JP2009249481A - Aromatic polycarbonate resin injection-molded product - Google Patents

Aromatic polycarbonate resin injection-molded product Download PDF

Info

Publication number
JP2009249481A
JP2009249481A JP2008098255A JP2008098255A JP2009249481A JP 2009249481 A JP2009249481 A JP 2009249481A JP 2008098255 A JP2008098255 A JP 2008098255A JP 2008098255 A JP2008098255 A JP 2008098255A JP 2009249481 A JP2009249481 A JP 2009249481A
Authority
JP
Japan
Prior art keywords
molded product
injection
linear
polycarbonate resin
product according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008098255A
Other languages
Japanese (ja)
Other versions
JP5273774B2 (en
Inventor
Junichi Miura
淳一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2008098255A priority Critical patent/JP5273774B2/en
Priority to CN 200910129276 priority patent/CN101549563B/en
Publication of JP2009249481A publication Critical patent/JP2009249481A/en
Application granted granted Critical
Publication of JP5273774B2 publication Critical patent/JP5273774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded product, which is formed of an aromatic polycarbonate resin and shows no rainbow-colored linear junction part under sunlight or light of an indoor fluorescent lamp. <P>SOLUTION: The injection-molded product is formed of an aromatic polycarbonate resin. When the molded product is put between two pieces of polarizing plates, a linear junction part can be observed by irradiating it with transmitted light. When main stress at respective measurement points obtained according to the law of Brewster based on the transmission directional birefringence measured over a range of 300 mm around the intersection between a liner junction part and a virtual reference line at measurement intervals 5 mm along the virtual reference line set to cross the linear junction part at right angles are represented by S(i) (i=1, 2, and 3 to 61), and absolute values [¾S(i)-S(i+1)¾/5] of an inclination of the main stress each obtained by dividing a difference with the adjacent main stress S(i+1) by the measurement interval (5 mm) are represented by G(i) (i=1, 2, and 3 to 59), the following expression (1) is satisfied: G(i)+G(i+1)+G(i+2)<0.40 (i=1, 2, and 3 to 59). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、芳香族ポリカーボネート樹脂より形成される射出成形品に関する。詳しくは、太陽光や室内の蛍光灯の下においては成形品の表面に虹色の線状会合部が観察されない射出成形品に関する。   The present invention relates to an injection molded product formed from an aromatic polycarbonate resin. More specifically, the present invention relates to an injection-molded product in which no rainbow-colored line meeting part is observed on the surface of the molded product under sunlight or an indoor fluorescent lamp.

近年、ポリカーボネート樹脂より形成される成形品は、自動車のパノラマルーフやバックドアウインドウを始めとするグレージング部材や液晶テレビ、プラズマテレビなどの前面板用途として使用されている。しかしながら、樹脂の会合部などを有する大型の成形品においては、太陽光や室内の蛍光灯の光などが成形品表面において反射光として干渉を起こし、虹色の線状会合部として観察される。虹色の線状会合部は、成形品面内における芳香族ポリカーボネート樹脂の分子の配向歪みに起因し、該樹脂の会合部において、太陽光や室内の蛍光灯が反射することにより、光の複屈折が生じ、色の連続的な変化により会合部において虹色の線状会合部として観察される。太陽光や室内の蛍光灯の下において、該成形品の表面に虹色の線状会合部が観察されることは、実使用上、製品の外観が損なわれるため問題となる。また、成形品面内における一種のウエルドに起因していることより、製品の長期物性など耐久性に問題が生じる可能性も考えられ、成形品の表面に虹色の線状会合部が観察されない成形品が所望されている。   In recent years, molded products made of polycarbonate resin have been used as front plate applications for glazing members such as automobile panoramic roofs and back door windows, liquid crystal televisions, and plasma televisions. However, in a large molded article having a resin association part, sunlight, light from an indoor fluorescent lamp, etc. cause interference as reflected light on the surface of the molded article, and is observed as a rainbow-colored linear association part. The iridescent linear association part is caused by the orientational distortion of the molecules of the aromatic polycarbonate resin in the surface of the molded product. Refraction occurs, and is observed as a rainbow-colored linear meeting part at the meeting part due to a continuous change in color. The observation of a rainbow-colored line-like association part on the surface of the molded product under sunlight or an indoor fluorescent lamp is a problem because the appearance of the product is impaired in actual use. In addition, since it is caused by a kind of weld in the surface of the molded product, there may be a problem in durability such as long-term physical properties of the product, and no rainbow-colored linear association portion is observed on the surface of the molded product. Molded articles are desired.

樹脂の会合部における成形品表面のウエルドラインを解消する成形方法に関しては様々な知見が知られている。例えば、複数のホットランナーバルブゲートから射出された樹脂成形品においては、金型キャビティ内で溶融樹脂が合流することによって、樹脂の会合部分にウエルドラインが発生する。このウエルドラインを解消するため、複数のホットランナーバルブゲートをプログラム制御により、金型キャビティ内に射出された樹脂が各ゲートに到達するタイミングに応じてゲートを順次開放しながら樹脂を充填していく、いわゆるカスケード成形法により成形品表面のウエルドラインの発生を改善する成形方法は公知である。(非特許文献1)   Various knowledge is known about the molding method which eliminates the weld line on the surface of the molded product at the resin meeting part. For example, in a resin molded product injected from a plurality of hot runner valve gates, a weld line is generated at a resin meeting portion when molten resin joins in a mold cavity. In order to eliminate this weld line, a plurality of hot runner valve gates are filled with resin by opening the gates sequentially according to the timing at which the resin injected into the mold cavity reaches each gate by program control. A molding method for improving the occurrence of weld lines on the surface of a molded product by a so-called cascade molding method is known. (Non-Patent Document 1)

また、1点ゲートで射出成形される成形品を製造する場合においても、立壁形状や開口形状などを有する金型を使用して成形する場合、金型キャビティ内において複数の流路に溶融樹脂が分離されるため樹脂の会合部にウエルドラインが発生する。このウエルドラインを解消するため、急速加熱冷却金型成形や局部加熱金型成形などにより改善する成形方法は公知である。(特許文献1および2)しかし、これらの射出成形方法で得られた成形品は、成形品表面のウエルドラインを解消するのには効果的な成形方法ではあるが、かかる虹色の線状会合部に関する技術的知見を開示するものではなかった。   In addition, when manufacturing a molded product that is injection-molded with a single point gate, when molding is performed using a mold having a standing wall shape, an opening shape, etc., molten resin is contained in a plurality of flow paths in the mold cavity. As a result of the separation, a weld line is generated at the meeting portion of the resin. In order to eliminate this weld line, a molding method improved by rapid heating / cooling die molding, local heating die molding, or the like is known. (Patent Documents 1 and 2) However, the molded product obtained by these injection molding methods is an effective molding method for eliminating the weld line on the surface of the molded product. It did not disclose technical knowledge about the department.

特開2001−207062号公報JP 2001-207062 A 特開2001−269978号公報JP 2001-269978 A Plastics Technology.Dec.2003 P38Plastics Technology. Dec. 2003 P38

本発明は、上記事情に鑑みなされたもので、芳香族ポリカーボネート樹脂より形成される成形品において、太陽光や室内の蛍光灯の下においては虹色の線状会合部が観察されない成形品を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a molded article formed from an aromatic polycarbonate resin, in which no rainbow-colored linear association portion is observed under sunlight or an indoor fluorescent lamp. The purpose is to do.

本発明者らはこの目的を達成するために鋭意研究を重ねた結果、芳香族ポリカーボネート樹脂より形成される成形品を2枚の偏光板に挟み透過光を照射することによって線状会合部が観察される成形品において、該線状会合部近傍の主応力の変化割合が特定の範囲にある成形品が、太陽光や室内の蛍光灯の下においては虹色の線状会合部が観察されない成形品であることを見出し、本発明に到達した。   As a result of intensive studies to achieve this object, the present inventors have observed a linear association portion by sandwiching a molded product formed from an aromatic polycarbonate resin between two polarizing plates and irradiating transmitted light. In the molded product, the molded product in which the change rate of the main stress in the vicinity of the linear meeting part is in a specific range is formed such that no rainbow-colored linear meeting part is observed under sunlight or an indoor fluorescent lamp. As a result, the present invention was reached.

本発明によれば、(1)芳香族ポリカーボネート樹脂より形成され、該成形品を2枚の偏光板に挟み、透過光を照射することによって線状会合部を観察することができる射出成形品であって、該線状会合部に対して直交するように設定した仮想基準線に沿って、線状会合部と仮想基準線の交点を中心として300mmの範囲を測定間隔5mmで測定した透過方向の複屈折をもとにBrewsterの法則に従って得られた各測定点における主応力をS(i)(i=1、2、3・・・、61)とし、さらに隣接する主応力S(i+1)との差を測定間隔(5mm)で除することによって得られる主応力の勾配の絶対値[|S(i)−S(i+1)|/5]をG(i)としたときに、上記式(1)を満たすことを特徴とする射出成形品が提供される。   According to the present invention, (1) an injection molded product that is formed from an aromatic polycarbonate resin, and in which the molded product is sandwiched between two polarizing plates and a linear meeting part can be observed by irradiating transmitted light. Then, along the virtual reference line set to be orthogonal to the linear meeting part, a 300 mm range centered on the intersection of the linear meeting part and the virtual reference line was measured at a measurement interval of 5 mm. The principal stress at each measurement point obtained according to Brewster's law based on birefringence is S (i) (i = 1, 2, 3,... 61), and the adjacent principal stress S (i + 1) When the absolute value [| S (i) −S (i + 1) | / 5] of the gradient of the main stress obtained by dividing the difference between the two by the measurement interval (5 mm) is G (i), An injection-molded article characterized by satisfying 1) is provided

本発明の好適な態様の一つは(2)上記線状会合部が、金型に設けられた複数のゲートから成形空間内に流入した溶融樹脂が会合する際に形成される線状会合部及び/又は金型に設けられた立壁や開口部で複数の流路に分離して成形空間内に流入した溶融樹脂が会合する際に形成される線状会合部である上記構成(1)の射出成形品である。   One of the preferred embodiments of the present invention is (2) the linear association portion formed when the molten resin flowing into the molding space from a plurality of gates provided in the mold meets. And / or the above-described configuration (1), which is a linear association portion formed when the molten resin separated into a plurality of flow paths and flowing into the molding space at the standing wall or opening provided in the mold meets It is an injection molded product.

本発明の好適な態様の一つは(3)射出成形品が透明部材である上記構成(1)または(2)の射出成形品である。   One of the preferred embodiments of the present invention is (3) the injection-molded product having the above-described configuration (1) or (2), wherein the injection-molded product is a transparent member.

本発明の好適な態様の一つは(4)射出成形品が車両用グレージング部材である上記構成(1)〜(3)のいずれかの射出成形品である。   One of the preferred embodiments of the present invention is the injection molded product according to any one of the above configurations (1) to (3), wherein (4) the injection molded product is a vehicle glazing member.

本発明の好適な態様の一つは(5)JIS K7361−1に従い測定した全光線透過率が25%以上であることを特徴とする上記構成(1)〜(4)のいずれかの射出成形品である。   One of the preferred embodiments of the present invention is (5) injection molding according to any one of the above constitutions (1) to (4), wherein the total light transmittance measured in accordance with JIS K7361-1 is 25% or more. It is a product.

本発明の好適な態様の一つは(6)ゲートから流動末端までの流動長が15〜300cmであり、かつその最大投影面積が200〜60,000cmであることを特徴とする上記構成(1)〜(5)のいずれかの射出成形品である。 One of the preferred embodiments of the present invention is (6) the above-described configuration wherein the flow length from the gate to the flow end is 15 to 300 cm and the maximum projected area is 200 to 60,000 cm 2 ( It is an injection-molded product according to any one of 1) to (5).

本発明の好適な態様の一つは(7)上記構成(1)〜(6)のいずれかの射出成形品を熱曲げまたは周縁部の除去を実施することによって得られた射出成形品である。   One of the preferable aspects of the present invention is (7) an injection-molded product obtained by subjecting the injection-molded product of any one of the above configurations (1) to (6) to thermal bending or removal of the peripheral edge. .

本発明の好適な態様の一つは(8)上記構成(1)〜(7)のいずれかの射出成形品を表面加飾することによって得られた射出成形品である。   One of the preferred embodiments of the present invention is (8) an injection-molded product obtained by decorating the surface of any one of the above-described configurations (1) to (7).

以下、本発明の実施の形態について詳細に説明する。
本発明の成形品は該成形品を2枚の偏光板に挟み、透過光を照射することによって線状会合部を観察することができる成形品であって、該線状会合部に対して直交するように設定した仮想基準線に沿って、線状会合部と仮想基準線の交点を中心として300mmの範囲を測定間隔5mmで測定した透過方向の複屈折をもとにBrewsterの法則に従って得られた各測定点における主応力をS(i)(i=1、2、3・・・、61)とし、さらに隣接する主応力S(i+1)との差を測定間隔(5mm)で除することによって得られる主応力の勾配の絶対値[|S(i)−S(i+1)|/5]をG(i)(i=1、2、3・・・、59)としたときに、下記式(1)が成り立つことを特徴とする射出成形品である。
G(i)+G(i+1)+G(i+2)(i=1、2、3・・・、59)<0.40・・・(1)
Hereinafter, embodiments of the present invention will be described in detail.
The molded product of the present invention is a molded product in which a linear meeting portion can be observed by sandwiching the molded product between two polarizing plates and irradiating transmitted light, and orthogonal to the linear meeting portion. Obtained according to Brewster's law based on the birefringence in the transmission direction measured at a measurement interval of 5 mm over a 300 mm range around the intersection of the linear meeting part and the virtual reference line along the virtual reference line set to The main stress at each measurement point is S (i) (i = 1, 2, 3,... 61), and the difference from the adjacent main stress S (i + 1) is divided by the measurement interval (5 mm). When the absolute value [| S (i) −S (i + 1) | / 5] of the gradient of the main stress obtained by the above is G (i) (i = 1, 2, 3,..., 59), It is an injection-molded article characterized by the expression (1).
G (i) + G (i + 1) + G (i + 2) (i = 1, 2, 3,..., 59) <0.40 (1)

G(i)が上記式(1)を満たす射出成形品は、太陽光や室内の蛍光灯の下においては、虹色の線状会合部が観察されない。なお、G(i)+G(i+1)+G(i+2)は0.35未満であることが好ましく、0.30未満であることがより好ましい。   In the injection molded product in which G (i) satisfies the above formula (1), a rainbow-colored linear meeting portion is not observed under sunlight or an indoor fluorescent lamp. Note that G (i) + G (i + 1) + G (i + 2) is preferably less than 0.35, and more preferably less than 0.30.

なお、線状会合部が該射出成形品において複数箇所で認められる場合においては、全ての線状会合部におけるG(i)+G(i+1)+G(i+2)(i=1、2、3・・・、59)が上記式(1)を満足することが必要である。   In addition, when a linear meeting part is recognized in multiple places in this injection molded product, G (i) + G (i + 1) + G (i + 2) (i = 1, 2, 3,... ., 59) must satisfy the above formula (1).

なお、上記式(1)を満足させるための成形方法としては下記の方法が例示される。
すなわち、芳香族ポリカーボネートよりなる射出成形品の成形において、太陽光や室内の蛍光灯の下において虹色の線状会合部が発生する可能性のある場所である樹脂会合部における溶融樹脂が合流する際の樹脂温度を280℃以上とする成形方法が挙げられる。この条件を満足するためには、成形時のシリンダ温度を285℃〜335℃とすることが好ましく、290℃〜330℃がより好ましい。また、金型温度は80℃〜125℃とすることが好ましく、85℃〜120℃がより好ましい。
In addition, the following method is illustrated as a shaping | molding method for satisfying the said Formula (1).
That is, in the molding of an injection-molded product made of aromatic polycarbonate, the molten resin merges at the resin meeting part, which is a place where a rainbow-colored linear meeting part may occur under sunlight or an indoor fluorescent lamp. The molding method which makes the resin temperature in that case 280 degreeC or more is mentioned. In order to satisfy this condition, the cylinder temperature during molding is preferably 285 ° C to 335 ° C, and more preferably 290 ° C to 330 ° C. The mold temperature is preferably 80 to 125 ° C, more preferably 85 to 120 ° C.

なお、上記主応力S(i)は以下の方法により算出される。
(1)線状会合部の特定
図1に示す偏光観察台(10)の上下に設置されたガラス板(11)に、偏光板(12)がクロスニコルに配置されるようガラス板の表面に貼り付ける。偏光板が貼り付けられた上下のガラス板の間に成形品を置いて、偏光観察台の下部(13)より蛍光灯を照射し、偏光板及び成形品を透過する光によって生じる成形品の虹模様を目視観察し、線状会合部を特定する。
The principal stress S (i) is calculated by the following method.
(1) Identification of the linear meeting part The glass plate (11) placed above and below the polarization observation table (10) shown in FIG. paste. Place the molded product between the upper and lower glass plates to which the polarizing plate is attached, irradiate a fluorescent lamp from the lower part (13) of the polarization observation table, and create a rainbow pattern of the molded product caused by the light transmitted through the polarizing plate and the molded product. Visually observe and identify the linear meeting part.

(2)仮想基準線の設定
仮想基準線は、上記特定された線状会合部と直交する方向にかつ線状会合部を5mm間隔で複屈折を測定した際に、最も複屈折が高い値を示す点に交点が定まるよう設定する。仮想基準線は、線状会合部の交点部を中心として定め、長さ300mmの範囲とする。なお、射出成形品において線状会合部が複数箇所確認された場合、全線状会合部において同様の方法で仮想基準線を設定する。なお、複屈折はStrainoptic Technologies社製の複屈折測定装置SCA−1500を用いて測定する。
(2) Setting of virtual reference line The virtual reference line has the highest birefringence value when birefringence is measured at intervals of 5 mm in the direction orthogonal to the specified linear meeting part. Set the intersection point at the indicated point. The virtual reference line is determined centering on the intersection part of the linear meeting part and has a length of 300 mm. When a plurality of linear meeting parts are confirmed in the injection molded product, virtual reference lines are set in the same manner in all the linear meeting parts. In addition, birefringence is measured using the birefringence measuring apparatus SCA-1500 made from Strain Optical Technologies.

(3)主応力の算出
長さ300mmの仮想基準線に沿って、測定間隔5mmで複屈折を測定する。測定点は1サンプル当り全61点となる。なお、複屈折はStrainoptic Technologies社製の複屈折測定装置SCA−1500を用いて測定する。次に下記式(2)に示すBrewsterの法則に従って、主応力S(i)を算出する。
S(i)=C×1/t×R(i)・・・(2)
[式中、S(i)は主応力、R(i)は複屈折、tは測定サンプルの厚み、Cは固有定数=72を表す。]
(3) Calculation of principal stress Birefringence is measured at a measurement interval of 5 mm along a virtual reference line having a length of 300 mm. There are 61 measurement points per sample. In addition, birefringence is measured using the birefringence measuring apparatus SCA-1500 made from Strain Optical Technologies. Next, the principal stress S (i) is calculated according to Brewster's law expressed by the following equation (2).
S (i) = C × 1 / t × R (i) (2)
[Wherein, S (i) is the principal stress, R (i) is birefringence, t is the thickness of the measurement sample, and C is the intrinsic constant = 72. ]

本発明の成形品は、芳香族ポリカーボネート樹脂より形成される射出成形品である。本願発明で使用される射出成形方法としては、通常の射出成形だけでなく、インサート成形、インモールドコーティング成形、二色成形、射出圧縮成形、射出プレス成形、断熱金型成形、急速加熱冷却金型成形及び超高速射出成形などが例示される。また、ランナーとしてはコールドランナー方式またはホットランナー方式を用いることができ、ゲートは、1点ゲート、複数ゲートの制限はない。成形品のサイズは、ゲートから流動末端までの流動長が15〜300cmであり、かつその最大投影面積が200〜60,000cmであることが好ましい。 The molded product of the present invention is an injection molded product formed from an aromatic polycarbonate resin. Injection molding methods used in the present invention include not only ordinary injection molding but also insert molding, in-mold coating molding, two-color molding, injection compression molding, injection press molding, heat insulation mold molding, rapid heating and cooling mold Examples include molding and ultra-high speed injection molding. Moreover, as a runner, a cold runner system or a hot runner system can be used, and the gate is not limited to a one-point gate or a plurality of gates. As for the size of the molded product, the flow length from the gate to the flow end is preferably 15 to 300 cm, and the maximum projected area is preferably 200 to 60,000 cm 2 .

成形品の形状は、平板形状、R形状、立壁形状、開口形状などであり、成形品面内において樹脂会合部を有する成形品である。
成形品の厚みは、一般的に芳香族ポリカーボネート樹脂を射出成形し得られる成形品の厚み範囲であれば、特に制限されるものではないが、1〜20mmが好ましく、2〜18mmがより好ましい。
成形品の全光線透過率は25%以上を有する光透過性であることが好ましい。更に30%以上が好ましく、35%以上がより好ましい。
The shape of the molded product is a flat plate shape, an R shape, a standing wall shape, an opening shape, or the like, and is a molded product having a resin association part in the surface of the molded product.
The thickness of the molded product is not particularly limited as long as it is generally within the range of the molded product obtained by injection molding of the aromatic polycarbonate resin, but is preferably 1 to 20 mm, more preferably 2 to 18 mm.
The total light transmittance of the molded article is preferably light transmissive having 25% or more. Furthermore, 30% or more is preferable, and 35% or more is more preferable.

本発明で使用する芳香族ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応の方法としては例えば界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。   The aromatic polycarbonate resin used in the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polycondensation method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.

ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)メタン、ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}プロパン、2,2−ビス{(3−イソプロピル−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3−フェニル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,4−ビス(4−ヒドロキシフェニル)−2−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテルおよび4,4’−ジヒドロキシジフェニルエステル等が挙げられ、これらは単独または2種以上を混合して使用できる。   Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis {(4-hydroxy-3,5-dimethyl). Phenyl} methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A) ), 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) phenyl} propane, 2,2-bis {(3 -Isopropyl-4-hydroxy) phenyl} propane, 2,2-bis {(4-hydroxy-3-phenyl) phenyl} propane, 2,2-bis (4 Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,4-bis (4-hydroxyphenyl) ) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, , 1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis {(4-hydroxy-3-methyl) phenyl} fluorene, α, α'-bis (4-hydroxyphenyl) -o-di Sopropylbenzene, α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene, α, α′-bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,3-bis (4-hydroxyphenyl) ) -5,7-dimethyladamantane, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′- Examples thereof include dihydroxydiphenyl ether and 4,4′-dihydroxydiphenyl ester, and these can be used alone or in admixture of two or more.

中でもビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンからなる群より選ばれた少なくとも1種のビスフェノールより得られる単独重合体または共重合体が好ましく、特に、ビスフェノールAの単独重合体および1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンとビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパンまたはα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンとの共重合体が好ましく使用される。カーボネート前駆体としてはカルボニルハライド、カーボネートエステルまたはハロホルメート等が使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメート等が挙げられる。   Among them, bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3- Methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl)- A homopolymer or copolymer obtained from at least one bisphenol selected from the group consisting of 3,3,5-trimethylcyclohexane and α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene is preferred. In particular, a homopolymer of bisphenol A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane Sphenol A, a copolymer with 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane or α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene is preferably used. . As the carbonate precursor, carbonyl halide, carbonate ester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.

芳香族ポリカーボネート樹脂の分子量は1×10〜1×10が好ましく、1.5×10〜3×10がより好ましく、1.7×10〜2.7×10が更に好ましい。かかる粘度平均分子量を有する芳香族ポリカーボネート樹脂を使用した場合、得られる成形品は、十分な強度及び良好な溶融流動性を有するため、車両用グレージング部材として好適な成形品である。 The molecular weight of the aromatic polycarbonate resin is preferably 1 × 10 4 to 1 × 10 5, more preferably 1.5 × 10 4 to 3 × 10 4 , and even more preferably 1.7 × 10 4 to 2.7 × 10 4. . When an aromatic polycarbonate resin having such a viscosity average molecular weight is used, the obtained molded product is a molded product suitable as a glazing member for vehicles because it has sufficient strength and good melt fluidity.

また、成形品の使用目的に応じて、光透過性を損なわない範囲で、芳香族ポリカーボネート樹脂に、慣用の添加剤、例えば熱安定剤、離型剤、赤外線吸収剤、紫外線吸収剤、酸化防止剤、光安定剤、発泡剤、補強剤(タルク、マイカ、クレー、ワラストナイト、炭酸カルシウム、ガラス繊維、ガラスビーズ、ガラスバルーン、ミルドファイバー、ガラスフレーク、炭素繊維、炭素フレーク、カーボンビーズ、カーボンミルドファイバー、金属フレーク、金属繊維、金属コートガラス繊維、金属コート炭素繊維、金属コートガラスフレーク、シリカ、セラミック粒子、セラミック繊維、アラミド粒子、アラミド繊維、ポリアリレート繊維、グラファイト、導電性カーボンブラック、各種ウイスカー等)、難燃剤(ハロゲン系、リン酸エステル系、金属塩系、赤リン、シリコン系、フッ素系、金属水和物系等)、着色剤(カーボンブラック、酸化チタン等の顔料、染料)、光拡散剤(アクリル架橋粒子、シリコン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子等)、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、流動改質剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛等)、グラフトゴムに代表される衝撃改質剤、フォトクロミック剤を配合することができる。   Depending on the purpose of use of the molded product, conventional additives such as heat stabilizers, mold release agents, infrared absorbers, ultraviolet absorbers, antioxidants may be added to the aromatic polycarbonate resin as long as the light transmittance is not impaired. Agent, light stabilizer, foaming agent, reinforcing agent (talc, mica, clay, wollastonite, calcium carbonate, glass fiber, glass bead, glass balloon, milled fiber, glass flake, carbon fiber, carbon flake, carbon bead, carbon Milled fiber, metal flake, metal fiber, metal coated glass fiber, metal coated carbon fiber, metal coated glass flake, silica, ceramic particle, ceramic fiber, aramid particle, aramid fiber, polyarylate fiber, graphite, conductive carbon black, various Whisker, etc.), flame retardant (halogen, phosphate ester) Metal salts, red phosphorus, silicon, fluorine, metal hydrate, etc.), colorants (pigments and dyes such as carbon black and titanium oxide), light diffusing agents (acrylic crosslinked particles, silicon crosslinked particles, ultrathin) Glass flakes, calcium carbonate particles, etc.), fluorescent brighteners, phosphorescent pigments, fluorescent dyes, antistatic agents, flow modifiers, crystal nucleating agents, inorganic and organic antibacterial agents, photocatalytic antifouling agents (fine particle titanium oxide, Fine particle zinc oxide, etc.), impact modifiers typified by graft rubber, and photochromic agents can be blended.

本発明の芳香族ポリカーボネート樹脂より形成される成形品は、自動車のパノラマルーフやバックドアウインドウを始めとするグレージング部材や液晶テレビ、プラズマテレビなどの前面板用途、パチンコなどの遊戯具における透明遊戯板として好適に使用され、工業的効果は極めて大である。   The molded product formed from the aromatic polycarbonate resin of the present invention is a transparent play board for a glazing member such as an automobile panoramic roof or a back door window, a front plate application such as a liquid crystal television or a plasma television, or a play equipment such as a pachinko machine. The industrial effect is extremely large.

以下、実施例及び比較例により、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。また、虹色の線状会合部の有無、全光線透過率、主応力S(i)、主応力勾配の絶対値G(i)は下記の方法に従い測定、算出した。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these. In addition, the presence / absence of a rainbow-colored linear meeting part, the total light transmittance, the principal stress S (i), and the absolute value G (i) of the principal stress gradient were measured and calculated according to the following methods.

(1)虹色の線状会合部の有無:室内蛍光灯で成形品表面の光を反射させて虹色の線状会合部の有無を目視にて観察した。 (1) Presence / absence of rainbow-colored linear meeting part: Light on the surface of the molded product was reflected by an indoor fluorescent lamp, and the presence / absence of rainbow-colored linear meeting part was visually observed.

(2)全光線透過率:JIS K7361−1に従い、日本電色(株)製NDH−300Aにより測定した。 (2) Total light transmittance: Measured with NDH-300A manufactured by Nippon Denshoku Co., Ltd. according to JIS K7361-1.

(3)主応力S(i):下記方法にて作成したサンプルを使用し、以下の方法にて主応力S(i)を測定した。 (3) Main stress S (i): The main stress S (i) was measured by the following method using a sample prepared by the following method.

(i)線状会合部の特定
図1に示す偏光観察台(10)の上下に設置されたガラス板(11)に、偏光板(12)がクロスニコルに配置されるようガラス板の表面に貼り付けた。偏光板が貼り付けられた上下のガラス板の間に成形品を置いて、偏光観察台の下部(13)より蛍光灯を照射し、偏光板及び成形品を透過する光によって生じる成形品の線状会合部を目視観察にて特定した。
(I) Identification of the linear meeting part The glass plate (11) placed above and below the polarization observation table (10) shown in FIG. Pasted. Place the molded product between the upper and lower glass plates to which the polarizing plate is attached, irradiate a fluorescent lamp from the lower part (13) of the polarization observation table, and form a linear association of the molded product caused by the light transmitted through the polarizing plate and the molded product. The part was identified by visual observation.

(ii)仮想基準線の設定
仮想基準線は、上記特定された線状会合部と直交する方向にかつ線状会合部を5mm間隔で複屈折を測定した際に、最も複屈折が高い値を示す点に交点が定まるよう設定した。なお、仮想基準線は、線状会合部の交点部を中心として定め、長さ300mmの範囲とした。なお、複屈折はStrainoptic Technologies社製の複屈折測定装置SCA−1500を用いて測定した。なお、全ての実施例、比較例において線状会合部は1箇所のみで観察された。
(Ii) Setting of virtual reference line The virtual reference line has the highest birefringence value when birefringence is measured at intervals of 5 mm in the direction orthogonal to the specified linear meeting part. The intersection point was set at the indicated point. In addition, the virtual reference line was determined centering on the intersection part of the linear meeting part, and was made into the range of length 300mm. In addition, birefringence was measured using the birefringence measuring apparatus SCA-1500 made from Strain optical Technologies. In all Examples and Comparative Examples, the linear meeting part was observed only at one place.

(iii)主応力の算出
長さ300mmの仮想基準線を測定間隔5mmでStrainoptic Technologies社製の複屈折測定装置SCA−1500を用いて複屈折を測定した。(測定点は1サンプル当り全61点)次に下記式(2)に示すBrewsterの法則に従って、主応力S(i)を算出した。
S(i)=C×1/t×R(i)・・・(2)
[式中、S(i)は主応力、R(i)は複屈折、tは測定サンプルの厚み、Cは固有定数=72を表す。]
(Iii) Calculation of principal stress Birefringence was measured using a birefringence measuring apparatus SCA-1500 made by Strain Optical Technologies, Inc. at a measurement interval of 5 mm on a virtual reference line having a length of 300 mm. (A total of 61 measurement points per sample) Next, principal stress S (i) was calculated according to Brewster's law shown in the following formula (2).
S (i) = C × 1 / t × R (i) (2)
[Wherein, S (i) is the principal stress, R (i) is birefringence, t is the thickness of the measurement sample, and C is the intrinsic constant = 72. ]

(4)主応力勾配の絶対値G(i):得られた主応力S(i)を次式に挿入し算出した。
G(i)=[|S(i)−S(i+1)|/5]
(4) Absolute value G (i) of principal stress gradient: The principal stress S (i) obtained was calculated by inserting it into the following equation.
G (i) = [| S (i) -S (i + 1) | / 5]

[実施例1]
樹脂材料としてポリカーボネート樹脂ペレット(帝人化成(株)製:パンライトL−1250Z(商品名))を110℃で5時間乾燥させた。かかる樹脂材料を4軸平行制御機構を備えた射出プレス成形可能な大型成形機((株)名機製作所製:MDIP2100、最大型締め力33540kN)を用いて射出プレス成形し、図2に示す厚み4mm、長さ1,200mm、幅1,000mmの大型成形品を製造した。かかる成形機には、乾燥後のペレットが圧空輸送により成形機供給口に供給され成形に使用された。ランナーはHOTSYS社製のバルブゲート型のホットランナー(直径8mmφ)を用いた。
[Example 1]
Polycarbonate resin pellets (manufactured by Teijin Chemicals Ltd .: Panlite L-1250Z (trade name)) as a resin material were dried at 110 ° C. for 5 hours. The resin material is injection press molded using a large molding machine (manufactured by Meiki Seisakusho: MDIP2100, maximum clamping force 33540 kN) equipped with a 4-axis parallel control mechanism and capable of injection press molding, and the thickness shown in FIG. A large molded product having a length of 4 mm, a length of 1,200 mm, and a width of 1,000 mm was produced. In such a molding machine, the dried pellets were supplied to the molding machine supply port by pneumatic transportation and used for molding. As a runner, a valve gate type hot runner (diameter: 8 mmφ) manufactured by HOTSYS was used.

成形条件はシリンダ温度310℃、ホットランナー設定温度280℃、金型温度は可動側110℃、固定側110℃、圧縮ストローク4.0mm、中間型締め状態から最終型締め状態までの金型の移動速度10mm/秒、および保圧時間150秒であった。溶融樹脂の充填は図2(21)のゲートより射出を開始し、(22)のゲートに溶融樹脂が到達した後、(22)のバルブゲートを開放する、カスケード成形法にて行った。型圧縮は、充填完了直前に開始し、オーバーラップは0.5秒とした。充填完了後直ちにバルブゲートを閉じて溶融樹脂がゲートからシリンダへ逆流しない条件とした。圧縮工程時の圧力は17.2MPaとし、保圧工程時の圧力は該圧力の半分の圧力で保持した。可動金型パーティング面は最終の前進位置において固定金型パーティング面に接触しないものとした。また、かかる成形においては、その4軸平行制御機構により、傾き量および捩れ量を表すtanθは約0.000025以下で保持された。
得られた成形品を取出し、温度23℃、相対湿度50%の条件で24時間静置して十分に冷却した後、前記評価項目に従って評価した結果を表1に示した。
Molding conditions are: cylinder temperature 310 ° C, hot runner set temperature 280 ° C, mold temperature 110 ° C movable side, 110 ° C fixed side, compression stroke 4.0mm, mold movement from intermediate mold clamping state to final mold clamping state The speed was 10 mm / second, and the pressure holding time was 150 seconds. Filling of the molten resin was performed by a cascade molding method in which injection was started from the gate of FIG. 2 (21), and after the molten resin reached the gate of (22), the valve gate of (22) was opened. Mold compression was started immediately before completion of filling, and the overlap was 0.5 seconds. Immediately after completion of filling, the valve gate was closed so that the molten resin did not flow backward from the gate to the cylinder. The pressure during the compression step was 17.2 MPa, and the pressure during the pressure holding step was maintained at half the pressure. The movable mold parting surface was not in contact with the fixed mold parting surface in the final advanced position. In such molding, tanθ representing the amount of tilt and the amount of twist was maintained at about 0.000025 or less by the 4-axis parallel control mechanism.
The obtained molded product was taken out, allowed to stand for 24 hours under conditions of a temperature of 23 ° C. and a relative humidity of 50%, and sufficiently cooled. The results of evaluation according to the evaluation items are shown in Table 1.

[実施例2]
成形条件をシリンダ温度310℃、ホットランナー設定温度280℃、金型温度は可動側90℃、固定側90℃、圧縮ストローク2.0mmとした以外は、すべて実施例1と同様に成形を行った。得られた成形品を評価した結果を表1に示した。
[Example 2]
Molding was performed in the same manner as in Example 1 except that the molding conditions were a cylinder temperature of 310 ° C, a hot runner set temperature of 280 ° C, a mold temperature of 90 ° C on the movable side, 90 ° C on the fixed side, and a compression stroke of 2.0 mm. . Table 1 shows the results of evaluating the obtained molded product.

[実施例3]
溶融樹脂の充填を同時射出により行う以外は、すべて実施例1と同様に成形を行った。得られた成形品を評価した結果を表1に示した。
[Example 3]
Molding was performed in the same manner as in Example 1 except that the molten resin was filled by simultaneous injection. Table 1 shows the results of evaluating the obtained molded product.

[実施例4]
樹脂材料としてポリカーボネート樹脂ペレット(帝人化成(株)製:パンライトL−1250Z(商品名)を4mm厚において全光線透過率が35%となるよう着色剤によりグレーに着色)を使用する以外は、すべて実施例1と同様に成形を行った。得られた成形品を評価した結果を表1に示した。
[Example 4]
Other than using polycarbonate resin pellets (manufactured by Teijin Chemicals Ltd .: Panlite L-1250Z (trade name) colored in gray with a colorant so that the total light transmittance is 35% at 4 mm thickness) as the resin material, All were molded in the same manner as in Example 1. Table 1 shows the results of evaluating the obtained molded product.

[実施例5]
得られた成形品が、図3に示す厚み10mm、長さ1,000mm、幅900mmで開口形状を有する大型成形品であり、かつ1点ゲートで溶融樹脂を射出し、保圧時間が540秒である以外は、すべて実施例1と同様に成形を行った。得られた成形品を評価した結果を表1に示した。
[Example 5]
The obtained molded product is a large molded product having a thickness of 10 mm, a length of 1,000 mm, a width of 900 mm and an opening shape shown in FIG. 3, and a molten resin is injected at a single point gate, and the pressure holding time is 540 seconds. Except that, all were molded in the same manner as in Example 1. Table 1 shows the results of evaluating the obtained molded product.

[比較例1]
成形条件をシリンダ温度270℃、ホットランナー設定温度280℃、金型温度は可動側75℃、固定側75℃、圧縮ストローク2.0mmとした以外は、すべて実施例1と同様に成形を行った。得られた成形品を評価した結果を表1に示した。該成形条件においては、線状会合部における溶融樹脂が合流する温度が低く、主応力の変化割合が大きくなるため、室内蛍光灯で成形品表面に光を反射させると虹色の線状会合部が観察された。
[Comparative Example 1]
The molding was performed in the same manner as in Example 1 except that the molding temperature was 270 ° C., the hot runner set temperature was 280 ° C., the mold temperature was 75 ° C. on the movable side, 75 ° C. on the fixed side, and 2.0 mm compression stroke. . Table 1 shows the results of evaluating the obtained molded product. Under these molding conditions, the temperature at which the molten resin merges at the linear meeting portion is low and the rate of change of the main stress is large. Was observed.

Figure 2009249481
Figure 2009249481

表1から明らかなように、仮想基準線に沿って、300mmの範囲を測定間隔5mmで測定した透過方向の複屈折をもとにBrewsterの法則に従って得られた各測定点における主応力をS(i)(i=1、2、3・・・、61)とし、さらに隣接する主応力S(i+1)との差を測定間隔(5mm)で除することによって得られる主応力の勾配の絶対値を[|S(i)−S(i+1)|/5]をG(i)としたときに、G(i)+G(i+1)+G(i+2)(i=1、2、3・・・、59)<0.40 を満たす成形品は太陽光や蛍光灯の下においては虹色の線状会合部が観察されないことがわかる。   As apparent from Table 1, along the virtual reference line, the principal stress at each measurement point obtained in accordance with Brewster's law based on the birefringence in the transmission direction measured in the 300 mm range with the measurement interval of 5 mm is S ( i) (i = 1, 2, 3,..., 61) and the absolute value of the gradient of the main stress obtained by dividing the difference from the adjacent main stress S (i + 1) by the measurement interval (5 mm). [| S (i) −S (i + 1) | / 5] is G (i), G (i) + G (i + 1) + G (i + 2) (i = 1, 2, 3,... 59) It can be seen that in the molded product satisfying <0.40, a rainbow-colored line-like association portion is not observed under sunlight or a fluorescent lamp.

偏光観察台Polarization observation table 実施例で作成された成形品の正面概略図Front schematic diagram of the molded product created in the example 実施例で作成された成形品の正面概略図Front schematic diagram of the molded product created in the example 実施例で測定された成形品の主応力S(i)の測定分布Measurement distribution of principal stress S (i) of molded article measured in Example 比較例で測定された成形品の主応力S(i)の測定分布Measurement distribution of principal stress S (i) of molded product measured in comparative example

符号の説明Explanation of symbols

10 偏光観察台
11 ガラス板
12 偏光板
13 蛍光灯
21 ゲート部分(第1充填ゲート)
22 ゲート部分(第2充填ゲート)
23 偏光板を通して観察される線状会合部
24 仮想基準線
25 ゲート部分
26 開口部
DESCRIPTION OF SYMBOLS 10 Polarization observation stand 11 Glass plate 12 Polarizing plate 13 Fluorescent lamp 21 Gate part (1st filling gate)
22 Gate part (second filling gate)
23 linear meeting part observed through polarizing plate 24 virtual reference line 25 gate part 26 opening part

Claims (8)

芳香族ポリカーボネート樹脂より形成され、該成形品を2枚の偏光板に挟み、透過光を照射することによって線状会合部を観察することができる射出成形品であって、該線状会合部に対して直交するように設定した仮想基準線に沿って、線状会合部と仮想基準線の交点を中心として300mmの範囲を測定間隔5mmで測定した透過方向の複屈折をもとにBrewsterの法則に従って得られた各測定点における主応力をS(i)(i=1、2、3・・・、61)とし、さらに隣接する主応力S(i+1)との差を測定間隔(5mm)で除することによって得られる主応力の勾配の絶対値[|S(i)−S(i+1)|/5]をG(i)(i=1、2、3・・・、59)としたときに、下記式(1)を満たすことを特徴とする射出成形品。
G(i)+G(i+1)+G(i+2)(i=1、2、3・・・、59)<0.40・・・(1)
An injection-molded product formed from an aromatic polycarbonate resin, in which the molded product is sandwiched between two polarizing plates, and a linear association part can be observed by irradiating transmitted light. Brewster's law based on birefringence in the transmission direction measured at a measurement interval of 5 mm over a 300 mm range centering on the intersection of the linear meeting part and the virtual reference line along a virtual reference line set to be orthogonal to S (i) (i = 1, 2, 3,..., 61) is the principal stress at each measurement point obtained according to, and the difference from the adjacent principal stress S (i + 1) is the measurement interval (5 mm). When the absolute value [| S (i) −S (i + 1) | / 5] of the gradient of the main stress obtained by dividing is G (i) (i = 1, 2, 3,..., 59) An injection molded product characterized by satisfying the following formula (1):
G (i) + G (i + 1) + G (i + 2) (i = 1, 2, 3,..., 59) <0.40 (1)
上記線状会合部が、金型に設けられた複数のゲートから成形空間内に流入した溶融樹脂が会合する際に形成される線状会合部及び/又は金型に設けられた立壁や開口部で複数の流路に分離して成形空間内に流入した溶融樹脂が会合する際に形成される線状会合部である請求項1記載の射出成形品。   The linear meeting part is formed when the molten resin flowing into the molding space from a plurality of gates provided in the mold meets, and / or a standing wall or opening provided in the mold. The injection molded product according to claim 1, which is a linear meeting part formed when the molten resin separated into a plurality of flow paths and flowing into the molding space meets. 射出成形品が透明部材である請求項1または2記載の射出成形品。   The injection-molded product according to claim 1 or 2, wherein the injection-molded product is a transparent member. 射出成形品が車両用グレージング部材である請求項1〜3のいずれかに記載の射出成形品。   The injection molded product according to any one of claims 1 to 3, wherein the injection molded product is a vehicle glazing member. JIS K7361−1に従い測定した全光線透過率が25%以上であることを特徴とする請求項1〜4のいずれかに記載の射出成形品。   The injection molded product according to any one of claims 1 to 4, wherein the total light transmittance measured in accordance with JIS K7361-1 is 25% or more. ゲートから流動末端までの流動長が15〜300cmであり、かつその最大投影面積が200〜60,000cmであることを特徴とする請求項1〜5のいずれかに記載の射出成形品。 The injection molded product according to any one of claims 1 to 5, wherein the flow length from the gate to the flow end is 15 to 300 cm, and the maximum projected area is 200 to 60,000 cm 2 . 請求項1〜6のいずれかに記載の射出成形品を熱曲げまたは周縁部の除去を実施することによって得られた射出成形品。   An injection-molded product obtained by subjecting the injection-molded product according to any one of claims 1 to 6 to thermal bending or peripheral edge removal. 請求項1〜7のいずれかに記載の射出成形品を表面加飾することによって得られた射出成形品。   An injection-molded product obtained by decorating the surface of the injection-molded product according to any one of claims 1 to 7.
JP2008098255A 2008-04-04 2008-04-04 Aromatic polycarbonate resin injection molded products Active JP5273774B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008098255A JP5273774B2 (en) 2008-04-04 2008-04-04 Aromatic polycarbonate resin injection molded products
CN 200910129276 CN101549563B (en) 2008-04-04 2009-04-03 Aromatic polycarbonate resin injection formed piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098255A JP5273774B2 (en) 2008-04-04 2008-04-04 Aromatic polycarbonate resin injection molded products

Publications (2)

Publication Number Publication Date
JP2009249481A true JP2009249481A (en) 2009-10-29
JP5273774B2 JP5273774B2 (en) 2013-08-28

Family

ID=41154165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098255A Active JP5273774B2 (en) 2008-04-04 2008-04-04 Aromatic polycarbonate resin injection molded products

Country Status (2)

Country Link
JP (1) JP5273774B2 (en)
CN (1) CN101549563B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092123A (en) * 2009-11-20 2011-06-15 精工精密株式会社 Injection molding mold device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128909A (en) * 2000-10-25 2002-05-09 Teijin Chem Ltd Window product made of resin
JP2003327818A (en) * 2002-05-08 2003-11-19 Teijin Chem Ltd Polycarbonate resin composition and molded article made thereof
JP2004115698A (en) * 2002-09-27 2004-04-15 Teijin Chem Ltd Antistatic polycarbonate resin composition
JP2004330728A (en) * 2003-05-12 2004-11-25 Teijin Chem Ltd Resin molded article for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2006666B (en) * 1977-10-31 1982-09-02 Mca Disco Vision Method and means for replicating centrally apertured videodisc records
DE29623540U1 (en) * 1995-05-29 1998-09-24 Hoechst Res & Tech Gmbh & Co Amorphous, transparent plate made of a crystallizable thermoplastic
JP2002048904A (en) * 2000-08-03 2002-02-15 Canon Inc Resin molded prism and die therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128909A (en) * 2000-10-25 2002-05-09 Teijin Chem Ltd Window product made of resin
JP2003327818A (en) * 2002-05-08 2003-11-19 Teijin Chem Ltd Polycarbonate resin composition and molded article made thereof
JP2004115698A (en) * 2002-09-27 2004-04-15 Teijin Chem Ltd Antistatic polycarbonate resin composition
JP2004330728A (en) * 2003-05-12 2004-11-25 Teijin Chem Ltd Resin molded article for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092123A (en) * 2009-11-20 2011-06-15 精工精密株式会社 Injection molding mold device

Also Published As

Publication number Publication date
CN101549563A (en) 2009-10-07
JP5273774B2 (en) 2013-08-28
CN101549563B (en) 2013-04-17

Similar Documents

Publication Publication Date Title
EP2338880B1 (en) Multilayer products comprising a polycarbonate with improved thermal and mechanical characteristics and reduced thermal expansion coefficients
KR100511423B1 (en) Transparent Polymethylemethacrylate/Polycarbonate Resin Composition
JP5581320B2 (en) Bonding layer composition
JP5253925B2 (en) Multilayer optical sheet
US20150217541A1 (en) Multi-layer film, decorative molding film and molded body
JP2009226615A (en) Manufacturing method of resin molding having surface functional layer and its molding
KR20150076650A (en) Polycarbonate resin composition having improved appearance and flowability
JP6875271B2 (en) Method for manufacturing a molded product by press molding a thermoplastic resin sheet or film
EP2706083B1 (en) Article and manufacturing method of article
JP2011218603A (en) Molding method for resin molded body with surface functional layer, and the molded body
JP4907755B2 (en) Polycarbonate resin laminate
US20150376396A1 (en) Resin Composition and Moulded Article Using Same
JP5273774B2 (en) Aromatic polycarbonate resin injection molded products
JP2001225349A (en) Method for manufacturing molded article having gradation hue
JP2001225348A (en) Molding method and molded article
CN104559002B (en) Resin combination, its manufacture method, formed body and light guide plate
JP2010031078A (en) Treatment method of aromatic polycarbonate resin molding
US20220025134A1 (en) Multilayer composite design material having special polycarbonate compositions as matrix material
KR100661114B1 (en) Foamed Light Diffusion Panel, the Preparation Method and Liquid Crystal Display of Comprising the Same
JP2001088165A (en) Molding method for obtaining molded article having layered structure controlled in thickness thinly and molded article
EP3954729A1 (en) Film, laminate, thermoformed body, in-mold molding, method for producing molding, and method for producing in-mold molding
KR101583223B1 (en) Thermoplastic resin composition and molded product using the same
JP2004098603A (en) Injection-compression molding method and molded article manufactured by the molding method
JP2003225973A (en) High design sheet-like laminated structure and its use
JP2002275275A (en) Molded article of resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150