JP2009248108A - Method of manufacturing non-oriented magnetic steel sheet for reducing occurrence of seam defect - Google Patents

Method of manufacturing non-oriented magnetic steel sheet for reducing occurrence of seam defect Download PDF

Info

Publication number
JP2009248108A
JP2009248108A JP2008096428A JP2008096428A JP2009248108A JP 2009248108 A JP2009248108 A JP 2009248108A JP 2008096428 A JP2008096428 A JP 2008096428A JP 2008096428 A JP2008096428 A JP 2008096428A JP 2009248108 A JP2009248108 A JP 2009248108A
Authority
JP
Japan
Prior art keywords
slab
rolling
steel sheet
hot
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008096428A
Other languages
Japanese (ja)
Other versions
JP4954933B2 (en
Inventor
Saori Haranaka
沙緒理 原中
Koichi Kirishiki
幸一 切敷
Minoru Matsumoto
穣 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008096428A priority Critical patent/JP4954933B2/en
Publication of JP2009248108A publication Critical patent/JP2009248108A/en
Application granted granted Critical
Publication of JP4954933B2 publication Critical patent/JP4954933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means by which when rolling a slab for non-oriented magnetic steel sheets with hot-rolling equipment including vertical rolls, the occurrence of seam defects in an end part of a coil after hot-rolled is reduced without affecting the magnetic properties of a product sheet even when the slab is rolled in the width direction with the vertical rolls in the early stage of hot rolling. <P>SOLUTION: Before heating the slab for the non-oriented magnetic steel sheets, corner parts extended in the longitudinal direction of the slab are chamfered over the entire length and, after heating the chamfered slab, the hot rolling is performed under the conditions that the finishing temperature of rough rolling is set to be ≥950°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、モータの鉄芯などの素材として使用される無方向性電磁鋼板の製造に関し、特に、製品寸法に対応した板幅の熱延コイルを、シーム疵の発生を少なくして歩留りよく得るための技術に関する。   The present invention relates to the manufacture of non-oriented electrical steel sheets used as materials such as iron cores of motors, and in particular, a hot-rolled coil having a sheet width corresponding to the product dimensions can be obtained with reduced yield by reducing the occurrence of seam wrinkles. For technology.

無方向性電磁鋼板の製造において、製造歩留りを向上して製造コストを下げるためには、製品寸法に対応した板幅を有する熱延コイルを得ることが必要である。そのための手段として、熱間圧延の前段で縦型ロール圧延機によるスラブ幅方向の圧延(幅圧下)を行い、スラブの寸法精度を高めることが有効である。   In the production of non-oriented electrical steel sheets, in order to improve the production yield and lower the production cost, it is necessary to obtain a hot rolled coil having a plate width corresponding to the product dimensions. For this purpose, it is effective to perform slab width direction rolling (width reduction) with a vertical roll mill before the hot rolling to increase the dimensional accuracy of the slab.

しかし、Siを1.5質量%以上含有する無方向性電磁鋼板用の連鋳スラブは、材質が脆く、そのような材質のスラブに幅圧下を行うと、熱間圧延後の鋼板の長手方向端部に沿って、シーム疵と呼ばれる細長い表面疵が発生する。
特に、Siを1.5質量%以上含有するスラブでは、熱延途中で相変態しないため、シーム疵が熱延終了まで残存しやすく、そのため、そのような無方向性電磁鋼板用のスラブにおいて、シーム疵の発生を抑制しつつ幅圧下を行うことは困難であった。
However, continuous cast slabs for non-oriented electrical steel sheets containing 1.5% by mass or more of Si are brittle, and when width reduction is performed on such slabs, the longitudinal direction of the steel sheet after hot rolling Along the edges, elongated surface wrinkles called seam wrinkles occur.
In particular, in a slab containing 1.5% by mass or more of Si, since it does not undergo phase transformation in the middle of hot rolling, seam flaws are likely to remain until the end of hot rolling, so in such a slab for a non-oriented electrical steel sheet, It was difficult to reduce the width while suppressing the occurrence of seam wrinkles.

この熱延板のシーム疵は、そのままでは製品鋼板まで残留して、鉄芯にした時の占積率や層間抵抗値を悪化させるため、疵の発生した部分をトリミングして除去する必要がある。このため、シーム疵が発生すると、製品歩留が著しく低下してしまう。   This hot-rolled sheet seam remains on the product steel plate as it is and deteriorates the space factor and interlayer resistance when it is made into an iron core. Therefore, it is necessary to trim and remove the wrinkled part. . For this reason, when seam wrinkles occur, the product yield is significantly reduced.

シーム疵の発生は、熱間圧延での加熱温度を上げることで軽減することができるが、加熱温度の上昇に伴い、無方向性電磁鋼板の磁気特性、特に鉄損が悪化するため、Si含有量の高い無方向性電磁鋼板の製造においては、スラブの幅圧下を有効に利用することができなかった。   The occurrence of seam wrinkles can be reduced by increasing the heating temperature in hot rolling, but as the heating temperature increases, the magnetic properties of the non-oriented electrical steel sheet, particularly the iron loss, deteriorates. In the production of a large amount of non-oriented electrical steel sheet, the width reduction of the slab could not be used effectively.

従来、無方向性電磁鋼板以外にも、高合金鋼やステンレス鋼などでシーム疵の発生が知られており、シーム疵による影響を少なくして、製造歩留りを上げる技術として、例えば、次のような技術が提案されている。   Conventionally, it has been known that seam flaws occur in high alloy steel and stainless steel in addition to non-oriented electrical steel sheets. As a technique for reducing the influence of seam flaws and increasing the production yield, for example, Technologies have been proposed.

特許文献1には、鋼種などに応じたエッジシーム入り込み量と、粗圧延前のスラブ幅に対する目標シートバー幅の差との関係をあらかじめ定めておき、粗圧延前に計測等で求めたスラブ幅に基づいて、エッジシーム入り込み量が熱延コイルの余幅を超えない範囲で目標シートバー幅を選定する技術が提案されている。
しかし、この技術は、粗圧延前のスラブ幅に応じて熱延コイル幅を決定するものであり、シーム疵自体の低減方法については、何ら示していない。
In Patent Document 1, the relationship between the amount of edge seam penetration according to the steel type and the difference in the target sheet bar width with respect to the slab width before rough rolling is determined in advance, and the slab width obtained by measurement before rough rolling is determined. Based on this, a technique for selecting a target sheet bar width in a range in which the amount of edge seam penetration does not exceed the remaining width of the hot-rolled coil has been proposed.
However, this technique determines the hot-rolled coil width according to the slab width before rough rolling, and does not show any method for reducing the seam wrinkle itself.

特許文献2には、ステンレス熱延鋼板の製造にあたり、水平ロールによる圧延時に自由表面となっているスラブ側面に形成されるしわを原因とするシーム疵の発生を低減するために、コーナー部全長にわたり面取りしたスラブを用い、そのスラブを、上下の傾斜壁面と溝底面とからなるカリバー溝を有するカリバー金型で幅プレスする技術が提案されている。
しかし、この技術は、プレスによる幅圧下を行う際、水平ロールによる圧延時に自由表面となっているスラブ側面に形成されるしわを原因とするシーム疵の発生を低減するための技術であり、縦型ロールを備えた一般の熱間圧延設備によって圧延する場合に適用できない問題があった。
In Patent Document 2, in the production of a stainless hot-rolled steel sheet, in order to reduce the occurrence of seam wrinkles caused by wrinkles formed on the side surface of the slab that is a free surface during rolling with a horizontal roll, A technique has been proposed in which a chamfered slab is used, and the slab is width-pressed with a caliber mold having a caliber groove composed of upper and lower inclined wall surfaces and a groove bottom surface.
However, this technology is a technology for reducing the occurrence of seam wrinkles caused by wrinkles formed on the side surface of the slab that is the free surface during rolling with a horizontal roll when performing width reduction with a press. There is a problem that cannot be applied when rolling with a general hot rolling facility equipped with a die roll.

そのため、無方向性電磁鋼板用のスラブを一般の縦型ロールを備えた熱間圧延設備によって幅圧下を実施する場合、製品板の磁気特性に影響を与えることなく、シーム疵の発生を低減できる手段の開発が求められている。   Therefore, when width reduction is performed on a slab for non-oriented electrical steel sheets by hot rolling equipment equipped with a general vertical roll, the occurrence of seam wrinkles can be reduced without affecting the magnetic properties of the product plate. Development of means is required.

特開平5−104121号公報JP-A-5-104121 特開2004−25255号公報JP 2004-25255 A

そこで、本発明は、無方向性電磁鋼板用のスラブを、縦型ロールを備えた熱間圧延設備によって圧延する際、熱間圧延の前段で縦型ロールによりスラブ幅方向の圧延を行っても、製品板の磁気特性に影響を与えることなく、熱延後の鋼板端部におけるシーム疵の発生が低減される手段を提供することを課題とする。   Therefore, when rolling the slab for a non-oriented electrical steel sheet with a hot rolling facility equipped with a vertical roll, the slab width direction rolling may be performed with the vertical roll before the hot rolling. It is an object of the present invention to provide means for reducing the occurrence of seam wrinkles at the end of a steel plate after hot rolling without affecting the magnetic properties of the product plate.

本発明は、上記の課題を解決するために、スラブコーナー部の研削を行い、かつ、粗圧延の終了温度を最適化することによって、製品板の磁気特性の劣化なく幅圧下を行うことができるようにしたものであり、その要旨は、以下のとおりである。   In order to solve the above-mentioned problems, the present invention can perform width reduction without deterioration of the magnetic properties of the product plate by grinding the slab corner and optimizing the end temperature of the rough rolling. The gist is as follows.

(1) 無方向性電磁鋼板用のスラブを加熱炉で加熱した後、縦型ロールによりスラブの幅圧延を行い、その後、熱間圧延を行うようにした無方向性電磁鋼板の製造方法において、前記スラブを加熱する前に、スラブの長手方向に伸びるコーナー部を全長にわたり面取りし、該面取りしたスラブを加熱した後、粗圧延の終了温度を、950℃以上とする条件で熱間圧延することを特徴とする無方向性電磁鋼板の製造方法。
(2) 前記コーナー部の面取りを、150℃以上、800℃以下の温度範囲で行うことを特徴とする(1)に記載の無方向性電磁鋼板の製造方法。
(3) スラブコーナーからの幅方向距離及び厚さ方向距離を、それぞれ5〜20mmの範囲とし、スラブの幅広面からの角度θを30〜50°とする条件でスラブコーナー部の面取りを行うことを特徴とする(1)または(2)に記載の無方向性電磁鋼板の製造方法。
(4) スラブ加熱温度を1000℃以上、1200℃以下とすることを特徴とする(1)〜(3)のいずれかに記載の無方向性電磁鋼板の製造方法。
(1) In a method for producing a non-oriented electrical steel sheet in which a slab for a non-oriented electrical steel sheet is heated in a heating furnace, then the slab is width-rolled by a vertical roll, and then hot-rolled. Before heating the slab, chamfer the corner portion extending in the longitudinal direction of the slab over the entire length, heat the chamfered slab, and then hot-roll under the condition that the end temperature of the rough rolling is 950 ° C. or higher. The manufacturing method of the non-oriented electrical steel sheet characterized by these.
(2) The method for producing a non-oriented electrical steel sheet according to (1), wherein the corner portion is chamfered in a temperature range of 150 ° C. or higher and 800 ° C. or lower.
(3) The chamfering of the slab corner is performed under the condition that the distance in the width direction and the distance in the thickness direction from the slab corner are in the range of 5 to 20 mm, respectively, and the angle θ from the wide surface of the slab is 30 to 50 °. (1) The manufacturing method of the non-oriented electrical steel sheet according to (2).
(4) The method for producing a non-oriented electrical steel sheet according to any one of (1) to (3), wherein the slab heating temperature is 1000 ° C. or more and 1200 ° C. or less.

本発明によれば、無方向性電磁鋼板の製造にあたり、シーム疵の発生を低減してスラブの幅圧下を行うことができるため、熱延コイルの幅精度が向上し、その結果、酸洗歩留が向上する。また、そのような効果を製品板の磁気特性を劣化させることなく得ることができる。   According to the present invention, when producing a non-oriented electrical steel sheet, the width reduction of the slab can be performed by reducing the occurrence of seam wrinkles, so that the width accuracy of the hot-rolled coil is improved. The yield is improved. Further, such an effect can be obtained without deteriorating the magnetic properties of the product plate.

本発明者は、無方向性電磁鋼板製造用のスラブを縦型ロールで幅圧下した場合におけるシーム疵の発生機構を、有限要素法を用いて解析(FEM解析)した。図1にFEM解析によって得られた圧下(50mm)時の摩擦応力ベクトルの配列の一例を示す。
図に示すように、縦型ロールとスラブとの摩擦力によって、幅圧下時のスラブコーナー部の近傍は、コーナー部の内部側の材料がコーナーエッジ寄りに倒れこむ方向に大きく剪断変形しており、本発明者らは、シーム疵はこの剪断変形により発生するとの知見を得た。
特に、Si含有量が高く、幅圧下前に相変態を開始する組成のスラブや相変態をしない組成のスラブでは、剪断変形を受けた後には変態しないために、シーム疵が熱延終了まで残存しやすいことも知見した。
The present inventor analyzed the generation mechanism of seam wrinkles (FEM analysis) using a finite element method when a slab for producing a non-oriented electrical steel sheet was reduced in width by a vertical roll. FIG. 1 shows an example of the arrangement of friction stress vectors obtained during the reduction (50 mm) obtained by FEM analysis.
As shown in the figure, due to the frictional force between the vertical roll and the slab, the material near the corner of the slab during width reduction is greatly sheared and deformed in the direction in which the material inside the corner collapses toward the corner edge. The present inventors have found that seam wrinkles are generated by this shear deformation.
In particular, in a slab having a high Si content and starting phase transformation before width reduction and a slab having no phase transformation, since it does not transform after undergoing shear deformation, the seam defect remains until the end of hot rolling. I also found it easy to do.

そこで、スラブコーナー部における縦型ロールとスラブとの摩擦力を緩和する手段について検討した結果、コーナー部の面取りが摩擦力の緩和に有効であり、シーム疵の発生の低減に効果があることを見出した。
図2に、幅圧下の前にコーナー部の面取りを実施したスラブ(Si:2.0質量%)と、面取りを実施しないスラブを、幅圧下した後に熱間圧延した場合の、幅圧下量とシーム疵発生率との関係を示す。
ここでいうシーム疵発生率とは、板エッジ部(エッジから入り100mm間)全長に対する後述の評点2以上の疵割合を示すものである。
なお、面取り量は、後述する図4のa、bの値を10mmとする条件で行った。
図2より、面取りを実施することで、シーム疵の発生率が減少することが分かる。
Therefore, as a result of examining the means for reducing the frictional force between the vertical roll and the slab at the slab corner, it was found that chamfering at the corner is effective in reducing the frictional force and is effective in reducing the occurrence of seam wrinkles. I found it.
FIG. 2 shows the width reduction amount when the slab (Si: 2.0 mass%) in which the corner portion is chamfered before width reduction and the slab without chamfering are hot-rolled after width reduction. The relationship with seam wrinkle incidence is shown.
Here, the seam wrinkle occurrence rate indicates a wrinkle ratio of a score of 2 or more, which will be described later, with respect to the entire length of the plate edge portion (between 100 mm from the edge).
The chamfering amount was performed under the condition that the values of a and b in FIG.
From FIG. 2, it can be seen that the occurrence rate of seam wrinkles is reduced by chamfering.

また、シーム疵の発生は、熱間圧延の際の粗圧延終了温度にも影響されることも見出した。
図3に、コーナー部の面取りを実施したスラブを、スラブ加熱後に幅圧下を施して熱間圧延した際の、粗圧延終了温度と熱延板におけるシーム疵の発生状況の関係を示す。
なお、疵の評点は、熱延板を目視し、シーム疵の程度によって0〜3に評価した。
また、シーム疵評点は次の通りとした。0はシーム疵発生なし、1は模様程度のシーム疵あり、2は深さ10μm未満のシーム疵あり、3は深さ10μm以上のシーム疵ありである。
It has also been found that the occurrence of seam wrinkles is affected by the rough rolling end temperature during hot rolling.
FIG. 3 shows the relationship between the rough rolling end temperature and the state of occurrence of seam wrinkles in the hot-rolled sheet when a slab with chamfered corners is hot-rolled after width reduction after slab heating.
In addition, the score of the scissors was evaluated as 0 to 3 according to the degree of the seam scissors by visually checking the hot-rolled sheet.
The seam ratings are as follows. 0 is no seam wrinkle, 1 is a seam wrinkle of a pattern level, 2 is a seam wrinkle having a depth of less than 10 μm, and 3 is a seam wrinkle having a depth of 10 μm or more.

図3より、粗圧延の終了温度が950℃で評点1、960℃以上で評点0となり、スラブ面取りを実施した上で、さらに粗圧延の終了温度を、950℃以上、より好ましくは960℃以上とすることで、シーム疵の発生が低減されていることが分かる。   From FIG. 3, the end temperature of rough rolling is 950 ° C. with a rating of 1 and 960 ° C. or higher with a score of 0, and after slab chamfering, the rough rolling end temperature is further 950 ° C. or higher, more preferably 960 ° C. or higher. It can be seen that the occurrence of seam wrinkles is reduced.

次に、以上の知見に基づく本発明の製造条件について説明する。   Next, the manufacturing conditions of the present invention based on the above knowledge will be described.

本発明は、無方向性電磁鋼板用に成分調整された溶鋼を用いて作製されたスラブを加熱炉で加熱した後、粗圧延及び仕上げ圧延よりなる熱間圧延を行い、さらに冷間圧延を行って無方向性電磁鋼板を製造する際、スラブを加熱する前に、スラブのコーナー部を全長にわたり面取りし、面取りしたスラブを加熱後、縦型ロールによりスラブの幅圧延を行い、ついで、粗圧延の終了温度を、950℃以上とする条件で熱間圧延することにより、シーム疵の発生を抑制して幅圧延を行うことができるようにする。   In the present invention, a slab produced using a molten steel whose components are adjusted for a non-oriented electrical steel sheet is heated in a heating furnace, followed by hot rolling consisting of rough rolling and finish rolling, and further cold rolling. When manufacturing non-oriented electrical steel sheets, before heating the slab, chamfer the corners of the slab over the entire length, heat the chamfered slab, perform width rolling of the slab with a vertical roll, and then rough rolling The hot rolling is performed under the condition that the finishing temperature is 950 ° C. or higher, so that the width rolling can be performed while suppressing the occurrence of seam wrinkles.

前記スラブに対する面取りは、スラブを長手方向に伸びるコーナー部の全長にわたり面取りを行う。スラブコーナー部の面取りを行うことで、幅圧下時のコーナー近傍、すり下げ方向の摩擦力が緩和されるため、シーム疵の発生を抑制することができる。
面取りは、図4に示すように、熱間グラインダーで直線的に断面が3角形状になるようにスラブ1のコーナー部を研削するのが効率的である。
The chamfering of the slab is performed over the entire length of the corner portion extending in the longitudinal direction of the slab. By chamfering the slab corner portion, the frictional force in the vicinity of the corner at the time of width reduction and in the sliding-down direction is relieved, so that the occurrence of seam wrinkles can be suppressed.
As shown in FIG. 4, the chamfering is efficiently performed by grinding the corner portion of the slab 1 so that the cross section is linearly formed by a hot grinder.

研削する量は、スラブの材質によって変化するが、図4に示すコーナーからの幅方向距離a、厚さ方向距離bとも、5〜30mmの幅で選択するのがよい。5mm未満では、面取りの効果が小さく、シーム疵を十分に低減することができない。また、30mmを超える量では除去される分の材料コストが問題となる。
また、面取りの角度としては、図4に示すスラブの幅広面からの角度θで、15〜75°が適当である。この角度範囲を外れると、面取りの効果が少ない。
The amount of grinding varies depending on the material of the slab, but both the width direction distance a and the thickness direction distance b from the corner shown in FIG. If it is less than 5 mm, the effect of chamfering is small, and seam wrinkles cannot be sufficiently reduced. In addition, if the amount exceeds 30 mm, the material cost corresponding to the removal becomes a problem.
The chamfering angle is an angle θ from the wide surface of the slab shown in FIG. Outside this angle range, the chamfering effect is small.

面取りする際のスラブの温度は、スラブ割れを防止するためには150℃以上とするのが好ましい。上限の温度は特に限定されるものではないが、スラブが凝固状態にある1300℃以下とする。面取り時の作業性を考慮すれば800℃以下がよい。   The slab temperature during chamfering is preferably 150 ° C. or higher in order to prevent slab cracking. Although the upper limit temperature is not particularly limited, it is set to 1300 ° C. or less at which the slab is in a solidified state. Considering workability at the time of chamfering, 800 ° C. or lower is preferable.

熱間圧延の際の粗圧延終了温度は、図3に示されるように、シーム疵の発生を抑制するために950℃以上とする。960℃以上であればより好ましい。この終了温度が950℃未満では、スラブの変形抵抗が大きくなるため、スラブコーナー部の面取りを実施してもシーム疵が発生する。   As shown in FIG. 3, the rough rolling end temperature during the hot rolling is set to 950 ° C. or higher in order to suppress the occurrence of seam wrinkles. It is more preferable if it is 960 degreeC or more. When the end temperature is less than 950 ° C., the deformation resistance of the slab increases, so that seam wrinkles are generated even if the chamfering of the slab corner portion is performed.

また、粗圧延終了温度の上限はシーム疵の抑制の点からは特に規制されるものではないが、無方向性電磁鋼板の磁気特性の点からは1200℃とするのが好ましい。1200℃を超える温度で終了するためには、スラブを1200℃を超える温度に加熱する必要があるが、その温度では、AlNが固溶してしまうため、熱間圧延時にAlNが微細析出してしまい、粒成長が阻害され、その結果、磁気特性、特に鉄損が悪化するようになる。このため、粗圧延終了温度も1200℃以下とするのがよい。より好ましいのは、1100℃以下である。   The upper limit of the rough rolling end temperature is not particularly restricted from the viewpoint of suppressing seam wrinkles, but is preferably set to 1200 ° C. from the viewpoint of the magnetic properties of the non-oriented electrical steel sheet. In order to finish at a temperature exceeding 1200 ° C., it is necessary to heat the slab to a temperature exceeding 1200 ° C., but at that temperature, since AlN is dissolved, AlN is finely precipitated during hot rolling. As a result, grain growth is hindered, and as a result, magnetic properties, particularly iron loss, deteriorate. For this reason, the rough rolling end temperature is preferably 1200 ° C. or lower. More preferred is 1100 ° C. or lower.

粗圧延の終了温度を950℃以上とするためには、熱間圧延前のスラブ加熱温度は、1000℃以上とする。また、スラブ加熱温度が1200℃を超えると、前記のようにAlNが固溶してしまうため、1200℃以下とするのがよい。   In order to set the end temperature of rough rolling to 950 ° C. or higher, the slab heating temperature before hot rolling is set to 1000 ° C. or higher. Further, when the slab heating temperature exceeds 1200 ° C., AlN is dissolved as described above, so it is preferable to set it to 1200 ° C. or less.

縦型ロールによる幅圧下は、スラブのSi量にもよるが、圧下量が20〜80mmの範囲で行うのが好ましい。幅圧下量が20mm以下では、面取りをする作業量に比べて、幅圧下の効果が少ない。また、幅圧下量が増加するに従い、シーム疵の発生率も増加するので、80mm以下とするのがよい。   Although the width reduction by the vertical roll depends on the amount of Si in the slab, the reduction is preferably performed in the range of 20 to 80 mm. When the width reduction amount is 20 mm or less, the effect of width reduction is less than the amount of work for chamfering. Further, as the width reduction amount increases, the occurrence rate of seam wrinkles also increases.

その他の、熱間仕上げ圧延や冷間圧延の条件などは、一般に無方向性電磁鋼板の製造において採用されている条件によって行なえばよい。
また、スラブの化学組成も、一般に無方向性電磁鋼板用として知られているものが採用でき、特定の化学組成に限定されるものではないが、シーム疵の発生は、特にSiを1.5質量%以上含有する無方向性電磁鋼板を製造する場合に問題になるものであるので、そのような無方向性電磁鋼板を製造する場合に本発明を適用するのが効果的である。
Other conditions such as hot finish rolling and cold rolling may be performed according to conditions generally employed in the production of non-oriented electrical steel sheets.
Further, the chemical composition of the slab can be generally used for non-oriented electrical steel sheets, and is not limited to a specific chemical composition. Since it becomes a problem when manufacturing a non-oriented electrical steel sheet containing at least mass%, it is effective to apply the present invention when manufacturing such a non-oriented electrical steel sheet.

以下、実施例を用いて、本発明の実施の態様についてさらに説明する。   Hereinafter, embodiments of the present invention will be further described with reference to examples.

質量%で、C:0.003%、Si:1.0〜3.5%、Mn:0.20%、Sol.Al:0.30%、S:0.003%、N:0.002%を含有する252mm厚の無方向性電磁鋼板用の連続鋳造スラブを作製し、このスラブのコーナー部を種々の条件で面取りした後、1150℃でスラブ加熱し、種々の幅圧下量で幅圧下した後、種々の終了温度で粗圧延し、880℃で仕上圧延して板厚2.0mmの熱延板を作製した。得られた熱延板のシーム疵を調べ、図2の場合と同様にしてシーム疵の程度を評価した。   In mass%, C: 0.003%, Si: 1.0 to 3.5%, Mn: 0.20%, Sol.Al: 0.30%, S: 0.003%, N: 0.002 Slabs for non-oriented electrical steel sheets with a thickness of 252 mm are prepared, the corners of the slabs are chamfered under various conditions, slab heated at 1150 ° C., and the width is reduced with various width reductions. Then, rough rolling was performed at various end temperatures, and finish rolling was performed at 880 ° C. to produce a hot-rolled sheet having a thickness of 2.0 mm. The seam wrinkles of the obtained hot-rolled sheet were examined, and the degree of seam wrinkles was evaluated in the same manner as in FIG.

その結果を、スラブのSi量、面取り条件、幅圧下量、粗圧延終了温度とともに表1に示す。表1より、本発明の条件を満たす場合は、いずれもシーム疵の発生が抑制されていることが確認された。
なお、比較例2は粗圧延終了温度が1200℃を超えているために鉄損が悪化した例、比較例12はスラブ加熱温度が1200℃を超えているために鉄損が悪化した例、比較例6はスラブ幅方向の面取り(a)が30mmを超えているために歩留まりが悪化した例、および比較例8はスラブ厚さ方向の面取り(b)が30mmを超えているために歩留まりが悪化した例である。
The results are shown in Table 1 together with the Si amount of the slab, the chamfering conditions, the width reduction amount, and the rough rolling end temperature. From Table 1, when satisfy | filling the conditions of this invention, it was confirmed that generation | occurrence | production of seam wrinkles is suppressed in all.
In addition, Comparative Example 2 is an example in which the iron loss deteriorates because the end temperature of rough rolling exceeds 1200 ° C, and Comparative Example 12 is an example in which the iron loss is deteriorated because the slab heating temperature exceeds 1200 ° C. In Example 6, the yield deteriorated because the chamfer (a) in the slab width direction exceeds 30 mm, and in Comparative Example 8, the yield deteriorates because the chamfer (b) in the slab thickness direction exceeds 30 mm. This is an example.

Figure 2009248108
Figure 2009248108

FEM解析によって得られた50mm圧下時の摩擦応力ベクトルの配列の一例を示す図である。It is a figure which shows an example of the arrangement | sequence of the friction stress vector at the time of 50 mm reduction obtained by FEM analysis. 面取りを実施したスラブと面取りを実施しないスラブ用いて熱間圧延した際の、幅圧下量とシーム疵発生率との関係を示す図である。It is a figure which shows the relationship between the amount of breadth reduction, and the seam wrinkle generation rate at the time of hot-rolling using the slab which implemented chamfering, and the slab which does not implement chamfering. 面取りを実施したスラブを幅圧下を施して熱間圧延した際の、粗圧延終了温度と熱延板におけるシーム疵の発生状況の関係を示す図である。It is a figure which shows the relationship between the rough rolling end temperature and the generation | occurrence | production condition of the seam wrinkle in a hot-rolled sheet at the time of hot rolling by performing width reduction of the slab which implemented chamfering. 面取りの態様を説明するための図である。It is a figure for demonstrating the aspect of chamfering.

符号の説明Explanation of symbols

1 スラブ
a コーナからの幅方向距離
b コーナからの厚さ方向距離
θ 面取り角度
1 Slab a Width distance from corner b Thickness direction distance from corner θ Chamfer angle

Claims (4)

無方向性電磁鋼板用のスラブを加熱炉で加熱した後、縦型ロールによりスラブの幅圧延を行い、その後、熱間圧延を行うようにした無方向性電磁鋼板の製造方法において、
前記スラブを加熱する前に、スラブの長手方向に伸びるコーナー部を全長にわたり面取りし、該面取りしたスラブを加熱した後、粗圧延の終了温度を、950℃以上とする条件で熱間圧延することを特徴とする無方向性電磁鋼板の製造方法。
After heating the slab for the non-oriented electrical steel sheet in a heating furnace, performing the width rolling of the slab with a vertical roll, and then performing the hot rolling in the manufacturing method of the non-oriented electrical steel sheet,
Before heating the slab, chamfer the corner portion extending in the longitudinal direction of the slab over the entire length, heat the chamfered slab, and then hot-roll under the condition that the end temperature of the rough rolling is 950 ° C. or higher. The manufacturing method of the non-oriented electrical steel sheet characterized by these.
前記コーナー部の面取りを、150℃以上、800℃以下の温度範囲で行うことを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。   The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the chamfering of the corner portion is performed in a temperature range of 150 ° C or higher and 800 ° C or lower. スラブコーナーからの幅方向距離及び厚さ方向距離を、それぞれ5〜30mmの範囲とし、スラブの幅広面からの角度θを15〜75°とする条件でスラブコーナー部の面取りを行うことを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。   The chamfering of the slab corner portion is performed under the condition that the distance in the width direction and the distance in the thickness direction from the slab corner are in the range of 5 to 30 mm, respectively, and the angle θ from the wide surface of the slab is 15 to 75 °. The manufacturing method of the non-oriented electrical steel sheet according to claim 1 or 2. スラブ加熱温度を1000℃以上、1200℃以下とすることを特徴とする請求項1〜3のいずれかに記載の無方向性電磁鋼板の製造方法。   The method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the slab heating temperature is 1000 ° C or higher and 1200 ° C or lower.
JP2008096428A 2008-04-02 2008-04-02 Method for producing non-oriented electrical steel sheet with less seam defects Active JP4954933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096428A JP4954933B2 (en) 2008-04-02 2008-04-02 Method for producing non-oriented electrical steel sheet with less seam defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096428A JP4954933B2 (en) 2008-04-02 2008-04-02 Method for producing non-oriented electrical steel sheet with less seam defects

Publications (2)

Publication Number Publication Date
JP2009248108A true JP2009248108A (en) 2009-10-29
JP4954933B2 JP4954933B2 (en) 2012-06-20

Family

ID=41309284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096428A Active JP4954933B2 (en) 2008-04-02 2008-04-02 Method for producing non-oriented electrical steel sheet with less seam defects

Country Status (1)

Country Link
JP (1) JP4954933B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615306A (en) * 1991-03-29 1994-01-25 Nippon Steel Corp Hot continuous rolling device line
JP2000017334A (en) * 1998-07-06 2000-01-18 Kawasaki Steel Corp Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JP2002224702A (en) * 2000-11-30 2002-08-13 Kawasaki Steel Corp Method of manufacturing stainless steel plate
JP2009045636A (en) * 2007-08-16 2009-03-05 Nippon Steel Corp Method of grinding slab, slab for hot rolling and method of manufacturing steel sheet using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615306A (en) * 1991-03-29 1994-01-25 Nippon Steel Corp Hot continuous rolling device line
JP2000017334A (en) * 1998-07-06 2000-01-18 Kawasaki Steel Corp Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JP2002224702A (en) * 2000-11-30 2002-08-13 Kawasaki Steel Corp Method of manufacturing stainless steel plate
JP2009045636A (en) * 2007-08-16 2009-03-05 Nippon Steel Corp Method of grinding slab, slab for hot rolling and method of manufacturing steel sheet using them

Also Published As

Publication number Publication date
JP4954933B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
KR101421392B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5975076B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
US9767946B2 (en) Non-oriented electrical steel sheet being less in deterioration of iron loss property by punching
JP6123960B1 (en) High silicon steel sheet and manufacturing method thereof
KR20130037216A (en) Oriented electromagnetic steel plate and production method for same
JP6194866B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5974671B2 (en) Ultra-thin electrical steel sheet
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
KR20180053353A (en) Directional electric steel sheet and manufacturing method thereof
JP4954933B2 (en) Method for producing non-oriented electrical steel sheet with less seam defects
JP4424224B2 (en) A slab that is a material of a hot-rolled steel sheet, a method for producing the slab, a method for producing the hot-rolled steel sheet, and a method for reducing the rate of occurrence of surface flaws occurring in the hot-rolled steel sheet
JP6614105B2 (en) Ingot rolling method for slabs
JP2015193027A (en) Manufacturing method of hot rolled steel plate
JP6790909B2 (en) Manufacturing method of hot-rolled steel sheet
JP4228995B2 (en) Manufacturing method of electrical steel sheet
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
JP5023452B2 (en) Hot rolled steel sheet with excellent surface properties
EP0628359B1 (en) Method of manufacturing hot rolled silicon steel sheets of excellent surface properties
JP2002066601A (en) Method for preventing surface cracking of continuous cast slab under large reduction of hot rolled width
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JP4696341B2 (en) Manufacturing method of thin steel sheet with excellent surface properties
JP2006255731A (en) Method for producing hot rolled steel sheet
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
KR20160133537A (en) High carbon steel hot rolling method
JP2005103600A (en) Method for hot-rolling continuously cast slab of high nickel alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R151 Written notification of patent or utility model registration

Ref document number: 4954933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350