JP5167609B2 - Silicone copolymer having oxetanyl group - Google Patents

Silicone copolymer having oxetanyl group Download PDF

Info

Publication number
JP5167609B2
JP5167609B2 JP2006222217A JP2006222217A JP5167609B2 JP 5167609 B2 JP5167609 B2 JP 5167609B2 JP 2006222217 A JP2006222217 A JP 2006222217A JP 2006222217 A JP2006222217 A JP 2006222217A JP 5167609 B2 JP5167609 B2 JP 5167609B2
Authority
JP
Japan
Prior art keywords
group
mol
benzene ring
hydrocarbon group
silicone copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006222217A
Other languages
Japanese (ja)
Other versions
JP2007084799A (en
Inventor
健 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2006222217A priority Critical patent/JP5167609B2/en
Publication of JP2007084799A publication Critical patent/JP2007084799A/en
Application granted granted Critical
Publication of JP5167609B2 publication Critical patent/JP5167609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、電子材料や微細加工の材料として有用なオキセタニル基を有する新規シリコーン共重合体に関するものである。   The present invention relates to a novel silicone copolymer having an oxetanyl group that is useful as an electronic material or a material for microfabrication.

近年、半導体素子の微細化が進むとともに、その製造に用いられるリソグラフィ工程についていっそうの微細化が求められるようになってきている。微細化が急速に発展してきた背景には、投影レンズの高NA化、レジストの性能向上、短波長化が挙げられる。   In recent years, with the progress of miniaturization of semiconductor elements, further miniaturization of a lithography process used for manufacturing the semiconductor element has been demanded. The background of rapid progress in miniaturization includes higher NA of projection lenses, improved resist performance, and shorter wavelengths.

特に露光波長の短波長化は大きな変革をもたらしてきたが、さらに微細化の要求は大きく、KrF(248nm)露光からArF(193nm)露光への短波長化が進んできている。   In particular, the shortening of the exposure wavelength has brought about a great change, but the demand for further miniaturization is great, and the shortening of the wavelength from KrF (248 nm) exposure to ArF (193 nm) exposure is progressing.

微細パターンを作成するために、中間層を設ける三層レジストプロセスも考案されており、フェノール性水酸基をもつポリオルガノシルセスキオキサンの例は報告されている(特許文献1参照)。それらの共重合体では、フェノール性水酸基部位と架橋剤とを反応させることにより、熱硬化膜を形成する。よって、熱硬化膜を形成させるためにはフェノール部位が多く必要になるが、フェノールにはベンゼン環を有するため、ArF(193nm)のような遠紫外線波長での露光波長には樹脂自体の吸収が大きく、光が透過しない遠紫外線波長で使用することが難しい。また、光の透過率を上げるためにフェノール組成を少なくすると、フェノール性水酸基が少なくなることにより架橋剤と反応率が低く、中間層を設ける三層レジストプロセスとして使用できない。   In order to create a fine pattern, a three-layer resist process in which an intermediate layer is provided has been devised, and an example of a polyorganosilsesquioxane having a phenolic hydroxyl group has been reported (see Patent Document 1). In these copolymers, a thermosetting film is formed by reacting a phenolic hydroxyl group with a crosslinking agent. Therefore, in order to form a thermosetting film, a large number of phenol sites are required. However, since phenol has a benzene ring, the resin itself absorbs at the exposure wavelength at a far ultraviolet wavelength such as ArF (193 nm). It is large and difficult to use at far ultraviolet wavelengths that do not transmit light. Further, if the phenol composition is decreased in order to increase the light transmittance, the reaction rate with the cross-linking agent is low due to the decrease in phenolic hydroxyl groups, and it cannot be used as a three-layer resist process for providing an intermediate layer.

よって、樹脂自体の透過性を上げるため、ベンゼン環骨格がなく、フッ素原子により樹脂自体の透過性を上げるシリコーン重合体が提案されている(特許文献2参照)。しかしながら、アルコール部位がフッ素置換基に立体障害のため反応性が悪く、架橋剤と反応しないため、熱硬化膜として使用することができなかった。   Therefore, in order to increase the permeability of the resin itself, a silicone polymer that has no benzene ring skeleton and increases the permeability of the resin itself by fluorine atoms has been proposed (see Patent Document 2). However, the alcohol moiety has poor reactivity due to steric hindrance to the fluorine substituent and does not react with the cross-linking agent, so that it cannot be used as a thermosetting film.

このことから、遠紫外線波長で使用でき、かつ熱硬化性置換基を有する新規シリコーン共重合体が求められていた。
特開2004−341479公報 特開2002−55456号公報
For this reason, a novel silicone copolymer that can be used at a far ultraviolet wavelength and has a thermosetting substituent has been demanded.
JP 2004-341479 A JP 2002-55456 A

本発明は、ArF(193nm)のような遠紫外線露光波長でも透明性が良く、かつ、熱硬化性置換基を有するシリコーン共重合体を提供することを目的としてなされたものである。   An object of the present invention is to provide a silicone copolymer having good transparency even at a far ultraviolet exposure wavelength such as ArF (193 nm) and having a thermosetting substituent.

本発明者らは、ArF(193nm)のような遠紫外線露光波長でも透明性が良く、かつ熱硬化性置換基を有するシリコーン共重合体について種々検討を重ねた結果、特定の組成をもつシリコーン共重合体では、遠紫外線露光波長で使用でき、熱硬化性置換基を有することにより微細加工に使用される中間層材料になりうる好適な新規材料を見出し、この知見に基づいて本発明をなすに至った。   The present inventors have conducted various studies on a silicone copolymer having good transparency at a far ultraviolet exposure wavelength such as ArF (193 nm) and having a thermosetting substituent, and as a result, a silicone copolymer having a specific composition has been studied. In the polymer, a suitable new material that can be used at a far ultraviolet exposure wavelength and can be used as an intermediate layer material for microfabrication by having a thermosetting substituent is found, and the present invention is made based on this finding. It came.

すなわち、本発明は、(A)オキセタニル基を含有するシルセスキオキサン単位、(B)ベンゼン環を含む炭化水素基を含有するシルセスキオキサン単位、(C)ベンゼン環を含まない炭化水素基を含有するシルセスキオキサン単位を特定の割合で含み、重量平均分子量(ポリスチレン換算)が500から100000であるシリコーン共重合体を提供することである。 That is, the present invention includes (A) a silsesquioxane unit containing an oxetanyl group, (B) a silsesquioxane unit containing a hydrocarbon group containing a benzene ring, and (C) a hydrocarbon group containing no benzene ring. It is providing the silicone copolymer which contains the silsesquioxane unit containing this in a specific ratio, and whose weight average molecular weight (polystyrene conversion) is 500 to 100,000.

本発明のシリコーン共重合体の(A)部位には、フェノール性水酸基の代わりに熱硬化性オキセタニル基を使用することにより、ArF露光(193nm)のような250nm以下の遠紫外線領域での短波長の露光波長で透過性が良く、オキセタニル基を有することにより微細加工が可能な中間層材料として好適な材料となり、微細加工プロセスに導入することができる。また、(B)部位には炭化水素基を含有するシルセスキオキサン単位を導入することによりシリコーン共重合体を形成し、ベンゼン環を導入して遠紫外線の透過率を調整することができる。また、ベンゼン環を有しない炭化水素基では、エッチング等で有用なシリコン含有率(ポリマに対するSiOの含有率)を向上させることができる。   By using a thermosetting oxetanyl group in place of the phenolic hydroxyl group at the (A) site of the silicone copolymer of the present invention, a short wavelength in the far ultraviolet region of 250 nm or less as in ArF exposure (193 nm) By having an oxetanyl group, it becomes a material suitable as an intermediate layer material that can be finely processed, and can be introduced into a fine processing process. Further, by introducing a silsesquioxane unit containing a hydrocarbon group into the (B) site, a silicone copolymer can be formed, and a benzene ring can be introduced to adjust the transmittance of far ultraviolet rays. Further, a hydrocarbon group having no benzene ring can improve the silicon content (SiO content relative to the polymer) useful for etching and the like.

また、本発明のシリコーン共重合体は、側鎖にオキセタニル基を有していることから、カチオン硬化性樹脂として使用することができる。よって、本発明のシリコーン共重合体は電子材料分野に限らず、塗料や接着剤等、幅広い分野で応用できる。   Moreover, since the silicone copolymer of this invention has an oxetanyl group in a side chain, it can be used as a cationic curable resin. Therefore, the silicone copolymer of the present invention can be applied not only in the field of electronic materials but also in a wide range of fields such as paints and adhesives.

本発明のシリコーン共重合体は、(A)オキセタニル基を含有するシルセスキオキサン単位、(B)ベンゼン環を含む炭化水素基を含有するシルセスキオキサン単位、(C)ベンゼン環を含まない炭化水素基を含有するシルセスキオキサン単位を特定の割合で含むシリコーン共重合体である。 The silicone copolymer of the present invention does not contain (A) a silsesquioxane unit containing an oxetanyl group, (B) a silsesquioxane unit containing a hydrocarbon group containing a benzene ring, and (C) a benzene ring. A silicone copolymer containing a silsesquioxane unit containing a hydrocarbon group in a specific ratio .

本発明のシリコーン共重合体は、下記一般式 Silicone copolymer of the present invention will following general formula

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。Aは、好ましくは、プロピレン基、Bは、好ましくは、エチル基であり、R1は、好ましくは、フェニル基またはヒドロキシフェネチル基であり、R2は、好ましくは、メチル基またはエチル基である。)
で示される繰り返し単位を有するシリコーン共重合体である。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each A is 30 to 79 mol%, b is 1 to 30 mol%, c is 20 to 69 mol%, where a + b + c = 100 A is preferably a propylene group, B is preferably And R1 is preferably a phenyl group or a hydroxyphenethyl group, and R2 is preferably a methyl group or an ethyl group.)
It is a silicone copolymer which has a repeating unit shown by these.

本発明のシリコーン共重合体は、重量平均分子量(ポリスチレン換算)が500〜100000の範囲にあ、1000〜10000の範囲にあるものが好ましい。分散度は1.0〜10.0の範囲にあるものが好ましく、1.1〜5.0の範囲にあるものがさらに好ましい。 Silicone copolymers of the present invention, Ri range near the weight average molecular weight (polystyrene equivalent) of 500 to 100,000, is good preferable that the range of 1,000 to 10,000. The dispersity is preferably in the range of 1.0 to 10.0, more preferably in the range of 1.1 to 5.0.

本出願での、本発明のシリコーン共重合体の下記骨格は   In the present application, the following skeleton of the silicone copolymer of the present invention is:

Figure 0005167609
Figure 0005167609

シルセスキオキサン骨格を示し、各ケイ素原子が3個の酸素原子に結合し、各酸素原子が2個のケイ素原子に結合していることを示す。 A silsesquioxane skeleton is shown, and each silicon atom is bonded to three oxygen atoms, and each oxygen atom is bonded to two silicon atoms.

また、本発明のシリコーン共重合体は、例えば、下記一般式   Moreover, the silicone copolymer of the present invention has, for example, the following general formula:

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。)
に示す構造式で示すことができる。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each And a is 30 to 79 mol%, b is 1 to 30 mol%, c is 20 to 69 mol%, provided that a + b + c = 100.)
It can be shown by the structural formula shown in

また、本発明のシリコーン共重合体は、例えば、下記一般式   Moreover, the silicone copolymer of the present invention has, for example, the following general formula:

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは1〜69モル%、ただしa+b+c=100である。)
で示されるラダー型シリコーン共重合体でも良い。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each A is 30 to 79 mol%, b is 1 to 30 mol%, c is 1 to 69 mol%, provided that a + b + c = 100.
The ladder type silicone copolymer shown by these may be sufficient.

ここで、本発明のシリコーン共重合体の好ましい形態である下記一般式   Here, the following general formula, which is a preferred form of the silicone copolymer of the present invention:

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは1〜69モル%、ただしa+b+c=100である。)
のAで示される有機基としては、炭素数1〜20の直鎖状、分枝状または環状の炭化水素が好ましく、環状炭化水素基でも良い。さらに炭化水素基に酸素原子を有しても良い。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each A is 30 to 79 mol%, b is 1 to 30 mol%, c is 1 to 69 mol%, provided that a + b + c = 100.
The organic group represented by A is preferably a linear, branched or cyclic hydrocarbon having 1 to 20 carbon atoms, and may be a cyclic hydrocarbon group. Further, the hydrocarbon group may have an oxygen atom.

好ましい炭化水素基として、例えば、炭素数1〜20の直鎖状炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等の炭化水素基が挙げられる。分枝状炭化水素基としては、イソプロピレン基、イソブチレン基等の炭化水素基が好ましい。環状炭化水素基として、シクロペンチレン基、シクロへキシレン基、シクロヘプチレン基等の環状炭化水素基が好ましい。酸素原子を有する炭化水素基としては、オキシメチル基、オキシエチル基、オキシプロピル基等がより好ましい。   Preferable hydrocarbon groups include, for example, hydrocarbon groups such as a methylene group, an ethylene group, a propylene group, a butylene group, and a pentylene group as the linear hydrocarbon group having 1 to 20 carbon atoms. The branched hydrocarbon group is preferably a hydrocarbon group such as an isopropylene group or an isobutylene group. As the cyclic hydrocarbon group, a cyclic hydrocarbon group such as a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group is preferable. As the hydrocarbon group having an oxygen atom, an oxymethyl group, an oxyethyl group, an oxypropyl group, and the like are more preferable.

これら有機基には透明性の観点から、不飽和結合を含まない化合物が好ましい。   From the viewpoint of transparency, these organic groups are preferably compounds containing no unsaturated bond.

ここで、本発明のシリコーン共重合体の好ましい形態である下記一般式   Here, the following general formula, which is a preferred form of the silicone copolymer of the present invention:

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。)
のBで示される有機基としては、炭素数1〜20の直鎖状、分枝状または環状の炭化水素が好ましい。好ましい炭化水素基として、例えば、炭素数1〜20の直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基等の炭化水素基が挙げられる。分枝状炭化水素基としては、イソプロピル基、イソブチル基等の炭化水素基が好ましい。環状炭化水素基として、シクロペンチル基、シクロへキシル基、シクロヘプチル基等の環状炭化水素基が好ましい。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each And a is 30 to 79 mol%, b is 1 to 30 mol%, c is 20 to 69 mol%, provided that a + b + c = 100.)
The organic group represented by B is preferably a linear, branched or cyclic hydrocarbon having 1 to 20 carbon atoms. Preferable hydrocarbon groups include, for example, hydrocarbon groups such as methyl group, ethyl group, n-propyl group, n-butyl group, and n-pentyl group as linear hydrocarbon groups having 1 to 20 carbon atoms. It is done. As the branched hydrocarbon group, a hydrocarbon group such as isopropyl group and isobutyl group is preferable. As the cyclic hydrocarbon group, a cyclic hydrocarbon group such as a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group is preferable.

これら炭化水素基は、透明性の観点から、不飽和結合を含まない化合物がより好ましく、炭化水素基に置換基が結合していてもよい
ここで、本発明のシリコーン共重合体の好ましい形態である下記一般式
These hydrocarbon groups are more preferably compounds not containing an unsaturated bond from the viewpoint of transparency, and a substituent may be bonded to the hydrocarbon group. Here, in a preferred form of the silicone copolymer of the present invention The following general formula

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは1〜69モル%、ただしa+b+c=100である。)
のR1で示される炭化水素基としては、ベンゼン環を含む炭化水素基を示し、フェニル基、ベンジル基、フェニルエチル基、フェニルプロピル基等のベンゼン環にアルキル基が結合している形が好ましい。ベンゼン環にメチル基、エチル基、n−プロピル基、i−プロピル基等のアルキル基、メトキシ基、エトキシ基、プロポキシ基等のエーテル基、アセトキシ基、エチルカルボニルオキシ基等のエステル基、ヒドロキシフェニル基、ヒドロキシベンジル基、ヒドロキシフェネチル基等の水酸基が結合していても良い。特にフェニル基、ベンジル基が合成上容易であり特に好ましい。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each A is 30 to 79 mol%, b is 1 to 30 mol%, c is 1 to 69 mol%, provided that a + b + c = 100.
As the hydrocarbon group represented by R1, a hydrocarbon group containing a benzene ring is shown, and an alkyl group is preferably bonded to a benzene ring such as a phenyl group, a benzyl group, a phenylethyl group, or a phenylpropyl group. Alkyl group such as methyl group, ethyl group, n-propyl group, i-propyl group, ether group such as methoxy group, ethoxy group, propoxy group, ester group such as acetoxy group, ethylcarbonyloxy group, hydroxyphenyl on benzene ring Hydroxyl groups such as a group, hydroxybenzyl group, hydroxyphenethyl group and the like may be bonded. In particular, a phenyl group and a benzyl group are particularly preferable because they are easily synthesized.

本発明のシリコーン共重合体の好ましい形態である下記一般式   The following general formula, which is a preferred form of the silicone copolymer of the present invention

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。)
のR2で示される炭化水素基としては、炭素数1〜20の直鎖状、分枝状または環状の炭化水素基が好ましい。R2で示される好ましい炭化水素基の例として、炭素数1〜20の直鎖状炭化水素基が挙げられ、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等の炭化水素基が挙げられる。分枝状炭化水素基としては、イソプロピル機、イソブチル基等の炭化水素基が好ましい。環状炭化水素基として、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の環状炭化水素基が好ましい。また、架橋環状炭化水素基として、下記構造式の架橋炭化水素基等が好ましい。
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each And a is 30 to 79 mol%, b is 1 to 30 mol%, c is 20 to 69 mol%, provided that a + b + c = 100.)
As the hydrocarbon group represented by R 2, a linear, branched or cyclic hydrocarbon group having 1 to 20 carbon atoms is preferable. Examples of preferred hydrocarbon groups represented by R2 include straight-chain hydrocarbon groups having 1 to 20 carbon atoms, such as methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n -Hydrocarbon groups, such as a hexyl group, are mentioned. The branched hydrocarbon group is preferably a hydrocarbon group such as an isopropyl machine or an isobutyl group. As the cyclic hydrocarbon group, a cyclic hydrocarbon group such as a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group is preferable. Further, as the crosslinked cyclic hydrocarbon group, a crosslinked hydrocarbon group having the following structural formula is preferred.

Figure 0005167609
Figure 0005167609

特に、低級アルキル基であるメチル基、エチル基、n-プロピル基が特に好ましく、低級アルキル基を使用することにより、ポリマ自体のシリコン含有率(ポリマ中のSiOが占める割合)が高くなり、エッチングに対する耐性が高くなることからより好ましい。   In particular, lower alkyl groups such as methyl, ethyl and n-propyl groups are particularly preferred. By using lower alkyl groups, the silicon content of the polymer itself (the proportion of SiO in the polymer) is increased, and etching is performed. It is more preferable because the resistance to is increased.

これら炭化水素基には透明性の観点から、不飽和結合を含まない化合物が好ましく、炭化水素基に置換基が結合していてもよい。   From the viewpoint of transparency, these hydrocarbon groups are preferably compounds containing no unsaturated bond, and a substituent may be bonded to the hydrocarbon group.

特に好ましい化合物の例を下記に示す。   Examples of particularly preferred compounds are shown below.

Figure 0005167609
Figure 0005167609

(式中、R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。nは0〜5の整数を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは1〜69モル%、ただしa+b+c=100である。)
ここで、本発明のシリコーン共重合体の組成比としては、aは3079モル%、bは1〜30モル%、cは1〜69モル%、ただしa+b+c=100となる。
(In the formula, R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group not containing a benzene ring. N represents an integer of 0 to 5. a, b and c each represents mol%. A is 30 to 79 mol%, b is 1 to 30 mol%, c is 1 to 69 mol%, provided that a + b + c = 100.)
Here, as the composition ratio of the silicone copolymer of the present invention, a is 30 to 79 mol%, b is 1 to 30 mol%, c is 1 to 69 mol%, and a + b + c = 100.

ここで、a成分は熱硬化性オキセタニル基を含有する置換基を示す。a成分は、熱により硬化させるためには、30モル%以上であるHere, a component shows the substituent containing a thermosetting oxetanyl group. a component for curing by heat is 30 mol% or more.

また、b成分はベンゼン環骨格を有する置換基を示す。遠紫外線露光波長では、ベンゼン環自体に吸収があり光を通さないポリマとなる。b成分を含むことにより遠紫外線露光波長での吸収があるポリマとなり、光学特性的に好ましい。b組成は、1〜30モル%であるThe component b represents a substituent having a benzene ring skeleton. At the far ultraviolet exposure wavelength, the benzene ring itself absorbs and becomes a polymer that does not transmit light. By containing the component b, a polymer having absorption at the far ultraviolet exposure wavelength is obtained, which is preferable in terms of optical characteristics. b composition is 1 to 30 mol%.

c成分のRはアルキル基を含む組成である。c成分には、低級アルキルを使用することがより好ましい。ポリマ中のシリコン含有率(ポリマ中のSiOが占める割合)を向上させることから、c成分は、20モル%以上であり、30モル%以上が好ましい。 R of c component is a composition containing an alkyl group. It is more preferable to use lower alkyl for the component c. Since the improved silicon content in the polymer (the ratio of the SiO in the polymer), c component is 2 0 mol% or more, good preferable at least 30 mol%.

ここで、本発明のシリコーン共重合体の好ましい形態である下記一般式   Here, the following general formula, which is a preferred form of the silicone copolymer of the present invention:

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは1〜69モル%、ただしa+b+c=100である。)で示されるシリコーン共重合体を製造する場合、例えば、下記で示される合成法で (In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each In the case of producing a silicone copolymer represented by mol%, a is 30 to 79 mol%, b is 1 to 30 mol%, c is 1 to 69 mol%, where a + b + c = 100. In the synthesis method shown below

Figure 0005167609
Figure 0005167609

(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。Xはアルキル基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。)
合成することができる。
(In the formula, A represents an organic group, B represents hydrogen or an organic group, R 1 represents a hydrocarbon group containing a benzene ring, R 2 represents a hydrocarbon group not containing a benzene ring, and X represents an alkyl group. a, b and c each represent mol%, a is 30 to 79 mol%, b is 1 to 30 mol%, c is 20 to 69 mol%, provided that a + b + c = 100.
Can be synthesized.

すなわち、合成したい骨格を有するトリアルコキシシランモノマーを水で加水分解及び重縮合することにより、目的のポリマを合成することができる。ここで、トリアルコキシシランモノマーのOXとしては、加水分解性基を示し、アルコキシ基が挙げられる。Xとしてはメチル、エチル、n−プロピル、i−プロピル、n−ブチル等が好ましく、特にメチル、エチル等の低級アルキル基が好ましい。   That is, a target polymer can be synthesized by hydrolyzing and polycondensing a trialkoxysilane monomer having a skeleton to be synthesized with water. Here, OX of the trialkoxysilane monomer represents a hydrolyzable group and includes an alkoxy group. X is preferably methyl, ethyl, n-propyl, i-propyl, n-butyl or the like, and particularly preferably a lower alkyl group such as methyl or ethyl.

水による加水分解、重縮合反応は、オキセタン骨格が酸に弱いことからアルカリ性で行うことが好ましく、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩や、トリエチルアミン、トリブチルアミン、ベンジルジメチルアミンなどのアミンを触媒として使用することが好ましく、特に触媒活性が高いテトラメチルアンモニウムヒドロキシドを用いることが特に好ましい。この触媒使用量は原料モノマーのモル数に対して 0.01〜1.0当量が好ましく、0.02〜0.5当量がさらに好ましい。   Hydrolysis and polycondensation reactions with water are preferably performed in an alkaline manner because the oxetane skeleton is weak against acid. Tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyltrimethyl It is preferable to use an ammonium hydroxide salt such as ammonium hydroxide or an amine such as triethylamine, tributylamine, or benzyldimethylamine as a catalyst, and it is particularly preferable to use tetramethylammonium hydroxide having a high catalytic activity. The amount of the catalyst used is preferably 0.01 to 1.0 equivalent, more preferably 0.02 to 0.5 equivalent, relative to the number of moles of the raw material monomer.

加水分解、重縮合条件としては、反応温度0〜100℃が好ましく、20〜60℃がより好ましい。反応温度が0℃より低いと反応速度が遅くなり、未反応原料が残ってしまう可能性がある。また、反応温度が100℃より高くなると、オキセタン骨格が熱により開裂する可能性があるため好ましくない。   The hydrolysis and polycondensation conditions are preferably a reaction temperature of 0 to 100 ° C, more preferably 20 to 60 ° C. When the reaction temperature is lower than 0 ° C., the reaction rate becomes slow and unreacted raw materials may remain. In addition, if the reaction temperature is higher than 100 ° C., the oxetane skeleton may be cleaved by heat, which is not preferable.

加水分解、重縮合には水が必要になるが、水は、原料モノマーのモル数に対して、3〜100当量使用することが好ましく、5〜20当量使用することが特に好ましい。この反応では有機溶媒を使用することが好ましく、有機溶媒としては、メタノール、エタノール、2−プロパノール等のアルコール類や、他の極性溶媒を使用することができる。好ましくは、水に溶解するメタノール、エタノール、2−プロパノール等の低級アルコール類がより好ましい。非極性溶媒を使用すると、反応系が均一にならず加水分解反応が十分に進行しないため、未反応原料が残ってしまい好ましくない。   Water is required for hydrolysis and polycondensation, but water is preferably used in an amount of 3 to 100 equivalents, particularly preferably 5 to 20 equivalents, relative to the number of moles of raw material monomers. In this reaction, an organic solvent is preferably used, and as the organic solvent, alcohols such as methanol, ethanol, 2-propanol, and other polar solvents can be used. Preferably, lower alcohols such as methanol, ethanol, and 2-propanol that dissolve in water are more preferable. Use of a nonpolar solvent is not preferable because the reaction system is not uniform and the hydrolysis reaction does not proceed sufficiently, leaving unreacted raw materials.

反応終了後は、非極性溶媒を添加して反応生成物と水とを分離して、有機溶媒に溶解した反応生成物を回収し、水で洗浄後に溶媒を留去することにより目的の生成物を得ることができる。   After completion of the reaction, a non-polar solvent is added to separate the reaction product and water, and the reaction product dissolved in an organic solvent is recovered. After washing with water, the solvent is distilled off to obtain the desired product. Can be obtained.

このようにしてオキセタニル基をもつシリコーン共重合体を合成することができる。   In this way, a silicone copolymer having an oxetanyl group can be synthesized.

以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

以下の実施例において、測定には下記装置を使用し、原料は試薬メーカーから購入した一般的な試薬を用いた。   In the following examples, the following apparatus was used for the measurement, and a general reagent purchased from a reagent manufacturer was used as a raw material.

測定装置
NMR測定・・・日本電子製400MHz NMR測定器
IR測定・・・島津製IR Prestige-21
GPC測定・・・東ソー製HLC-8220
UV測定・・・島津製UV-2400PC(2×10-4mol/lのエタノール溶液を調製し、光路長10mmの角形石英セルに入れ25℃で50Wハロゲンランプを使用して測定した)。
measuring device
NMR measurement: JEOL 400MHz NMR measuring instrument
IR measurement ・ ・ ・ IR Prestige-21 made by Shimadzu
GPC measurement: Tosoh HLC-8220
UV measurement: UV-2400PC manufactured by Shimadzu (measured using a 50W halogen lamp at 25 ° C., prepared in a 2 × 10 −4 mol / l ethanol solution, placed in a square quartz cell with an optical path length of 10 mm).

実施例1
下記構造式(3−エチル−オキセタン−3−イル−メトキシプロピルシルセスキオキサン・フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 1
Synthesis of the following structural formula (3-ethyl-oxetane-3-yl-methoxypropylsilsesquioxane / phenylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005167609
Figure 0005167609

(構造式中の50、13、37は各組成のモル%を示す)
撹拌機、環流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、10%テトラメチルアンモニウムヒドロキシド7.9g(0.0087モル)と水8.6gを仕込み、3−エチル−(3−(トリエトキシシリル)プロピルオキシメチル)オキセタン33.8g(0.11モル)とフェニルトリエトキシシラン6.6g(0.027モル)とメチルトリエトキシシラン13.9g(0.078モル)の2−プロパノール50g溶液を60〜65℃で滴下した。滴下終了後、同温度で2時間熟成後に冷却後、トルエンを加えて抽出し、溶液が中性になるまで水で洗浄して、トルエン油層を回収した。ついでトルエン層を回収し、目的の化合物30.5gを得た。
(50, 13, and 37 in the structural formula indicate mol% of each composition)
A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 7.9 g (0.0087 mol) of 10% tetramethylammonium hydroxide and 8.6 g of water, and 3-ethyl- (3- (Triethoxysilyl) propyloxymethyl) oxetane 33.8 g (0.11 mol), phenyltriethoxysilane 6.6 g (0.027 mol) and methyltriethoxysilane 13.9 g (0.078 mol) 2-propanol 50g solution was dripped at 60-65 degreeC. After completion of the dropwise addition, the mixture was aged at the same temperature for 2 hours and then cooled. Toluene was added for extraction, and the solution was washed with water until the solution became neutral to recover the toluene oil layer. Then, the toluene layer was recovered to obtain 30.5 g of the target compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1047-1123cm-1(Si-O)、1269 cm-1(-O-)、2866-2965 cm-1(-CH2-)
核磁気共鳴スペクトル(NMR)データ(1H-NMR溶媒:CDCl3
0.416ppm(bs)、0.904-1.117ppm(m)、1.886-1.929ppm(m)、3.619-3.750(m)、4.512-4.577(m)、7.438-7.867(m)ppm
GPC分析データ:Mw=2,140、Mw/Mn=1.33(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1047-1123cm -1 (Si-O), 1269 cm -1 (-O-), 2866-2965 cm -1 (-CH2-)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: CDCl 3 )
0.416ppm (bs), 0.904-1.117ppm (m), 1.886-1.929ppm (m), 3.619-3.750 (m), 4.512-4.577 (m), 7.438-7.867 (m) ppm
GPC analysis data: Mw = 2,140, Mw / Mn = 1.33 (polystyrene conversion).

実施例2
下記構造式(3−エチル−オキセタン−3−イル−メトキシプロピルシルセスキオキサ
ン・フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 2
Synthesis of the following structural formula (3-ethyl-oxetane-3-yl-methoxypropylsilsesquioxane / phenylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005167609
Figure 0005167609

(構造式中の65、13、22は各組成のモル%を示す)
実施例1に記載の原料である3−エチル−(3−(トリエトキシシリル)プロピルオキシメチル)オキセタンを43.9g(0.14モル)とフェニルトリエトキシシラン6.6g(0.027モル)とメチルトリエトキシシラン8.3g(0.046モル)に変更した以外は実施例1と同様の操作で目的の化合物32.6gを得た。
(65, 13, and 22 in the structural formula indicate mol% of each composition)
43.9 g (0.14 mol) of 3-ethyl- (3- (triethoxysilyl) propyloxymethyl) oxetane, which is the raw material described in Example 1, and 6.6 g (0.027 mol) of phenyltriethoxysilane 32.6 g of the target compound was obtained in the same manner as in Example 1 except that the amount was changed to 8.3 g (0.046 mol) of methyltriethoxysilane.

赤外線吸収スペクトル(IR)データ
1018-1246cm-1(Si-O)、1269 cm-1(-O-)、2866-2965 cm-1(-CH2-)
核磁気共鳴スペクトル(NMR)データ(1H-NMR溶媒:DMSO-d6
0.417-0.440ppm(m)、0.908-1.116ppm(m)、1.885-1.945ppm(m)、3.427-3.747(m)、4.499-4.574(m)、7.419-7.884(m)ppm
GPC分析データ:Mw=1,770、Mw/Mn=1.15(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1018-1246cm -1 (Si-O), 1269 cm -1 (-O-), 2866-2965 cm -1 (-CH2-)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: DMSO-d 6 )
0.417-0.440ppm (m), 0.908-1.116ppm (m), 1.885-1.945ppm (m), 3.427-3.747 (m), 4.499-4.574 (m), 7.419-7.884 (m) ppm
GPC analysis data: Mw = 1,770, Mw / Mn = 1.15 (polystyrene conversion).

実施例3
下記構造式(3−エチル−オキセタン−3−イル−メトキシプロピルシルセスキオキサン・ベンジルシルセスキオキサン・エチルシルセスキオキサン共重合体)の合成
Example 3
Synthesis of the following structural formula (3-ethyl-oxetane-3-yl-methoxypropylsilsesquioxane / benzylsilsesquioxane / ethylsilsesquioxane copolymer)

Figure 0005167609
Figure 0005167609

(構造式中の65、13、22は各組成のモル%を示す)
実施例1に記載の原料である3−エチル−(3−(トリエトキシシリル)プロピルオキシメチル)オキセタンを43.9g(0.14モル)とベンジルトリエトキシシラン7.0g(0.027モル)とエチルトリエトキシシラン9.0g(0.046モル)に変更した以外は実施例1と同様の操作で目的の化合物33.5gを得た。
(65, 13, and 22 in the structural formula indicate mol% of each composition)
43.9 g (0.14 mol) of 3-ethyl- (3- (triethoxysilyl) propyloxymethyl) oxetane, which is the raw material described in Example 1, and 7.0 g (0.027 mol) of benzyltriethoxysilane 33.5 g of the target compound was obtained in the same manner as in Example 1 except that the amount was changed to 9.0 g (0.046 mol) of ethyltriethoxysilane.

赤外線吸収スペクトル(IR)データ
1018-1246cm-1(Si-O)、1269 cm-1(-O-)、2866-2965 cm-1(-CH2-)
核磁気共鳴スペクトル(NMR)データ(1H-NMR溶媒:DMSO-d6
0.416-0.445ppm(m)、0.910-1.120ppm(m)、1.880-1.975ppm(m)、3.421-3.790(m)、4.500-4.574(m)、7.419-7.890(m)ppm。
GPC分析データ:Mw=1,570、Mw/Mn=1.13(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1018-1246cm -1 (Si-O), 1269 cm -1 (-O-), 2866-2965 cm -1 (-CH2-)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: DMSO-d 6 )
0.416-0.445ppm (m), 0.910-1.120ppm (m), 1.880-1.975ppm (m), 3.421-3.790 (m), 4.500-4.574 (m), 7.419-7.890 (m) ppm.
GPC analysis data: Mw = 1,570, Mw / Mn = 1.13 (polystyrene conversion).

実施例4
下記構造式(3−エチル−オキセタン−3−イル−メトキシプロピルシルセスキオキサン・3−ヒドロキシフェネチルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 4
Synthesis of the following structural formula (3-ethyl-oxetane-3-yl-methoxypropylsilsesquioxane / 3-hydroxyphenethylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005167609
Figure 0005167609

(構造式中の50:13:37は各組成のモル%を示す)
実施例1に記載の原料である3−エチル−(3−(トリエトキシシリル)プロピルオキシメチル)オキセタンを34.5g(0.11モル)と3−アセトキシフェネチルトリエトキシシラン13.9g(0.080モル)とメチルトリエトキシシラン8.3g(0.046モル)に変更した以外は実施例1と同様の操作で目的の化合物24.5gを得た。
(50:13:37 in the structural formula represents mol% of each composition)
34.5 g (0.11 mol) of 3-ethyl- (3- (triethoxysilyl) propyloxymethyl) oxetane, which is the raw material described in Example 1, and 13.9 g of 3-acetoxyphenethyltriethoxysilane (0. 080 mol) and methyltriethoxysilane 8.3 g (0.046 mol) were obtained in the same manner as in Example 1 to obtain 24.5 g of the target compound.

赤外線吸収スペクトル(IR)データ
1018-1246cm-1(Si-O)、1269 cm-1(-O-)、2866-2965 cm-1(-CH2-)
核磁気共鳴スペクトル(NMR)データ(1H-NMR溶媒:DMSO-d6
0.417-0.440ppm(m)、0.902-1.122ppm(m)、1.883-1.955ppm(m)、3.425-3.743(m)、4.501-4.577(m)、7.421-7.889(m)ppm、8.995ppm(bs)
GPC分析データ:Mw=1,770、Mw/Mn=1.15(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1018-1246cm -1 (Si-O), 1269 cm -1 (-O-), 2866-2965 cm -1 (-CH2-)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: DMSO-d 6 )
0.417-0.440ppm (m), 0.902-1.122ppm (m), 1.883-1.955ppm (m), 3.425-3.743 (m), 4.501-4.577 (m), 7.421-7.889 (m) ppm, 8.95ppm (bs )
GPC analysis data: Mw = 1,770, Mw / Mn = 1.15 (polystyrene conversion).

実施例5
下記構造式(3−エチル−オキセタン−3−イル−メトキシプロピルシルセスキオキサン・メチルシルセスキオキサン共重合体)の合成
Example 5
Synthesis of the following structural formula (3-ethyl-oxetane-3-yl-methoxypropylsilsesquioxane / methylsilsesquioxane copolymer)

Figure 0005167609
Figure 0005167609

(構造式中の70、30は各組成のモル%を示す)
実施例1に記載の原料である3−エチル−(3−(トリエトキシシリル)プロピルオキシメチル)オキセタンを43.9g(0.14モル)とメチルトリエトキシシラン10.5g(0.059モル)に変更した以外は実施例1と同様の操作で目的の化合物30.2gを得た。
(70 and 30 in the structural formula indicate mol% of each composition)
43.9 g (0.14 mol) of 3-ethyl- (3- (triethoxysilyl) propyloxymethyl) oxetane which is the raw material described in Example 1 and 10.5 g (0.059 mol) of methyltriethoxysilane 30.2 g of the target compound was obtained in the same manner as in Example 1 except that

赤外線吸収スペクトル(IR)データ
1018-1246cm-1(Si-O)、1269 cm-1(-O-)、2866-2965 cm-1(-CH2-)
核磁気共鳴スペクトル(NMR)データ(1H-NMR溶媒:DMSO-d6
0.416-0.445ppm(m)、0.910-1.120ppm(m)、1.880-1.975ppm(m)、3.421-3.790(m)、4.500-4.574(m)ppm
GPC分析データ:Mw=2,570、Mw/Mn=1.34(ポリスチレン換算)。
Infrared absorption spectrum (IR) data
1018-1246cm -1 (Si-O), 1269 cm -1 (-O-), 2866-2965 cm -1 (-CH2-)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: DMSO-d 6 )
0.416-0.445ppm (m), 0.910-1.120ppm (m), 1.880-1.975ppm (m), 3.421-3.790 (m), 4.500-4.574 (m) ppm
GPC analysis data: Mw = 2,570, Mw / Mn = 1.34 (polystyrene conversion).

実施例1、2、3、4、5で合成したシリコーン共重合体をエタノール溶液に溶解したときのUV測定結果(透過率)を次表に示す。193nm、248nmは遠紫外線の代表的な波長である。   The UV measurement results (transmittance) when the silicone copolymers synthesized in Examples 1, 2, 3, 4, and 5 are dissolved in an ethanol solution are shown in the following table. 193 nm and 248 nm are typical wavelengths of deep ultraviolet rays.

Figure 0005167609
Figure 0005167609

上表から、実施例5で得られたシリコーン共重合体は遠紫外線波長で代表的な193、248nmでは透過率が100%に近く、透過率が高い材料となる。一般に微細加工に使用される材料は、透過率が100%より低いほうが使いやすい材料である。しかしながら、実施例1、2、3、4に記載のシリコーン共重合体は、ベンゼン環を導入することにより透過率を小さくすることができる。この結果から、ベンゼン環の導入率を変えることにより透過率を調製することができる。   From the above table, the silicone copolymer obtained in Example 5 is a material having a high transmittance at 193 and 248 nm, which is typical at far ultraviolet wavelengths, with a transmittance close to 100%. In general, materials used for microfabrication are easier to use when the transmittance is lower than 100%. However, the silicone copolymers described in Examples 1, 2, 3, and 4 can reduce the transmittance by introducing a benzene ring. From this result, the transmittance can be adjusted by changing the introduction rate of the benzene ring.

Claims (3)

下記一般式
Figure 0005167609
(式中、Aは有機基、Bは水素または有機基を示す。R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。)
で示される、重量平均分子量(ポリスチレン換算)が500から100000であるシリコーン共重合体。
The following general formula
Figure 0005167609
(In the formula, A represents an organic group, B represents hydrogen or an organic group. R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c are each And a is 30 to 79 mol%, b is 1 to 30 mol%, c is 20 to 69 mol%, provided that a + b + c = 100.)
A silicone copolymer having a weight average molecular weight (in terms of polystyrene) of 500 to 100,000 shown by :
下記一般式
Figure 0005167609
(式中、R1はベンゼン環を含む炭化水素基を示す。R2はベンゼン環を含まない炭化水素基を示す。a、b、cはそれぞれモル%を示し、aは3079モル%、bは1〜30モル%、cは2069モル%、ただしa+b+c=100である。)
で示される請求項に記載のシリコーン共重合体。
The following general formula
Figure 0005167609
(In the formula, R1 represents a hydrocarbon group containing a benzene ring. R2 represents a hydrocarbon group containing no benzene ring. A, b and c each represents mol%, and a represents 30 to 79 mol%, b Is 1 to 30 mol%, c is 20 to 69 mol%, provided that a + b + c = 100.)
Silicone copolymer according to claim 1 represented in.
下記一般式
Figure 0005167609
(式中、Aは有機基、Bは水素または有機基を示し、Xはアルキル基を示す。)
と下記一般式
Figure 0005167609
(式中、Xはアルキル基を示す。R1は、ベンゼン環を含む炭化水素基を示す。)
と下記一般式
Figure 0005167609
(式中、Xはアルキル基を示す。R2は、ベンゼン環を含まない炭化水素基を示す。)
で表されるモノマーを加水分解することを特徴とする請求項1または2に記載のシリコーン共重合体の製造方法。
The following general formula
Figure 0005167609
(In the formula, A represents an organic group, B represents hydrogen or an organic group, and X represents an alkyl group.)
And the following general formula
Figure 0005167609
(In the formula, X represents an alkyl group. R1 represents a hydrocarbon group containing a benzene ring.)
And the following general formula
Figure 0005167609
(In the formula, X represents an alkyl group. R2 represents a hydrocarbon group containing no benzene ring.)
Method of manufacturing a silicone copolymer according to claim 1 or 2 in the monomer represented characterized by hydrolysis.
JP2006222217A 2005-08-24 2006-08-17 Silicone copolymer having oxetanyl group Expired - Fee Related JP5167609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222217A JP5167609B2 (en) 2005-08-24 2006-08-17 Silicone copolymer having oxetanyl group

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005242857 2005-08-24
JP2005242857 2005-08-24
JP2006222217A JP5167609B2 (en) 2005-08-24 2006-08-17 Silicone copolymer having oxetanyl group

Publications (2)

Publication Number Publication Date
JP2007084799A JP2007084799A (en) 2007-04-05
JP5167609B2 true JP5167609B2 (en) 2013-03-21

Family

ID=37972103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222217A Expired - Fee Related JP5167609B2 (en) 2005-08-24 2006-08-17 Silicone copolymer having oxetanyl group

Country Status (1)

Country Link
JP (1) JP5167609B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231038A (en) * 2007-03-22 2008-10-02 Air Water Inc Phenol-derived silane compound, and method for producing the same
JP6170027B2 (en) * 2014-10-09 2017-07-26 信越化学工業株式会社 CMP abrasive, method for producing the same, and substrate polishing method
WO2020059726A1 (en) * 2018-09-18 2020-03-26 富士フイルム株式会社 Hard coat composition, hard coat film, article having hard coat film, image display, and method for manufacturing hard coat film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338958A (en) * 1990-07-06 1992-11-26 Nippon Telegr & Teleph Corp <Ntt> Resist material, its manufacture, and pattern forming method using same
JP3598749B2 (en) * 1997-07-07 2004-12-08 東亞合成株式会社 Method for producing photocationically curable composition and photocationically curable hard coat agent composition
JP4281305B2 (en) * 2001-07-31 2009-06-17 住友化学株式会社 Resin composition for three-layer resist intermediate layer
WO2003044600A1 (en) * 2001-11-15 2003-05-30 Honeywell International Inc. Spin-on anti-reflective coatings for photolithography
EP1598389A4 (en) * 2003-02-27 2006-06-21 Toagosei Co Ltd Process for producing cation-curable silicon compound
JP2005023256A (en) * 2003-07-04 2005-01-27 Toagosei Co Ltd Cationic curable composition
JP4340167B2 (en) * 2004-02-03 2009-10-07 信越化学工業株式会社 Silicon-containing resist underlayer film material and pattern forming method
JP4553113B2 (en) * 2004-06-10 2010-09-29 信越化学工業株式会社 Porous film-forming composition, pattern-forming method, and porous sacrificial film
JP4365771B2 (en) * 2004-11-26 2009-11-18 東亞合成株式会社 Curable composition
JP2006169391A (en) * 2004-12-16 2006-06-29 Hitachi Chem Co Ltd Radiation-curable resin composition, optical waveguide using the same and method for manufacturing optical waveguide
JP2006328231A (en) * 2005-05-26 2006-12-07 Nagase Chemtex Corp Resin composition for encapsulating optical element
WO2006132089A1 (en) * 2005-06-07 2006-12-14 Tokyo Ohka Kogyo Co., Ltd. Thermoacid generator for antireflection film formation, composition for antireflection film formation, and antireflection film made therefrom
JP4602842B2 (en) * 2005-06-07 2010-12-22 東京応化工業株式会社 Anti-reflection film forming composition and anti-reflection film using the same

Also Published As

Publication number Publication date
JP2007084799A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP5296297B2 (en) Silicone copolymer having condensed polycyclic hydrocarbon group and process for producing the same
JP5369629B2 (en) Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone film, silicon compound as a raw material for the crosslinkable silicon compound, and method for producing the same
JP5707042B2 (en) Method for producing organosiloxane polymer
KR101587297B1 (en) Organosilicon compounds which have oxetanyl groups, and a method for the production and curable compositions of the same
KR102593420B1 (en) Resin composition, photosensitive resin composition, cured film, method for producing a cured film, patterned cured film, and method for producing a patterned cured film
US8318258B2 (en) Silsesquioxane resins
JP2020184010A (en) Radiation-sensitive composition, insulation film for display device, display device, method of forming insulation film for display device, and silsesquioxane
JP5167609B2 (en) Silicone copolymer having oxetanyl group
TWI529202B (en) A hardened silicone resin composition and a silicone resin cured product
JP5115043B2 (en) Silicone copolymer having sulfur functional group and method for producing the same
JP5571979B2 (en) Novel fluorene compound and its metal oxide complex
US20230331688A1 (en) Diepoxy compound, curable composition, cured product, and optical member
JP5035770B2 (en) Silicone copolymer having condensed polycyclic hydrocarbon group and method for producing the same
US20230037301A1 (en) Negative photosensitive resin composition, pattern structure and method for producing patterned cured film
WO2012090708A1 (en) Method for manufacturing reactive polysiloxane solution
WO2014077412A2 (en) Photo-dimerization functional group-containing organopolysiloxane, activation energy radiation-curable organopolysiloxane composition, and cured product thereof
JPWO2021187324A5 (en)
KR102551719B1 (en) Composition for forming silicon-containing resist underlayer film having star-shaped structure
JP5282732B2 (en) Method for producing reactive polysiloxane
US20230333468A1 (en) Resin composition, cured film, method for manufacturing cured film, substrate having multilayer film, method for producing patterned substrate, photosensitive resin composition, method for producing pattern cured film, method for producing polymer, and method for producing resin composition
JP5454761B2 (en) Method for producing silicon compound having oxetanyl group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5167609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees