JP2009249209A - Apparatus for treating fuel - Google Patents

Apparatus for treating fuel Download PDF

Info

Publication number
JP2009249209A
JP2009249209A JP2008096843A JP2008096843A JP2009249209A JP 2009249209 A JP2009249209 A JP 2009249209A JP 2008096843 A JP2008096843 A JP 2008096843A JP 2008096843 A JP2008096843 A JP 2008096843A JP 2009249209 A JP2009249209 A JP 2009249209A
Authority
JP
Japan
Prior art keywords
combustion
combustion gas
cylinder
baffle plate
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096843A
Other languages
Japanese (ja)
Inventor
Seiji Fujiwara
誠二 藤原
Yuji Mukai
裕二 向井
Akira Maenishi
晃 前西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008096843A priority Critical patent/JP2009249209A/en
Publication of JP2009249209A publication Critical patent/JP2009249209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus 1 for treating fuel, in the reformer 203 of which the stream of combustion gas is uniformized and a reforming catalyst 204 is uniformly heated to improve heat efficiency. <P>SOLUTION: The apparatus 1 for treating fuel is provided with: a burner 103 in which fuel is burned to produce the combustion gas; a nearly cylindrical combustion cylinder 104 in which a baffle plate 105 extending to the inside of the combustion cylinder in the radial direction is arranged at the tip of one opening and the combustion gas is made to flow therein from the other opening, pass through the opening 106 where the baffle plate 105 is arranged, and flow out from the inside thereof to the outside; and the reformer 203 in which the reforming catalyst 204 to be used for subjecting a raw material and water to a steam reforming reaction is arranged and a combustion gas circulation route 207 is formed in a space between an inner cylinder 205 and the combustion cylinder 104. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機化合物を含む原料と水とを水蒸気改質反応させ、水素含有ガスを生成させる燃料処理装置に関する。   The present invention relates to a fuel processing apparatus that generates a hydrogen-containing gas by subjecting a raw material containing an organic compound and water to a steam reforming reaction.

燃料電池にはアノードガスとして水素含有ガスが用いられるが、水素含有ガスのインフラが整備されていない。そこで、一般的に、都市ガス等の既存のインフラから供給される原料から水素含有ガスを生成させる燃料処理装置が併設される。   Fuel cells use hydrogen-containing gas as the anode gas, but the infrastructure for hydrogen-containing gas has not been developed. Therefore, in general, a fuel processing apparatus that generates a hydrogen-containing gas from a raw material supplied from an existing infrastructure such as city gas is additionally provided.

その燃料処理装置は、水蒸気改質反応によって原料及び水から水素含有ガスを生成させる改質触媒が設けられる改質器と、水蒸気改質反応に要する熱を改質器に供給する加熱器を有する。そして、天然ガス、LPG、ナフサ、ガソリン、灯油等の炭化水素系、メタノール等のアルコール系の原料と水とがそれぞれ外部のインフラから改質器に供給され、改質器が加熱器によって水蒸気改質反応に適する温度(改質反応温度)にまで加熱され、水素含有ガスが改質器から送出されるように構成されている。   The fuel processing apparatus includes a reformer provided with a reforming catalyst that generates a hydrogen-containing gas from raw material and water by a steam reforming reaction, and a heater that supplies heat required for the steam reforming reaction to the reformer. . Then, hydrocarbons such as natural gas, LPG, naphtha, gasoline, kerosene, and alcohol-based raw materials such as methanol and water are supplied from the external infrastructure to the reformer, and the reformer is steam-reformed by the heater. Heating is performed to a temperature suitable for a quality reaction (reforming reaction temperature), and a hydrogen-containing gas is delivered from the reformer.

一般的に、上述の加熱器には、燃焼ガスによって加熱する方法となる、天然ガス、LPG、ナフサ、ガソリン、灯油等の炭化水素系、メタノール等のアルコール系の燃料、あるいは燃料電池での発電に利用されなかったアノードオフガスをバーナで燃焼させる燃焼部が用いられる。また、バーナの周囲に燃焼筒を設けて、バーナで形成される火炎が改質触媒の入った容器に直接触れないように構成される。すなわち、燃焼筒と改質器を同心円状に設置し、燃焼ガスを燃焼筒の先端から流出させるとともに、その燃焼ガスの流れを折り返すことで、燃焼筒と改質器との間とで構成される間隙を通して流す構成がとられるが多い。   In general, the above-mentioned heater is a method of heating with combustion gas, hydrocarbon gas such as natural gas, LPG, naphtha, gasoline, kerosene, alcohol fuel such as methanol, or power generation in a fuel cell. A combustion section is used in which the anode off gas that has not been used for the combustion is burned by a burner. Further, a combustion cylinder is provided around the burner so that the flame formed by the burner does not directly touch the container containing the reforming catalyst. That is, it is configured between the combustion cylinder and the reformer by installing the combustion cylinder and the reformer concentrically, allowing the combustion gas to flow out from the tip of the combustion cylinder and turning back the flow of the combustion gas. In many cases, it is configured to flow through a gap.

燃焼筒と改質器を同心円状に設置する場合、周囲方向に燃焼ガスを均一に流通させるため、燃焼筒や改質器を真円に近い形状に作成することと、燃焼筒と改質器との間隙を周方向すべてにおいて均一にすることが望ましい。しかしながら、上述のように真円に作成すること、および間隙を均一にすることは困難であり、燃焼筒から出た燃焼ガスが燃焼筒と改質器との間隙を流れる周方向の分布を均一にすることは難しい。そのため、改質触媒での温度分布が周方向でバラつくので、反応に適切な状態に加熱するまでに多くの熱が必要となり、熱効率を低下させる原因となる。   When installing the combustion cylinder and reformer concentrically, in order to distribute the combustion gas uniformly in the circumferential direction, create the combustion cylinder and reformer in a shape close to a perfect circle, and the combustion cylinder and reformer. It is desirable to make the gap between and uniform in all circumferential directions. However, it is difficult to create a perfect circle and make the gap uniform as described above, and the distribution in the circumferential direction in which the combustion gas emitted from the combustion cylinder flows through the gap between the combustion cylinder and the reformer is uniform. It is difficult to make. Therefore, since the temperature distribution in the reforming catalyst varies in the circumferential direction, a large amount of heat is required before heating to a state suitable for the reaction, which causes a decrease in thermal efficiency.

そこで、改質触媒における温度分布のバラつきを低減するために、燃焼筒の径を先端部分に向かって段階的に小さくする構成が提案されている(例えば、特許文献1参照)。また、燃焼筒と改質触媒の入った筒(改質器)との空間に螺旋状の羽根を設ける構成も提案されている(例えば、特許文献2参照)。
特開2006−32175号公報 特開2000−26101号公報
Thus, in order to reduce the variation in temperature distribution in the reforming catalyst, a configuration in which the diameter of the combustion cylinder is gradually reduced toward the tip portion has been proposed (for example, see Patent Document 1). In addition, a configuration in which spiral blades are provided in a space between a combustion cylinder and a cylinder (reformer) containing a reforming catalyst has been proposed (see, for example, Patent Document 2).
JP 2006-32175 A JP 2000-26101 A

しかしながら、燃焼筒の径を先端部分に向かって段階的に小さくする構成は、その加工に熟練を要し、加工費も高くなる。また、螺旋状の羽根を設ける構成も、その加工に熟練を要し、加工費も高くなる。   However, the configuration in which the diameter of the combustion cylinder is reduced stepwise toward the tip portion requires skill in the processing and increases the processing cost. Further, the configuration in which the spiral blades are provided requires skill in the processing, and the processing cost increases.

本発明は、上記のような課題を解決するもので、簡単な構成で、水素含有ガスを生成させる燃料処理装置を提供とすることを目的としている。   The present invention solves the above-described problems, and an object of the present invention is to provide a fuel processing apparatus that generates a hydrogen-containing gas with a simple configuration.

上記課題を解決するため、本発明の燃料処理装置は、 燃料の燃焼により燃焼ガスを生成させる燃焼部と、略円筒の形状であって、一方の開口部分の先端に径方向内側に向かって邪魔板が設けられ、他方の開口部分から内側に燃焼ガスを流入させて、邪魔板が設けられる開口部分を通して燃焼ガスを内側から外側へ流出させる燃焼筒と、有機化合物を含む原料と水とを水蒸気改質反応させる改質触媒を有し、内壁面と燃焼筒との間の空間で燃焼ガスの流通経路を構成するように設けられる改質器とを備える構成とする。   In order to solve the above-described problems, a fuel processing device according to the present invention has a combustion portion that generates combustion gas by combustion of fuel and a substantially cylindrical shape, and is obstructed radially inward at the tip of one opening portion. A combustion tube that is provided with a plate, allows combustion gas to flow inward from the other opening portion, and flows out from the inside to the outside through the opening portion provided with the baffle plate, and the raw material containing the organic compound and water are steamed It has a reforming catalyst that has a reforming reaction, and includes a reformer that is provided so as to constitute a flow path of the combustion gas in a space between the inner wall surface and the combustion cylinder.

本発明の燃料処理装置によれば、燃焼筒の加工を容易して、低コストで構成することを可能にする。また、加工精度を向上させることができるので、改質器における改質触媒の周方向への加熱ムラを低減でき、熱効率の高い燃料処理装置を提供することができる。   According to the fuel processing apparatus of the present invention, it is possible to easily process the combustion cylinder and to configure it at a low cost. In addition, since the processing accuracy can be improved, uneven heating of the reforming catalyst in the circumferential direction in the reformer can be reduced, and a fuel processing device with high thermal efficiency can be provided.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における燃料処理装置1の概略構成を示す模式図である。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a schematic configuration of a fuel processing apparatus 1 according to Embodiment 1 of the present invention.

燃料処理装置1は、燃焼部であるバーナ103と、改質器203とで構成されている。   The fuel processing apparatus 1 includes a burner 103 that is a combustion unit and a reformer 203.

バーナ103には、燃料供給経路101と空気供給経路102とが接続されている。燃料供給経路101から燃焼用の燃料、空気供給経路102から燃焼に必要な空気がバーナ103に供給され、バーナ103で燃焼させることで火炎および燃焼ガスが生成される。また、燃焼筒104が、バーナ103で生成される火炎を覆うように配置されている。なお、燃焼筒104には、バーナと対向する開口部分の先端に、径方向内側に向かい中心部分に出口穴となる出口部106を有する邪魔板105が設けられ、出口部106の孔径が、燃焼筒104の外径より小さい孔径となるように構成されている。   A fuel supply path 101 and an air supply path 102 are connected to the burner 103. Fuel for combustion is supplied from the fuel supply path 101, and air necessary for combustion is supplied from the air supply path 102 to the burner 103, and the burner 103 burns to generate flame and combustion gas. Moreover, the combustion cylinder 104 is arrange | positioned so that the flame produced | generated with the burner 103 may be covered. The combustion cylinder 104 is provided with a baffle plate 105 having an outlet portion 106 which is a radially inner portion and an outlet hole 106 at the center of the opening portion facing the burner. The hole diameter is smaller than the outer diameter of the cylinder 104.

改質器203には、改質反応に用いられる原料を供給する原料供給経路201、改質反応に用いられる水を供給する水供給経路202が接続されている。また、内筒205、中筒206、外筒207を備え、内筒205と中筒206とで構成される空間に改質触媒204が納められている。また、中筒206と外筒207とで構成される空間は、改質触媒204後の改質ガス(水素含有ガス)を通過させる空間となっている。なお、改質触媒204としては、例えばアルミナ等の触媒担体に、ニッケル、ルテニウム等の金属を担持したものを用いることができる。なお、内筒205、中筒206および外筒207は、それぞれが適切に接合され改質器が構成されている(その詳細な説明は、省略する)。   The reformer 203 is connected to a raw material supply path 201 that supplies a raw material used for the reforming reaction and a water supply path 202 that supplies water used for the reforming reaction. Further, the inner cylinder 205, the middle cylinder 206, and the outer cylinder 207 are provided, and the reforming catalyst 204 is stored in a space formed by the inner cylinder 205 and the middle cylinder 206. A space formed by the middle cylinder 206 and the outer cylinder 207 is a space through which the reformed gas (hydrogen-containing gas) after the reforming catalyst 204 passes. As the reforming catalyst 204, for example, a catalyst carrier such as alumina carrying a metal such as nickel or ruthenium can be used. The inner cylinder 205, the middle cylinder 206, and the outer cylinder 207 are appropriately joined to constitute a reformer (detailed description thereof is omitted).

また、改質器203は、内筒205、中筒206、外筒207が燃焼筒104を略中心として配置されており、燃焼筒104と内筒205との間の空間で、燃焼ガスの燃焼ガス流通経路107が構成されている。さらに、外筒207の外側には、改質器203を覆うように燃焼ガスカバー208が設けられており、外筒207と燃焼ガスカバー208との間の空間でも、燃焼ガスの燃焼ガス流通経路107が構成されている。   In the reformer 203, an inner cylinder 205, an intermediate cylinder 206, and an outer cylinder 207 are arranged with the combustion cylinder 104 as a substantial center, and combustion gas is burned in a space between the combustion cylinder 104 and the inner cylinder 205. A gas distribution path 107 is configured. Further, a combustion gas cover 208 is provided outside the outer cylinder 207 so as to cover the reformer 203, and the combustion gas distribution path of the combustion gas is also provided in the space between the outer cylinder 207 and the combustion gas cover 208. 107 is configured.

次に、本発明の実施の形態1における燃料処理装置1の特徴的な動作について説明する
。なお、燃料処理装置としての一般的な動作についての説明は、省略する。
Next, a characteristic operation of the fuel processor 1 according to Embodiment 1 of the present invention will be described. In addition, description about the general operation | movement as a fuel processing apparatus is abbreviate | omitted.

改質反応に必要な熱量を供給するため、バーナ103で燃料を燃焼させ、改質器203を加熱する。燃料は、天然ガス、LPG、ナフサ、ガソリン、灯油等の炭化水素等、及びメタノール等のアルコール等(または燃料電池での発電に利用されなかったアノードオフガス等)が用いられる。燃焼に必要な空気は、燃焼が安定する空気比(例えば、空気過剰率λで1.5)で供給される。火炎が、燃焼筒104の内側で形成され、燃料の燃焼により発生する燃焼ガスが、邪魔板105の出口部106から出て、燃焼ガス流通経路107を通り、燃料処理装置1から排出される。改質器203に納められた改質触媒204は、主に内筒を通して燃焼ガスから熱を受け取り、加熱される。この時、改質触媒204の原料ガス流れに対して最下流の任意の部分に設けられる温度検出部(詳細は図示せず)での検出温度が、約650℃となるように、燃料および空気の供給量を調節して加熱を行い、改質器203に供給される原料と水との水蒸気改質反応を進行させて、水素を含んだ改質ガス(水素含有ガス)を生成させる。   In order to supply the amount of heat necessary for the reforming reaction, fuel is burned by the burner 103 and the reformer 203 is heated. As the fuel, natural gas, hydrocarbons such as LPG, naphtha, gasoline, kerosene, etc., alcohol such as methanol, etc. (or anode off gas not used for power generation in the fuel cell) are used. Air necessary for combustion is supplied at an air ratio at which combustion is stable (for example, an excess air ratio λ of 1.5). A flame is formed inside the combustion cylinder 104, and combustion gas generated by the combustion of the fuel exits from the outlet portion 106 of the baffle plate 105, passes through the combustion gas flow path 107, and is discharged from the fuel processing apparatus 1. The reforming catalyst 204 stored in the reformer 203 receives heat from the combustion gas mainly through the inner cylinder and is heated. At this time, the fuel and air are detected so that the temperature detected by a temperature detector (not shown in detail) provided at an arbitrary downstream portion with respect to the raw material gas flow of the reforming catalyst 204 is about 650 ° C. Is heated by adjusting the supply amount of hydrogen, and a steam reforming reaction between the raw material supplied to the reformer 203 and water is advanced to generate a reformed gas (hydrogen-containing gas) containing hydrogen.

次に、燃焼筒104に邪魔板105を設ける構成で得られる効果について説明する。   Next, effects obtained by the configuration in which the baffle plate 105 is provided in the combustion cylinder 104 will be described.

図2は、燃料処理装置1において、図1に示すように燃焼筒104に邪魔板105を設ける構成と、燃焼筒104に邪魔板105を設けない構成(図1に示す燃焼筒104から邪魔板105を除いた構成、詳細は図示せず)において、改質触媒204の任意の位置の温度を測定する温度検出部(詳細は図示せず)が約650℃となる任意の条件で、改質触媒204の周方向の温度分布の最大温度分布幅を触媒高さ方向に測定した結果を示す。なお、改質触媒204において原料が流れる方向の一番下流側を基準面(0mm)とし、周方向に対して角度90度の間隔毎に高さ方向の温度を測定し、改質触媒204の基準面からの距離に対して最大温度幅を整理した結果である。   2 shows a configuration in which the baffle plate 105 is provided in the combustion cylinder 104 as shown in FIG. 1 and a configuration in which the baffle plate 105 is not provided in the combustion cylinder 104 (from the combustion cylinder 104 shown in FIG. 1 to the baffle plate). In the configuration excluding 105, the details are not shown), the reforming is performed under an arbitrary condition in which a temperature detecting unit (not shown in detail) for measuring the temperature at an arbitrary position of the reforming catalyst 204 is about 650 ° C. The result of having measured the maximum temperature distribution width of the temperature distribution of the circumferential direction of the catalyst 204 in the catalyst height direction is shown. The most downstream side of the reforming catalyst 204 in the direction in which the raw material flows is defined as a reference plane (0 mm), and the temperature in the height direction is measured at intervals of 90 degrees with respect to the circumferential direction. It is the result of arranging the maximum temperature width with respect to the distance from the reference plane.

邪魔板105を設ける構成は、邪魔板105を設けない構成と比較して、最大温度分布幅を小さくできることがわかる。これは、燃焼筒104後の燃焼ガスが、燃焼筒104と内筒205との間の空間で構成される燃焼ガス流通経路107において径方向へ均一に流通して、改質触媒204を加熱しているからである。さらに詳しくは、邪魔板105を設ける構成では、邪魔板105を設けない構成と比較して、燃焼ガスが燃焼筒104の内側から外側へ流れ出す時の抵抗が大きくなるので、邪魔板105近傍で燃焼ガスの流れを滞りさせ、燃焼ガスを燃焼筒104内の出口部106近傍で対流しやすくさせる。さらに、出口部106の孔径を、燃焼筒104の外径より小さい孔径とすることで、燃焼ガスの流れを整流させる効果も得られて、燃焼ガスを燃焼筒104の周方向に対して均一に流通させることができるので、改質触媒204を均一に加熱することができる。一方、邪魔板105を設けない構成では、例えば、火炎がバーナ103の中心からずれて形成されてしまった場合、燃焼ガスは、燃焼筒104内の周方向に対して偏って流れ、偏ったまま燃焼筒104の内側から外側へ流れ出し、燃焼筒104と内筒205との間の空間で構成される燃焼ガス流通経路107も偏ったまま流れることになる。その結果、改質触媒204を不均一に加熱して、図2に示したように周方向に対して、最大温度分布幅も大きくなる。   It can be seen that the configuration in which the baffle plate 105 is provided can reduce the maximum temperature distribution width compared to the configuration in which the baffle plate 105 is not provided. This is because the combustion gas after the combustion cylinder 104 circulates uniformly in the radial direction in the combustion gas circulation path 107 formed by the space between the combustion cylinder 104 and the inner cylinder 205 to heat the reforming catalyst 204. Because. More specifically, in the configuration in which the baffle plate 105 is provided, the resistance when the combustion gas flows from the inside to the outside of the combustion cylinder 104 becomes larger than in the configuration in which the baffle plate 105 is not provided. The gas flow is stagnated to facilitate the convection of the combustion gas in the vicinity of the outlet 106 in the combustion cylinder 104. Further, by making the hole diameter of the outlet portion 106 smaller than the outer diameter of the combustion cylinder 104, an effect of rectifying the flow of the combustion gas can be obtained, and the combustion gas can be made uniform with respect to the circumferential direction of the combustion cylinder 104. Since it can be made to circulate, the reforming catalyst 204 can be heated uniformly. On the other hand, in the configuration in which the baffle plate 105 is not provided, for example, when the flame is formed out of the center of the burner 103, the combustion gas flows in a biased manner with respect to the circumferential direction in the combustion cylinder 104 and remains biased. The combustion gas flows out from the inside of the combustion cylinder 104 to the outside, and the combustion gas flow path 107 formed by the space between the combustion cylinder 104 and the inner cylinder 205 also flows while being biased. As a result, the reforming catalyst 204 is heated non-uniformly, and the maximum temperature distribution width increases in the circumferential direction as shown in FIG.

なお、改質触媒204を周方向に対して均一に加熱した場合、以下の効果も得ることができる。   In addition, when the reforming catalyst 204 is uniformly heated in the circumferential direction, the following effects can be obtained.

改質触媒204の加熱状態は、例えば、本実施の形態1のように改質触媒204中の任意の位置に温度検出部を設け、温度検出部で検出される温度が650℃になるように、燃料および空気の供給量を調節することでバーナ103の燃焼状態を調整して制御する。燃焼ガスの流れが燃焼筒104と内筒205との間の空間で構成される燃焼ガス流通経路107の周方向に対して不均一である場合、周方向に対しての改質触媒204の温度も不均
一になる。例えば、温度検出部を改質触媒204の原料ガス流れに対して最下流に位置する部分に設けた場合、図2に示すように、最大温度分布幅が80℃になる場合があると想定される。すなわち、温度検出部で検出される温度を650℃になるように加熱状態を制御しても、対向する位置の改質触媒の温度が730℃になっている可能性がある。前記の場合、改質触媒204を必要以上に加熱することになり、熱効率を低下させることにつながる。また、温度検出部の対向する位置の改質触媒204の温度が570℃になる可能性もある。前記の場合、改質反応が十分に進行せず、必要な水素量を確保できないことにつながる。それに対して、燃焼ガスの流れが周方向に対して均一な場合には、改質触媒204を周方向に対して均一に加熱できるので、バーナ103で燃焼させる燃料の量を少なくすることができ、水素含有ガスを効率よく生成することができるので、熱効率を向上させる効果も得ることができる。
As for the heating state of the reforming catalyst 204, for example, a temperature detection unit is provided at an arbitrary position in the reforming catalyst 204 as in the first embodiment, and the temperature detected by the temperature detection unit is 650 ° C. The combustion state of the burner 103 is adjusted and controlled by adjusting the supply amounts of fuel and air. When the flow of the combustion gas is not uniform with respect to the circumferential direction of the combustion gas flow path 107 constituted by the space between the combustion cylinder 104 and the inner cylinder 205, the temperature of the reforming catalyst 204 with respect to the circumferential direction. Becomes non-uniform. For example, when the temperature detection unit is provided in a portion located on the most downstream side with respect to the raw material gas flow of the reforming catalyst 204, it is assumed that the maximum temperature distribution width may be 80 ° C. as shown in FIG. The That is, even if the heating state is controlled so that the temperature detected by the temperature detection unit is 650 ° C., the temperature of the reforming catalyst at the opposing position may be 730 ° C. In the above case, the reforming catalyst 204 is heated more than necessary, leading to a decrease in thermal efficiency. Further, there is a possibility that the temperature of the reforming catalyst 204 at the position where the temperature detection unit faces is 570 ° C. In the above case, the reforming reaction does not proceed sufficiently, leading to the inability to secure the necessary amount of hydrogen. On the other hand, when the flow of combustion gas is uniform in the circumferential direction, the reforming catalyst 204 can be heated uniformly in the circumferential direction, so that the amount of fuel burned by the burner 103 can be reduced. Since the hydrogen-containing gas can be generated efficiently, the effect of improving the thermal efficiency can also be obtained.

さらに、以下に示す加工方法を用いることで、簡便に本実施の形態1に示す燃料処理装置1の燃焼筒104を作成することができる。   Furthermore, by using the processing method described below, the combustion cylinder 104 of the fuel processing apparatus 1 shown in the first embodiment can be easily created.

まず、燃焼筒104を円筒型に作成する。次に、その燃焼筒104の開口部分の先端に、中心部分に出口部106を設けた円盤型の邪魔板105を設置し、周囲を溶接し作成する。この加工方法では、熟練を要しないので、加工費を抑制することが可能である。また、簡便であるため、寸法管理も容易で、作成時のばらつきも抑制できるので、邪魔板105の出口部106を燃焼筒104の中心部分に確実に設置でき、燃焼ガスを周方向に対して均一に流通させることを確実にすることができる。   First, the combustion cylinder 104 is formed in a cylindrical shape. Next, a disc-shaped baffle plate 105 having an outlet 106 at the center is installed at the tip of the opening of the combustion cylinder 104, and the periphery is welded. Since this processing method does not require skill, the processing cost can be reduced. In addition, since it is simple, dimensional management is easy and variation during production can be suppressed, so that the outlet portion 106 of the baffle plate 105 can be reliably installed at the center portion of the combustion cylinder 104, and the combustion gas is directed in the circumferential direction. It is possible to ensure that it is distributed uniformly.

以上、本実施の形態1のように燃料処理装置1を構成するにより、簡便な構成で、改質触媒の周方向の温度分布を抑制し、かつ熱効率を向上させることのできる装置を提供することができる。
(実施の形態2)
次に、本発明の実施の形態2における燃料処理装置2の構成を説明する。
As described above, by configuring the fuel processing apparatus 1 as in the first embodiment, it is possible to provide an apparatus that can suppress the temperature distribution in the circumferential direction of the reforming catalyst and improve the thermal efficiency with a simple configuration. Can do.
(Embodiment 2)
Next, the structure of the fuel processor 2 in Embodiment 2 of this invention is demonstrated.

図3に、本発明の実施の形態2における燃料処理装置2の概略構成図を示す。本実施の形態2の燃料処理装置2は、実施の形態1の燃料処理装置1とほぼ同じ構成となるので、相違点のみを説明する。相違点は、邪魔板105の構成であり、実施の形態1の燃料処理装置1の邪魔板105に対して、実施の形態2の燃料処理装置2の邪魔板105では、出口部106に絞り加工を施し、燃焼筒104の外側に向かって、出口部ガイド109を設けた点となる。   In FIG. 3, the schematic block diagram of the fuel processing apparatus 2 in Embodiment 2 of this invention is shown. Since the fuel processing apparatus 2 of the second embodiment has almost the same configuration as the fuel processing apparatus 1 of the first embodiment, only the differences will be described. The difference lies in the configuration of the baffle plate 105, and the baffle plate 105 of the fuel processing device 2 of the second embodiment is drawn to the outlet portion 106 with respect to the baffle plate 105 of the fuel processing device 1 of the first embodiment. And an outlet guide 109 is provided toward the outside of the combustion cylinder 104.

運転時、バーナ103によって形成される火炎により高温にさらされている燃焼筒104は、装置停止時には、その高温状態から冷却されることになり、熱ひずみを生じる。熱ひずみは、装置の起動停止を繰り返す毎に生じることになり、起動停止の回数が多くなるほど変形を起こす可能性が大きくなる。この熱ひずみで邪魔板105が変形すると、出口部106が変形する、出口部106の中心がずれる等、燃焼ガスの流れの偏りを発生させる原因となり、改質触媒204を均一に加熱できなくなることがあるので、邪魔板105の変形を抑制することが重要となる。   During operation, the combustion cylinder 104 exposed to a high temperature by the flame formed by the burner 103 is cooled from the high temperature state when the apparatus is stopped, and heat distortion occurs. The thermal strain is generated every time the start and stop of the apparatus is repeated, and the possibility of deformation increases as the number of start and stop increases. If the baffle plate 105 is deformed by this thermal strain, the outlet portion 106 is deformed, the center of the outlet portion 106 is deviated, and the like, causing a deviation in the flow of combustion gas, and the reforming catalyst 204 cannot be heated uniformly. Therefore, it is important to suppress the deformation of the baffle plate 105.

そこで、本実施の形態2では、図3に示すように、邪魔板105の出口部106に、絞り加工を施して出口部ガイド109を構成する。この出口部ガイド109により、邪魔板105が熱ひずみに対して強い構造にすることができる。すなわち、邪魔板105の出口部106に絞り加工を施して出口部ガイド109を設けた構成では、燃焼筒104の内側での燃焼ガスを対流させることができるとともに、起動停止を繰り返す長期間の使用時にも、燃焼ガスの周方向への流通の均一性を確保することを可能とする。   Therefore, in the second embodiment, as illustrated in FIG. 3, the outlet portion guide 109 is configured by drawing the outlet portion 106 of the baffle plate 105. By this exit portion guide 109, the baffle plate 105 can be made strong against heat distortion. That is, in the configuration in which the outlet portion 106 of the baffle plate 105 is subjected to drawing processing and the outlet portion guide 109 is provided, the combustion gas inside the combustion cylinder 104 can be convected and the start and stop can be repeated for a long time. Sometimes, it is possible to ensure the uniformity of the circulation of the combustion gas in the circumferential direction.

なお、出口部ガイド109の構造は上記の構造に限らず、図4に示すように、出口部ガイド109を燃焼筒104の内側に折り返した構成、図5に示すように、出口部ガイド109を逆テーパー状に施した構成にしてもよい。出口部ガイド109を燃焼筒104の内側に折り返した構成、逆テーパー状に施した構成では、燃焼筒104の内側から外側へ燃焼ガスが流れる時の抵抗を高くできるので、燃焼ガスの対流をさらに引き起こす効果を得ることができる。その結果、燃焼筒104と内筒205との間の空間で構成される燃焼ガス流通経路107で、より均一に燃焼ガスを流すことができ、改質触媒204をさらに均一に加熱することを可能とする。   The structure of the outlet guide 109 is not limited to the above-described structure. As shown in FIG. 4, the outlet guide 109 is folded inside the combustion cylinder 104. As shown in FIG. You may make it the structure given in reverse taper shape. In the configuration in which the outlet guide 109 is folded back inside the combustion cylinder 104 or in a reverse tapered configuration, the resistance when the combustion gas flows from the inside to the outside of the combustion cylinder 104 can be increased, so that the convection of the combustion gas is further increased. The effect to cause can be acquired. As a result, the combustion gas can flow more uniformly in the combustion gas flow path 107 formed by the space between the combustion cylinder 104 and the inner cylinder 205, and the reforming catalyst 204 can be heated more uniformly. And

本発明は、有機化合物を含む原料と水とを水蒸気改質反応させ、水素含有ガスを生成させる、高い熱効率と耐久性が求められる燃料処理装置に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a fuel processing apparatus that is required to have a high thermal efficiency and durability, in which a raw material containing an organic compound and water are subjected to a steam reforming reaction to generate a hydrogen-containing gas.

本発明の実施の形態1における燃料処理装置の概略構成を示す模式図1 is a schematic diagram showing a schematic configuration of a fuel processing apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1における燃焼筒径方向の改質触媒分布幅を流れ方向にプロットした図The figure which plotted the reforming catalyst distribution width of the combustion cylinder radial direction in Embodiment 1 of this invention to the flow direction 本発明の実施の形態2における燃料処理装置の概略構成を示す模式図The schematic diagram which shows schematic structure of the fuel processing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における燃料処理装置の変形例の概略構成を示す模式図The schematic diagram which shows schematic structure of the modification of the fuel processing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における燃料処理装置の変形例の概略構成を示す模式図The schematic diagram which shows schematic structure of the modification of the fuel processing apparatus in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1、2 燃料処理装置
101 燃料供給経路
102 空気供給経路
103 バーナ
104 燃焼筒
105 邪魔板
106 出口部
107 燃焼ガス流通経路
108 燃焼ガス出口穴
109 出口部ガイド
201 原料供給経路
202 水供給経路
203 改質器
204 改質触媒
205 内筒
206 中筒
207 外筒
208 燃焼ガスカバー
DESCRIPTION OF SYMBOLS 1, 2 Fuel processing apparatus 101 Fuel supply path 102 Air supply path 103 Burner 104 Combustion cylinder 105 Baffle plate 106 Outlet part 107 Combustion gas distribution path 108 Combustion gas outlet hole 109 Outlet part guide 201 Raw material supply path 202 Water supply path 203 Reformation Vessel 204 reforming catalyst 205 inner cylinder 206 middle cylinder 207 outer cylinder 208 combustion gas cover

Claims (4)

燃料の燃焼により燃焼ガスを生成させる燃焼部と、
略円筒の形状であって、一方の開口部分の先端に径方向内側に向かって邪魔板が設けられ、他方の開口部分から内側に前記燃焼ガスを流入させて、前記邪魔板が設けられる開口部分を通して前記燃焼ガスを内側から外側へ流出させる、燃焼筒と、
有機化合物を含む原料と水とを水蒸気改質反応させる改質触媒を有し、内壁面と前記燃焼筒との間の空間で前記燃焼ガスの流通経路を構成するように設けられる改質器とを備える燃料処理装置。
A combustion section for generating combustion gas by combustion of fuel;
An opening portion in which a baffle plate is provided radially inward at the tip of one opening portion, and the baffle plate is provided by allowing the combustion gas to flow inward from the other opening portion. Through which the combustion gas flows out from the inside to the outside,
A reformer provided with a reforming catalyst for performing a steam reforming reaction between a raw material containing an organic compound and water, and configured to constitute a flow path of the combustion gas in a space between an inner wall surface and the combustion cylinder; A fuel processing apparatus comprising:
前記邪魔板は、前記燃焼ガスの出口穴となる、前記燃焼筒の外径より小さい径で開口する出口部を有する
請求項1記載の燃料処理装置
The fuel processing apparatus according to claim 1, wherein the baffle plate has an outlet portion that becomes an outlet hole for the combustion gas and opens with a diameter smaller than the outer diameter of the combustion cylinder.
前記邪魔板は、先端部分を径方向内側に向かって絞り加工することで構成される
請求項1記載の燃料処理装置。
The fuel processing apparatus according to claim 1, wherein the baffle plate is configured by drawing a distal end portion radially inward.
前記邪魔板は、さらに長さ方向に内側へ折り返す絞り加工することで構成される
請求項3記載の燃料処理装置。
The fuel processing apparatus according to claim 3, wherein the baffle plate is formed by further drawing back inward in the length direction.
JP2008096843A 2008-04-03 2008-04-03 Apparatus for treating fuel Pending JP2009249209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096843A JP2009249209A (en) 2008-04-03 2008-04-03 Apparatus for treating fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096843A JP2009249209A (en) 2008-04-03 2008-04-03 Apparatus for treating fuel

Publications (1)

Publication Number Publication Date
JP2009249209A true JP2009249209A (en) 2009-10-29

Family

ID=41310255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096843A Pending JP2009249209A (en) 2008-04-03 2008-04-03 Apparatus for treating fuel

Country Status (1)

Country Link
JP (1) JP2009249209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115071A1 (en) * 2014-01-28 2017-03-23 パナソニックIpマネジメント株式会社 Hydrogen generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115071A1 (en) * 2014-01-28 2017-03-23 パナソニックIpマネジメント株式会社 Hydrogen generator

Similar Documents

Publication Publication Date Title
JP4068111B2 (en) Hydrogen generator and fuel cell system provided with the same
KR101624359B1 (en) Hydrogen generating apparatus using steam reforming reaction with improved distribution of exhaust gas
US20130065145A1 (en) Hydrogen production apparatus and fuel cell system
JP6280431B2 (en) Fuel cell module
JP2008266125A (en) Fuel reforming apparatus, method of driving the apparatus and fuel cell system
JP2008007346A (en) Cylindrical body to be heated and reformer and evaporator using the same
JP5317080B2 (en) Reformer Burner
JP2017538091A (en) Catalyst burner equipment
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
JP2009249209A (en) Apparatus for treating fuel
US10833339B2 (en) Fuel cell system and method of running fuel cell system
JP5337556B2 (en) Desulfurization apparatus and fuel cell system
JP5329944B2 (en) Steam reformer for fuel cell
JP5428531B2 (en) Hydrogen production equipment
JP5337553B2 (en) Desulfurization apparatus and fuel cell system
JP2014005168A (en) Hydrogen generator and fuel cell system
JP2004028521A (en) Combustion device
WO2022113658A1 (en) Heater, heater production method, and heater attachment method
JP6450202B2 (en) Fuel cell module
EP3100976B1 (en) Hydrogen generating apparatus
JP2006179365A (en) Reformer for fuel cell
TWI501462B (en) Anti-carbon reformer
JP2007323904A (en) Solid oxide fuel cell module and its starting method
JP5658897B2 (en) Reforming apparatus and fuel cell system
JP2010260732A (en) Apparatus for treating fuel