5.15 (64H, m), 5.85 (32H, bs), 6.35 (16H, s), 6.41 (32H, s), 7.20 (1H, b), 7.26 (4H, br)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.3, 69.3, 71.3, 78.8, 73.4, 100.7, 106.2, 140.7, 160.2, 117.1, 134.6

(合成例19)
合成例19では合成例18で得た化合物の修飾工程で得られた化合物ので得た化合物の水酸基を3,5-ビス(ブテニルオキシ)ベンジルブロミドでエーテル化した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得た化合物2.0 g (0.33 mmol)をトルエン5 mlに溶解し、これに臭化テトラブチルアンモニウム 0.2 g (0.62 mmol)、3,5-ビス(ブテニルオキシ)ベンジルブロミド2.15 g (6.91 mmol) および水1.6 mlに溶解した水酸化ナトリウム1.25 g (31.25 mmol) を加えた。40℃に加温して17時間攪拌した後水10 ml、トルエン20 mlを加えて抽出、分液した。抽出液を飽和食塩水で3回洗浄後無水硫酸ナトリウムで脱水し、濃縮した。残留液をシリカゲルカラムクロマトグラフィー(トルエン/エタノール=20/1)で精製し、次いでクロロホルム溶液として0.2μmフィルターでろ過した。減圧下80℃で濃縮し、淡褐色油状物を1.6 g得た(収率49.7%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, CDCl3) δ: 2.41 (132H, s), 3.40-3.67 (148H, m), 3.85 (128H, bs), 4.35 (32H, s), 4.53 (32H, bs), 5.04 (128H, bs), 5.80 (64H, bs), 6.28 (32H, bs), 6.40 (64H, bs), 7.20 (1H, b), 7.26 (4H, br)
13C -NMR ((600 MHz, CDCl3) δ: 33.7, 67.2, 71.0, 72.1, 79.0, 73.2, 100.6, 105.8, 106.0, 141.0, 141.4, 160.1, 117.0, 134.6 (Synthesis Example 19)
In Synthesis Example 19, the hydroxyl group of the compound obtained in the modification step of the compound obtained in Synthesis Example 18 was etherified with 3,5-bis (butenyloxy) benzyl bromide (see the following chemical formula).
Figure 2009249605
That is, 2.0 g (0.33 mmol) of the compound obtained in the above modification step was dissolved in 5 ml of toluene, and 0.2 g (0.62 mmol) of tetrabutylammonium bromide and 2.15 g of 3,5-bis (butenyloxy) benzyl bromide ( 6.91 mmol) and 1.25 g (31.25 mmol) of sodium hydroxide dissolved in 1.6 ml of water were added. After heating to 40 ° C. and stirring for 17 hours, 10 ml of water and 20 ml of toluene were added for extraction and liquid separation. The extract was washed 3 times with saturated brine, dried over anhydrous sodium sulfate, and concentrated. The residual liquid was purified by silica gel column chromatography (toluene / ethanol = 20/1), and then filtered through a 0.2 μm filter as a chloroform solution. Concentration under reduced pressure at 80 ° C. yielded 1.6 g of a light brown oil (yield 49.7%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, CDCl 3 ) δ: 2.41 (132H, s), 3.40-3.67 (148H, m), 3.85 (128H, bs), 4.35 (32H, s), 4.53 (32H, bs), 5.04 (128H, bs), 5.80 (64H, bs), 6.28 (32H, bs), 6.40 (64H, bs), 7.20 (1H, b), 7.26 (4H, br)
13 C-NMR ((600 MHz, CDCl 3 ) δ: 33.7, 67.2, 71.0, 72.1, 79.0, 73.2, 100.6, 105.8, 106.0, 141.0, 141.4, 160.1, 117.0, 134.6

(合成例20)
合成例20では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてグリセロールを用い、下記化学式に示す反応を行なった。グリセロール:グリシドール:アリルグリシジルエーテルは1:9:12の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 20)
In Synthesis Example 20, a polymerizable hyperbranched polymer was prepared as follows.
That is, glycerol was used as a core molecule, and a reaction represented by the following chemical formula was performed. The ratio (molar ratio) of glycerol: glycidol: allyl glycidyl ether was 1: 9: 12.
Figure 2009249605

重合工程
アルゴン気流下グリセロール 0.69 g (7.5 mmol)を90℃油浴上攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.53 g (2.25 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 9 mlを加えて130℃に加熱しながらグリシドール 5.0 g (67.5 mmol)を脱水THF20 mlに溶解して、THFを留去しながら約5.5時間を要して滴下した。
Polymerization step 0.59 g (2.25 mmol) of potassium methoxide (30% methanol solution) was added while stirring 0.69 g (7.5 mmol) of glycerol in a 90 ° C. oil bath under an argon stream. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. While adding 9 ml of dehydrated diglyme and heating to 130 ° C., 5.0 g (67.5 mmol) of glycidol was dissolved in 20 ml of dehydrated THF and added dropwise over about 5.5 hours while distilling off THF.

修飾工程
続いてアリルグリシジルエーテル 10.3 g (90.0 mmol)を脱水THF 30 mlに溶解して、THFを留去しながら約10.5 時間を要して滴下した。同温度で4時間攪拌した後冷却し、メタノール20 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。活性炭処理した後減圧下溶媒を留去し(80℃)、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=5/1)により精製し、淡褐色油状物を10.56 g得た(収率66.2%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, Methanol-d4) δ: 3.44-3.66 (98H, m), 3.86 (12H, s), 4.01 (24H, s), 4.77 (12H, s), 5.16 (12H, d, J = 9.9 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.89-5.93 (12H, m)
13C -NMR (600 MHz, methanol-d4) δ: 61.5, 69.3, 69.6, 69.7, 70.0, 71.2, 71.4 and 71.8, 72.0, 72.9, 78.6, 78., 116.0, 134.8, 135.0
Following the modification step, 10.3 g (90.0 mmol) of allyl glycidyl ether was dissolved in 30 ml of dehydrated THF and added dropwise over about 10.5 hours while distilling off THF. After stirring at the same temperature for 4 hours, the mixture was cooled, 20 ml of methanol was added and neutralized through a column of 20 ml of Amberlite IR 120B H AG. After activated carbon treatment, the solvent was distilled off under reduced pressure (80 ° C.), and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 5/1) to obtain 10.56 g of a light brown oil (yield 66.2). %). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, Methanol-d 4 ) δ: 3.44-3.66 (98H, m), 3.86 (12H, s), 4.01 (24H, s), 4.77 (12H, s), 5.16 (12H, d , J = 9.9 Hz), 5.28 (12H, d, J = 17.6 Hz), 5.89-5.93 (12H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 61.5, 69.3, 69.6, 69.7, 70.0, 71.2, 71.4 and 71.8, 72.0, 72.9, 78.6, 78., 116.0, 134.8, 135.0

エーテル化工程
さらに、修飾工程得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得た化合物2.0 gをトルエン6 mlに溶解し、これに水3.5 mlに溶解した水酸化ナトリウム3.4 g (85.0 mmol) および臭化テトラブチルアンモニウム 0.49 g (1.5 mmol)を加えた。40℃に加温、攪拌下臭化アリル 2.05 g (16.9 mmol)を0.5 mlのトルエンに溶解して45分で滴下した。同温度で16時間攪拌した後水10 ml、トルエン15 mlを加えて抽出、分液した。水層を再度15 mlのトルエンで抽出し、抽出液を併せて飽和食塩水で洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/エタノール=50/1)で精製し、次いで0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、表題化合物を無色油状物を1.98 g得た(収率80.8%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, Methanol-d4) δ: 3.51-3.71 (110H, m), 4.01 (24H, s), 4.15 (24H, s), 5.15 (12H, d, J = 12.1 Hz), 5.16 (12H, d, J = 11.0 Hz), 5.28 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13C -NMR (600 MHz, methanol-d4) δ: 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.2, 116.9, 117.1, 136.2, 136.6 Etherification Step Further, the hydroxyl group of the compound obtained in the modification step was allyl etherified with allyl bromide (see the following chemical formula).
Figure 2009249605
That is, 2.0 g of the compound obtained in the above modification step was dissolved in 6 ml of toluene, and 3.4 g (85.0 mmol) of sodium hydroxide and 0.49 g (1.5 mmol) of tetrabutylammonium bromide dissolved in 3.5 ml of water were added thereto. It was. While heating to 40 ° C. and stirring, 2.05 g (16.9 mmol) of allyl bromide was dissolved in 0.5 ml of toluene and added dropwise over 45 minutes. After stirring at the same temperature for 16 hours, 10 ml of water and 15 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 15 ml of toluene, and the extracts were combined and washed with saturated brine. After dehydrating with anhydrous sodium sulfate and concentrating, the residue was purified by silica gel column chromatography (chloroform / ethanol = 50/1) and then filtered through a 0.2 μm filter. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 1.98 g of the title compound as a colorless oil (yield 80.8%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, Methanol-d 4 ) δ: 3.51-3.71 (110H, m), 4.01 (24H, s), 4.15 (24H, s), 5.15 (12H, d, J = 12.1 Hz), 5.16 (12H, d, J = 11.0 Hz), 5.28 (24H, d, J = 17.0 Hz), 5.91-5.93 (24H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 71.2, 72.1, 72.5, 73.2, 78.5, 78.8, 79.9, 80.2, 116.9, 117.1, 136.2, 136.6

(合成例21)
合成例21では以下のようにして重合性高分岐ポリマーを調製した。
すなわち、コア分子としてエチレングリコールを用い、下記化学式に示す反応を行なった。エチレングリコール:グリシドール:アリルグリシジルエーテルは1:14:16の割合(モル比)とした。

Figure 2009249605
(Synthesis Example 21)
In Synthesis Example 21, a polymerizable hyperbranched polymer was prepared as follows.
That is, the reaction shown in the following chemical formula was carried out using ethylene glycol as the core molecule. The ratio of ethylene glycol: glycidol: allyl glycidyl ether was 1:14:16 (molar ratio).
Figure 2009249605

重合工程
アルゴン気流下エチレングリコール 0.31 g (5.0 mmol)を80℃に加熱、攪拌しながらカリウムメトキシド (30% メタノール溶液) 0.35 g (1.5 mmol)を加えた。数分間攪拌した後徐々に減圧し、メタノールを留去した。脱水ジグライム 5 mlを加えて100℃に昇温し、グリシドール 5.19 g (70.1 mmol)を脱水THF 15 mlに溶解して、THFを留去しながら約5時間を要して滴下した。
Polymerization step Under an argon stream, 0.35 g (1.5 mmol) of potassium methoxide (30% methanol solution) was added while stirring and stirring ethylene glycol 0.31 g (5.0 mmol) at 80 ° C. After stirring for several minutes, the pressure was gradually reduced and methanol was distilled off. 5 ml of dehydrated diglyme was added, the temperature was raised to 100 ° C., 5.19 g (70.1 mmol) of glycidol was dissolved in 15 ml of dehydrated THF, and about 5 hours were added dropwise while removing THF.

修飾工程
続いてアリルグリシジルエーテル 9.13 g (80.0 mmol)を脱水THF 25 mlに溶解して、THFを留去しながら約3 時間を要して滴下した。同温度で3時間攪拌した後冷却し、メタノール25 mlを加えてアンバーライトIR 120B H AG 20 mlのカラムを通して中和した。減圧下溶媒を留去し、残留油状物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=7/1)により精製した。メタノール溶液として0.2μmフィルターでろ過し、減圧下(80℃)濃縮して微黄色油状物を8.84 g得た(収率60.4%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ:3.43-3.67 (154H, m), 3.87 (16H, s), 4.01 (16H, s), 4.73 (16H, s), 5.16 (16H, d, J = 8.8 Hz), 5.28 (16H, d, J = 17.0 Hz), 5.88-5.93 (16H, br)
13C -NMR (600 MHz, methanol-d4) δ: 59.3, 64.5, 70.4, 70.8, 71.1, 72.5, 72.9, 73.2, 74.0, 79.8, 80.0, 117.2, 136.0, 136.1
Modification Step Subsequently, 9.13 g (80.0 mmol) of allyl glycidyl ether was dissolved in 25 ml of dehydrated THF and added dropwise over about 3 hours while distilling off the THF. The mixture was stirred at the same temperature for 3 hours, cooled, added with 25 ml of methanol, and neutralized through a column of 20 ml of Amberlite IR 120B H AG. The solvent was distilled off under reduced pressure, and the residual oil was purified by silica gel column chromatography (chloroform / methanol = 7/1). Filtration through a 0.2 μm filter as a methanol solution and concentration under reduced pressure (80 ° C.) gave 8.84 g of a pale yellow oil (yield 60.4%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.43-3.67 (154H, m), 3.87 (16H, s), 4.01 (16H, s), 4.73 (16H, s), 5.16 (16H, d , J = 8.8 Hz), 5.28 (16H, d, J = 17.0 Hz), 5.88-5.93 (16H, br)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 59.3, 64.5, 70.4, 70.8, 71.1, 72.5, 72.9, 73.2, 74.0, 79.8, 80.0, 117.2, 136.0, 136.1

エーテル化工程
さらに、上記修飾工程で得た化合物の水酸基を臭化アリルでアリルエーテル化した(下記化学式参照)。

Figure 2009249605
すなわち、上記修飾工程で得られた化合物3.0 g (1.025 mmol) をトルエン5 mlに溶解し、これに臭化テトラブチルアンモニウム 0.69 g (2.1 mmol)、 次いで水5.5 mlに溶解した水酸化ナトリウム4.47 g (111.8 mmol)を加えた。40℃に加温、攪拌下臭化アリル 2.98 g (24.6 mmol)を2 mlのトルエンに溶解して約1時間で滴下した。同温度で18時間攪拌した後水10 ml、トルエン10 mlを加えて抽出、分液した。水層を再度10 mlのトルエンで抽出し、抽出液を併せて飽和食塩水で洗浄した。無水硫酸ナトリウムで脱水後濃縮し、残留液をシリカゲルカラムクロマトグラフィー(クロロホルム/エタノール=35/1)で精製し、次いでメタノール溶液として0.2μmフィルターで濾過した。減圧下80℃にて溶媒を留去し、無色油状物を2.59 g得た(収率70.9%)。このもののNMRを測定し、以下の結果を得た。
1H -NMR (600 MHz, methanol-d4) δ: 3.50-3.70 (154H, m), 4.00 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m)
13C -NMR (600 MHz, methanol-d4) δ: 59.5, 71.2, 71.9, 72.1, 72.5, 73.2, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.6 Etherification Step Further, the hydroxyl group of the compound obtained in the modification step was allyl etherified with allyl bromide (see the following chemical formula).
Figure 2009249605
That is, 3.0 g (1.025 mmol) of the compound obtained in the above modification step was dissolved in 5 ml of toluene, 0.69 g (2.1 mmol) of tetrabutylammonium bromide, and then 4.47 g of sodium hydroxide dissolved in 5.5 ml of water. (111.8 mmol) was added. The mixture was heated to 40 ° C., and 2.98 g (24.6 mmol) of allyl bromide was dissolved in 2 ml of toluene with stirring and added dropwise in about 1 hour. After stirring at the same temperature for 18 hours, 10 ml of water and 10 ml of toluene were added for extraction and liquid separation. The aqueous layer was extracted again with 10 ml of toluene, and the extracts were combined and washed with saturated brine. The mixture was dehydrated with anhydrous sodium sulfate and concentrated. The residue was purified by silica gel column chromatography (chloroform / ethanol = 35/1), and then filtered through a 0.2 μm filter as a methanol solution. The solvent was distilled off at 80 ° C. under reduced pressure to obtain 2.59 g of colorless oil (yield 70.9%). NMR of this product was measured, and the following results were obtained.
1 H -NMR (600 MHz, methanol-d 4 ) δ: 3.50-3.70 (154H, m), 4.00 (32H, s), 4.13 (32H, s), 5.13 (16H, d, J = 12.1 Hz), 5.15 (16H, d, J = 11.0 Hz), 5.27 (32H, d, J = 17.0 Hz), 5.90-5.91 (32H, m)
13 C -NMR (600 MHz, methanol-d 4 ) δ: 59.5, 71.2, 71.9, 72.1, 72.5, 73.2, 78.4, 78.7, 79.9, 80.1, 116.9, 117.1, 136.1, 136.6

<粘度測定>
上記合成例1〜21の重合性高分岐ポリマーは、従来のプレポリマーと比べて粘性が低く、容器からの出し入れ等において、ハンドリングが容易であった。また、冷暗所に保存すれば、重合禁止剤を添加しなくても重合固化することはなく、安定に保存することができた。合成例1,2,8及び10の重合性高分岐ポリマーについて、振動式粘度計を用いて粘度の測定を行なった。その結果、表1に示すように170〜378mPa・sの範囲となり、従来のプレポリマーよりもはるかに粘度が低かった。

Figure 2009249605
<Viscosity measurement>
The polymerizable hyperbranched polymers of Synthesis Examples 1 to 21 had a lower viscosity than conventional prepolymers and were easy to handle in and out of containers. Further, when stored in a cool and dark place, the polymer was not solidified without adding a polymerization inhibitor and could be stored stably. Viscosity of the polymerizable hyperbranched polymers of Synthesis Examples 1, 2, 8 and 10 was measured using a vibration viscometer. As a result, as shown in Table 1, it was in the range of 170 to 378 mPa · s, and the viscosity was much lower than that of the conventional prepolymer.
Figure 2009249605

<光ラジカル重合が可能な重合性組成物の調製>
以上のようにして合成した、合成例1〜19の重合性高分岐ポリマーを用い、これに、重合性モノマーとしてのトリメチロールプロパントリアクリレート(以下「TPA」という)と、光重合開始剤としての(4,4’−ビス(ジエチルアミノ)ベンゾフェノン)(以下「EMK」という)とを、表2に示す割合で混合し、光ラジカル重合が可能な実施例1〜37の光重合性組成物を調製した。
<Preparation of polymerizable composition capable of photoradical polymerization>
Using the polymerizable hyperbranched polymers of Synthesis Examples 1 to 19 synthesized as described above, trimethylolpropane triacrylate (hereinafter referred to as “TPA”) as a polymerizable monomer, and photopolymerization initiator as a photopolymerization initiator. (4,4′-bis (diethylamino) benzophenone) (hereinafter referred to as “EMK”) was mixed at a ratio shown in Table 2 to prepare photopolymerizable compositions of Examples 1 to 37 capable of photoradical polymerization. did.

Figure 2009249605
Figure 2009249605

<紫外線照射による硬化試験>
以上のようにして調製した実施例1〜37の光重合性組成物の紫外線照射による硬化試験を、以下の手順で行った。すなわち、スライドガラスの上に7.5μmのポリイミド製スペーサーを置き、カバーガラスとスライドガラスとをスペーサーの厚み分だけ隔てつつ接着剤で固定する。こうして、スライドガラスとカバーガラスとの間に設けた隙間から光重合性組成物を染み込ませ、30Wの高圧水銀ランプによって所定の時間紫外線を照射した後、カバーガラスをピンセットで剥がすことができるか否かについて調べた。硬化の評価は、カバーガラスをピンセット引き剥がすことができない場合を○、引き剥がすことはできるがかなりの抵抗感がある場合を△、容易に引き剥がせる場合を×とした。
<Curing test by UV irradiation>
The curing test by ultraviolet irradiation of the photopolymerizable compositions of Examples 1 to 37 prepared as described above was performed according to the following procedure. That is, a 7.5 μm polyimide spacer is placed on the slide glass, and the cover glass and the slide glass are fixed with an adhesive while being separated by the thickness of the spacer. In this way, the photopolymerizable composition is soaked through the gap provided between the slide glass and the cover glass, and after irradiating with ultraviolet rays for a predetermined time with a 30 W high-pressure mercury lamp, the cover glass can be peeled off with tweezers. I investigated about it. In the evaluation of curing, the case where the tweezers could not be peeled off was indicated as “◯”, the case where the cover glass could be peeled off but there was considerable resistance, and the case where it was easily peeled off was indicated as “X”.

Figure 2009249605
Figure 2009249605

その結果、表3に示すように、実施例の光重合性組成物は、紫外線照射によって短時間に硬化することが分かった。   As a result, as shown in Table 3, it was found that the photopolymerizable compositions of the examples were cured in a short time by ultraviolet irradiation.

<カチオン重合が可能な重合性組成物の調製>
上記合成例20及び合成例21の重合性高分岐ポリマーを用い、これに、重合性モノマーとして、2,2-ビス(4-グリシジロキシフェニル)プロパン(以下「BGP」という)と、3,4-エポキシシクロへキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(以下「EEC」という)とを1:1に混合したものを重合性モノマーとして混合し、さらにカチオン開始剤として、光酸発生剤である[4-[(2-ヒドロキシテトラデシル)オキシ]-フェニル]フェニルヨードニウムヘキサフルオロアンチモネートを加え、さらに、光増感剤としてイソプロピル-9H-チオキサンテン-9-オンを加えて実施例38及び実施例39の光重合性組成物を調製した。各薬剤の調合割合を表4に示す。
<Preparation of polymerizable composition capable of cationic polymerization>
The polymerizable hyperbranched polymer of Synthesis Example 20 and Synthesis Example 21 was used. As the polymerizable monomer, 2,2-bis (4-glycidyloxyphenyl) propane (hereinafter referred to as “BGP”), A mixture of 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (hereinafter referred to as “EEC”) 1: 1 was mixed as a polymerizable monomer, and a cationic initiator was used as a photoacid generator. A certain [4-[(2-hydroxytetradecyl) oxy] -phenyl] phenyliodonium hexafluoroantimonate was added, and isopropyl-9H-thioxanthen-9-one was further added as a photosensitizer, and Example 38 and The photopolymerizable composition of Example 39 was prepared. Table 4 shows the mixing ratio of each drug.

Figure 2009249605
Figure 2009249605

<紫外線照射による硬化試験>
以上のようにして調製した実施例38及び実施例39の光重合性組成物の紫外線照射による硬化試験を、上記と同様の方法で行なった。結果を表5に示す。この表から分かるように、重合性モノマーとしてエポキシ系モノマーを用い、光酸発生剤と光増感剤をくわえた実施例38及び実施例39においても、紫外線によって容易に硬化させることができた。
<Curing test by UV irradiation>
The curing test by ultraviolet irradiation of the photopolymerizable compositions of Example 38 and Example 39 prepared as described above was performed in the same manner as described above. The results are shown in Table 5. As can be seen from this table, Example 38 and Example 39 in which an epoxy monomer was used as the polymerizable monomer and a photoacid generator and a photosensitizer were added could also be easily cured by ultraviolet rays.

Figure 2009249605
Figure 2009249605

以上のように、実施例の光重合性組成物では、一般的なカチオン系の光重合性組成物よりも、粘度が低く、取り扱いが容易である。また、重合性高分岐ポリマーを光樹脂組成物の重合性成分として用いることにより、従来のデンドリマーを用いた光重合組成物よりも製造が容易で安価に製造可能である。   As described above, the photopolymerizable compositions of the examples have a lower viscosity and are easier to handle than general cationic photopolymerizable compositions. In addition, by using a polymerizable hyperbranched polymer as a polymerizable component of the photo resin composition, it is easier to produce and can be produced at a lower cost than a photopolymer composition using a conventional dendrimer.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明は光リソグラフィーのための材料として電子デバイス作製等に利用可能である。   The present invention can be used as a material for photolithography in the production of electronic devices.

Claims (13)

コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した重合性高分岐ポリマーと、該重合性高分岐ポリマーと結合可能な重合性モノマーと、光重合開始剤とを含むことを特徴とする光重合性組成物。   A polymerizable hyperbranched polymer in which a terminal hydroxyl group of a highly branched polymer in which glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as a starting point is added to an epoxy group of a glycidyl ether having a polymerizable carbon-carbon double bond, and the polymerizability A photopolymerizable composition comprising a polymerizable monomer capable of binding to a hyperbranched polymer and a photopolymerization initiator. 重合性モノマーは、1分子に1つ以上の(メタ)アクリル基を有するアクリル系モノマーであり、光重合開始剤は光照射によってラジカルを発生する光ラジカル発生剤であることを特徴とする請求項1記載の光重合性組成物。   The polymerizable monomer is an acrylic monomer having one or more (meth) acrylic groups per molecule, and the photopolymerization initiator is a photoradical generator that generates radicals by light irradiation. The photopolymerizable composition according to 1. 重合性モノマーは、1分子に1つ以上のエポキシ基を有するエポキシ系モノマーであり、光重合開始剤は光照射によって酸を発生する光酸発生剤であることを特徴とする請求項1記載の光重合性組成物。   The polymerizable monomer is an epoxy monomer having one or more epoxy groups per molecule, and the photopolymerization initiator is a photoacid generator that generates an acid by light irradiation. Photopolymerizable composition. さらに光増感剤が含まれていることを特徴とする請求項1乃至3のいずれか1項記載の光重合性組成物。   The photopolymerizable composition according to any one of claims 1 to 3, further comprising a photosensitizer. 前記重合可能な炭素−炭素二重結合を有するグリシジルエーテルは、アリルグルシジルエーテル及び3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルのいずれかであることを特徴とする請求項1乃至4のいずれか1項記載の光重合性組成物。   The glycidyl ether having a polymerizable carbon-carbon double bond is any of allyl glycidyl ether and 3,5-bis (3-butenyloxy) benzyl glycidyl ether. 2. The photopolymerizable composition according to any one of the above. 前記 コア分子はグリセロール、トリメチロールプロパン、ペンタエリトリトール、エチレングリコール、ポリエチレングリコール、1,4−ブタンジオール、1,2,4−ブタントリオール、トリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン、N−フェニルジエタノールアミン及び2−フェニル−1,3−プロパンジオールのいずれかであることを特徴とする請求項1乃至5のいずれか1項記載の光重合性組成物。   The core molecule is glycerol, trimethylolpropane, pentaerythritol, ethylene glycol, polyethylene glycol, 1,4-butanediol, 1,2,4-butanetriol, triethanolamine, N, N-bis (2,3-dihydroxy Propyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine, N-phenyldiethanolamine and 2-phenyl The photopolymerizable composition according to any one of claims 1 to 5, wherein the photopolymerizable composition is any one of -1,3-propanediol. コア分子の水酸基を基点としてグリシドールが分岐状に重合した高分岐ポリマーの末端水酸基が重合可能な炭素−炭素二重結合を有するグリシジルエーテルのエポキシ基に付加した構造とされており、さらに該付加における該エポキシ基の開環によって生じた水酸基がエーテル化された重合性高分岐ポリマーと、該重合性高分岐ポリマーと結合可能な重合性モノマーと、光重合開始剤とを含むことを特徴とする光重合性組成物。   The terminal hydroxyl group of the hyperbranched polymer in which the glycidol is polymerized in a branched manner with the hydroxyl group of the core molecule as the starting point has a structure in which it is added to the epoxy group of the glycidyl ether having a polymerizable carbon-carbon double bond. A light comprising a polymerizable hyperbranched polymer in which a hydroxyl group generated by ring-opening of the epoxy group is etherified, a polymerizable monomer capable of binding to the polymerizable hyperbranched polymer, and a photopolymerization initiator. Polymerizable composition. 重合性モノマーは、1分子に1つ以上の(メタ)アクリル基を有するアクリル系モノマーであり、光重合開始剤は光ラジカル発生剤であることを特徴とする請求項7記載の光重合性組成物。   8. The photopolymerizable composition according to claim 7, wherein the polymerizable monomer is an acrylic monomer having one or more (meth) acrylic groups per molecule, and the photopolymerization initiator is a photoradical generator. object. 重合性モノマーは、1分子に1つ以上のエポキシ基を有するエポキシ系モノマーであり、光重合開始剤は光酸発生剤であることを特徴とする請求項7記載の光重合性組成物。   The photopolymerizable composition according to claim 7, wherein the polymerizable monomer is an epoxy monomer having one or more epoxy groups per molecule, and the photopolymerization initiator is a photoacid generator. 前記重合可能な炭素−炭素二重結合を有するグリシジルエーテルは、アリルグルシジルエーテル又は3,5-ビス(3−ブテニルオキシ)ベンジルグリシジルエーテルであることを特徴とする請求項7乃至9のいずれか1項記載の光重合性組成物。   10. The glycidyl ether having a polymerizable carbon-carbon double bond is allyl glycidyl ether or 3,5-bis (3-butenyloxy) benzyl glycidyl ether. The photopolymerizable composition according to item. さらに光増感剤が含まれていることを特徴とする請求項7乃至10のいずれか1項記載の光重合性組成物。   The photopolymerizable composition according to any one of claims 7 to 10, further comprising a photosensitizer. 前記 コア分子はグリセロール、トリメチロールプロパン、ペンタエリトリトール、エチレングリコール、ポリエチレングリコール、1,4−ブタンジオール、1,2,4−ブタントリオール、トリエタノールアミン、N,N−ビス(2,3−ジヒドロキシプロピル)ベンジルアミン、N,N−ビス(2,3−ジヒドロキシプロピル)オクチルアミン、N,N,N’,N’−テトラキス(2,3−ジヒドロキシプロピル)エチレンジアミン、N−フェニルジエタノールアミン及び2−フェニル−1,3−プロパンジオールのいずれかであることを特徴とする請求項7乃至11のいずれか1項記載の光重合性組成物。   The core molecule is glycerol, trimethylolpropane, pentaerythritol, ethylene glycol, polyethylene glycol, 1,4-butanediol, 1,2,4-butanetriol, triethanolamine, N, N-bis (2,3-dihydroxy Propyl) benzylamine, N, N-bis (2,3-dihydroxypropyl) octylamine, N, N, N ′, N′-tetrakis (2,3-dihydroxypropyl) ethylenediamine, N-phenyldiethanolamine and 2-phenyl The photopolymerizable composition according to any one of claims 7 to 11, wherein the photopolymerizable composition is any one of -1,3-propanediol. エポキシ基の開環によって生じた水酸基のエーテル化は、アリルエーテル化、メチルエーテル化、又は3,5−ビス(ブテニルオキシ)ベンジルエーテル化であることを特徴とする請求項7乃至12のいずれか1項記載の光重合性組成物。   The etherification of a hydroxyl group generated by ring opening of an epoxy group is allyl etherification, methyl etherification, or 3,5-bis (butenyloxy) benzyl etherification. The photopolymerizable composition according to item.
JP2008102950A 2008-04-10 2008-04-10 Photopolymerizable composition Pending JP2009249605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102950A JP2009249605A (en) 2008-04-10 2008-04-10 Photopolymerizable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102950A JP2009249605A (en) 2008-04-10 2008-04-10 Photopolymerizable composition

Publications (1)

Publication Number Publication Date
JP2009249605A true JP2009249605A (en) 2009-10-29

Family

ID=41310593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102950A Pending JP2009249605A (en) 2008-04-10 2008-04-10 Photopolymerizable composition

Country Status (1)

Country Link
JP (1) JP2009249605A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286924A (en) * 2008-05-30 2009-12-10 Jsr Corp Curable composition
CN102030399A (en) * 2010-09-30 2011-04-27 陕西科技大学 Hyperbranched polymer flocculant for treating waste drilling fluid and preparation method thereof
CN103755939A (en) * 2014-01-13 2014-04-30 济南大学 Hydroxyl-terminated hyperbranched polyurethane-ester polymer as well as modified micro-fluidic chip and application thereof
CN104262615A (en) * 2014-09-11 2015-01-07 北京化工大学 Synthesis method of hyperbranched polymers and modification of epoxy curing product by hyperbranched polymers
CN107674628A (en) * 2017-11-06 2018-02-09 西安近代化学研究所 A kind of three block type alkenyl polyether adhesive and its synthetic method
CN111377817A (en) * 2018-12-27 2020-07-07 财团法人工业技术研究院 Resin and ink
RU2758254C2 (en) * 2019-01-22 2021-10-27 Станислав Александрович Галактионов Demulsifiers based on hyperbranched polymers for destruction of water-oil emulsions, their preparation and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504219A (en) * 1992-02-26 1995-05-11 ペルストルプ アーベー Dendritic polymer and its production method
JP2002533495A (en) * 1998-12-22 2002-10-08 バイエル アクチェンゲゼルシャフト Process for producing hyperbranched polyols based on glycidol
JP2003529658A (en) * 2000-03-30 2003-10-07 ゼネラル・エレクトリック・カンパニイ Use of dendrimers as processing aids and surface modifiers for thermoplastics
JP2007016154A (en) * 2005-07-08 2007-01-25 Hakuto Co Ltd Polymerizable dendrimer and polymerizable resin composition
JP2007246483A (en) * 2006-03-17 2007-09-27 Hakuto Co Ltd Polymerizable dendrimer and photocurable resin composition
WO2007135770A1 (en) * 2006-05-19 2007-11-29 Dow Corning Toray Co., Ltd. Polyether and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504219A (en) * 1992-02-26 1995-05-11 ペルストルプ アーベー Dendritic polymer and its production method
JP2002533495A (en) * 1998-12-22 2002-10-08 バイエル アクチェンゲゼルシャフト Process for producing hyperbranched polyols based on glycidol
JP2003529658A (en) * 2000-03-30 2003-10-07 ゼネラル・エレクトリック・カンパニイ Use of dendrimers as processing aids and surface modifiers for thermoplastics
JP2007016154A (en) * 2005-07-08 2007-01-25 Hakuto Co Ltd Polymerizable dendrimer and polymerizable resin composition
JP2007246483A (en) * 2006-03-17 2007-09-27 Hakuto Co Ltd Polymerizable dendrimer and photocurable resin composition
WO2007135770A1 (en) * 2006-05-19 2007-11-29 Dow Corning Toray Co., Ltd. Polyether and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286924A (en) * 2008-05-30 2009-12-10 Jsr Corp Curable composition
CN102030399A (en) * 2010-09-30 2011-04-27 陕西科技大学 Hyperbranched polymer flocculant for treating waste drilling fluid and preparation method thereof
CN103755939A (en) * 2014-01-13 2014-04-30 济南大学 Hydroxyl-terminated hyperbranched polyurethane-ester polymer as well as modified micro-fluidic chip and application thereof
CN104262615A (en) * 2014-09-11 2015-01-07 北京化工大学 Synthesis method of hyperbranched polymers and modification of epoxy curing product by hyperbranched polymers
CN107674628A (en) * 2017-11-06 2018-02-09 西安近代化学研究所 A kind of three block type alkenyl polyether adhesive and its synthetic method
CN107674628B (en) * 2017-11-06 2020-05-29 西安近代化学研究所 Three-block type alkenyl polyether adhesive and synthesis method thereof
CN111377817A (en) * 2018-12-27 2020-07-07 财团法人工业技术研究院 Resin and ink
RU2758254C2 (en) * 2019-01-22 2021-10-27 Станислав Александрович Галактионов Demulsifiers based on hyperbranched polymers for destruction of water-oil emulsions, their preparation and application

Similar Documents

Publication Publication Date Title
JP2009249605A (en) Photopolymerizable composition
TWI498357B (en) An organic silicon compound having an oxetanyl group, a process for producing the same, and a hardened composition
KR101821573B1 (en) Long-chain alkylene-containing curable epoxy resin composition
KR20090069012A (en) Photopolymerizable monomers having epoxide and undaturated double bonds and their composition
TWI643898B (en) Photocurable composition for nanoimprinting, and method for forming fine pattern using the same
JP4469202B2 (en) Photopolymerizable resin composition, cured product thereof, and production method
JP2014063148A (en) Photosensitive resin composition and pattern formation method using the same
JP5454762B2 (en) Cationic curable composition
JP2014056122A (en) Photosensitive composition
JP2008273844A (en) New fluorene compound having phenolic hydroxy group and methylol group and method for producing the same
Matsukawa et al. Reworkable dimethacrylates with low shrinkage and their application to UV nanoimprint lithography
JPWO2020110793A1 (en) Photosensitive resin composition, method for producing cured fluororesin, fluororesin, fluororesin film, bank and display element
JP2009249500A (en) Polymerizable highly-branched polymer and its manufacturing method
JP2007246483A (en) Polymerizable dendrimer and photocurable resin composition
WO2020138147A1 (en) Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern and purification method
JP2019192724A (en) Curable composition for nanoimprint, and patterned substrate using the same
US20060189160A1 (en) Method for producing a pattern formation mold
CN109843965B (en) Epoxy resin composition for forming printed wiring board
JP2005077807A (en) Energy-line sensitive acid generator, method for generating acid and energy-line sensitive curable composition
JP2005343847A (en) Energy ray-sensitive acid-generating composition
JP3424772B2 (en) Photopolymerization initiator, energy ray-curable composition containing the same, and cured product thereof
WO2022176883A1 (en) Surface modifier, photosensitive resin composition, cured product, and display
WO2023145580A1 (en) Diepoxy compound, curable composition, cured product, and optical member
KR20230146034A (en) Photosensitive resin composition, cured product, fluorinated resin cured film and display
JP6048871B2 (en) Acid proliferating agent and acid-reactive resin composition containing the acid proliferating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023