JP2009249424A - Epoxy resin molding material for sealing and electronic component device - Google Patents

Epoxy resin molding material for sealing and electronic component device Download PDF

Info

Publication number
JP2009249424A
JP2009249424A JP2008096138A JP2008096138A JP2009249424A JP 2009249424 A JP2009249424 A JP 2009249424A JP 2008096138 A JP2008096138 A JP 2008096138A JP 2008096138 A JP2008096138 A JP 2008096138A JP 2009249424 A JP2009249424 A JP 2009249424A
Authority
JP
Japan
Prior art keywords
group
epoxy resin
compound
general formula
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096138A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
高士 山本
Ryoichi Ikezawa
良一 池澤
Mitsuyoshi Hamada
光祥 濱田
Seiichi Akagi
清一 赤城
Mitsuo Togawa
光生 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008096138A priority Critical patent/JP2009249424A/en
Publication of JP2009249424A publication Critical patent/JP2009249424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin molding material for sealing having excellent solder reflow resistance and securing flame retardancy and to provide an electronic component device provided with an element sealed by the same. <P>SOLUTION: The epoxy resin molding material for sealing includes (A) an epoxy resin, (B) a curing agent, (C) a silane compound, (D) a curing promotor and (E) an inorganic filler, wherein (C) the silane compound includes a silane compound (C1) represented by a specified chemical formula and a silane compound (C2) represented by a specified chemical formula and (C1) and (C2) are blended at a ratio by weight of (C2)/(C1)=0.4 to 4.7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、封止用エポキシ樹脂成形材料及びこの組成物で封止した素子を備えた電子部品装置に関する。   The present invention relates to an epoxy resin molding material for sealing and an electronic component device provided with an element sealed with this composition.

従来から、トランジスタ、IC等の電子部品装置の素子封止の分野では生産性、コスト等の面から樹脂封止が主流となり、エポキシ樹脂成形材料が広く用いられている。この理由としては、エポキシ樹脂が電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性などの諸特性にバランスがとれているためである。これらの封止用エポキシ樹脂成形材料の難燃化は主にテトラブロモビスフェノールAのジグリシジルエーテル等のブロム化樹脂と酸化アンチモンの組合せにより行われている。   Conventionally, in the field of element sealing of electronic component devices such as transistors and ICs, resin sealing has been the mainstream in terms of productivity and cost, and epoxy resin molding materials have been widely used. This is because epoxy resins are balanced in various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness with inserts. The flame-retardant of these sealing epoxy resin molding materials is mainly performed by a combination of a brominated resin such as diglycidyl ether of tetrabromobisphenol A and antimony oxide.

近年、環境保護の観点からRoHS、WEEE等、臭素系化合物に関する法規制の動きがあり、封止用エポキシ樹脂成形材料についてもノンハロゲン化(ノンブロム化)及びノンアンチモン化の要求が出てきている。また、プラスチック封止ICの高温放置特性にブロム化合物が悪影響を及ぼすことが知られており、この観点からもブロム化樹脂量の低減が望まれている。   In recent years, there has been a movement of laws and regulations relating to brominated compounds such as RoHS and WEEE from the viewpoint of environmental protection, and there has been a demand for non-halogenation (non-bromination) and non-antimony formation for epoxy resin molding materials for sealing. In addition, it is known that a bromo compound has an adverse effect on the high temperature storage characteristics of a plastic encapsulated IC. From this viewpoint, reduction of the amount of bromo resin is desired.

そこで、ブロム化樹脂や酸化アンチモンを用いずに難燃化を達成する手法としては、赤リンを用いる方法(例えば特許文献1参照。)、リン酸エステル化合物を用いる方法(例えば特許文献2参照。)、ホスファゼン化合物を用いる方法(例えば特許文献3参照。)、金属水酸化物を用いる方法(例えば特許文献4参照。)、金属水酸化物と金属酸化物を併用する方法(例えば特許文献5参照。)、フェロセン等のシクロペンタジエニル化合物(例えば特許文献6参照。)、アセチルアセトナート銅(例えば非特許文献1参照。)等の有機金属化合物を用いる方法などのハロゲン、アンチモン以外の難燃剤を用いる方法、充填剤の割合を高くする方法(例えば特許文献7参照。)、また最近では、難燃性の高い樹脂を使用する方法(例えば特許文献8参照。)等が試みられている。   Therefore, as a method for achieving flame retardancy without using brominated resin or antimony oxide, a method using red phosphorus (for example, see Patent Document 1) and a method using a phosphoric ester compound (for example, see Patent Document 2). ), A method using a phosphazene compound (for example, see Patent Document 3), a method using a metal hydroxide (for example, see Patent Document 4), and a method for using a metal hydroxide and a metal oxide in combination (for example, see Patent Document 5). ), Cyclopentadienyl compounds such as ferrocene (see, for example, Patent Document 6), flame retardants other than halogen and antimony, such as methods using organometallic compounds such as acetylacetonate copper (see, for example, Non-Patent Document 1). , A method of increasing the ratio of the filler (see, for example, Patent Document 7), and recently, a method of using a highly flame-retardant resin (for example, special References 8.), And the like have been attempted.

また、電子機器の小型化、軽量化、高性能化に伴い、実装の高密度化が進み、電子部品装置は従来のピン挿入型から、表面実装型のパッケージがなされるようになってきている。半導体装置を配線板に取り付ける場合、従来のピン挿入型パッケージはピンを配線板に挿入した後、配線板裏面から半田付けを行うため、パッケージが直接高温にさらされることはなかった。しかし、表面実装型パッケージでは半導体装置全体が半田バスやリフロー装置などで処理されるため、直接半田付け温度にさらされる。この結果、パッケージが吸湿した場合、半田付け時に吸湿水分が急激に膨張し、接着界面の剥離やパッケージクラックが発生し、実装時のパッケージの信頼性を低下させる問題があった。   In addition, as electronic devices have become smaller, lighter, and higher in performance, the mounting density has been increased, and electronic component devices have come to be made surface mount packages instead of conventional pin insertion types. . When a semiconductor device is attached to a wiring board, the conventional pin insertion type package is soldered from the back side of the wiring board after the pins are inserted into the wiring board, so that the package is not directly exposed to high temperatures. However, in the surface mount type package, the entire semiconductor device is processed by a solder bath, a reflow device or the like, so that it is directly exposed to soldering temperature. As a result, when the package absorbs moisture, the moisture absorption moisture rapidly expands during soldering, causing peeling of the adhesive interface and package cracks, which reduces the reliability of the package during mounting.

上記の問題を解決するために封止用エポキシ樹脂成形材料とリードフレームとの密着性を高め、耐リフロー性を向上させる方法として、たとえば、シラン化合物としてアミン系シラン化合物を添加する方法が提案されている(特許文献9及び特許文献10参照。)。しかし、この方法では耐半田リフロー性及び接着性の改善には充分な効果が得られていない他、流動性の低下を引き起こしてしまう問題があった。また、封止用エポキシ樹脂成形材料の流動性が低いと成形時に金線流れ、ボイド、ピンホール等の発生といった新たな問題も生じてしまう(非特許文献2参照)。   In order to solve the above problems, for example, a method of adding an amine-based silane compound as a silane compound has been proposed as a method for improving the adhesion between the sealing epoxy resin molding material and the lead frame and improving the reflow resistance. (See Patent Document 9 and Patent Document 10). However, this method is not effective for improving the solder reflow resistance and adhesiveness, and also has a problem of causing a decrease in fluidity. In addition, if the fluidity of the epoxy resin molding material for sealing is low, new problems such as the occurrence of gold wire flow, voids, pinholes, etc. will occur during molding (see Non-Patent Document 2).

そこで、この問題に対して、硬化性を低下させることなく流動性、耐半田リフロー性に優れる封止用エポキシ樹脂成形材料、及びこれにより封止した素子を備えた電子部品装置を提供しようとする方法が提案されている(特許文献11参照。)。   Therefore, to solve this problem, an epoxy resin molding material for sealing excellent in fluidity and solder reflow resistance without reducing curability, and an electronic component device including an element sealed thereby are provided. A method has been proposed (see Patent Document 11).

特開平9−227765号公報JP-A-9-227765 特開平9−235449号公報JP 9-235449 A 特開平8−225714号公報JP-A-8-225714 特開平9−241483号公報Japanese Patent Laid-Open No. 9-241383 特開平9−100337号公報Japanese Patent Laid-Open No. 9-130037 特開平11−269349号公報JP-A-11-269349 特開平7−82343号公報JP 7-82343 A 特開平11−140277号公報JP-A-11-140277 特開平11−147939号公報JP-A-11-147939 特開2001−213939号公報JP 2001-213939 A 特開2005−247890号公報JP 2005-247890 A 加藤寛、機能材料、11(6)、34(1991)Hiroshi Kato, Functional Materials, 11 (6), 34 (1991) (株)技術情報協会編「半導体封止樹脂の高信頼性化」技術情報協会1990年1月31日、172−176頁Technical Information Association, Inc. “High Reliability of Semiconductor Encapsulation Resin” Technical Information Association, January 31, 1990, pages 172-176

封止用エポキシ樹脂成形材料の難燃化は、環境対応の観点から封止用エポキシ樹脂成形材料に赤リンを用いた場合は耐湿性の低下の問題、リン酸エステル化合物やホスファゼン化合物を用いた場合は可塑化による成形性の低下や耐湿性の低下の問題、金属水酸化物を用いた場合は流動性や金型離型性の低下の問題、金属酸化物を用いた場合や、充填剤の割合を高くした場合は流動性の低下の問題がそれぞれある。また、アセチルアセトナート銅等の有機金属化合物を用いた場合は、硬化反応を阻害し成形性が低下する問題がある。さらにはこれまで発明された難燃性の高い樹脂を使用する方法では、難燃性が電子部品装置の材料に求められるUL−94 V−0を十分に満足するものではなかった。   The flame retardant of the epoxy resin molding material for sealing was the problem of reduced moisture resistance when using red phosphorus as the epoxy resin molding material for sealing from the viewpoint of environmental friendliness, using phosphoric ester compounds and phosphazene compounds. In the case of plasticity, there is a problem of decrease in moldability and moisture resistance, in the case of using metal hydroxide, there is a problem of decrease in fluidity and mold releasability, in the case of using metal oxide, or a filler. When the ratio is increased, there is a problem of decrease in fluidity. Further, when an organometallic compound such as acetylacetonate copper is used, there is a problem that the curing reaction is inhibited and the moldability is lowered. Furthermore, the method using a highly flame-retardant resin invented so far does not sufficiently satisfy UL-94 V-0, which is required for materials of electronic component devices.

以上のようにこれらノンハロゲン、ノンアンチモン系の難燃剤、充填剤の割合を高くする方法及び難燃性の高い樹脂を使用する方法では、いずれの場合もブロム化樹脂と酸化アンチモンを併用した封止用エポキシ樹脂成形材料と同等の成形性、信頼性及び難燃性を得るに至っていない。また、逆に充填剤の割合を低くして、流動性の向上及び、弾性率の低減化を図ることによる応力の低減効果から、耐熱衝撃試験に有利な材料設計をした際にも、吸水率の増大による信頼性の低下や難燃性の大幅な低下が顕在化する。   As described above, in the method of increasing the proportion of these non-halogen, non-antimony flame retardants and fillers and the method using a highly flame-retardant resin, sealing using both a brominated resin and antimony oxide is used in both cases. The moldability, reliability, and flame retardancy equivalent to the epoxy resin molding materials for use have not been achieved. On the other hand, when the material design is advantageous for the thermal shock test due to the effect of reducing the stress by lowering the proportion of the filler to improve the fluidity and reduce the elastic modulus, A decrease in reliability and a significant decrease in flame retardance are manifested due to an increase in the number of flame retardants.

本発明は、かかる状況に鑑みなされたもので、ノンハロゲンかつノンアンチモンであり、充填剤の割合が低い場合でも、耐半田リフロー性に優れた上、難燃性を確保する封止用エポキシ樹脂成形材料及び、これにより封止した素子を備えた電子部品装置を提供しようとするものである。   The present invention has been made in view of such circumstances, and is an epoxy resin molding for sealing that is non-halogen and non-antimony and has excellent solder reflow resistance and ensures flame resistance even when the proportion of the filler is low. An object of the present invention is to provide an electronic component device including a material and an element sealed by the material.

本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、特定のエポキシ樹脂を配合した封止用エポキシ樹脂成形材料とシランカップリング剤の組み合わせにより上記の目的を達成しうることを見い出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors can achieve the above object by combining a sealing epoxy resin molding material containing a specific epoxy resin and a silane coupling agent. As a result, the present invention has been completed.

本願は以下の発明に関する。
1. (A)エポキシ樹脂、(B)硬化剤、(C)シラン化合物、(D)硬化促進剤、(E)無機充填剤を含有し、(C)シラン化合物が下記一般式(I)で表されるシラン化合物(C1)及び下記一般式(II)で表されるシラン化合物(C2)を含有し、(C1)及び(C2)が(II)/(I)=0.4〜4.7の重量比で配合される封止用エポキシ樹脂成形材料。
The present application relates to the following inventions.
1. It contains (A) an epoxy resin, (B) a curing agent, (C) a silane compound, (D) a curing accelerator, (E) an inorganic filler, and (C) the silane compound is represented by the following general formula (I). A silane compound (C1) and a silane compound (C2) represented by the following general formula (II), wherein (C1) and (C2) are (II) / (I) = 0.4 to 4.7 An epoxy resin molding material for sealing blended in a weight ratio.

Figure 2009249424
(ここで、Rは水素原子又は炭素数1〜6の炭化水素基を示し、Rは水素原子又は炭素数1〜6の炭化水素基を示し、mは1〜3の整数を示す。)
Figure 2009249424
(Here, R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and m represents an integer of 1 to 3). )

Figure 2009249424
(ここで、R、はグリシジルエーテル基、メルカプト基、アミノ基、アニリノ基、イソシアネート基、アクリロキシ基及びメタクリロキシ基を示し、Rは炭素数1〜6の炭化水素基を示し、R、Rは炭素数1〜6の炭化水素基を示しnは1〜3の整数を示す。)
Figure 2009249424
(Here, R 1 represents a glycidyl ether group, a mercapto group, an amino group, an anilino group, an isocyanate group, an acryloxy group, and a methacryloxy group, R 2 represents a hydrocarbon group having 1 to 6 carbon atoms, R 3 , R 4 represents a hydrocarbon group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3).

2. 更に、(A)エポキシ樹脂として(A1)下記一般式(III)で示される化合物と(A2)下記一般式(IV)で示される化合物を含有する項1記載の封止用エポキシ樹脂成形材料。 2. The sealing epoxy resin molding material according to item 1, further comprising (A) an epoxy resin (A1) a compound represented by the following general formula (III) and (A2) a compound represented by the following general formula (IV).

Figure 2009249424

(一般式(III)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、互いに同一であっても異なっていてもよい。Rのmは0〜4の正数を示す。また、分子式内のnは、0〜10の整数を示す。)
Figure 2009249424

(The general formula R 5 in (III) is selected from a hydrocarbon group of a substituted or unsubstituted monovalent C1-10 hydrogen and carbon, identical even with good .R 5 be different also from each other m represents a positive number from 0 to 4. Further, n in the molecular formula represents an integer from 0 to 10.)

Figure 2009249424

(一般式(IV)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、互いに同一であっても異なっていてもよい。mは0〜4の正数を示す。)
Figure 2009249424

(R 6 in the general formula (IV) is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different. M is 0. Indicates a positive number of ~ 4.)

3. 封止用エポキシ樹脂成形材料に対して(C)シラン化合物の割合が0.06〜0.8重量%である項1または2に記載の封止用エポキシ樹脂成形材料。
4. 一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)が予め混合されている項2または3に記載の封止用エポキシ樹脂成形材料。
5. 一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)の中の化合物(A1)の含有率((A1)/((A1)+(A2))×100)が30〜90質量%である項2〜4のいずれかに記載の封止用エポキシ樹脂成形材料。
6. (E)無機充填剤の含有量が、60〜95質量%である項1〜5のいずれかに記載の封止用エポキシ樹脂成形材料。
7. 項1〜6のいずれかに記載の封止用エポキシ樹脂成形材料で封止された素子を備えた電子部品装置。
3. Item 3. The sealing epoxy resin molding material according to item 1 or 2, wherein the proportion of the (C) silane compound is 0.06 to 0.8% by weight relative to the sealing epoxy resin molding material.
4). Item 4. The sealing epoxy resin molding material according to Item 2 or 3, wherein the compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) are mixed in advance.
5. Content ((A1) / ((A1) + (A2))) of the compound (A1) in the compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) × Item 100) is an epoxy resin molding material for sealing according to any one of Items 2 to 4, wherein 30 to 90% by mass.
6). (E) The epoxy resin molding material for sealing in any one of claim | item 1 -5 whose content of an inorganic filler is 60-95 mass%.
7). Item 7. An electronic component device comprising an element sealed with the sealing epoxy resin molding material according to any one of Items 1 to 6.

本発明による封止用エポキシ樹脂成形材料は、難燃性及び耐半田リフロー性が良好な電子部品装置等の製品を得ることができ、その工業的価値は大である。更に、低充填で難燃性が保たれることから、流動特性や弾性率を低減させたエポキシ樹脂成形材料の設計にも極めて有効である。   The epoxy resin molding material for sealing according to the present invention can provide products such as electronic component devices having good flame retardance and solder reflow resistance, and its industrial value is great. Furthermore, since flame retardancy is maintained with low filling, it is extremely effective in designing an epoxy resin molding material with reduced flow characteristics and elastic modulus.

本発明において用いられる(A)エポキシ樹脂は(A1)下記一般式(III)で示される化合物と(A2)下記一般式(IV)で示される化合物を含有することが好ましい。   The (A) epoxy resin used in the present invention preferably contains (A1) a compound represented by the following general formula (III) and (A2) a compound represented by the following general formula (IV).

Figure 2009249424

(一般式(III)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、互いに同一であっても異なっていてもよい。Rのmは0〜4の正数を示す。また、分子式内のnは、0〜10の整数を示す。)
Figure 2009249424

(The general formula R 5 in (III) is selected from a hydrocarbon group of a substituted or unsubstituted monovalent C1-10 hydrogen and carbon, identical even with good .R 5 be different also from each other m represents a positive number from 0 to 4. Further, n in the molecular formula represents an integer from 0 to 10.)

Figure 2009249424

(一般式(IV)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、互いに同一であっても異なっていてもよい。mは0〜4の正数を示す。)
Figure 2009249424

(R 6 in the general formula (IV) is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different. M is 0. Indicates a positive number of ~ 4.)

一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)はあらかじめ混合されていることが好ましい。特に一般式(IV)で示される化合物(A2)は単独では製造困難であるため、ビスフェノールF型化合物(一般式(III)で示される化合物(A1)の原料)とビフェノール型化合物(一般式(IV)で示される化合物(A2)の原料)をあらかじめ混合した状態でエピクロルヒドリンと反応させてエポキシ樹脂混合物として製造することが好ましい。   The compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) are preferably mixed in advance. In particular, since the compound (A2) represented by the general formula (IV) is difficult to produce by itself, a bisphenol F-type compound (raw material of the compound (A1) represented by the general formula (III)) and a biphenol-type compound (general formula ( It is preferable to produce an epoxy resin mixture by reacting with the epichlorohydrin in a state in which the compound (A2) represented by IV) is mixed in advance.

一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)の中の化合物(A1)の含有率((A1)/((A1)+(A2))×100)は30〜90質量%であることが好ましく、50〜80質量%であることがより好ましい。30質量%以上であると流動性が良好となり、90質量%以下であると難燃性が良好となり、また製造時に結晶として合成し易くなる。   Content ((A1) / ((A1) + (A2))) of the compound (A1) in the compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) × 100) is preferably 30 to 90% by mass, and more preferably 50 to 80% by mass. When it is 30% by mass or more, the fluidity is good, and when it is 90% by mass or less, the flame retardancy is good, and it becomes easy to synthesize as crystals at the time of production.

また一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)は(A)エポキシ樹脂全量の50〜100質量%であることが好ましく、80〜100質量%であることがより好ましい。50重量%以上であると難燃性、流動性及び耐リフロー性が良好となる。   The compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) are preferably 50 to 100% by mass, and 80 to 100% by mass based on the total amount of the (A) epoxy resin. It is more preferable that When it is 50% by weight or more, flame retardancy, fluidity and reflow resistance are improved.

一般式(III)で示される化合物(A1)が70質量%、一般式(IV)で示される化合物(A2)が30質量%で全てのRとRが水素原子であるものとして、ジャパンエポキシレジン株式会社製YL−7399が入手可能である。 Assuming that the compound (A1) represented by the general formula (III) is 70% by mass, the compound (A2) represented by the general formula (IV) is 30% by mass and all R 1 and R 2 are hydrogen atoms, YL-7399 manufactured by Epoxy Resin Co., Ltd. is available.

本発明において用いられる(A)エポキシ樹脂は従来公知のエポキシ樹脂を併用することができる。使用可能なエポキシ樹脂としては、たとえば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリフェニルメタン骨格を有するエポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの。ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテル。スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、ナフタレン環を有するエポキシ樹脂、キシリレン骨格、ビフェニレン骨格を含有するフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂、硫黄原子含有エポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて併用して用いてもよい。   As the (A) epoxy resin used in the present invention, a conventionally known epoxy resin can be used in combination. Usable epoxy resins include, for example, phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, epoxy resins having a triphenylmethane skeleton, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F And / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene and compounds having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde in an acidic catalyst. Epoxidized novolac resin obtained by the process. Diglycidyl ethers such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenol. Stilbene type epoxy resin, hydroquinone type epoxy resin, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid and epichlorohydrin, diaminodiphenylmethane, isocyanuric acid etc. glycidylamine obtained by reaction of epichlorohydrin Type epoxy resin, epoxidized product of co-condensation resin of dicyclopentadiene and phenol, epoxy resin having naphthalene ring, xylylene skeleton, phenol / aralkyl resin containing biphenylene skeleton, epoxy of aralkyl type phenol resin such as naphthol / aralkyl resin , Trimethylolpropane type epoxy resin, terpene modified epoxy resin, linear aliphatic epoxy resin obtained by oxidizing olefinic bond with peracid such as peracetic acid, alicyclic ring Epoxy resins, is like a sulfur atom-containing epoxy resins may be used in combination or in combination of two or more with these alone.

なかでも、流動性及び耐リフロー性の観点からはビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂及び硫黄原子含有エポキシ樹脂が好ましく、硬化性の観点からはノボラック型エポキシ樹脂が好ましく、低吸湿性の観点からはジシクロペンタジエン型エポキシ樹脂が好ましく、耐熱性及び低反り性の観点からはナフタレン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂が好ましく、難燃性の観点からはビフェニレン型エポキシ樹脂及びナフトール・アラルキル型エポキシ樹脂が好ましい。これらのエポキシ樹脂の少なくとも1種を含有していることが好ましい。   Among them, biphenyl type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin and sulfur atom-containing epoxy resin are preferable from the viewpoint of fluidity and reflow resistance, and novolac type epoxy resin is preferable from the viewpoint of curability, From the viewpoint of low hygroscopicity, dicyclopentadiene type epoxy resin is preferable. From the viewpoint of heat resistance and low warpage, naphthalene type epoxy resin and triphenylmethane type epoxy resin are preferable. From the viewpoint of flame retardancy, biphenylene type epoxy resin is preferable. Resins and naphthol / aralkyl epoxy resins are preferred. It is preferable to contain at least one of these epoxy resins.

ビフェニル型エポキシ樹脂としてはたとえば下記一般式(4)で示されるエポキシ樹脂等が挙げられ、ビスフェノールF型エポキシ樹脂としてはたとえば下記一般式(V)で示されるエポキシ樹脂等が挙げられ、スチルベン型エポキシ樹脂としてはたとえば下記一般式(VI)で示されるエポキシ樹脂等が挙げられ、硫黄原子含有エポキシ樹脂としてはたとえば下記一般式(VII)で示されるエポキシ樹脂等が挙げられる。   Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (4). Examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following general formula (V), and a stilbene type epoxy resin. Examples of the resin include an epoxy resin represented by the following general formula (VI), and examples of the sulfur atom-containing epoxy resin include an epoxy resin represented by the following general formula (VII).

Figure 2009249424

(ここで、R〜Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 2009249424

(Here, R 1 to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, all of which may be the same or different. N is 0 to 3). Indicates an integer.)

Figure 2009249424

(ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 2009249424

(Here, R 1 to R 8 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms. All may be the same or different, and n represents an integer of 0 to 3.)

Figure 2009249424

(ここで、R〜Rは水素原子及び炭素数1〜5の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜10の整数を示す。)
Figure 2009249424

(Here, R 1 to R 8 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms, and all may be the same or different. N is 0 to 10. Indicates an integer.)

Figure 2009249424

(ここで、R〜Rは水素原子、置換又は非置換の炭素数1〜10のアルキル基及び置換又は非置換の炭素数1〜10のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 2009249424

(Here, R 1 to R 8 are selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, all of which are the same or different. (N represents an integer of 0 to 3.)

上記一般式(4)で示されるビフェニル型エポキシ樹脂としては、たとえば、4,4´−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4´−ビス(2,3−エポキシプロポキシ)−3,3´,5,5´−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4´−ビフェノール又は4,4´−(3,3´,5,5´−テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられる。なかでも4,4´−ビス(2,3−エポキシプロポキシ)−3,3´,5,5´−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。このような化合物としてはYX−4000(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。   Examples of the biphenyl type epoxy resin represented by the general formula (4) include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3. , 3 ', 5,5'-tetramethylbiphenyl as the main component, epichlorohydrin and 4,4'-biphenol or 4,4'-(3,3 ', 5,5'-tetramethyl) biphenol An epoxy resin obtained by reacting is used. Among these, an epoxy resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is preferable. As such a compound, YX-4000 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.) and the like are commercially available.

上記一般式(V)で示されるビスフェノールF型エポキシ樹脂としては、例えば、R、R、R及びRがメチル基で、R、R、R及びRが水素原子であり、n=0を主成分とするYSLV−80XY(東都化成株式会社製商品名)等が市販品として入手可能である。 As the bisphenol F type epoxy resin represented by the general formula (V), for example, R 1 , R 3 , R 6 and R 8 are methyl groups, and R 2 , R 4 , R 5 and R 7 are hydrogen atoms. Yes, YSLV-80XY (trade name, manufactured by Toto Kasei Co., Ltd.) having n = 0 as a main component is commercially available.

上記一般式(VI)で示されるスチルベン型エポキシ樹脂は、原料であるスチルベン系フェノール類とエピクロルヒドリンとを塩基性物質存在下で反応させて得ることができる。この原料であるスチルベン系フェノール類としては、たとえば3−tert−ブチル−4,4′−ジヒドロキシ−3′,5,5′−トリメチルスチルベン、3−tert−ブチル−4,4′−ジヒドロキシ−3′,5′,6−トリメチルスチルベン、4,4´−ジヒドロキシ−3,3´,5,5´−テトラメチルスチルベン、4,4´−ジヒドロキシ−3,3´−ジ−tert−ブチル−5,5´−ジメチルスチルベン、4,4´−ジヒドロキシ−3,3´−ジ−tert−ブチル−6,6´−ジメチルスチルベン等が挙げられ、なかでも3−tert−ブチル−4,4′−ジヒドロキシ−3′,5,5′−トリメチルスチルベン、及び4,4´−ジヒドロキシ−3,3´,5,5´−テトラメチルスチルベンが好ましい。これらのスチルベン型フェノール類は単独で用いても2種以上を組み合わせて用いてもよい。   The stilbene type epoxy resin represented by the general formula (VI) can be obtained by reacting a stilbene phenol as a raw material with epichlorohydrin in the presence of a basic substance. Examples of the raw material stilbene phenols include 3-tert-butyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3. ', 5', 6-trimethylstilbene, 4,4'-dihydroxy-3,3 ', 5,5'-tetramethylstilbene, 4,4'-dihydroxy-3,3'-di-tert-butyl-5 , 5'-dimethylstilbene, 4,4'-dihydroxy-3,3'-di-tert-butyl-6,6'-dimethylstilbene, among others, 3-tert-butyl-4,4'- Dihydroxy-3 ', 5,5'-trimethylstilbene and 4,4'-dihydroxy-3,3', 5,5'-tetramethylstilbene are preferred. These stilbene type phenols may be used alone or in combination of two or more.

上記一般式(VII)で示される硫黄原子含有エポキシ樹脂のなかでも、R、R、R及びRが水素原子で、R、R、R及びRがアルキル基であるエポキシ樹脂が好ましく、R、R、R及びRが水素原子で、R及びRがtert−ブチル基で、R及びRがメチル基であるエポキシ樹脂がより好ましい。このような化合物としては、YSLV−120TE(東都化成株式会社製商品名)等が市販品として入手可能である。これらのエポキシ樹脂はいずれか1種を単独で併用に用いても2種以上を組合わせて併用に用いてもよい。 Among the sulfur atom-containing epoxy resins represented by the general formula (VII), R 2 , R 3 , R 6 and R 7 are hydrogen atoms, and R 1 , R 4 , R 5 and R 8 are alkyl groups. An epoxy resin is preferred, and an epoxy resin in which R 2 , R 3 , R 6 and R 7 are hydrogen atoms, R 1 and R 8 are tert-butyl groups, and R 4 and R 5 are methyl groups is more preferred. As such a compound, YSLV-120TE (trade name, manufactured by Tohto Kasei Co., Ltd.) and the like are available as commercial products. Any one of these epoxy resins may be used alone or in combination of two or more.

ノボラック型エポキシ樹脂としては、たとえば下記一般式(VIII)で示されるエポキシ樹脂等が挙げられる。   Examples of the novolac type epoxy resin include an epoxy resin represented by the following general formula (VIII).

Figure 2009249424

(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
Figure 2009249424

(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.)

上記一般式(VIII)で示されるノボラック型エポキシ樹脂は、ノボラック型フェノール樹脂にエピクロルヒドリンを反応させることによって容易に得られる。なかでも、一般式(VIII)中のRとしては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基が好ましく、水素原子又はメチル基がより好ましい。nは0〜3の整数が好ましい。上記一般式(VIII)で示されるノボラック型エポキシ樹脂のなかでも、オルトクレゾールノボラック型エポキシ樹脂が好ましい。このような化合物としてはEOCN−1020(日本化薬株式会社製商品名)等が市販品として入手可能である。   The novolak type epoxy resin represented by the general formula (VIII) can be easily obtained by reacting a novolak type phenol resin with epichlorohydrin. Among them, R in the general formula (VIII) is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group, a methoxy group, an ethoxy group, and a propoxy group. C1-C10 alkoxyl groups, such as a butoxy group, are preferable, and a hydrogen atom or a methyl group is more preferable. n is preferably an integer of 0 to 3. Among the novolak epoxy resins represented by the general formula (VIII), orthocresol novolac epoxy resins are preferable. As such a compound, EOCN-1020 (trade name, manufactured by Nippon Kayaku Co., Ltd.) and the like are commercially available.

ジシクロペンタジエン型エポキシ樹脂としては、たとえば下記一般式(IX)で示されるエポキシ樹脂等が挙げられる。   Examples of the dicyclopentadiene type epoxy resin include an epoxy resin represented by the following general formula (IX).

Figure 2009249424

(ここで、R及びRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基からそれぞれ独立して選ばれ、nは0〜10の整数を示し、mは0〜6の整数を示す。)
Figure 2009249424

Wherein R 1 and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 0 to 10, and m is Represents an integer of 0 to 6.)

上記式(IX)中のRとしては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基などの炭素数1〜5の置換又は非置換の一価の炭化水素基が挙げられ、なかでもメチル基、エチル基等のアルキル基及び水素原子が好ましく、メチル基及び水素原子がより好ましい。Rとしては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基などの炭素数1〜5の置換又は非置換の一価の炭化水素基が挙げられ、なかでも水素原子が好ましい。このような化合物としてはHP−7200(大日本インキ化学工業株式会社製商品名)等が市販品として入手可能である。 R 1 in the above formula (IX) is, for example, a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, or a tert-butyl group, a vinyl group, an allyl group, or a butenyl group. C1-C5 substituted or unsubstituted monovalent hydrocarbon groups such as alkenyl groups, halogenated alkyl groups, amino group-substituted alkyl groups, mercapto group-substituted alkyl groups, and the like. Among them, methyl groups, ethyl groups Alkyl groups and hydrogen atoms such as methyl groups and hydrogen atoms are more preferable. Examples of R 2 include a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and a tert-butyl group, an alkenyl group such as a vinyl group, an allyl group, and a butenyl group, and an alkyl halide. Examples thereof include substituted or unsubstituted monovalent hydrocarbon groups having 1 to 5 carbon atoms such as a group, an amino group-substituted alkyl group, and a mercapto group-substituted alkyl group, and among them, a hydrogen atom is preferable. As such a compound, HP-7200 (trade name, manufactured by Dainippon Ink and Chemicals, Inc.) is available as a commercial product.

ナフタレン型エポキシ樹脂としてはたとえば下記一般式(X)で示されるエポキシ樹脂等が挙げられ、トリフェニルメタン型エポキシ樹脂としてはたとえば下記一般式(XI)で示されるエポキシ樹脂等が挙げられる。   Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following general formula (X), and examples of the triphenylmethane type epoxy resin include an epoxy resin represented by the following general formula (XI).

Figure 2009249424

(ここで、R〜Rは水素原子及び置換又は非置換の炭素数1〜12の一価の炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。pは1又は0で、l、mはそれぞれ0〜11の整数であって、(l+m)が1〜11の整数でかつ(l+p)が1〜12の整数となるよう選ばれる。iは0〜3の整数、jは0〜2の整数、kは0〜4の整数を示す。)
Figure 2009249424

(Here, R 1 to R 3 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, all of which may be the same or different. P is 1 or 0. And l and m are each an integer of 0 to 11, wherein (l + m) is an integer of 1 to 11 and (l + p) is an integer of 1 to 12. i is an integer of 0 to 3, j represents an integer of 0 to 2, and k represents an integer of 0 to 4.)

上記一般式(X)で示されるナフタレン型エポキシ樹脂としては、l個の構成単位及びm個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、規則的に含む共重合体、ブロック状に含むブロック共重合体が挙げられ、これらのいずれか1種を単独で用いても、2種以上を組み合わせて用いてもよい。R、Rが水素原子で、Rがメチル基である上記化合物としては、NC−7000(日本化薬株式会社製商品名)等が市販品として入手可能である。 The naphthalene type epoxy resin represented by the general formula (X) includes a random copolymer containing 1 structural unit and m structural units at random, an alternating copolymer containing alternating units, and a copolymer containing regularly. Examples thereof include block copolymers which are included in a combined or block form, and any one of these may be used alone, or two or more may be used in combination. As the above compound in which R 1 and R 2 are hydrogen atoms and R 3 is a methyl group, NC-7000 (trade name, manufactured by Nippon Kayaku Co., Ltd.) is commercially available.

Figure 2009249424

(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは1〜10の整数を示す。)
Figure 2009249424

(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10.)

Rが水素原子である上記化合物としてはE−1032(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。   As said compound whose R is a hydrogen atom, E-1032 (Japan Epoxy Resin Co., Ltd. brand name) etc. can be obtained as a commercial item.

ビフェニレン型エポキシ樹脂としてはたとえば下記一般式(XII)で示されるエポキシ樹脂等が挙げられ、ナフトール・アラルキル型エポキシ樹脂としてはたとえば下記一般式(XIII)で示されるエポキシ樹脂等が挙げられる。   Examples of the biphenylene type epoxy resin include an epoxy resin represented by the following general formula (XII), and examples of the naphthol / aralkyl type epoxy resin include an epoxy resin represented by the following general formula (XIII).

Figure 2009249424

(上記式中のR〜Rは全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6〜10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6〜10のアラルキル基から選ばれ、なかでも水素原子とメチル基が好ましい。nは0〜10の整数を示す。)
Figure 2009249424

(R 1 to R 9 in the above formula may all be the same or different and are alkyls having 1 to 10 carbon atoms such as hydrogen atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, etc. Group, methoxy group, ethoxy group, propoxy group, butoxy group, etc., C1-C10 alkoxyl group, phenyl group, tolyl group, xylyl group, etc. aryl group, benzyl group, phenethyl group Selected from aralkyl groups having 6 to 10 carbon atoms such as hydrogen atom and methyl group, and n represents an integer of 0 to 10.)

Figure 2009249424

(ここで、R〜Rは水素原子及び置換又は非置換の炭素数1〜12の一価の炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。nは1〜10の整数を示す。)
Figure 2009249424

(Here, R 1 to R 3 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, all of which may be the same or different. N is 1 to 10). Indicates an integer.)

ビフェニレン型エポキシ樹脂としてはNC−3000(日本化薬株式会社製商品名)が市販品として入手可能である。またナフトール・アラルキル型エポキシ樹脂としてはESN−175等(東都化成株式会社製商品名)が市販品として入手可能である。これらのエポキシ樹脂はいずれか1種を単独で用いても両者を組合わせて用いてもよい。   As a biphenylene type epoxy resin, NC-3000 (trade name, manufactured by Nippon Kayaku Co., Ltd.) is commercially available. As naphthol / aralkyl type epoxy resins, ESN-175 (trade name, manufactured by Tohto Kasei Co., Ltd.) is commercially available. These epoxy resins may be used alone or in combination.

また(A)エポキシ樹脂として下記構造式(XIV)のエポキシ樹脂も使用することができる。   Moreover, the epoxy resin of following structural formula (XIV) can also be used as (A) epoxy resin.

Figure 2009249424

(一般式(XIV)中のRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜4の整数を示す。またRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。mは0〜2の整数を示す。)
Figure 2009249424

(R 1 in the general formula (XIV) is selected from a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms and a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms, all of which are the same or different. N represents an integer of 0 to 4. R 2 is selected from a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms and a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms. All may be the same or different, and m represents an integer of 0 to 2.)

上記一般式(XIV)で示されるエポキシ樹脂としては、たとえば下記一般式(XV)〜(XXXIII)で示されるエポキシ樹脂等が挙げられる。   Examples of the epoxy resin represented by the general formula (XIV) include epoxy resins represented by the following general formulas (XV) to (XXXIII).

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

なかでも、難燃性、成形性の観点からは上記一般式(XV)で示されるエポキシ樹脂が好ましい。このような化合物としてはYL−7172(ジャパンエポキシレジン社製商品名)等が入手可能である。   Especially, the epoxy resin shown by the said general formula (XV) is preferable from a viewpoint of a flame retardance and a moldability. As such a compound, YL-7172 (trade name of Japan Epoxy Resin Co., Ltd.) and the like are available.

また下記一般式(XXXIV)で示される化合物を使用することもできる。   Moreover, the compound shown by the following general formula (XXXIV) can also be used.

Figure 2009249424
(一般式(XXXIV)中のRは水素原子、水酸基、炭素数1〜8のアルキル基、炭素数1〜6のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。R、Rは水素原子、炭素数1〜6のアルキル基から選ばれ、全てが同一でも異なっていてもよい。
nは1〜20の整数を示し、mは1〜3の整数を示す。)
Figure 2009249424
(R 1 in the general formula (XXXIV) is selected from a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms, all of which may be the same or different. R 2 , R 3 is selected from a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, and all may be the same or different.
n shows the integer of 1-20, m shows the integer of 1-3. )

一般式(XXXIV)中のmは1〜2であることが難燃性、硬化性の観点から好ましい。一般式(XXXIV)で示される化合物はインドール類と架橋剤を酸触媒下で反応させた後、エピハロヒドリン化合物と反応させることにより得られる。インドール類の置換基Rとしては水素原子、メトキシ基、エトキシ基、ビニルエーテル基、イソプロポキシ基、アリルオキシ基、プロパルギルエーテル基、ブトキシ基、フェノキシ基、メチル基、エチル基、ビニル基、エチン基、n−プロピル基、イソプロピル基、アリル基、プロパルギル基、ブチル基、n−アミル基、sec−アミル基、tert−アミル基、シクロヘキシル基、フェニル基、ベンジル基等が挙げられる。好ましくは水素原子、炭素数1〜3のアルキル基であり、より好ましくは水素原子である。架橋剤と反応させて得られる下記一般式(a)の架橋基としてはp−キシリレン基、m−キシリレン基、1,4−ビスエチリデンフェニル基、1,3−ビスエチリデンフェニレン基、1,4−ビスイソプロピリデンフェニレン基、1,3−イソプロピリデンフェニレン基、4,4‘−ビスメチレンビフェニル基、3,4’−ビスメチレンビフェニル基、3,3‘−ビスメチレンビフェニル基、4,4’−ビスエチリデンビフェニル基、3,4‘−ビスエチリデンビフェニル基、3,3’−ビスエチリデンビフェニル基、4,4‘−ビスイソプロピリデンビフェニル基、3,4’−ビスイソプロピリデンビフェニル基、3,3‘−ビスイソプロピリデンビフェニル基が挙げられる。また架橋剤としてホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、アミルアルデヒド、ベンズアルデヒド、アセトン等のアルデヒド類、ケトン類を併用してもよい。nは1〜20の整数を示すが、好ましくは1〜5である。酸触媒としては塩酸、硫酸、燐酸、蟻酸、シュウ酸、トリフルオロ酢酸、p−トルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素酸、イオン交換樹脂、活性白土、シリカアルミナ、ゼオライト等が挙げられる。 M in the general formula (XXXIV) is preferably 1 or 2 from the viewpoint of flame retardancy and curability. The compound represented by the general formula (XXXIV) is obtained by reacting an indole with a crosslinking agent in the presence of an acid catalyst and then reacting with an epihalohydrin compound. The indole substituent R 1 includes a hydrogen atom, a methoxy group, an ethoxy group, a vinyl ether group, an isopropoxy group, an allyloxy group, a propargyl ether group, a butoxy group, a phenoxy group, a methyl group, an ethyl group, a vinyl group, an ethyne group, Examples include n-propyl group, isopropyl group, allyl group, propargyl group, butyl group, n-amyl group, sec-amyl group, tert-amyl group, cyclohexyl group, phenyl group, benzyl group and the like. Preferably they are a hydrogen atom and a C1-C3 alkyl group, More preferably, it is a hydrogen atom. As a crosslinking group of the following general formula (a) obtained by reacting with a crosslinking agent, p-xylylene group, m-xylylene group, 1,4-bisethylidenephenyl group, 1,3-bisethylidenephenylene group, 1,4 -Bisisopropylidenephenylene group, 1,3-isopropylidenephenylene group, 4,4'-bismethylenebiphenyl group, 3,4'-bismethylenebiphenyl group, 3,3'-bismethylenebiphenyl group, 4,4 ' -Bisethylidenebiphenyl group, 3,4'-bisethylidenebiphenyl group, 3,3'-bisethylidenebiphenyl group, 4,4'-bisisopropylidenebiphenyl group, 3,4'-bisisopropylidenebiphenyl group, 3, A 3′-bisisopropylidenebiphenyl group may be mentioned. Moreover, you may use together aldehydes and ketones, such as formaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, amyl aldehyde, benzaldehyde, acetone, as a crosslinking agent. n represents an integer of 1 to 20, preferably 1 to 5. Acid catalysts include hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, dimethyl sulfate, diethyl sulfate, zinc chloride, aluminum chloride, iron chloride, boron trifluoride, ion exchange resin, Examples include activated clay, silica alumina, and zeolite.

Figure 2009249424
(一般式(a)中のR、Rは水素原子、炭素数1〜6のアルキル基から選ばれ、全てが同一でも異なっていてもよい。mは1〜3の整数を示す。)
Figure 2009249424
(R 2 and R 3 in the general formula (a) are selected from a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, all of which may be the same or different. M represents an integer of 1 to 3)

一般式(XXXIV)で示される化合物としてはENP−80(東都化成株式会社製)等が入手可能である。一般式(XXXIV)で示される化合物の軟化点は好ましくは40〜200℃、より好ましくは50〜160℃、さらに好ましくは60〜120℃である。40℃未満の場合、硬化性が低下し、200℃を超える場合は流動性が低下する傾向にある。ここで軟化点とはJIS−K−6911の環球法に基づき測定される軟化点を示す。   As the compound represented by the general formula (XXXIV), ENP-80 (manufactured by Toto Kasei Co., Ltd.) and the like are available. The softening point of the compound represented by the general formula (XXXIV) is preferably 40 to 200 ° C, more preferably 50 to 160 ° C, and further preferably 60 to 120 ° C. When the temperature is lower than 40 ° C, the curability is lowered, and when it exceeds 200 ° C, the fluidity tends to be lowered. Here, the softening point indicates a softening point measured based on the ring and ball method of JIS-K-6911.

上記エポキシ樹脂を各々の観点で性能を発揮するためには、その配合量は、エポキシ樹脂全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましく、60質量%以上とすることがさらに好ましい。   In order to exhibit the performance of the epoxy resin from each viewpoint, the blending amount is preferably 30% by mass or more, more preferably 50% by mass or more, and more preferably 60% by mass or more with respect to the total amount of the epoxy resin. More preferably.

本発明には従来公知の硬化剤(B)を使用することができる。使用可能な硬化剤としては、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、たとえば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ビフェニレン型フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂、フェノール類及び/又はナフトール類とジシクロペンタジエンから共重合により合成される、ジシクロペンタジエン型フェノールノボラック樹脂、ジシクロペンタジエン型ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂、テルペン変性フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。   A conventionally well-known hardening | curing agent (B) can be used for this invention. The curing agent that can be used is not particularly limited as it is generally used for epoxy resin molding materials for sealing. For example, phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol Novolaks obtained by condensation or cocondensation of phenols such as naphthols such as α-naphthol, β-naphthol, and dihydroxynaphthalene with compounds having an aldehyde group such as formaldehyde, benzaldehyde, salicylaldehyde, etc. in the presence of an acidic catalyst Type phenolic resin, phenol / aralkyl resin synthesized from phenol and / or naphthol and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, biphenylene type phenol aralkyl resin, naphtho Dicyclopentadiene such as dicyclopentadiene-type phenol novolac resin and dicyclopentadiene-type naphthol novolak resin synthesized by copolymerization from aralkyl-type phenol resins such as aralkyl resins, phenols and / or naphthols and dicyclopentadiene Type phenolic resin, triphenylmethane type phenolic resin, terpene modified phenolic resin, paraxylylene and / or metaxylylene modified phenolic resin, melamine modified phenolic resin, cyclopentadiene modified phenolic resin, phenol resin obtained by copolymerizing two or more of these, etc. Is mentioned. These may be used alone or in combination of two or more.

なかでも、難燃性、成形性の観点からは下記一般式(XXXV)で示されるフェノール・アラルキル樹脂が好ましい   Among these, from the viewpoint of flame retardancy and moldability, a phenol / aralkyl resin represented by the following general formula (XXXV) is preferable.

Figure 2009249424
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
Figure 2009249424
(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.)

一般式(XXXV)中のRが水素原子で、nの平均値が0〜8であるフェノール・アラルキル樹脂がより好ましい。具体例としては、p−キシリレン型フェノール・アラルキル樹脂、m−キシリレン型フェノール・アラルキル樹脂等が挙げられる。このような化合物としてはXLC(三井化学株式会社製商品名)等が市販品として入手可能である。これらのアラルキル型フェノール樹脂を用いる場合、その配合量は、その性能を発揮するために硬化剤全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましい。   A phenol / aralkyl resin in which R in the general formula (XXXV) is a hydrogen atom and the average value of n is 0 to 8 is more preferable. Specific examples include p-xylylene type phenol / aralkyl resins, m-xylylene type phenol / aralkyl resins, and the like. As such a compound, XLC (trade name, manufactured by Mitsui Chemicals, Inc.) is available as a commercial product. When using these aralkyl type phenol resins, the blending amount is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit the performance.

ナフトール・アラルキル樹脂としては、たとえば下記一般式(XXXVI)で示されるフェノール樹脂等が挙げられる。   Examples of the naphthol / aralkyl resin include a phenol resin represented by the following general formula (XXXVI).

Figure 2009249424
Figure 2009249424

上記一般式(XXXVI)で示されるナフトール・アラルキル樹脂としては、たとえばR、Rが全て水素原子である化合物等が挙げられ、このような化合物としては、SN−170(新日鐵化学株式会社製商品名)が市販品として入手可能である。 Examples of the naphthol-aralkyl resin represented by the general formula (XXXVI) include compounds in which R 1 and R 2 are all hydrogen atoms, and examples of such compounds include SN-170 (Nippon Steel Chemical Co., Ltd.). Company name) is available as a commercial product.

ジシクロペンタジエン型フェノール樹脂としては、たとえば下記一般式(XXXVII)で示されるフェノール樹脂等が挙げられる。   Examples of the dicyclopentadiene type phenol resin include a phenol resin represented by the following general formula (XXXVII).

Figure 2009249424

(ここで、R及びRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基からそれぞれ独立して選ばれ、nは0〜10の整数を示し、mは0〜6の整数を示す。)
Figure 2009249424

Wherein R 1 and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer of 0 to 10, and m is Represents an integer of 0 to 6.)

及びRが水素原子である上記化合物としてはDPP(新日本石油化学株式会社製商品名)等が市販品として入手可能である。 As said compound whose R < 1 > and R < 2 > is a hydrogen atom, DPP (New Nippon Petrochemical Co., Ltd. brand name) etc. are available as a commercial item.

反り低減という観点からはトリフェニルメタン型フェノール樹脂が好ましい。トリフェニルメタン型フェノール樹脂としては、たとえば下記一般式(XXXVIII)で示されるフェノール樹脂等が挙げられる。   From the viewpoint of reducing warpage, a triphenylmethane type phenol resin is preferable. Examples of the triphenylmethane type phenol resin include a phenol resin represented by the following general formula (XXXVIII).

Figure 2009249424

(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは1〜10の整数を示す。)
Figure 2009249424

(Here, R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10.)

Rが水素原子である上記化合物としては、MEH−7500(明和化成株式会社製商品名)等が市販品として入手可能である。   As the above compound in which R is a hydrogen atom, MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) and the like are commercially available.

トリフェニルメタン型フェノール樹脂の配合量は、硬化剤全量に対して10〜50質量%であることが好ましく、15〜30質量%がさらに好ましい。10質量%以上であると反り低減効果が良好となり、50質量%以下であると難燃性が良好となる。   The blending amount of the triphenylmethane type phenol resin is preferably 10 to 50% by mass, and more preferably 15 to 30% by mass with respect to the total amount of the curing agent. When it is 10% by mass or more, the warp reduction effect is good, and when it is 50% by mass or less, flame retardancy is good.

ノボラック型フェノール樹脂としては、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等が挙げられ、なかでもフェノールノボラック樹脂が好ましい。   Examples of the novolak type phenol resin include a phenol novolak resin, a cresol novolak resin, a naphthol novolak resin, and the like. Among these, a phenol novolak resin is preferable.

ビフェニレン型フェノール・アラルキル樹脂としては、たとえば下記一般式(XXXIX)で示されるフェノール樹脂等が挙げられる。   Examples of the biphenylene type phenol-aralkyl resin include a phenol resin represented by the following general formula (XXXIX).

Figure 2009249424
Figure 2009249424

上記式(XXXIX)中のR〜Rは全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6〜10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6〜10のアラルキル基から選ばれ、なかでも水素原子とメチル基が好ましい。nは0〜10の整数を示す。 R 1 to R 9 in the above formula (XXXIX) may all be the same or different and have 1 to 10 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, and an isobutyl group. An alkyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group or the like, an alkoxyl group having 1 to 10 carbon atoms, a phenyl group, a tolyl group, an aryl group having 6 to 10 carbon atoms such as a xylyl group, and a benzyl group, It is selected from aralkyl groups having 6 to 10 carbon atoms such as phenethyl group, and among them, a hydrogen atom and a methyl group are preferable. n represents an integer of 0 to 10.

上記一般式(XXXIX)で示されるビフェニレン型フェノール・アラルキル樹脂としては、たとえばR〜Rが全て水素原子である化合物等が挙げられ、なかでも溶融粘度の観点から、nが1以上の縮合体を50重量%以上含む縮合体の混合物が好ましい。このような化合物としては、MEH−7851(明和化成株式会社製商品名)が市販品として入手可能である。 Examples of the biphenylene type phenol / aralkyl resin represented by the above general formula (XXXIX) include compounds in which R 1 to R 9 are all hydrogen atoms, and in particular, from the viewpoint of melt viscosity, n is a condensation of 1 or more. A mixture of condensates containing 50% by weight or more of the body is preferred. As such a compound, MEH-7851 (trade name, manufactured by Meiwa Kasei Co., Ltd.) is commercially available.

上記のアラルキル型フェノール樹脂、ナフトール・アラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂、ノボラック型フェノール樹脂、ビフェニレン型フェノール・アラルキル樹脂は、いずれか1種を単独で用いても2種以上を組合わせて用いてもよい。   The above aralkyl-type phenol resin, naphthol-aralkyl resin, dicyclopentadiene-type phenol resin, triphenylmethane-type phenol resin, novolac-type phenol resin, biphenylene-type phenol-aralkyl resin can be used alone or in combination. You may use combining a seed | species or more.

併用する上記エポキシ樹脂の中では特にノボラック型エフェノール樹脂が硬化性の観点から好ましく、アラルキル型フェノール樹脂が流動性、耐リフロー性の観点から好ましい   Among the epoxy resins used in combination, the novolak type phenolic resin is preferable from the viewpoint of curability, and the aralkyl type phenolic resin is preferable from the viewpoint of fluidity and reflow resistance.

本発明においては下記一般式(XXXX)で示される化合物を含むこともできる。   In the present invention, a compound represented by the following general formula (XXXX) can also be included.

Figure 2009249424
(一般式(XXXX)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示し、mは0〜10の整数を示す。)
Figure 2009249424
(R 1 in the general formula (XXXX) is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 2 is a hydrogen atom and a substituted or unsubstituted group having 1 to 10 carbon atoms. (Selected from a substituted monovalent hydrocarbon group, n represents an integer of 0 to 10, and m represents an integer of 0 to 10.)

一般式(XXXX)で示される化合物はフェノール化合物と芳香族アルデヒド及びビフェニレン化合物を酸触媒の存在下で反応させることにより得られる。フェノール化合物としてはフェノール、クレゾール、エチルフェノール、ブチルフェノール等の置換フェノール類が用いられる。芳香族アルデヒドは芳香族に結合した1個のアルデヒド基を持った芳香族化合物である。芳香族アルデヒドとしてはベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、tert−ブチルベンズアルデヒド等が挙げられる。またビフェニレン化合物としてはビフェニレングリコール、ビフェニレングリコールジメチルエーテル、ビフェニレングリコールジエチルエーテル、ビフェニレングリコールジアセトキシエステル、ビフェニレングリコールジプロピオキシエステル、ビフェニレングリコールモノメチルエーテル、ビフェニレングリコールモノアセトキシエステル等が挙げられる。特にビフェニレングリコール、ビフェニレングリコールジメチルエーテルが好ましい。また下記一般式(a)でしめされるビフェニレン化合物も用いることができる。   The compound represented by the general formula (XXXX) can be obtained by reacting a phenol compound with an aromatic aldehyde and a biphenylene compound in the presence of an acid catalyst. As the phenol compound, substituted phenols such as phenol, cresol, ethylphenol and butylphenol are used. An aromatic aldehyde is an aromatic compound having one aldehyde group bonded to the aromatic. Aromatic aldehydes include benzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, tert-butylbenzaldehyde and the like. Examples of the biphenylene compound include biphenylene glycol, biphenylene glycol dimethyl ether, biphenylene glycol diethyl ether, biphenylene glycol diacetoxy ester, biphenylene glycol dipropoxy ester, biphenylene glycol monomethyl ether, and biphenylene glycol monoacetoxy ester. In particular, biphenylene glycol and biphenylene glycol dimethyl ether are preferable. Biphenylene compounds represented by the following general formula (a) can also be used.

Figure 2009249424
Figure 2009249424

一般式(XXXX)で示される化合物としてはHE−610C、620C(エア・ウォーター株式会社製)等が入手可能である。   HE-610C, 620C (manufactured by Air Water Co., Ltd.) and the like are available as the compound represented by the general formula (XXXX).

一般式(XXXX)で示される化合物の配合量は、(B)硬化剤全量に対して50〜90質量%であり、70〜85質量%が好ましい。50質量%以上であると難燃性が良好となり、90質量%以下であると反り低減効果が良好となる。   The compounding quantity of the compound shown by general formula (XXXX) is 50-90 mass% with respect to (B) hardening | curing agent whole quantity, and 70-85 mass% is preferable. When it is 50% by mass or more, the flame retardancy is good, and when it is 90% by mass or less, the warp reduction effect is good.

本発明の封止用エポキシ樹脂成形材料には難燃性を向上させる観点から、アセナフチレンを含有してもよい。アセナフチレンはアセナフテンを脱水素して得ることができるが、市販品を用いてもよい。また、アセナフチレンの重合物又はアセナフチレンと他の芳香族オレフィンとの重合物として用いることもできる。アセナフチレンの重合物又はアセナフチレンと他の芳香族オレフィンとの重合物を得る方法としては、ラジカル重合、カチオン重合、アニオン重合等が挙げられる。また、重合に際しては従来公知の触媒を用いることができるが、触媒を用いずに熱だけで行うこともできる。この際、重合温度は80〜160℃が好ましく、90〜150℃がより好ましい。得られるアセナフチレンの重合物又はアセナフチレンと他の芳香族オレフィンとの重合物の軟化点は、60〜150℃が好ましく、70〜130℃がより好ましい。60℃より低いと成形時の染み出しにより成形性が低下する傾向にあり、150℃より高いと樹脂との相溶性が低下する傾向にある。   The epoxy resin molding material for sealing of the present invention may contain acenaphthylene from the viewpoint of improving flame retardancy. Although acenaphthylene can be obtained by dehydrogenating acenaphthene, a commercially available product may be used. Further, it can be used as a polymer of acenaphthylene or a polymer of acenaphthylene and other aromatic olefins. Examples of a method for obtaining a polymer of acenaphthylene or a polymer of acenaphthylene and another aromatic olefin include radical polymerization, cationic polymerization, and anionic polymerization. In the polymerization, a conventionally known catalyst can be used, but it can also be carried out only by heat without using a catalyst. At this time, the polymerization temperature is preferably 80 to 160 ° C, more preferably 90 to 150 ° C. 60-150 degreeC is preferable and, as for the softening point of the polymer of the polymer of acenaphthylene obtained or acenaphthylene and another aromatic olefin, 70-130 degreeC is more preferable. When the temperature is lower than 60 ° C., the moldability tends to decrease due to oozing during molding, and when the temperature is higher than 150 ° C., the compatibility with the resin tends to decrease.

アセナフチレンと共重合させる他の芳香族オレフィンとしては、スチレン、α−メチルスチレン、インデン、ベンゾチオフェン、ベンゾフラン、ビニルナフタレン、ビニルビフェニル又はそれらのアルキル置換体等が挙げられる。また、上記した芳香族オレフィン以外に本発明の効果に支障の無い範囲で脂肪族オレフィンを併用することもできる。脂肪族オレフィンとしては、(メタ)アクリル酸及びそれらのエステル、無水マレイン酸、無水イタコン酸、フマル酸及びそれらのエステル等が挙げられる。これら脂肪族オレフィンの使用量は重合モノマー全量に対して20重量%以下が好ましく、9重量%以下がより好ましい。   Examples of other aromatic olefins to be copolymerized with acenaphthylene include styrene, α-methylstyrene, indene, benzothiophene, benzofuran, vinylnaphthalene, vinylbiphenyl, and alkyl-substituted products thereof. In addition to the above-mentioned aromatic olefins, aliphatic olefins can be used in combination as long as the effects of the present invention are not hindered. Examples of the aliphatic olefin include (meth) acrylic acid and esters thereof, maleic anhydride, itaconic anhydride, fumaric acid and esters thereof. The amount of these aliphatic olefins used is preferably 20% by weight or less, more preferably 9% by weight or less, based on the total amount of the polymerization monomers.

さらに、アセナフチレンとして、(B)硬化剤の一部又は全部と予備混合されたアセナフチレンを含有することもできる。(B)硬化剤の一部又は全部と、アセナフチレン、アセナフチレンの重合物及びアセナフチレンと他の芳香族オレフィンとの重合物の1種以上とを予備混合したものを用いてもよい。予備混合の方法としては、(B)及びアセナフチレン成分をそれぞれ微細に粉砕し固体状態のままミキサー等で混合する方法、両成分を溶解する溶媒に均一に溶解させた後溶媒を除去する方法、(B)及び/又はアセナフチレン成分の軟化点以上の温度で両者を溶融混合する方法等で行うことができるが、均一な混合物が得られて不純物の混入が少ない溶融混合法が好ましい。溶融混合は、(B)及び/又はアセナフチレン成分の軟化点以上の温度であれば制限はないが、100〜250℃が好ましく、120〜200℃がより好ましい。また、溶融混合は両者が均一に混合すれば混合時間に制限はないが、1〜20時間が好ましく、2〜15時間がより好ましい。   Furthermore, as acenaphthylene, the acenaphthylene premixed with a part or all of (B) hardening | curing agent can also be contained. (B) A premixed mixture of a part or all of the curing agent and one or more of acenaphthylene, a polymer of acenaphthylene, and a polymer of acenaphthylene and another aromatic olefin may be used. As a premixing method, (B) and the acenaphthylene component are each finely pulverized and mixed with a mixer or the like in a solid state, a method in which both components are uniformly dissolved in a solvent that dissolves both components, and then the solvent is removed. B) and / or a method in which both are melt mixed at a temperature equal to or higher than the softening point of the acenaphthylene component, etc., but a melt mixing method in which a uniform mixture is obtained and impurities are less mixed is preferable. The melt mixing is not limited as long as the temperature is equal to or higher than the softening point of (B) and / or the acenaphthylene component, but is preferably 100 to 250 ° C, more preferably 120 to 200 ° C. Moreover, although melt mixing will not have a restriction | limiting in mixing time if both are mixed uniformly, 1 to 20 hours are preferable and 2 to 15 hours are more preferable.

(B)硬化剤とアセナフチレンを予備混合する場合、混合中にアセナフチレン成分が重合もしくは(B)硬化剤と反応しても構わない。本発明の封止用エポキシ樹脂成形材料中には、アセナフチレン成分の分散性に起因する難燃性向上の観点から前述の予備混合物(アセナフチレン変性硬化剤)が(B)硬化剤中に90重量%以上含まれることが好ましい。アセナフチレン変性硬化剤中に含まれるアセナフチレン及び/又はアセナフチレンを含む芳香族オレフィンの重合物の量は5〜40重量%が好ましく、8〜25重量%がより好ましい。5重量%より少ないと難燃性が低下する傾向があり、40重量%より多いと成形性が低下する傾向がある。本発明のエポキシ樹脂成形材料中に含まれるアセナフチレン構造の含有率は、難燃性と成形性の観点からは0.1〜5重量%が好ましく、0.3〜3重量%がより好ましい。0.1重量%より少ないと難燃性に劣る傾向にあり、5重量%より多いと成形性が低下する傾向にある。   When the (B) curing agent and acenaphthylene are premixed, the acenaphthylene component may be polymerized or reacted with the (B) curing agent during mixing. In the epoxy resin molding material for sealing of the present invention, from the viewpoint of improving the flame retardance due to the dispersibility of the acenaphthylene component, the above-mentioned premix (acenaphthylene-modified curing agent) is 90% by weight in the (B) curing agent. It is preferable to be contained above. The amount of acenaphthylene and / or aromatic olefin polymer containing acenaphthylene contained in the acenaphthylene-modified curing agent is preferably 5 to 40% by weight, and more preferably 8 to 25% by weight. If the amount is less than 5% by weight, the flame retardancy tends to decrease, and if it exceeds 40% by weight, the moldability tends to decrease. The content of the acenaphthylene structure contained in the epoxy resin molding material of the present invention is preferably 0.1 to 5% by weight and more preferably 0.3 to 3% by weight from the viewpoints of flame retardancy and moldability. If it is less than 0.1% by weight, it tends to be inferior in flame retardancy, and if it is more than 5% by weight, moldability tends to be lowered.

(A)エポキシ樹脂と(B)硬化剤との当量比、すなわち、エポキシ樹脂中のエポキシ基数に対する硬化剤中の水酸基数の比(硬化剤中の水酸基数/エポキシ樹脂中のエポキシ基数)は、特に制限はないが、それぞれの未反応分を少なく抑えるために0.5〜2の範囲に設定されることが好ましく、0.6〜1.3がより好ましい。成形性及び耐リフロー性に優れる封止用エポキシ樹脂成形材料を得るためには0.8〜1.2の範囲に設定されることがさらに好ましい。   The equivalent ratio of (A) epoxy resin and (B) curing agent, that is, the ratio of the number of hydroxyl groups in the curing agent to the number of epoxy groups in the epoxy resin (number of hydroxyl groups in the curing agent / number of epoxy groups in the epoxy resin) is: Although there is no restriction | limiting in particular, In order to suppress each unreacted part small, it is preferable to set to the range of 0.5-2, and 0.6-1.3 are more preferable. In order to obtain a sealing epoxy resin molding material excellent in moldability and reflow resistance, it is more preferably set in the range of 0.8 to 1.2.

本発明の封止用エポキシ樹脂成形材料には、(A)エポキシ樹脂と(B)硬化剤の反応を促進させるために必要に応じて(D)硬化促進剤を用いることができる。(D)硬化促進剤は、封止用エポキシ樹脂成形材料に一般に使用されているもので特に制限はないが、たとえば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等のホスフィン化合物及びこれらのホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。   In the sealing epoxy resin molding material of the present invention, (D) a curing accelerator can be used as necessary in order to promote the reaction between (A) the epoxy resin and (B) the curing agent. (D) The curing accelerator is generally used in an epoxy resin molding material for sealing and is not particularly limited. For example, 1,8-diaza-bicyclo (5,4,0) undecene-7, 1 , 5-diaza-bicyclo (4,3,0) nonene, cycloamidine compounds such as 5,6-dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7 and these compounds Maleic acid, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone , Quinone compounds such as 2,3-dimethoxy-1,4-benzoquinone and phenyl-1,4-benzoquinone, and compounds having a π bond such as diazophenylmethane and phenol resin. Compound having intramolecular polarization, tertiary amines such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, 2-methylimidazole, 2-phenylimidazole Phosphines such as 2-phenyl-4-methylimidazole and derivatives thereof, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine, and the like Phosphorus compounds with intramolecular polarization formed by adding a phosphine compound to a compound having a π bond, such as maleic anhydride, the above quinone compound, diazophenylmethane, and phenol resin. And tetraphenylboron salts such as nitrotetraphenylborate, triphenylphosphinetetraphenylborate, 2-ethyl-4-methylimidazoletetraphenylborate, N-methylmorpholinetetraphenylborate, and derivatives thereof. You may use it, or may use it in combination of 2 or more types.

なかでも、難燃性、硬化性の観点からは、トリフェニルホスフィンが好ましく、難燃性、硬化性、流動性及び離型性の観点からは第三ホスフィン化合物とキノン化合物との付加物が好ましい。第三ホスフィン化合物としては、特に限定するものではないが、トリシクロヘキシルホスフィン、トリブチルホスフィン、ジブチルフェニルホスフィン、ブチルジフェニルホスフィン、エチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−エチルフェニル)ホスフィン、トリス(4−プロピルフェニル)ホスフィン、トリス(4−ブチルフェニル)ホスフィン、トリス(イソプロピルフェニル)ホスフィン、トリス(t−ブチルフェニル)ホスフィン、トリス(2,4−ジメチルフェニル)ホスフィン、トリス(2,6−ジメチルフェニル)ホスフィン、トリス(2,4,6−トリメチルフェニル)ホスフィン、トリス(2,6−ジメチル−4−エトキシフェニル)ホスフィン、トリス(4−メトキシフェニル)ホスフィン、トリス(4−エトキシフェニル)ホスフィンなどのアルキル基、アリール基を有する第三ホスフィン化合物が好ましい。またキノン化合物としてはo−ベンゾキノン、p−ベンゾキノン、ジフェノキノン、1,4−ナフトキノン、アントラキノン等があげられ、なかでも耐湿性、保存安定性の観点からp−ベンゾキノンが好ましい。トリス(4−メチルフェニル)ホスフィンとp−ベンゾキノンとの付加物が離型性の観点からより好ましい。   Of these, triphenylphosphine is preferable from the viewpoint of flame retardancy and curability, and an adduct of a third phosphine compound and a quinone compound is preferable from the viewpoint of flame retardancy, curability, fluidity, and mold release. . Although it does not specifically limit as a tertiary phosphine compound, Tricyclohexyl phosphine, tributyl phosphine, dibutyl phenyl phosphine, butyl diphenyl phosphine, ethyl diphenyl phosphine, triphenyl phosphine, tris (4-methylphenyl) phosphine, tris (4 -Ethylphenyl) phosphine, tris (4-propylphenyl) phosphine, tris (4-butylphenyl) phosphine, tris (isopropylphenyl) phosphine, tris (t-butylphenyl) phosphine, tris (2,4-dimethylphenyl) phosphine , Tris (2,6-dimethylphenyl) phosphine, tris (2,4,6-trimethylphenyl) phosphine, tris (2,6-dimethyl-4-ethoxyphenyl) phosphine, Squirrel (4-methoxyphenyl) phosphine, alkyl groups such as tris (4-ethoxyphenyl) phosphine, tertiary phosphine compounds having an aryl group are preferable. Examples of the quinone compound include o-benzoquinone, p-benzoquinone, diphenoquinone, 1,4-naphthoquinone, anthraquinone and the like. Among these, p-benzoquinone is preferable from the viewpoint of moisture resistance and storage stability. An adduct of tris (4-methylphenyl) phosphine and p-benzoquinone is more preferable from the viewpoint of releasability.

(D)硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるものではないが、封止用エポキシ樹脂成形材料に対して0.005〜2重量%が好ましく、0.01〜0.5重量%がより好ましい。0.005重量%未満では短時間での硬化性に劣る傾向があり、2重量%を超えると硬化速度が速すぎて良好な成形品を得ることが困難になる傾向がある。   (D) The blending amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but is preferably 0.005 to 2% by weight with respect to the sealing epoxy resin molding material. 0.01 to 0.5% by weight is more preferable. If it is less than 0.005% by weight, the curability in a short time tends to be inferior, and if it exceeds 2% by weight, the curing rate tends to be too high and it tends to be difficult to obtain a good molded product.

本発明では、(E)無機充填剤を配合する。無機充填剤は、吸湿性、線膨張係数低減、熱伝導性向上及び強度向上の効果があり、たとえば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維等が挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。ここで、ホウ酸亜鉛としてはFB−290、FB−500(U.S.Borax社製)、FRZ−500C(水澤化学社製)等が、モリブデン酸亜鉛としてはKEMGARD911B、911C、1100(Sherwin−Williams社製)等が各々市販品として入手可能である。   In the present invention, (E) an inorganic filler is blended. The inorganic filler has the effects of hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement, for example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, Examples thereof include powders such as silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, and titania, or beads and glass fibers obtained by spheroidizing these. Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide, zinc borate, and zinc molybdate. Here, as the zinc borate, FB-290, FB-500 (manufactured by US Borax), FRZ-500C (manufactured by Mizusawa Chemical Co., Ltd.), etc. (Made by Williams) etc. are each available as a commercial item.

これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。なかでも、充填性、線膨張係数の低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、無機充填剤の形状は充填性及び金型摩耗性の点から球形が好ましい。   These inorganic fillers may be used alone or in combination of two or more. Of these, fused silica is preferable from the viewpoint of filling property and linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity, and the shape of the inorganic filler is preferably spherical from the viewpoint of filling property and mold wear.

無機充填剤の配合量は、難燃性、成形性、吸湿性、線膨張係数低減、強度向上及び耐リフロー性の観点から、封止用エポキシ樹脂成形材料に対して50質量%以上が好ましく、60〜95質量%が難燃性の観点からより好ましく、70〜90質量%がさらに好ましい。60質量%未満では難燃性及び耐リフロー性が低下する傾向があり、95質量%を超えると流動性が不足する傾向があり、また難燃性も低下する傾向にある。   The blending amount of the inorganic filler is preferably 50% by mass or more based on the epoxy resin molding material for sealing, from the viewpoints of flame retardancy, moldability, hygroscopicity, linear expansion coefficient reduction, strength improvement and reflow resistance, 60-95 mass% is more preferable from a flame-retardant viewpoint, and 70-90 mass% is further more preferable. If the amount is less than 60% by mass, the flame retardancy and the reflow resistance tend to be lowered. If the amount exceeds 95% by mass, the fluidity tends to be insufficient, and the flame retardancy tends to be lowered.

本発明の封止用エポキシ樹脂成形材料には、樹脂成分と充項剤との接着性を高めるために、下記一般式(I)で表されるシラン化合物(C1)及び下記一般式(II)で表されるシラン化合物(C2)が配合されており、その配合割合は、(C1)及び(C2)が(II)/(I)=0.4〜4.7の重量比である。また、必要に応じ、これ以外のシラン化合物やシランカップリング剤を配合してもよい。   In the epoxy resin molding material for sealing of the present invention, the silane compound (C1) represented by the following general formula (I) and the following general formula (II) are used in order to enhance the adhesion between the resin component and the filler. The compounding ratio of (C1) and (C2) is a weight ratio of (II) / (I) = 0.4 to 4.7. Moreover, you may mix | blend a silane compound and a silane coupling agent other than this as needed.

Figure 2009249424
(ここで、Rは水素原子又は炭素数1〜6の炭化水素基を示し、Rは水素原子又は炭素数1〜6の炭化水素基を示し、mは1〜3の整数を示す。)
Figure 2009249424
(Here, R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and m represents an integer of 1 to 3). )

Figure 2009249424
(ここで、R、はグリシジルエーテル基、メルカプト基、アミノ基、アニリノ基、イソシアネート基、アクリロキシ基及びメタクリロキシ基を示し、Rは炭素数1〜6の炭化水素基を示し、R、Rは炭素数1〜6の炭化水素基を示しnは1〜3の整数を示す。)
Figure 2009249424
(Here, R 1 represents a glycidyl ether group, a mercapto group, an amino group, an anilino group, an isocyanate group, an acryloxy group, and a methacryloxy group, R 2 represents a hydrocarbon group having 1 to 6 carbon atoms, R 3 , R 4 represents a hydrocarbon group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3).

更に、(A)エポキシ樹脂として(A1)一般式(III)で示される化合物と(A2)一般式(IV)で示される化合物を含有する封止用エポキシ樹脂成形材料が好ましい。   Furthermore, an epoxy resin molding material for sealing containing (A) an epoxy resin containing (A1) a compound represented by general formula (III) and (A2) a compound represented by general formula (IV) is preferable.

たとえば、1級及び/又は2級及び/又は3級アミノ基を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等が挙げられる。これらを例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アニリノプロピルトリメトキシシラン、γ−(N−エチル)アニリノプロピルトリメトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アニリノプロピルトリエトキシシラン、γ−(N−エチル)アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジエチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジブチル)アミノプロピルメチルジメトキシシラン、γ−(N−メチル)アニリノプロピルメチルジメトキシシラン、γ−(N−エチル)アニリノプロピルメチルジメトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらの1種を単独で用いても2種類以上を組み合わせて用いてもよい。   For example, various silane compounds such as silane compounds having primary and / or secondary and / or tertiary amino groups, epoxy silane, mercapto silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, aluminum chelates, aluminum / Zirconium compounds and the like. Examples of these are vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycol. Sidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyl Triethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropyltrimethoxy Silane, γ- (N, N-diethyl) aminopropyltrimethoxysilane, γ- (N, N-dibutyl) aminopropyltrimethoxysilane, γ- (N-methyl) anilinopropyltrimethoxysilane, γ- (N -Ethyl) anilinopropyltrimethoxysilane, γ- (N, N-dimethyl) aminopropyltriethoxysilane, γ- (N, N-diethyl) aminopropyltriethoxysilane, γ- (N, N-dibutyl) amino Propyltriethoxysilane, γ- (N-methyl) anilinopropyltriethoxysilane, γ- (N-ethyl) anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropylmethyldimethoxysilane, γ- (N, N-diethyl) aminopropylmethyldimethoxysilane, γ- (N, N-dibutyl) aminopropy Rumethyldimethoxysilane, γ- (N-methyl) anilinopropylmethyldimethoxysilane, γ- (N-ethyl) anilinopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ) Silane coupling agents such as ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, isopropyl Triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctane Rubis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, Isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyltri (dioctylphosphate) titanate, isopropyltricumylphenyl titanate, tetraisopropylbis (dioctylphosphite) titanate And titanate coupling agents such as A seed may be used independently or may be used in combination of 2 or more types.

なかでも流動性、金線変形低減、難燃性の観点からは2級アミノ基を有するシランカップリング剤が好ましい。2級アミノ基を有するシランカップリング剤は分子内に2級アミノ基を有するシラン化合物であれば特に制限はないが、たとえば、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−アニリノプロピルメチルジメトキシシラン、γ−アニリノプロピルメチルジエトキシシラン、γ−アニリノプロピルエチルジエトキシシラン、γ−アニリノプロピルエチルジメトキシシラン、γ−アニリノメチルトリメトキシシラン、γ−アニリノメチルトリエトキシシラン、γ−アニリノメチルメチルジメトキシシラン、γ−アニリノメチルメチルジエトキシシラン、γ−アニリノメチルエチルジエトキシシラン、γ−アニリノメチルエチルジメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルトリメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルトリエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルメチルジメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルメチルジエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルエチルジエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルエチルジメトキシシラン、γ−(N−メチル)アミノプロピルトリメトキシシラン、γ−(N−エチル)アミノプロピルトリメトキシシラン、γ−(N−ブチル)アミノプロピルトリメトキシシラン、γ−(N−ベンジル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アミノプロピルトリエトキシシラン、γ−(N−エチル)アミノプロピルトリエトキシシラン、γ−(N−ブチル)アミノプロピルトリエトキシシラン、γ−(N−ベンジル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アミノプロピルメチルジメトキシシラン、γ−(N−エチル)アミノプロピルメチルジメトキシシラン、γ−(N−ブチル)アミノプロピルメチルジメトキシシラン、γ−(N−ベンジル)アミノプロピルメチルジメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等が挙げられる。なかでも下記一般式(3)で示されるアミノシランカップリング剤が特に好ましい。   Of these, a silane coupling agent having a secondary amino group is preferred from the viewpoints of fluidity, gold wire deformation reduction, and flame retardancy. The silane coupling agent having a secondary amino group is not particularly limited as long as it is a silane compound having a secondary amino group in the molecule. For example, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane Γ-anilinopropylmethyldimethoxysilane, γ-anilinopropylmethyldiethoxysilane, γ-anilinopropylethyldiethoxysilane, γ-anilinopropylethyldimethoxysilane, γ-anilinomethyltrimethoxysilane, γ- Anilinomethyltriethoxysilane, γ-anilinomethylmethyldimethoxysilane, γ-anilinomethylmethyldiethoxysilane, γ-anilinomethylethyldiethoxysilane, γ-anilinomethylethyldimethoxysilane, N- (p- Methoxyphenyl) -γ-aminopropyltrimeth Sisilane, N- (p-methoxyphenyl) -γ-aminopropyltriethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylmethyldimethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylmethyl Diethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylethyldiethoxysilane, N- (p-methoxyphenyl) -γ-aminopropylethyldimethoxysilane, γ- (N-methyl) aminopropyltrimethoxy Silane, γ- (N-ethyl) aminopropyltrimethoxysilane, γ- (N-butyl) aminopropyltrimethoxysilane, γ- (N-benzyl) aminopropyltrimethoxysilane, γ- (N-methyl) aminopropyl Triethoxysilane, γ- (N-ethyl) aminopropyltriethoxy Lan, γ- (N-butyl) aminopropyltriethoxysilane, γ- (N-benzyl) aminopropyltriethoxysilane, γ- (N-methyl) aminopropylmethyldimethoxysilane, γ- (N-ethyl) aminopropyl Methyldimethoxysilane, γ- (N-butyl) aminopropylmethyldimethoxysilane, γ- (N-benzyl) aminopropylmethyldimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- ( β-aminoethyl) aminopropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane and the like. Of these, aminosilane coupling agents represented by the following general formula (3) are particularly preferred.

Figure 2009249424

(ここで、Rは水素原子、炭素数1〜6のアルキル基及び炭素数1〜2のアルコキシ基から選ばれ、Rは炭素数1〜6のアルキル基及びフェニル基から選ばれ、Rはメチル基又はエチル基を示し、nは1〜6の整数を示し、mは1〜3の整数を示す。)
Figure 2009249424

(Where R 1 is selected from a hydrogen atom, an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 2 carbon atoms, R 2 is selected from an alkyl group having 1 to 6 carbon atoms and a phenyl group; 3 represents a methyl group or an ethyl group, n represents an integer of 1 to 6, and m represents an integer of 1 to 3. )

カップリング剤の全配合量は、封止用エポキシ樹脂成形材料に対して0.037〜4.75質量%であることが好ましく、0.05〜5質量%であることがより好ましく、0.1〜2.5質量%であることがさらに好ましい。0.037質量%未満ではフレームとの接着性が低下する傾向があり、4.75質量%を超えるとパッケージの成形性が低下する傾向がある。   The total blending amount of the coupling agent is preferably 0.037 to 4.75% by mass, more preferably 0.05 to 5% by mass with respect to the sealing epoxy resin molding material. More preferably, it is 1-2.5 mass%. If it is less than 0.037% by mass, the adhesion to the frame tends to be lowered, and if it exceeds 4.75% by mass, the moldability of the package tends to be lowered.

本発明の封止用エポキシ樹脂成形材料には、さらに難燃性を向上する目的で従来公知のノンハロゲン、ノンアンチモンの難燃剤を必要に応じて配合することができる。たとえば、赤リン、酸化亜鉛等の無機化合物とフェノール樹脂等の熱硬化性樹脂で被覆された赤リン及びリン酸エステル、ホスフィンオキサイド等のリン化合物、メラミン、メラミン誘導体、メラミン変性フェノール樹脂、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体等の窒素含有化合物、シクロホスファゼン等のリン及び窒素含有化合物、水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、酸化亜鉛、錫酸亜鉛、硼酸亜鉛、酸化鉄、酸化モリブデン、モリブデン酸亜鉛、ジシクロペンタジエニル鉄等の金属元素を含む化合物などが挙げられ、これらの1種を単独で用いても2種以上を組合わせて用いてもよい。   In the sealing epoxy resin molding material of the present invention, conventionally known non-halogen and non-antimony flame retardants can be blended as necessary for the purpose of further improving the flame retardancy. For example, red phosphorus coated with inorganic compounds such as red phosphorus and zinc oxide and thermosetting resins such as phenolic resins, phosphorus compounds such as phosphate esters and phosphine oxides, melamine, melamine derivatives, melamine-modified phenolic resins, triazine rings , Nitrogen-containing compounds such as cyanuric acid derivatives and isocyanuric acid derivatives, phosphorus and nitrogen-containing compounds such as cyclophosphazenes, aluminum hydroxide, magnesium hydroxide, composite metal hydroxides, zinc oxide, zinc stannate, zinc borate , Compounds containing metal elements such as iron oxide, molybdenum oxide, zinc molybdate, dicyclopentadienyl iron, and the like. These may be used alone or in combination of two or more. .

なかでも流動性の観点からは、リン酸エステル、ホスフィンオキサイド及びシクロホスファゼンが好ましい。リン酸エステルはリン酸とアルコール化合物又はフェノール化合物のエステル化合物であれば特に制限はないが、例えばトリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート及び芳香族縮合リン酸エステル等が挙げられる。なかでも耐加水分解性の観点からは、下記一般式(XXXXI)で示される芳香族縮合リン酸エステルが好ましい。   Of these, phosphate ester, phosphine oxide and cyclophosphazene are preferable from the viewpoint of fluidity. The phosphate ester is not particularly limited as long as it is an ester compound of phosphoric acid and an alcohol compound or a phenol compound. For example, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, Examples include xylenyl diphenyl phosphate, tris (2,6 dimethylphenyl) phosphate, and aromatic condensed phosphate ester. Among these, from the viewpoint of hydrolysis resistance, an aromatic condensed phosphate represented by the following general formula (XXXXI) is preferable.

Figure 2009249424
Figure 2009249424

上記式(XXXXI)のリン酸エステルを例示すると、下記構造式(XXXXII)〜(XXXXVI)で示されるリン酸エステル等が挙げられる。   Examples of the phosphate ester of the above formula (XXXXI) include phosphate esters represented by the following structural formulas (XXXXII) to (XXXXVI).

Figure 2009249424
Figure 2009249424

これらリン酸エステルの添加量は、充填剤を除く他の全配合成分に対して、燐原子の量で0.2〜3.0重量%の範囲内であることが好ましい。0.2重量%より少ない場合は難燃効果が低くなる傾向がある。3.0重量%を超えた場合は成形性、耐湿性の低下や、成形時にこれらのリン酸エステルがしみ出し、外観を阻害する場合がある。   It is preferable that the addition amount of these phosphate ester exists in the range of 0.2-3.0 weight% in the quantity of a phosphorus atom with respect to all the other compounding components except a filler. When it is less than 0.2% by weight, the flame retardancy tends to be low. If it exceeds 3.0% by weight, the formability and moisture resistance may be deteriorated, and these phosphate esters may ooze out during molding, thereby impairing the appearance.

ホスフィンオキサイドを難燃剤として用いる場合、ホスフィンオキサイドとしては下記一般式(XXXXVII)で示される化合物が好ましい。   When phosphine oxide is used as a flame retardant, the phosphine oxide is preferably a compound represented by the following general formula (XXXXVII).

Figure 2009249424

(ここで、R、R及びRは炭素数1〜10の置換又は非置換のアルキル基、アリール基、アラルキル基及び水素原子を示し、すべて同一でも異なってもよい。ただしすべてが水素原子である場合を除く。)
Figure 2009249424

(Here, R 1 , R 2 and R 3 represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group and a hydrogen atom, which may all be the same or different. Except when it is an atom.)

上記一般式(XXXXVII)で示されるリン化合物の中でも、耐加水分解性の観点からはR〜Rが置換又は非置換のアリール基であることが好ましく、特に好ましくはフェニル基である。 Among the phosphorus compounds represented by the general formula (XXXXVII), from the viewpoint of hydrolysis resistance, R 1 to R 3 are preferably substituted or unsubstituted aryl groups, and particularly preferably phenyl groups.

ホスフィンオキサイドの配合量は封止用エポキシ樹脂成形材料に対してリン原子の量が0.01〜0.2質量%であることが好ましい。より好ましくは0.02〜0.1質量%であり、さらに好ましくは0.03〜0.08質量%である。0.01質量%未満であると難燃性が低下し、0.2質量%を超えると成形性、耐湿性が低下する。   It is preferable that the compounding quantity of a phosphine oxide is 0.01-0.2 mass% of phosphorus atoms with respect to the epoxy resin molding material for sealing. More preferably, it is 0.02-0.1 mass%, More preferably, it is 0.03-0.08 mass%. If it is less than 0.01% by mass, the flame retardancy is lowered, and if it exceeds 0.2% by mass, the moldability and moisture resistance are lowered.

シクロホスファゼンとしては主鎖骨格中に次式(XXXXVIII)及び/又は次式(XXXXIX)を繰り返し単位として含む環状ホスファゼン化合物、あるいはホスファゼン環中の燐原子に対する置換位置が異なる次式(XXXXX)及び/又は次式(XXXXXI)を繰り返し単位として含む化合物等が挙げられる。   Cyclophosphazenes include cyclic phosphazene compounds containing the following formula (XXXXVIII) and / or the following formula (XXXXIX) as repeating units in the main chain skeleton, or the following formulas (XXXX) and / or different substitution positions with respect to phosphorus atoms in the phosphazene ring. Alternatively, a compound containing the following formula (XXXXXX) as a repeating unit can be given.

Figure 2009249424
Figure 2009249424

ここで、式(XXXXVIII)及び式(XXXIX)中のmは1〜10の整数で、R〜Rは置換基を有しても良い炭素数1〜12のアルキル基、アリール基及び水酸基から選ばれ、全て同一でも異なっていても良い。Aは炭素数1〜4のアルキレン基又はアリレン基を示す。式(XXXXX)及び式(XXXXXI)中のnは1〜10の整数で、R〜Rは置換基を有しても良い炭素数1〜12のアルキル基又はアリール基から選ばれ、全て同一でも異なっていても良く、Aは炭素数1〜4のアルキレン基又はアリレン基を示す。また、式中m個のR、R、R、Rはm個全てが同一でも異なっていても良く、n個のR、R、R、Rはn個全てが同一でも異なっていても良い。 Here, m in Formula (XXXVIII) and Formula (XXXIX) is an integer of 1 to 10, and R 1 to R 4 are alkyl groups, aryl groups, and hydroxyl groups having 1 to 12 carbon atoms that may have a substituent. And all may be the same or different. A represents an alkylene group having 1 to 4 carbon atoms or an arylene group. N in Formula (XXXX) and Formula (XXXXXI) is an integer of 1 to 10, and R 5 to R 8 are selected from an alkyl group or aryl group having 1 to 12 carbon atoms that may have a substituent, and all They may be the same or different, and A represents an alkylene group having 1 to 4 carbon atoms or an arylene group. In the formula, m R 1 , R 2 , R 3 and R 4 may all be the same or different, and n R 5 , R 6 , R 7 and R 8 are all n. It may be the same or different.

上記式(XXXXVIII)〜式(XXXXXI)において、R〜Rで示される置換基を有しても良い炭素数1〜12のアルキル基又はアリール基としては特に制限はないが、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等のアルキル基、フェニル基、1−ナフチル基、2−ナフチル基等のアリール基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、o−クメニル基、m−クメニル基、p−クメニル基、メシチル基等のアルキル基置換アリール基、ベンジル基、フェネチル基等のアリール基置換アルキル基などが挙げられ、さらにこれらに置換する置換基としては、アルキル基、アルコキシル基、アリール基、水酸基、アミノ基、エポキシ基、ビニル基、ヒドロキシアルキル基、アルキルアミノ基等が挙げられる。 In the above formulas (XXXXVIII) to (XXXXXI), the alkyl group or aryl group having 1 to 12 carbon atoms which may have a substituent represented by R 1 to R 8 is not particularly limited. Alkyl groups such as ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group and tert-butyl group, aryl groups such as phenyl group, 1-naphthyl group and 2-naphthyl group, o-tolyl Group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, mesityl group, etc. , Aryl groups substituted alkyl groups such as benzyl group and phenethyl group, and the like. Further, substituents substituted on these include alkyl groups, alkoxyl groups, aryl groups A hydroxyl group, an amino group, an epoxy group, a vinyl group, a hydroxyalkyl group, an alkylamino group, and the like.

これらの中で、エポキシ樹脂成形材料の耐熱性、耐湿性の観点からはアリール基が好ましく、より好ましくはフェニル基もしくはヒドロキシフェニル基である。   Among these, from the viewpoint of heat resistance and moisture resistance of the epoxy resin molding material, an aryl group is preferable, and a phenyl group or a hydroxyphenyl group is more preferable.

また、上記式(XXXXVIII)〜式(XXXXXI)中のAで示される炭素数1〜4のアルキレン基又はアリレン基としては特に制限はないが、例えばメチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられ、エポキシ樹脂成形材料の耐熱性、耐湿性の観点からはアリレン基が好ましく、中でもフェニレン基がより好ましい。   Further, the alkylene group or arylene group having 1 to 4 carbon atoms represented by A in the above formulas (XXXXVIII) to (XXXXXI) is not particularly limited, but for example, a methylene group, an ethylene group, a propylene group, an isopropylene group. , Butylene group, isobutylene group, phenylene group, tolylene group, xylylene group, naphthylene group, and the like. From the viewpoint of heat resistance and moisture resistance of the epoxy resin molding material, an arylene group is preferable, and a phenylene group is more preferable.

環状ホスファゼン化合物は、上記式(XXXXVIII)〜式(XXXXXI)のいずれかの重合物、上記式(XXXXVIII)と上記式(XXXXIX)との共重合物、又は上記式(XXXXX)と上記式(XXXXXI)との共重合物であるが、共重合物の場合、ランダム共重合物でも、ブロック共重合物でも、交互共重合物のいずれでも良い。その共重合モル比m/nは特に限定するものではないが、エポキシ樹脂硬化物の耐熱性や強度向上の観点から1/0〜1/4が好ましく、1/0〜1/1.5がより好ましい。また、重合度m+nは1〜20であり、好ましくは2〜8、より好ましくは3〜6である。   The cyclic phosphazene compound is a polymer of any one of the above formulas (XXXXVIII) to (XXXXXI), a copolymer of the above formula (XXXXVIII) and the above formula (XXXIX), or the above formula (XXXX) and the above formula (XXXXXXI). In the case of a copolymer, it may be a random copolymer, a block copolymer or an alternating copolymer. The copolymerization molar ratio m / n is not particularly limited, but is preferably 1/0 to 1/4 from the viewpoint of heat resistance and strength improvement of the cured epoxy resin, and 1/0 to 1 / 1.5. More preferred. Moreover, polymerization degree m + n is 1-20, Preferably it is 2-8, More preferably, it is 3-6.

環状ホスファゼン化合物として好ましいものを例示すると、次式(XXXXXII)の重合物、次式(XXXXXIII)の共重合物等が挙げられる。   Preferred examples of the cyclic phosphazene compound include a polymer of the following formula (XXXXII) and a copolymer of the following formula (XXXXIII).

Figure 2009249424
(ここで、式(XXXXXII)中のmは、0〜9の整数で、R〜Rはそれぞれ独立に水素又は水酸基を示す。)
Figure 2009249424
(Here, m in the formula (XXXXII) is an integer of 0 to 9, and R 1 to R 4 each independently represent hydrogen or a hydroxyl group.)

Figure 2009249424
Figure 2009249424

ここで、上記式(XXXXXIII)中のm、nは、0〜9の整数で、R〜Rはそれぞれ独立に水素または水酸基から選ばれ、R〜Rはそれぞれ独立に水素または水酸基から選ばれる。また、上記式(XXXXXIII)で示される環状ホスファゼン化合物は、次に示すm個の繰り返し単位(a)とn個の繰り返し単位(b)を交互に含むもの、ブロック状に含むもの、ランダムに含むもののいずれであってもかまわないが、ランダムに含むものが好ましい。 Here, m and n in the above formula (XXXXIII) are integers of 0 to 9, R 1 to R 4 are each independently selected from hydrogen or a hydroxyl group, and R 5 to R 8 are each independently hydrogen or a hydroxyl group. Chosen from. In addition, the cyclic phosphazene compound represented by the above formula (XXXXIII) includes the following m repeating units (a) and n repeating units (b) alternately, in a block form, or randomly. Any of these may be used, but those randomly included are preferred.

Figure 2009249424
Figure 2009249424

中でも、上記式(XXXXXII)でmが3〜6の重合体を主成分とするものや、上記式(XXXXXIIIでR〜Rが全て水素又は1つが水酸基であり、m/nが1/2〜1/3で、m+nが3〜6の共重合体を主成分とするものが好ましい。また、市販のホスファゼン化合物としては、SPE−100(大塚化学製商品名)が入手可能である。 Among them, a polymer having m of 3 to 6 as the main component in the above formula (XXXXII), or R 5 to R 8 are all hydrogen or one of the hydroxyl groups in the above formula (XXXXIII), and m / n is 1 / The main component is preferably a copolymer having 2 to 1/3 and m + n of 3 to 6. As a commercially available phosphazene compound, SPE-100 (trade name, manufactured by Otsuka Chemical) is available.

複合金属水酸化物を難燃剤として用いる場合、複合金属水酸化物は下記組成式(XXXXXIV)で示される化合物が好ましい。
p(MaOb)・q(McOd)・r(MeOf)・mHO (XXXXXIV)
(ここで、M、M及びMは互いに異なる金属元素を示し、a、b、c、d、e、f、p、q及びmは正の数、rは0又は正の数を示す。)
When using a composite metal hydroxide as a flame retardant, the composite metal hydroxide is preferably a compound represented by the following composition formula (XXXXIV).
p (M 1 aOb) · q (M 2 cOd) · r (M 3 eOf) · mH 2 O (XXXXIV)
(Here, M 1 , M 2 and M 3 represent different metal elements, a, b, c, d, e, f, p, q and m are positive numbers, and r is 0 or a positive number. Show.)

なかでも、上記組成式(XXXXXIV)中のrが0である化合物、すなわち、下記組成式(XXXXXV)で示される化合物がさらに好ましい。
p(MaOb)・q(McOd)・lHO・・・(XXXXXV)
(ここで、M及びMは互いに異なる金属元素を示し、a、b、c、d、m、n及びlは正の数を示す。)
Especially, the compound whose r in the said compositional formula (XXXXIV) is 0, ie, the compound shown by the following compositional formula (XXXXV), is further more preferable.
p (M 1 aOb) · q (M 2 cOd) · lH 2 O (XXXXXXXV)
(Here, M 1 and M 2 represent different metal elements, and a, b, c, d, m, n, and l represent positive numbers.)

上記組成式(XXXXXIV)及び(XXXXXV)中のM、M及びMは互いに異なる金属元素であれば特に制限はないが、難燃性の観点からは、MとMが同一とならないようにMが第3周期の金属元素、IIA族のアルカリ土類金属元素、IVB族、IIB族、VIII族、IB族、IIIA族及びIVA族に属する金属元素から選ばれ、MがIIIB〜IIB族の遷移金属元素から選ばれることが好ましく、Mがマグネシウム、カルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅及び亜鉛から選ばれ、Mが鉄、コバルト、ニッケル、銅及び亜鉛から選ばれることがより好ましい。流動性の観点からは、Mがマグネシウム、Mが亜鉛又はニッケルであることが好ましく、MがマグネシウムでMが亜鉛であることがより好ましい。 M 1 , M 2 and M 3 in the above composition formulas (XXXXIV) and (XXXXV) are not particularly limited as long as they are different metal elements, but from the viewpoint of flame retardancy, M 1 and M 2 are the same. M 1 is selected from metal elements belonging to the third period metal element, Group IIA alkaline earth metal element, Group IVB, Group IIB, Group VIII, Group IB, Group IIIA and Group IVA, and M 2 Preferably, the transition metal element is selected from Group IIIB to IIB, M 1 is selected from magnesium, calcium, aluminum, tin, titanium, iron, cobalt, nickel, copper and zinc, and M 2 is iron, cobalt, nickel, More preferably, it is selected from copper and zinc. From the viewpoint of fluidity, M 1 is preferably magnesium and M 2 is preferably zinc or nickel, more preferably M 1 is magnesium and M 2 is zinc.

上記組成式(XXXXXIV)中のp、q、rのモル比は本発明の効果が得られれば特に制限はないが、r=0で、p及びqのモル比p/qが99/1〜50/50であることが好ましい。すなわち、上記組成式(XXXXXV)中のm及びnのモル比m/nが99/1〜50/50であることが好ましい。   The molar ratio of p, q, and r in the composition formula (XXXXIV) is not particularly limited as long as the effects of the present invention can be obtained, but r = 0, and the molar ratio p / q of p and q is 99/1 to Preferably it is 50/50. That is, the molar ratio m / n of m and n in the composition formula (XXXXV) is preferably 99/1 to 50/50.

市販品としては、例えば、上記組成式(XXXXXV)のMがマグネシウム、Mが亜鉛で、mが7、nが3、lが10で、a、b、c及びdが1である水酸化マグネシウム・水酸化亜鉛固溶体複合金属水酸化物(タテホ化学工業株式会社製商品名エコーマグZ−10)を使用できる。なお、金属元素とは半金属元素といわれるものも含めるものとし、非金属元素を除く全ての元素をさす。 Examples of commercially available products include water in which M 1 in the above composition formula (XXXXV) is magnesium, M 2 is zinc, m is 7, n is 3, l is 10, and a, b, c, and d are 1. Magnesium oxide / zinc hydroxide solid solution composite metal hydroxide (trade name Echo Mug Z-10, manufactured by Tateho Chemical Co., Ltd.) can be used. In addition, what is called a metalloid element also includes what is called a metal element, and refers to all elements except a nonmetallic element.

なお、金属元素の分類は、典型元素をA亜族、遷移元素をB亜族とする長周期型の周期率表(出典:共立出版株式会社発行「化学大辞典4」1987年2月15日縮刷版第30刷)に基づいて行った。   In addition, the classification of metal elements is a long-period type periodic rate table in which the typical element is the A subgroup and the transition element is the B subgroup (Source: Kyoritsu Shuppan Co., Ltd., “Chemical Dictionary 4”, February 15, 1987) (Reduced plate 30th printing).

複合金属水酸化物の形状は特に制限はないが、流動性、充填性の観点からは、平板状より、適度の厚みを有する多面体形状が好ましい。複合金属水酸化物は、金属水酸化物と比較して多面体状の結晶が得られやすい。   The shape of the composite metal hydroxide is not particularly limited, but from the viewpoint of fluidity and filling properties, a polyhedral shape having an appropriate thickness is preferable to a flat plate shape. Compared to metal hydroxides, complex metal hydroxides tend to give polyhedral crystals.

複合金属水酸化物の配合量は特に制限はないが、封止用エポキシ樹脂成形材料に対して0.5〜20質量%が好ましく、0.7〜15質量%がより好ましく、1.4〜12質量%がさらに好ましい。0.5質量%未満では難燃性が不十分となる傾向があり、20質量%を超えると流動性及び耐リフロー性が低下する傾向がある。   Although there is no restriction | limiting in particular in the compounding quantity of a composite metal hydroxide, 0.5-20 mass% is preferable with respect to the epoxy resin molding material for sealing, 0.7-15 mass% is more preferable, 1.4- 12 mass% is more preferable. If it is less than 0.5% by mass, the flame retardancy tends to be insufficient, and if it exceeds 20% by mass, the fluidity and reflow resistance tend to be lowered.

トリアジン環を有する化合物としては、フェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物を共縮重合させたものが、難燃性、銅フレームとの接着性の観点から好ましい。フェノール性水酸基を有する化合物としては、フェノール、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール類、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等の多価フェノール類、フェニルフェノール、アミノフェノール、又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類あるいはこれらのフェノール性水酸基を有する化合物とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂等がある。中でも、成形性の観点からはフェノール、クレゾール、あるいはこれらとホルムアルデヒドとの共縮重合物が好ましい。また、トリアジン誘導体としては分子中にトリアジン核を有するものであれば特に限定はなく、メラミン、ベンゾグアナミン、アセトグアナミン等のグアナミン誘導体、シアヌル酸、メチルシアヌレート等のシアヌル酸誘導体が挙げられ、1種類のみまたは2種類以上の併用も可能である。中でも、成形性、信頼性の観点からはメラミン、ベンゾグアナミン等のグアナミン誘導体が好ましい。また、アルデヒド基を有する化合物としては、例えば、ホルマリン、パラホルムアルデヒド等が挙げられる。   As the compound having a triazine ring, a compound obtained by co-condensation polymerization of a compound having a phenolic hydroxyl group, a triazine derivative and a compound having an aldehyde group is preferable from the viewpoint of flame retardancy and adhesiveness to a copper frame. Examples of the compound having a phenolic hydroxyl group include alkylphenols such as phenol, cresol, xylenol, ethylphenol, butylphenol, nonylphenol, octylphenol, polyphenols such as resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, phenylphenol, It is obtained by condensation or cocondensation of aminophenol, naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene or the like, or a compound having these phenolic hydroxyl groups and a compound having an aldehyde group such as formaldehyde under an acidic catalyst. There are resins. Of these, phenol, cresol, or a copolycondensation product of these with formaldehyde is preferable from the viewpoint of moldability. The triazine derivative is not particularly limited as long as it has a triazine nucleus in the molecule, and examples thereof include guanamine derivatives such as melamine, benzoguanamine and acetoguanamine, and cyanuric acid derivatives such as cyanuric acid and methyl cyanurate. Only two or more types can be used in combination. Of these, guanamine derivatives such as melamine and benzoguanamine are preferable from the viewpoints of moldability and reliability. Examples of the compound having an aldehyde group include formalin and paraformaldehyde.

フェノール性水酸基を有する化合物に対するアルデヒド基を有する化合物の配合量は、モル比(アルデヒド基を有する化合物(モル)/フェノール性水酸基を有する化合物(モル))で0.05〜0.9になるようにすることが好ましく、0.1〜0.8とするのがより好ましい。0.05未満ではフェノール性水酸基に対するアルデヒド基を有する化合物の反応が起こりにくく、未反応フェノールが残りやすく、生産性が悪く、0.9を超えると合成中ゲル化しやすくなる。   The compounding amount of the compound having an aldehyde group with respect to the compound having a phenolic hydroxyl group is 0.05 to 0.9 in a molar ratio (compound having an aldehyde group (mol) / compound having a phenolic hydroxyl group (mol)). It is preferable to set it to 0.1 to 0.8. If it is less than 0.05, the reaction of the compound having an aldehyde group with respect to the phenolic hydroxyl group hardly occurs, unreacted phenol tends to remain, the productivity is poor, and if it exceeds 0.9, gelation tends to occur during synthesis.

フェノール性水酸基を有する化合物に対するトリアジン誘導体の配合量は1〜30重量%とするのが好ましく、さらには5〜20重量%とするのがより好ましい。1重量%未満では難燃性に乏しく、30重量%を超えると軟化点が高くなり、組成物作製時の混練性が低下する。トリアジン誘導体に対するアルデヒド基を有する化合物の配合量(モル比)は特に制限はない。   The blending amount of the triazine derivative with respect to the compound having a phenolic hydroxyl group is preferably 1 to 30% by weight, and more preferably 5 to 20% by weight. If it is less than 1% by weight, the flame retardancy is poor, and if it exceeds 30% by weight, the softening point becomes high and the kneadability at the time of preparing the composition is lowered. The compounding amount (molar ratio) of the compound having an aldehyde group with respect to the triazine derivative is not particularly limited.

フェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物の合成時の反応温度は特に制限はないが、60〜120℃で行うのが好ましい。また反応のpHは3〜9が好ましく、4〜8がさらに好ましい。pHが3未満では合成中に樹脂がゲル化し易く、9より高いとフェノール樹脂とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合が起こりにくくなり、製造した樹脂の窒素含有量が低くなる。   The reaction temperature at the time of synthesizing a copolycondensation product of a compound having a phenolic hydroxyl group, a triazine derivative and a compound having an aldehyde group is not particularly limited, but is preferably 60 to 120 ° C. Moreover, 3-9 are preferable and, as for pH of reaction, 4-8 are more preferable. If the pH is less than 3, the resin tends to gel during synthesis, and if it is higher than 9, copolycondensation of the phenol resin, triazine derivative and compound having an aldehyde group hardly occurs, and the produced resin has a low nitrogen content.

必要に応じてフェノール性水酸基を有する化合物にアルデヒド基を有する化合物、トリアジン誘導体を反応させた後、常圧または減圧下での加熱蒸留等で、未反応のフェノール化合物及びアルデヒド基を有する化合物等を除去することができる。この時未反応フェノール化合物の残存量が3%以下であることが好ましい。3%を超える場合は成形性が低下しがちである。   If necessary, after reacting a compound having a phenolic hydroxyl group with a compound having an aldehyde group, a triazine derivative, heating distillation under normal pressure or reduced pressure, etc., an unreacted phenol compound and a compound having an aldehyde group, etc. Can be removed. At this time, the residual amount of the unreacted phenol compound is preferably 3% or less. If it exceeds 3%, the moldability tends to decrease.

また得られた共縮重合物の軟化点は40〜150℃であることが好ましい。40℃未満であるとブロッキングしやすく、150℃を超える場合は組成物の混練性が低下する。このフェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物を例示するならば、下記構造式(XXXXXVI)〜(XXXXXXI)のものが挙げられる。   Moreover, it is preferable that the softening point of the obtained copolycondensation product is 40-150 degreeC. When it is less than 40 ° C., blocking is easy, and when it exceeds 150 ° C., the kneadability of the composition is lowered. Examples of copolycondensation products of the compound having a phenolic hydroxyl group, a triazine derivative and a compound having an aldehyde group include those represented by the following structural formulas (XXXXVI) to (XXXXXXXI).

Figure 2009249424
Figure 2009249424

フェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物の数平均分子量は500〜1000であることが好ましく、550〜800がさらに好ましい。500未満であると成形性、耐リフロークラック性が低下し、1000を超える場合は流動性が低下しがちである。また重量平均分子量は1500〜10000であることが好ましく、1700〜7000がさらに好ましい。1500未満であると耐リフロークラック性が低下し、10000を超える場合は流動性が低下しがちである。さらに、このフェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物の分子量分布Mw/Mnは2.0〜10.0であることが好ましく、3.0〜6.0がさらに好ましい。2.0未満であると耐リフロークラック性が低下し、10.0を超える場合は流動性が低下しがちである。   The number average molecular weight of the copolycondensation product of a compound having a phenolic hydroxyl group, a triazine derivative and a compound having an aldehyde group is preferably 500 to 1,000, and more preferably 550 to 800. If it is less than 500, moldability and reflow crack resistance are lowered, and if it exceeds 1000, fluidity tends to be lowered. The weight average molecular weight is preferably 1500 to 10,000, and more preferably 1700 to 7000. When it is less than 1500, the reflow crack resistance is lowered, and when it exceeds 10,000, the fluidity tends to be lowered. Furthermore, the molecular weight distribution Mw / Mn of the copolycondensation product of the compound having a phenolic hydroxyl group, the triazine derivative and the compound having an aldehyde group is preferably 2.0 to 10.0, and preferably 3.0 to 6. 0 is more preferable. When it is less than 2.0, the reflow crack resistance is lowered, and when it exceeds 10.0, the fluidity tends to be lowered.

上記共縮重合物の中でもフェノール樹脂とトリアジン誘導体とアルデヒド基を有する化合物との共重縮合物であることが、耐リフロー性の観点からより好ましい。ここで用いられるフェノール樹脂としては組成物で一般に使用されているもので特に限定はなく、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール類、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等の多価フェノール類、α−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類又はフェニルフェノール、アミノフェノール等のフェノール誘導体とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂等がある。中でも、成形性の観点からはフェノールとホルムアルデヒドとの重縮合物であるフェノール・ノボラック樹脂が好ましい。   Among the copolycondensation products, a copolycondensation product of a phenol resin, a triazine derivative and a compound having an aldehyde group is more preferable from the viewpoint of reflow resistance. The phenol resin used here is not particularly limited as it is generally used in the composition, for example, phenol, cresol, xylenol, ethylphenol, butylphenol, nonylphenol, alkylphenols such as octylphenol, resorcin, catechol, bisphenol A. Acid catalysts for polyhydric phenols such as bisphenol F and bisphenol S, naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene or phenol derivatives such as phenylphenol and aminophenol and compounds having an aldehyde group such as formaldehyde There are resins obtained by condensation or cocondensation below. Among these, from the viewpoint of moldability, a phenol novolak resin which is a polycondensate of phenol and formaldehyde is preferable.

フェノール樹脂は上記に列挙したようなものであれば、特にその合成方法は限定するものではないが、下記に示す方法により合成したものを用いた場合、その分子量、分子量分布を本発明で記載する好ましい範囲のものとして合成可能であるという点で、好適である。すなわち、フェノール樹脂を合成する際、フェノール誘導体とアルデヒド基を有する化合物の使用割合は、フェノール誘導体1モルに対してアルデヒド基を有する化合物が0.01〜2.0モルとすることが好ましく、0.05〜1.0モルとすることがより好ましい。0.01モル未満では、反応が不十分となり、分子量が上がらず、成形性、耐熱性、耐水性、難燃性、強度等が低下する傾向があり、2.0モルを超えると、分子量が大きくなりすぎて、混練性が低下する傾向がある。   The synthesis method of the phenol resin is not particularly limited as long as it is enumerated above, but when it is synthesized by the method shown below, its molecular weight and molecular weight distribution are described in the present invention. It is preferable in that it can be synthesized as a preferred range. That is, when synthesizing a phenol resin, the proportion of the compound having a phenol derivative and an aldehyde group is preferably 0.01 to 2.0 mol of the compound having an aldehyde group with respect to 1 mol of the phenol derivative. It is more preferable to set it as 0.05-1.0 mol. If the amount is less than 0.01 mol, the reaction becomes insufficient, the molecular weight does not increase, and the moldability, heat resistance, water resistance, flame retardancy, strength, etc. tend to decrease. It tends to be too large and the kneadability tends to decrease.

この反応温度は、80〜220℃とすることが好ましく、100〜180℃とすることがより好ましい。80℃未満では、反応性が不充分となり、分子量が小さく、成形性が低下する傾向があり、250℃を越えるとフェノール樹脂を合成する際に、生産設備的に不利となる傾向がある。反応時間は、1〜30時間程度とするのが好ましい。   This reaction temperature is preferably 80 to 220 ° C, more preferably 100 to 180 ° C. If the temperature is less than 80 ° C., the reactivity becomes insufficient, the molecular weight tends to be small, and the moldability tends to decrease. If the temperature exceeds 250 ° C., the production equipment tends to be disadvantageous when the phenol resin is synthesized. The reaction time is preferably about 1 to 30 hours.

また、必要に応じてトリメチルアミン、トリエチルアミン等のアミン系触媒、p−トルエンスルホン酸、蓚酸等の酸触媒、水酸化ナトリウム、アンモニア等のアルカリ触媒などを、フェノール誘導体1モルに対して、0.00001〜0.01モル程度使用してもよい。また、反応系のpHは、1〜10程度とするのが好ましい。   If necessary, an amine catalyst such as trimethylamine or triethylamine, an acid catalyst such as p-toluenesulfonic acid or oxalic acid, an alkali catalyst such as sodium hydroxide or ammonia, etc. may be added to 0.00001 with respect to 1 mol of the phenol derivative. About 0.01 mol may be used. The pH of the reaction system is preferably about 1 to 10.

このようにして、フェノール誘導体及びアルデヒド基を有する化合物を反応させた後、必要に応じて、未反応のフェノール誘導体、アルデヒド基を有する化合物、水等を加熱減圧下に除去することができるが、その条件は、一般的に、温度が80〜220℃、望ましくは100〜180℃、圧力が100mmHg以下、望ましくは60mmHg以下、時間が0.5〜10時間とすることが好ましい。   In this way, after reacting the phenol derivative and the compound having an aldehyde group, if necessary, the unreacted phenol derivative, the compound having an aldehyde group, water and the like can be removed under heating and reduced pressure. Generally, it is preferable that the temperature is 80 to 220 ° C., desirably 100 to 180 ° C., the pressure is 100 mmHg or less, desirably 60 mmHg or less, and the time is 0.5 to 10 hours.

フェノール樹脂に、トリアジン誘導体及びアルデヒド基を有する化合物を添加し、反応させる際のトリアジン誘導体及びアルデヒド基を有する化合物の使用割合は、フェノール誘導体とアルデヒド基を有する化合物との重縮合物(フェノール樹脂)(未反応のフェノール誘導体、アルデヒド基を有する化合物、水等を加熱減圧下に除去したもの、あるいは前記除去を行っていないもの(この場合は、未反応フェノールも重縮合物の重量に含むこととする))100g対して、トリアジン誘導体を3〜50gとすることが好ましく、4〜30gとすることがより好ましい。また、アルデヒド基を有する化合物は、重縮合物(フェノール樹脂)100g対して、5〜100gとすることが好ましく、6〜50gとすることがより好ましい。トリアジン誘導体(b)及びアルデヒド基を有する化合物を上記のような範囲とすることで、最終的に得られる重縮合物の分子量分布、窒素含有量を所望の範囲に容易に調整することができる。   The proportion of the triazine derivative and the compound having an aldehyde group used in the reaction by adding a triazine derivative and a compound having an aldehyde group to the phenol resin is the polycondensate of the phenol derivative and the compound having an aldehyde group (phenol resin). (Unreacted phenol derivative, compound having an aldehyde group, water removed under heating or reduced pressure, or not removed (in this case, unreacted phenol is included in the weight of the polycondensate) 3) The triazine derivative is preferably 3 to 50 g and more preferably 4 to 30 g with respect to 100 g. Moreover, it is preferable to set it as 5-100g with respect to 100g of polycondensates (phenol resin), and, as for the compound which has an aldehyde group, it is more preferable to set it as 6-50g. By setting the triazine derivative (b) and the compound having an aldehyde group in the above ranges, the molecular weight distribution and nitrogen content of the finally obtained polycondensate can be easily adjusted to a desired range.

反応温度は、50〜250℃とすることが好ましく、80〜170℃とすることがより好ましい。50℃未満では、反応が不充分となり、分子量が上がらず、成形性、耐熱性、耐水性、難燃性、強度等が低下する傾向があり、250℃を越えると合成する際に、生産設備的に不利となる傾向がある。反応時間は、1〜30時間程度とするのが好ましい。   The reaction temperature is preferably 50 to 250 ° C, more preferably 80 to 170 ° C. If the temperature is lower than 50 ° C, the reaction becomes insufficient, the molecular weight does not increase, and the moldability, heat resistance, water resistance, flame retardancy, strength, etc. tend to decrease. Tend to be disadvantageous. The reaction time is preferably about 1 to 30 hours.

また、必要に応じてトリメチルアミン、トリエチルアミン等のアミン系触媒、蓚酸等の酸触媒を、フェノール誘導体1モルに対して、0.00001〜0.01モル程度使用してもよい。   Moreover, you may use about 0.00001-0.01 mol of amine catalysts, such as a trimethylamine and a triethylamine, and acid catalysts, such as an oxalic acid, with respect to 1 mol of phenol derivatives as needed.

また、反応系のpHは、1〜10程度とするのが好ましい。フェノール誘導体とアルデヒド基を有する化合物との重縮合物(フェノール樹脂)と、トリアジン誘導体及びアルデヒド基を有する化合物との反応の後、未反応のフェノール誘導体、アルデヒド基を有する化合物、水等を加熱減圧下に除去することができるが、その条件は、温度が80〜180℃、圧力が100mmHg以下、望ましくは60mmHg以下、時間が0.5〜10時間とすることが好ましい。合成に用いるトリアジン誘導体としては分子中にトリアジン核を有する化合物であれば特に限定はなく、メラミン、ベンゾグアナミン、アセトグアナミン等のグアナミン誘導体、シアヌル酸、メチルシアヌレート等のシアヌル酸誘導体等が挙げられ、1種類のみまたは2種類以上の併用も可能である。中でも、成形性、信頼性の観点からはメラミン、ベンゾグアナミン等のグアナミン誘導体が好ましい。また、アルデヒド基を有する化合物(c)としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド等が挙げられる。   The pH of the reaction system is preferably about 1 to 10. After reaction of a polycondensate (phenol resin) of a phenol derivative and a compound having an aldehyde group with a triazine derivative and a compound having an aldehyde group, the unreacted phenol derivative, the compound having an aldehyde group, water, etc. are heated under reduced pressure. The conditions are preferably that the temperature is 80 to 180 ° C., the pressure is 100 mmHg or less, desirably 60 mmHg or less, and the time is 0.5 to 10 hours. The triazine derivative used for the synthesis is not particularly limited as long as it is a compound having a triazine nucleus in the molecule, and examples thereof include guanamine derivatives such as melamine, benzoguanamine and acetoguanamine, cyanuric acid derivatives such as cyanuric acid and methyl cyanurate, Only one type or a combination of two or more types is possible. Of these, guanamine derivatives such as melamine and benzoguanamine are preferable from the viewpoints of moldability and reliability. Moreover, as a compound (c) which has an aldehyde group, formaldehyde, formalin, paraformaldehyde, etc. are mentioned, for example.

また本発明では反り低減の観点からケイ素含有重合物を含有してもよい。ケイ素含有重合物としては下記の結合(c)及び(d)を有し、末端がR、水酸基及びアルコキシ基から選ばれた官能基であり、エポキシ当量が500〜4000であれば特に制限はないが、このような重合物として例えば分岐状ポリシロキサンなどが挙げられる。 Moreover, in this invention, you may contain a silicon containing polymer from a viewpoint of curvature reduction. The silicon-containing polymer has the following bonds (c) and (d), the terminal is a functional group selected from R 1 , a hydroxyl group and an alkoxy group, and the epoxy equivalent is 500 to 4000. There is no such polymer, but examples include branched polysiloxane.

Figure 2009249424

(ここで、Rは炭素数1〜12の置換または非置換の1価の炭化水素基から選ばれ、ケイ素含有重合物中の全Rはすべてが同一でも異なっていてもよい。Xはエポキシ基を含む1価の有機基を示す。)
Figure 2009249424

(Here, R 1 is selected from substituted or unsubstituted monovalent hydrocarbon groups having 1 to 12 carbon atoms, and all R 1 in the silicon-containing polymer may be the same or different. X is Indicates a monovalent organic group containing an epoxy group.)

上記一般式(c)及び(d)中のRとしてはメチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基等のアルキル基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられ、なかでもメチル基又はフェニル基が好ましい。 R 1 in the general formulas (c) and (d) is a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, or an octyl group. , Alkyl groups such as 2-ethylhexyl group, alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, phenyl group, tolyl group, xylyl group, naphthyl group, biphenyl group, benzyl group And an aralkyl group such as a phenethyl group. Among them, a methyl group or a phenyl group is preferable.

また、上記一般式(c)中のXとしては2,3−エポキシプロピル基、3,4−エポキシブチル基、4,5−エポキシペンチル基、2−グリシドキシエチル基、3−グリシドキシプロピル基、4−グリシドキシブチル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基等が挙げられ、中でも3−グリシドキシプロピル基が好ましい。   X in the general formula (c) is 2,3-epoxypropyl group, 3,4-epoxybutyl group, 4,5-epoxypentyl group, 2-glycidoxyethyl group, 3-glycidoxy Propyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group and the like, among which 3-glycidoxypropyl group is mentioned. preferable.

また、ケイ素含有重合物の末端は重合物の保存安定性の点から前述のR、水酸基及びアルコキシ基のいずれかである必要がある。この場合のアルコキシ基としては、メトキシ基、エトキシ基、プロプキシ基、ブトキシ基が挙げられる。さらに、ケイ素含有重合物のエポキシ当量は、500〜4000の範囲であることが好ましく、より好ましくは1000〜2500である。500より小さいと封止用エポキシ樹脂成形材料の流動性が低下する傾向にあり、4000より大きいと硬化物表面に染み出しやすく、成形不良を起こし易い傾向にある。ケイ素含有重合物はさらに下記の結合(e)を有することが得られる封止用エポキシ樹脂成形材料の流動性と低反り性の両立の観点から好ましい。 Further, the terminal of the silicon-containing polymer needs to be any one of the aforementioned R 1 , hydroxyl group and alkoxy group from the viewpoint of storage stability of the polymer. In this case, examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. Furthermore, the epoxy equivalent of the silicon-containing polymer is preferably in the range of 500 to 4000, more preferably 1000 to 2500. If it is less than 500, the fluidity of the epoxy resin molding material for sealing tends to decrease, and if it is more than 4000, it tends to ooze out on the surface of the cured product and tends to cause molding defects. The silicon-containing polymer is further preferable from the viewpoint of coexistence of fluidity and low warpage of the sealing epoxy resin molding material obtained to have the following bond (e).

Figure 2009249424

(ここで、Rはケイ素含有重合物中の全Rに対して炭素数1〜12の置換又は非置換の1価の炭化水素基から選ばれ、ケイ素含有重合物中の全Rはすべてが同一でも異なっていてもよい。)
Figure 2009249424

(Here, R 1 is selected from substituted or unsubstituted monovalent hydrocarbon groups having 1 to 12 carbon atoms with respect to all R 1 in the silicon-containing polymer, and all R 1 in the silicon-containing polymer is All may be the same or different.)

上記一般式(e)中のRとしてはメチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基等のアルキル基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられ、なかでもメチル基またはフェニル基が好ましい。 R 1 in the general formula (e) is methyl, ethyl, propyl, butyl, isopropyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl. Alkyl groups such as vinyl groups, vinyl groups, allyl groups, butenyl groups, pentenyl groups, hexenyl groups and other alkenyl groups, phenyl groups, tolyl groups, xylyl groups, naphthyl groups, biphenyl groups and other aryl groups, benzyl groups, phenethyl groups, etc. And a methyl group or a phenyl group is preferable.

このようなケイ素含有重合物の軟化点は40℃〜120℃に設定されることが好ましく、50℃〜100℃に設定されることがより好ましい。40℃より低いと得られる封止用エポキシ樹脂成形材料の硬化物の機械強度が低下する傾向にあり、120℃より高いと封止用エポキシ樹脂成形材料中へのケイ素含有重合物の分散性が低下する傾向にある。ケイ素含有重合物の軟化点を調整する方法としては、ケイ素含有重合物の分子量、構成結合単位(例えば(c)〜(e)含有比率等)、ケイ素原子に結合する有機基の種類を設定することで可能であるが、特に封止用エポキシ樹脂成形材料へのケイ素含有重合物の分散性及び得られる封止用エポキシ樹脂成形材料の流動性の観点からケイ素含有重合物中のアリール基の含有量を設定して軟化点を調整することが好ましい。この場合のアリール基とは、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等が挙げられ、フェニル基がより好ましい。ケイ素含有重合物中のケイ素原子に結合した一価の有機基中のフェニル基の含有量を、好ましくは60モル%〜99モル%、より好ましくは70モル%〜85モル%に設定することで所望の軟化点を有するケイ素含有重合物を得ることができる。   The softening point of such a silicon-containing polymer is preferably set to 40 ° C to 120 ° C, and more preferably set to 50 ° C to 100 ° C. When the temperature is lower than 40 ° C., the mechanical strength of the cured epoxy resin molding material obtained tends to decrease. When the temperature is higher than 120 ° C., the dispersibility of the silicon-containing polymer in the sealing epoxy resin molding material is low. It tends to decrease. As a method for adjusting the softening point of the silicon-containing polymer, the molecular weight of the silicon-containing polymer, the constituent bond units (for example, (c) to (e) content ratio, etc.), and the type of organic group bonded to the silicon atom are set. In view of the dispersibility of the silicon-containing polymer in the epoxy resin molding material for sealing and the fluidity of the resulting epoxy resin molding material for sealing, the inclusion of aryl groups in the silicon-containing polymer It is preferable to adjust the softening point by setting the amount. Examples of the aryl group in this case include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenyl group, and a phenyl group is more preferable. By setting the content of the phenyl group in the monovalent organic group bonded to the silicon atom in the silicon-containing polymer, preferably 60 mol% to 99 mol%, more preferably 70 mol% to 85 mol%. A silicon-containing polymer having a desired softening point can be obtained.

ケイ素含有重合物の重量平均分子量(Mw)は、ゲルパーミュエーションクロマトグラフィー(GPC)で測定し標準ポリスチレン検量線を用いて換算した値で、好ましくは1000〜30000、より好ましくは2000〜20000、さらに好ましくは3000〜10000である。また。ケイ素含有重合物は、ランダム共重合体であることが好ましい。   The weight average molecular weight (Mw) of the silicon-containing polymer is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve, preferably 1000 to 30000, more preferably 2000 to 20000, More preferably, it is 3000-10000. Also. The silicon-containing polymer is preferably a random copolymer.

このようなケイ素含有重合物は以下に示す製造方法により得ることができるが、市販品としては東レ・ダウコーニング・シリコーン株式会社製商品名AY42−119として入手可能である。   Such a silicon-containing polymer can be obtained by the production method shown below, but a commercially available product is available under the trade name AY42-119 manufactured by Toray Dow Corning Silicone Co., Ltd.

ケイ素含有重合物の製造方法は、特に制限なく公知の方法で製造することができる。例えば、加水分解縮合反応により上記(c)〜(e)単位を形成し得るオルガノクロロシラン、オルガノアルコキシシラン、シロキサン、あるいはそれらの部分加水分解縮合物を原料及び反応生成物を溶解可能な有機溶剤と原料のすべての加水分解性基を加水分解可能な量の水との混合溶液中に混合し、加水分解縮合反応させて得ることができる。この際、封止用エポキシ樹脂成形材料中に不純物として含有される塩素量を低減させるためにオルガノアルコキシシラン及び/またはシロキサンを原料とすることが好ましい。この場合、反応を促進する触媒として、酸、塩基、有機金属化合物を添加することが好ましい。   The production method of the silicon-containing polymer can be produced by a known method without any particular limitation. For example, organochlorosilane, organoalkoxysilane, siloxane, or their partial hydrolysis-condensation products that can form the above units (c) to (e) by a hydrolysis-condensation reaction, and an organic solvent capable of dissolving raw materials and reaction products It can be obtained by mixing all the hydrolyzable groups of the raw material in a mixed solution with a hydrolyzable amount of water and subjecting it to a hydrolytic condensation reaction. At this time, in order to reduce the amount of chlorine contained as an impurity in the sealing epoxy resin molding material, it is preferable to use organoalkoxysilane and / or siloxane as a raw material. In this case, it is preferable to add an acid, a base, or an organometallic compound as a catalyst for promoting the reaction.

(A)ケイ素含有重合物の原料となるオルガノアルコキシシラン及び/またはシロキサンとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトエトキシシラン、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、フェニルビニルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルビニルジエトキシシラン、フェニルビニルジエトキシシラン、ジフェニルジエトキシシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、ジメトキシジエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、3−グリシドキシプロピル(メチル)ジエトキシシラン、3−グリシドキシプロピル(フェニル)ジメトキシシラン、3−グリシドキシプロピル(フェニル)ジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(メチル)ジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(メチル)ジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(フェニル)ジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(フェニル)ジエトキシシラン、およびこれらの加水分解縮合物等が挙げられる。   (A) The organoalkoxysilane and / or siloxane used as the raw material for the silicon-containing polymer are methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane. , Phenyltrimethoxysilane, phenyltoethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, phenylvinyldimethoxysilane, diphenyldimethoxysilane, methylphenyldiethoxysilane, methylvinyldiethoxysilane, phenylvinyldiethoxy Silane, diphenyldiethoxysilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, dimethoxydiethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyl (methyl) dimethoxysilane, 3-glycidoxypropyl (methyl) diethoxysilane, 3-glycidoxy Propyl (phenyl) dimethoxysilane, 3-glycidoxypropyl (phenyl) diethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyl) dimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyl) ) Diethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (phenyl) dimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (phenyl) diethoxysilane, and their hydrolysis condensates. It is done.

ケイ素含有重合物の含有量は封止用エポキシ樹脂成形材料全体の0.2重量%〜1.5重量%が好ましく、0.3重量%〜1.3重量%がさらに好ましい。0.2重量%より少ないと(A)ケイ素含有重合物の添加効果が見られず、1.5重量%より多いと得られる封止用エポキシ樹脂成形材料の熱時硬度が低下する傾向にある。   The content of the silicon-containing polymer is preferably 0.2% by weight to 1.5% by weight, more preferably 0.3% by weight to 1.3% by weight, based on the entire epoxy resin molding material for sealing. When the amount is less than 0.2% by weight, the effect of addition of the (A) silicon-containing polymer is not observed, and when the amount is more than 1.5% by weight, the hot hardness of the resulting epoxy resin molding material for sealing tends to decrease. .

また、本発明では必要に応じて下記組成式(XXXXXXII)で表される化合物及び/又は下記組成式(XXXXXXIII)で表される化合物をIC等の半導体素子の耐湿性及び高温放置特性を向上させる観点から含有することができる。
Mg1−XAl(OH)(COx/2・mHO・・・(XXXXXXII)
(0<X≦0.5、mは正の数)
Further, in the present invention, the compound represented by the following composition formula (XXXXXXXII) and / or the compound represented by the following composition formula (XXXXXXXIII) is improved as needed in the moisture resistance and high-temperature storage characteristics of a semiconductor element such as an IC. It can be contained from the viewpoint.
Mg 1-X Al X (OH) 2 (CO 3 ) x / 2 · mH 2 O (XXXXXXXII)
(0 <X ≦ 0.5, m is a positive number)

Figure 2009249424
(0.9≦x≦1.1 0.6≦y≦0.8 0.2≦z≦0.4)
Figure 2009249424
(0.9 ≦ x ≦ 1.1 0.6 ≦ y ≦ 0.8 0.2 ≦ z ≦ 0.4)

なお、上記式(XXXXXXII)の化合物は市販品として協和化学工業株式会社製商品名DHT−4Aとして入手可能である。また、上記式(XXXXXXIII)の化合物は市販品として東亜合成株式会社製商品名IXE500として入手可能である。また必要に応じてその他の陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、たとえば、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物等が挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。   In addition, the compound of the said formula (XXXXXXXII) is available as Kyowa Chemical Industry Co., Ltd. brand name DHT-4A as a commercial item. Moreover, the compound of the said formula (XXXXXXXIII) is available as a commercial item as Toa Gosei Co., Ltd. brand name IXE500. Further, other anion exchangers can be added as necessary. The anion exchanger is not particularly limited, and conventionally known anion exchangers can be used. Examples thereof include hydrated oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, and the like. Alternatively, two or more kinds can be used in combination.

さらに、本発明の封止用エポキシ樹脂成形材料には、その他の添加剤として、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス、ポリエチレン、酸化ポリエチレン等の離型剤、カーボンブラック等の着色剤、シリコーンオイルやシリコーンゴム粉末等の応力緩和剤などを必要に応じて配合することができる。   Furthermore, the epoxy resin molding material for sealing of the present invention includes, as other additives, higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin waxes, polyethylene, release agents such as polyethylene oxide, carbon black, etc. If necessary, a color relaxation agent such as silicone oil or silicone rubber powder can be added.

本発明の封止用エポキシ樹脂成形材料は、難燃性の観点から(A)エポキシ樹脂と(B)硬化剤を予め溶融混合して用いることが好ましい。溶融混合する方法は特に制限は無いが、両者あるいは一方が溶融する温度以上に加熱して、攪拌し、均一になるまで混合する。この際、ゲル化しないよう、GPC(ゲルパーミエーションクロマトグラフィー)、FT−IR等を使用して反応性を確認し、最適な条件を設定することが好ましい。(A)エポキシ樹脂として上記一般式(I)の化合物を、(B)硬化剤として上記一般式(II)の化合物を使用する際は通常80〜120℃、好ましくは90〜120℃で10〜60分、より好ましくは20〜40分攪拌溶融混合することが好ましい。   The sealing epoxy resin molding material of the present invention is preferably used by previously melt-mixing (A) an epoxy resin and (B) a curing agent from the viewpoint of flame retardancy. The method of melt mixing is not particularly limited, but it is heated to a temperature at which both or one of them is melted, stirred and mixed until uniform. At this time, it is preferable to set the optimum conditions by confirming the reactivity using GPC (gel permeation chromatography), FT-IR or the like so as not to gel. (A) When using the compound of the said general formula (I) as an epoxy resin, and (B) the compound of the said general formula (II) as a hardening | curing agent, it is 80-120 degreeC normally, Preferably it is 10 to 90-120 degreeC. It is preferable to stir and mix for 60 minutes, more preferably 20 to 40 minutes.

本発明の封止用エポキシ樹脂成形材料は、各種原材料を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出機、らいかい機、プラネタリミキサ等によって混合又は溶融混練した後、冷却し、必要に応じて脱泡、粉砕する方法等を挙げることができる。また、必要に応じて成形条件に合うような寸法及び重量でタブレット化してもよい。   The epoxy resin molding material for sealing of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed. However, as a general method, a raw material having a predetermined blending amount is mixed with a mixer or the like. Examples thereof include a method of mixing or melt-kneading with a mixing roll, an extruder, a raking machine, a planetary mixer and the like after sufficiently mixing, cooling, and defoaming and pulverizing as necessary. Moreover, you may tablet into the dimension and weight which meet molding conditions as needed.

本発明の封止用エポキシ樹脂成形材料を封止材として用いて、半導体装置等の電子部品装置を封止する方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等も挙げられる。ディスペンス方式、注型方式、印刷方式等を用いてもよい。   As a method of sealing an electronic component device such as a semiconductor device using the epoxy resin molding material for sealing of the present invention as a sealing material, a low-pressure transfer molding method is the most common, but an injection molding method, compression A molding method etc. are also mentioned. A dispensing method, a casting method, a printing method, or the like may be used.

本発明で得られる封止用エポキシ樹脂成形材料により封止した素子を備えた本発明の電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材や実装基板に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の封止用エポキシ樹脂成形材料で封止した、電子部品装置等が挙げられる。   As an electronic component device of the present invention provided with an element sealed with an epoxy resin molding material for sealing obtained in the present invention, a lead frame, a wired tape carrier, a wiring board, glass, a support member such as a silicon wafer, An active element such as a semiconductor chip, a transistor, a diode, or a thyristor, or a passive element such as a capacitor, a resistor, or a coil is mounted on the mounting substrate, and necessary portions are sealed with the sealing epoxy resin molding material of the present invention. An electronic component device or the like that has stopped.

ここで、実装基板としては特に制限するものではなく、たとえば、有機基板、有機フィルム、セラミック基板、ガラス基板等のインターポーザ基板、液晶用ガラス基板、MCM(Multi Chip Module)用基板、ハイブリットIC用基板等が挙げられる。   Here, the mounting substrate is not particularly limited. For example, an organic substrate, an organic film, a ceramic substrate, an interposer substrate such as a glass substrate, a liquid crystal glass substrate, an MCM (Multi Chip Module) substrate, and a hybrid IC substrate. Etc.

このような素子を備えた電子部品装置としては、たとえば半導体装置が挙げられ、具体的には、リードフレーム(アイランド、タブ)上に半導体チップ等の素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディングやバンプで接続した後、本発明の封止用エポキシ樹脂成形材料を用いてトランスファ成形などにより封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J−lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の樹脂封止型IC、テープキャリアにリードボンディングした半導体チップを、本発明の封止用エポキシ樹脂成形材料で封止したTCP(Tape Carrier Package)、配線板やガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップを、本発明の封止用エポキシ樹脂成形材料で封止したCOB(Chip On Board)、COG(Chip On Glass)等のベアチップ実装した半導体装置、配線板やガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明の封止用エポキシ樹脂成形材料で封止したハイブリッドIC、MCM(Multi Chip Module)マザーボード接続用の端子を形成したインターポーザ基板に半導体チップを搭載し、バンプまたはワイヤボンディングにより半導体チップとインターポーザ基板に形成された配線を接続した後、本発明の封止用エポキシ樹脂成形材料で半導体チップ搭載側を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、これらの半導体装置は、実装基板上に素子が2個以上重なった形で搭載されたスタックド(積層)型パッケージであっても、2個以上の素子を一度に封止用エポキシ樹脂成形材料で封止した一括モールド型パッケージであってもよい。   An example of an electronic component device provided with such an element is a semiconductor device. Specifically, an element such as a semiconductor chip is fixed on a lead frame (island, tab) and a terminal of an element such as a bonding pad. The lead part and the lead part are connected by wire bonding or bump, and then sealed by transfer molding using the sealing epoxy resin molding material of the present invention, DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier). ), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-Lead Package), TSOP (Thin Small Outline Package), T FP (Thin Quad Flat Package) or other resin-encapsulated IC, TCP (Tape Carrier Package) in which a semiconductor chip lead-bonded to a tape carrier is encapsulated with the sealing epoxy resin molding material of the present invention, a wiring board or glass COB (Chip On Board), COG (Chip On Glass), in which a semiconductor chip connected to the wiring formed above by wire bonding, flip chip bonding, solder or the like is sealed with the sealing epoxy resin molding material of the present invention. Active devices such as semiconductor chips, transistors, diodes, thyristors and / or capacitors connected to semiconductor devices mounted on bare chips such as semiconductor chips, wiring boards and wiring formed on glass using wire bonding, flip chip bonding, solder, etc. A semiconductor chip is mounted on an interposer substrate on which a hybrid IC in which passive elements such as resistors and coils are encapsulated with the sealing epoxy resin molding material of the present invention and terminals for MCM (Multi Chip Module) motherboard connection are formed. After connecting the semiconductor chip and the wiring formed on the interposer substrate by bump or wire bonding, the semiconductor chip mounting side is sealed with the sealing epoxy resin molding material of the present invention, BGA (Ball Grid Array), CSP (Chip) Size Package) and MCP (Multi Chip Package). In addition, these semiconductor devices are epoxy resin molding materials for sealing two or more elements at a time, even in a stacked type package in which two or more elements are mounted on a mounting substrate. It may be a batch mold type package sealed with.

次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
実施例1〜7、比較例1〜9
エポキシ樹脂として、エポキシ当量261の一般式(III)の(A1)成分と下記一般式(IV)の(A2)成分を、(III)/((III)+(IV)×100=70として含有するエポキシ樹脂(ジャパンエポキシレジン株式会社製YL−7399)(エポキシ樹脂1)、エポキシ当量196、融点106℃のビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製商品名エピコートYX−4000H)(エポキシ樹脂2)、エポキシ当量245、融点110℃の硫黄原子含有エポキシ樹脂(東都化成株式会社製商品名YSLV−120TE)(エポキシ樹脂3)、エポキシ当量252、融点70℃のナフトールザイロック型エポキシ樹脂(東都化成株式会社製商品名ESN―175)(エポキシ樹脂4)、硬化剤としては水酸基当量199、軟化点89℃のビフェニレン骨格型フェノール樹脂(明和化成株式会社製商品名MEH−7851)(硬化剤1)、トリフェニルホスフィンと1,4−ベンゾキノンの付加物(硬化促進剤1)、カップリング剤として、一般式(I)の成分であるジフェニルジメトキシシラン(信越化学工業社製KBM202SS)(カップリング剤1)、γ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)、(東レダウシリコーン株式会社製 A−187)(カップリング剤2)、メチルトリメトキシシラン(東レダウシリコーン株式会社製 A−163) (カップリング剤3)、メルカプトシラン(信越化学工業社製 KBM−873)(カップリング剤4)、アニリノシラン(信越化学工業社製 KBM573)(カップリング剤5)をそれぞれ表1〜表3に示す質量部で配合し、混練温度80℃、混練時間10分の条件でロール混練を行い、実施例1〜7、比較例1〜9を作製した。以下、実施例1〜7、比較例1〜4及び比較例5〜9の配合組成を表1〜3に示す。
EXAMPLES Next, although an Example demonstrates this invention, the scope of the present invention is not limited to these Examples.
Examples 1-7, Comparative Examples 1-9
As an epoxy resin, the component (A1) of the general formula (III) having an epoxy equivalent of 261 and the component (A2) of the following general formula (IV) are contained as (III) / ((III) + (IV) × 100 = 70) Epoxy resin (YL-7399 manufactured by Japan Epoxy Resin Co., Ltd.) (epoxy resin 1), biphenyl type epoxy resin having an epoxy equivalent of 196 and a melting point of 106 ° C. (trade name Epicoat YX-4000H manufactured by Japan Epoxy Resin Co., Ltd.) (epoxy resin 2 ), Epoxy equivalent 245, melting point 110 ° C. sulfur atom-containing epoxy resin (trade name YSLV-120TE manufactured by Toto Kasei Co., Ltd.) (epoxy resin 3), epoxy equivalent 252, naphthol zylock type epoxy resin (Toto Kasei) having melting point 70 ° C. Product name ESN-175) (epoxy resin 4), a curing agent Biphenylene skeleton type phenol resin (Maywa Kasei Co., Ltd., trade name MEH-7851) (curing agent 1) having an acid group equivalent of 199 and a softening point of 89 ° C., an adduct of triphenylphosphine and 1,4-benzoquinone (curing accelerator 1 ), As a coupling agent, diphenyldimethoxysilane (KBM202SS manufactured by Shin-Etsu Chemical Co., Ltd.) (coupling agent 1), γ-glycidoxypropyltrimethoxysilane (epoxysilane), which is a component of general formula (I), (Toray Industries, Inc.) A-187) manufactured by Dow Silicone Co., Ltd. (coupling agent 2), methyltrimethoxysilane (A-163 manufactured by Toray Dow Silicone Co., Ltd.) (coupling agent 3), mercaptosilane (KBM-873 manufactured by Shin-Etsu Chemical Co., Ltd.) (Coupling agent 4), anilinosilane (KBM573 manufactured by Shin-Etsu Chemical Co., Ltd.) Example 1 to 7 and Comparative Examples 1 to 9 were prepared by blending the agent 5) in parts by mass shown in Tables 1 to 3 and roll kneading under conditions of a kneading temperature of 80 ° C. and a kneading time of 10 minutes. Hereafter, the compounding composition of Examples 1-7, Comparative Examples 1-4, and Comparative Examples 5-9 is shown to Tables 1-3.

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

作製した実施例1〜7、比較例1〜4及び比較例5〜9の封止用エポキシ樹脂成形材料の特性を、次の各試験により求めた。結果を表4〜表6に示す。
(1)スパイラルフロー
EMMI−1−66に準じたスパイラルフロー測定用金型を用いて、封止用エポキシ樹脂成形材料をトランスファ成形機により、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。
The properties of the produced epoxy resin molding materials for sealing of Examples 1 to 7, Comparative Examples 1 to 4, and Comparative Examples 5 to 9 were determined by the following tests. The results are shown in Tables 4-6.
(1) Spiral flow Using a mold for spiral flow measurement according to EMMI-1-66, the epoxy resin molding material for sealing was molded at a mold temperature of 180 ° C., molding pressure of 6.9 MPa, and curing time. Molding was performed for 90 seconds, and the flow distance (cm) was determined.

(2)熱時硬度
封止用エポキシ樹脂成形材料を上記(1)の成形条件で直径50mm×厚さ3mmの円板に成形し、成形後直ちにショアD型硬度計を用いて測定した。
(2) Hardness upon heating The sealing epoxy resin molding material was molded into a disk having a diameter of 50 mm and a thickness of 3 mm under the molding conditions of (1) above, and was measured immediately after molding using a Shore D hardness meter.

(3)吸水率
上記(2)の試験片JIS K6911に準拠した直径50mm、厚さ3mmの円盤を作成し、85℃/85%RHの条件で加湿を行い、168時間後に取り出して重量を測定し、吸水率を求めた。
(3) Water absorption rate A specimen having a diameter of 50 mm and a thickness of 3 mm in accordance with JIS K6911 test piece of (2) above is prepared, humidified under the conditions of 85 ° C./85% RH, and taken out after 168 hours to measure the weight. The water absorption was determined.

(4)ガラス転移温度(Tg)及び線膨張係数(α、α
理学電機製熱機械分析装置(TAS−100)を用い、19mm×3mm×3mmの形状の試験片を用いて昇温速度5℃/minの条件下で測定した線膨張曲線の屈曲点よりガラス転移温度(以下Tgと略す)を求めた。また、Tg以下の傾きとTg以上の傾きからそれぞれ線膨張係数(以下、前者をα、後者をαと略す)を求めた。
(4) Glass transition temperature (Tg) and linear expansion coefficient (α 1 , α 2 )
Glass transition from the inflection point of the linear expansion curve measured using a thermomechanical analyzer (TAS-100) manufactured by Rigaku Denki Co., Ltd. using a test piece having a shape of 19 mm × 3 mm × 3 mm under the condition of a heating rate of 5 ° C./min. The temperature (hereinafter abbreviated as Tg) was determined. In addition, linear expansion coefficients (hereinafter, the former is abbreviated as α 1 and the latter as α 2 ) were respectively determined from the slope of Tg or less and the slope of Tg or more.

(5)曲げ試験(弾性率)
A&D社製テンシロンを用い、JIS−K−6911に準拠した3点支持型曲げ試験を室温(25℃)及び260℃にて行い、下記式より曲げ弾性率を求めた。なお、測定は寸法70mm×10mm×3mmの試験片を用いた。
(5) Bending test (elastic modulus)
Using Tensilon manufactured by A & D, a three-point support bending test according to JIS-K-6911 was performed at room temperature (25 ° C.) and 260 ° C., and the flexural modulus was obtained from the following formula. For the measurement, a test piece having dimensions of 70 mm × 10 mm × 3 mm was used.

Figure 2009249424
Figure 2009249424

(6)難燃性
厚さ1/16インチの試験片を成形する金型を用いて、封止用エポキシ樹脂成形材料を上記(1)の成形条件で成形して、さらに180℃で5時間後硬化を行い、UL−94試験法に従って難燃性を評価した。
(6) Flame retardancy Using a mold for molding a test piece having a thickness of 1/16 inch, an epoxy resin molding material for sealing is molded under the molding conditions of (1) above, and further at 180 ° C. for 5 hours. Post-curing was performed and flame retardancy was evaluated according to the UL-94 test method.

(7)耐リフロー性
8mm×10mm×0.4mmのシリコンチップを搭載した外形寸法20mm×14mm×2mmの80ピンフラットパッケージ(QFP)(リードフレーム材質:銅合金、リード先端銀メッキ処理品)を、封止用エポキシ樹脂成形材料を用いて上記(3)の条件で成形、後硬化して作製し、85℃、85%RHの条件で加湿して所定時間毎に240℃、10秒の条件でリフロー処理を行い、クラックの有無を観察し、試験パッケージ数(10個)に対するクラック発生パッケージ数で評価した。
(7) Reflow resistance 80mm flat package (QFP) (lead frame material: copper alloy, lead tip silver-plated product) with outer dimensions of 20mm x 14mm x 2mm mounted with 8mm x 10mm x 0.4mm silicon chip Molded under the condition (3) above using a sealing epoxy resin molding material, post-cured, humidified under conditions of 85 ° C. and 85% RH, and 240 ° C. for 10 seconds every predetermined time Then, reflow treatment was performed, the presence or absence of cracks was observed, and the number of crack generation packages with respect to the number of test packages (10) was evaluated.

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

Figure 2009249424
Figure 2009249424

実施例1〜4を比較すると、カップリング剤1の添加量により、耐半田リフロー性に最適なカップリング剤1の量がわかる。カップリング剤1を含まない比較例8の場合、耐半田リフロー性に対する効果が十分に発揮されず、またUL試験に見られるように難燃性も低下してしまう傾向にある。逆に実施例4よりも添加量が多い場合には、硬化性が悪くなる傾向にある。よってカップリング剤の添加量は、この無機充填剤の重量%における比率では、エポキシ100質量部に対し、1〜7質量部が好ましく、成形性、難燃性を加味すると、3〜5質量部が更に好ましい。   When Examples 1 to 4 are compared, the amount of coupling agent 1 that is optimal for solder reflow resistance can be determined by the amount of coupling agent 1 added. In the case of Comparative Example 8 that does not include the coupling agent 1, the effect on the solder reflow resistance is not sufficiently exhibited, and the flame retardancy tends to decrease as seen in the UL test. On the contrary, when there is more addition amount than Example 4, it exists in the tendency for sclerosis | hardenability to worsen. Therefore, the addition amount of the coupling agent is preferably 1 to 7 parts by mass with respect to 100 parts by mass of the epoxy in the ratio by weight of the inorganic filler, and 3 to 5 parts by mass considering moldability and flame retardancy. Is more preferable.

また、エポキシ樹脂3を含む材料で、その効果を確認すると、エポキシ樹脂1とカップリング剤1を共に含む実施例5とエポキシ樹脂1は含まないが、カップリング剤1は含む比較例5及び、エポキシ樹脂1もカップリング剤1も共に含まない比較例1や比較例3を比較すると、難燃性及び、耐リフロー性いずれも実施例5で、良好な結果となる。   Moreover, when the effect was confirmed with the material containing the epoxy resin 3, the comparative example 5 which does not contain Example 5 and the epoxy resin 1 which contain both the epoxy resin 1 and the coupling agent 1, and the coupling agent 1 and Comparing Comparative Example 1 and Comparative Example 3 containing neither epoxy resin 1 nor coupling agent 1, both flame retardancy and reflow resistance are good in Example 5.

エポキシ樹脂4を含む材料系においても、同様の傾向が見られる。実施例6と比較例2と比較例4と比較例6の比較である。エポキシ樹脂1とカップリング剤1が併用された実施例6が耐リフロー性、難燃性、共に良好な結果となった。これからも、エポキシ樹脂1及び、カップリング剤1の両者を併用することで、これらの特性を向上させることが可能であることがわかる。   The same tendency is also observed in the material system including the epoxy resin 4. This is a comparison between Example 6, Comparative Example 2, Comparative Example 4, and Comparative Example 6. In Example 6 in which the epoxy resin 1 and the coupling agent 1 were used in combination, both the reflow resistance and flame retardancy were good. It can be seen that these characteristics can be improved by using both the epoxy resin 1 and the coupling agent 1 together.

更に、実施例2、実施例7、比較例7及び比較例9の4つの材料を比較すると、後者2つの材料は、前者2つの材料よりも、耐リフロー性に劣っている。また、前者2材料を比較すると、実施例2の方が実施例7よりも、難燃性及び耐リフロー性に優れることから、エポキシ樹脂1の樹脂系においては、カップリング剤1をカップリング剤3で半分置換えるよりも、カップリング剤1を全量使用した方が良好である。   Furthermore, comparing the four materials of Example 2, Example 7, Comparative Example 7 and Comparative Example 9, the latter two materials are inferior in reflow resistance to the former two materials. Further, when the former two materials are compared, Example 2 is more excellent in flame retardancy and reflow resistance than Example 7, so that in the resin system of epoxy resin 1, coupling agent 1 is used as coupling agent. It is better to use the entire amount of coupling agent 1 than to replace half by 3.

Claims (7)

(A)エポキシ樹脂、(B)硬化剤、(C)シラン化合物、(D)硬化促進剤、(E)無機充填剤を含有し、(C)シラン化合物が下記一般式(I)で表されるシラン化合物(C1)及び下記一般式(II)で表されるシラン化合物(C2)を含有し、(C1)及び(C2)が(II)/(I)=0.4〜4.7の重量比で配合される封止用エポキシ樹脂成形材料。
Figure 2009249424
(ここで、Rは水素原子又は炭素数1〜6の炭化水素基を示し、Rは水素原子又は炭素数1〜6の炭化水素基を示し、mは1〜3の整数を示す。)
Figure 2009249424
(ここで、R、はグリシジルエーテル基、メルカプト基、アミノ基、アニリノ基、イソシアネート基、アクリロキシ基及びメタクリロキシ基を示し、Rは炭素数1〜6の炭化水素基を示し、R、Rは炭素数1〜6の炭化水素基を示しnは1〜3の整数を示す。)
It contains (A) an epoxy resin, (B) a curing agent, (C) a silane compound, (D) a curing accelerator, (E) an inorganic filler, and (C) the silane compound is represented by the following general formula (I). A silane compound (C1) and a silane compound (C2) represented by the following general formula (II), wherein (C1) and (C2) are (II) / (I) = 0.4 to 4.7 An epoxy resin molding material for sealing blended in a weight ratio.
Figure 2009249424
(Here, R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and m represents an integer of 1 to 3). )
Figure 2009249424
(Here, R 1 represents a glycidyl ether group, a mercapto group, an amino group, an anilino group, an isocyanate group, an acryloxy group, and a methacryloxy group, R 2 represents a hydrocarbon group having 1 to 6 carbon atoms, R 3 , R 4 represents a hydrocarbon group having 1 to 6 carbon atoms, and n represents an integer of 1 to 3).
更に、(A)エポキシ樹脂として(A1)下記一般式(III)で示される化合物と(A2)下記一般式(IV)で示される化合物を含有する請求項1記載の封止用エポキシ樹脂成形材料。
Figure 2009249424

(一般式(III)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、互いに同一であっても異なっていてもよい。Rのmは0〜4の正数を示す。また、分子式内のnは、0〜10の整数を示す。)
Figure 2009249424

(一般式(IV)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、互いに同一であっても異なっていてもよい。mは0〜4の正数を示す。)
The sealing epoxy resin molding material according to claim 1, further comprising (A) an epoxy resin comprising (A1) a compound represented by the following general formula (III) and (A2) a compound represented by the following general formula (IV). .
Figure 2009249424

(The general formula R 5 in (III) is selected from a hydrocarbon group of a substituted or unsubstituted monovalent C1-10 hydrogen and carbon, identical even with good .R 5 be different also from each other m represents a positive number from 0 to 4. Further, n in the molecular formula represents an integer from 0 to 10.)
Figure 2009249424

(R 6 in the general formula (IV) is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different. M is 0. Indicates a positive number of ~ 4.)
封止用エポキシ樹脂成形材料に対して(C)シラン化合物の割合が0.06〜0.8重量%である請求項1または2に記載の封止用エポキシ樹脂成形材料。   The epoxy resin molding material for sealing according to claim 1 or 2, wherein the proportion of the (C) silane compound is 0.06 to 0.8% by weight relative to the epoxy resin molding material for sealing. 一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)が予め混合されている請求項2または3に記載の封止用エポキシ樹脂成形材料。   The epoxy resin molding material for sealing according to claim 2 or 3, wherein the compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) are mixed in advance. 一般式(III)で示される化合物(A1)と一般式(IV)で示される化合物(A2)の中の化合物(A1)の含有率((A1)/((A1)+(A2))×100)が30〜90質量%である請求項2〜4のいずれかに記載の封止用エポキシ樹脂成形材料。   Content ((A1) / ((A1) + (A2))) of the compound (A1) in the compound (A1) represented by the general formula (III) and the compound (A2) represented by the general formula (IV) × 100) is 30-90 mass%, The epoxy resin molding material for sealing in any one of Claims 2-4. (E)無機充填剤の含有量が、60〜95質量%である請求項1〜5のいずれかに記載の封止用エポキシ樹脂成形材料。   (E) Content of an inorganic filler is 60-95 mass%, The epoxy resin molding material for sealing in any one of Claims 1-5. 請求項1〜6のいずれかに記載の封止用エポキシ樹脂成形材料で封止された素子を備えた電子部品装置。   The electronic component apparatus provided with the element sealed with the epoxy resin molding material for sealing in any one of Claims 1-6.
JP2008096138A 2008-04-02 2008-04-02 Epoxy resin molding material for sealing and electronic component device Pending JP2009249424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096138A JP2009249424A (en) 2008-04-02 2008-04-02 Epoxy resin molding material for sealing and electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096138A JP2009249424A (en) 2008-04-02 2008-04-02 Epoxy resin molding material for sealing and electronic component device

Publications (1)

Publication Number Publication Date
JP2009249424A true JP2009249424A (en) 2009-10-29

Family

ID=41310432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096138A Pending JP2009249424A (en) 2008-04-02 2008-04-02 Epoxy resin molding material for sealing and electronic component device

Country Status (1)

Country Link
JP (1) JP2009249424A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031119A (en) * 2008-07-28 2010-02-12 Panasonic Electric Works Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device using it
JPWO2016098784A1 (en) * 2014-12-15 2017-09-21 日立化成株式会社 Epoxy resin molding material, molded product and molded cured product
JP2017179351A (en) * 2016-03-29 2017-10-05 積水化学工業株式会社 Cured article of resin composition, resin composition and multilayer substrate
WO2023149521A1 (en) * 2022-02-03 2023-08-10 味の素株式会社 Resin composition, cured product, sheet-like layered material, resin sheet, printed wiring board, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241471A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005247890A (en) * 2004-03-01 2005-09-15 Hitachi Chem Co Ltd Sealing epoxy resin molding material and electronic component device
JP2007031698A (en) * 2005-06-21 2007-02-08 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241471A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2005247890A (en) * 2004-03-01 2005-09-15 Hitachi Chem Co Ltd Sealing epoxy resin molding material and electronic component device
JP2007031698A (en) * 2005-06-21 2007-02-08 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031119A (en) * 2008-07-28 2010-02-12 Panasonic Electric Works Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device using it
JPWO2016098784A1 (en) * 2014-12-15 2017-09-21 日立化成株式会社 Epoxy resin molding material, molded product and molded cured product
TWI696656B (en) * 2014-12-15 2020-06-21 日商日立化成股份有限公司 Epoxy resin molding material, molded product and cured molded product
JP2017179351A (en) * 2016-03-29 2017-10-05 積水化学工業株式会社 Cured article of resin composition, resin composition and multilayer substrate
WO2023149521A1 (en) * 2022-02-03 2023-08-10 味の素株式会社 Resin composition, cured product, sheet-like layered material, resin sheet, printed wiring board, and semiconductor device

Similar Documents

Publication Publication Date Title
JP5445490B2 (en) Epoxy resin molding material for sealing and electronic component device
JP5400267B2 (en) Epoxy resin composition for sealing and electronic component device
JP4822053B2 (en) Epoxy resin composition for sealing and electronic component device
JP4930767B2 (en) Epoxy resin composition for sealing and electronic component device
JP2009102622A (en) Epoxy resin composition for sealing, and electronic component device
JP2013237855A (en) Epoxy resin composition for encapsulation and electronic component device
JP2008239983A (en) Epoxy resin composition for sealing and electronic parts device
JP2010090216A (en) Epoxy resin composition for sealing, and electronic part device
JP2008214433A (en) Epoxy resin composition for sealing and electronic part device
JP2009249424A (en) Epoxy resin molding material for sealing and electronic component device
JP2005036085A (en) Epoxy resin molding material for sealing and electronic part device
JP2010100678A (en) Epoxy resin composition for sealing and electronic part device
JP2010095709A (en) Epoxy resin composition for sealing and electronic parts device
JP2009221357A (en) Epoxy resin composition for sealing and electronic part device
JP2005015561A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2008147494A (en) Epoxy resin composition material for encapsulation, manufacturing method therefor, and electronic component device
JP2011207944A (en) Epoxy resin composition and electronic component device
JP2007262385A (en) Epoxy resin composition for encapsulation and electronic part device
JP5316853B2 (en) Epoxy resin composition for sealing and electronic component device
JP2011246545A (en) Epoxy resin composition for sealing and electronic part device
JP2009127036A (en) Epoxy resin composition for sealing and electronic part device equipped with element sealed with the same
JP2010090300A (en) Epoxy resin composition for sealing, and electronic part device
JP5522461B2 (en) Epoxy resin composition for sealing and electronic component device
JP2011021166A (en) Epoxy resin composition for sealing, and electronic component device
JP2011026399A (en) Epoxy resin composition for sealing and electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121018