JP2009246277A - Paste composition for solar cell electrode - Google Patents

Paste composition for solar cell electrode Download PDF

Info

Publication number
JP2009246277A
JP2009246277A JP2008093899A JP2008093899A JP2009246277A JP 2009246277 A JP2009246277 A JP 2009246277A JP 2008093899 A JP2008093899 A JP 2008093899A JP 2008093899 A JP2008093899 A JP 2008093899A JP 2009246277 A JP2009246277 A JP 2009246277A
Authority
JP
Japan
Prior art keywords
paste
solar cell
powder
electrode
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093899A
Other languages
Japanese (ja)
Other versions
JP5205108B2 (en
Inventor
Takahiro Sugiyama
高啓 杉山
Atsushi Nagai
淳 長井
Ayumi Murakami
歩 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2008093899A priority Critical patent/JP5205108B2/en
Publication of JP2009246277A publication Critical patent/JP2009246277A/en
Application granted granted Critical
Publication of JP5205108B2 publication Critical patent/JP5205108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste composition for a solar cell electrode, which preferably forms a large cross section printing pattern with a thin width diameter without damaging the printing characteristics. <P>SOLUTION: Spreading of paste on a paste applying surface is preferably suppressed while keeping appropriate mobility at the time of squeezing since the paste thixotropy is improved in view of the fact that an ethylcellulose with a degree of ethoxylation as low as 45-47% is contained with a proportion of 60% or more of the entire resin. This forms the large cross section printing pattern with the narrow width diameter without damaging the printing characteristics. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池の電極用に好適な導電性ペースト組成物に関する。   The present invention relates to a conductive paste composition suitable for a solar cell electrode.

例えば、一般的なシリコン系太陽電池は、p型多結晶半導体であるシリコン基板の上面にn+層を介して反射防止膜および受光面電極が備えられると共に、下面にp+層を介して裏面電極が備えられた構造を有している。上記反射防止膜は、十分な可視光透過率を保ちつつ表面反射率を低減するためのもので、窒化珪素、二酸化チタン、二酸化珪素等の薄膜から成る。 For example, a general silicon-based solar cell is provided with an antireflection film and a light-receiving surface electrode on an upper surface of a silicon substrate which is a p-type polycrystalline semiconductor via an n + layer, and on the lower surface via a p + layer. It has a structure with electrodes. The antireflection film is for reducing the surface reflectance while maintaining sufficient visible light transmittance, and is made of a thin film of silicon nitride, titanium dioxide, silicon dioxide or the like.

上記の太陽電池の受光面電極は、例えば、ファイヤースルーと称される方法で形成される。この電極形成方法では、例えば、前記反射防止膜をn+層上の全面に設けた後、例えばスクリーン印刷法を用いてその反射防止膜上に導電性ペーストを適宜の形状で塗布し、焼成処理を施す。上記導電性ペーストは、例えば、銀粉末と、ガラス粉末と、有機質ビヒクルと、有機溶媒とを主成分とするもので、焼成過程において、この導電性ペースト中のガラス成分が反射防止膜を破るので、導電性ペースト中の導体成分とn+層とによってオーミックコンタクトが形成される(例えば、特許文献3を参照。)。
特開平10−247418号公報 特開2003−059336号公報 特開2007−019106号公報
The light-receiving surface electrode of the solar cell is formed by a method called fire-through, for example. In this electrode forming method, for example, after the antireflection film is provided on the entire surface of the n + layer, a conductive paste is applied on the antireflection film in an appropriate shape by using, for example, a screen printing method, and is fired. Apply. The conductive paste is composed mainly of, for example, silver powder, glass powder, an organic vehicle, and an organic solvent, and the glass component in the conductive paste breaks the antireflection film during the firing process. An ohmic contact is formed by the conductor component in the conductive paste and the n + layer (see, for example, Patent Document 3).
Japanese Patent Laid-Open No. 10-247418 JP 2003-059336 A JP 2007-019106 A

ところで、上記のような銀を導体成分として含む不透明な受光面電極は、受光面に入射する太陽光を遮る。その受光面電極の占める面積が大きくなるほど、太陽エネルギーを吸収できる受光面積が減じられるので、太陽電池の変換効率が低下させられる。受光面積の減少を抑制するためには、受光面電極の電極幅寸法(すなわち印刷パターンの幅寸法)を細くすることが考えられる。しかしながら、電極幅寸法を細くするためには、塗布厚みを薄くして塗布面上における導電性ペーストの広がり(ダレ)を抑制する必要がある。そのため、電極幅寸法を細くすると電極断面積が小さくなることから、電気抵抗値が高くなり延いては電流密度が低下するので、変換効率を向上させることは困難であった。   By the way, the opaque light receiving surface electrode containing silver as a conductor component as described above blocks sunlight incident on the light receiving surface. As the area occupied by the light receiving surface electrode increases, the light receiving area capable of absorbing solar energy is reduced, so that the conversion efficiency of the solar cell is lowered. In order to suppress the reduction of the light receiving area, it is conceivable to reduce the electrode width dimension of the light receiving surface electrode (that is, the width dimension of the print pattern). However, in order to reduce the electrode width dimension, it is necessary to reduce the coating thickness to suppress the spread (sagging) of the conductive paste on the coating surface. For this reason, if the electrode width dimension is reduced, the electrode cross-sectional area is reduced, so that the electric resistance value is increased and the current density is lowered, so that it is difficult to improve the conversion efficiency.

これに対して、粘度が200〜500(Pa・s)およびチキソトロピー指数が1.5〜4.5の範囲内の導電性ペーストを用いることにより、塗布厚みを厚く保ったまま電極幅寸法を細くして電極断面積の縮小を抑制し、細幅寸法で電気抵抗値が低い受光面電極を形成することが提案されている(例えば、前記特許文献3を参照。)。この特許文献3において、粘度は、E型粘度計で3°コーンを使用した25(℃)、0.5(rpm)における測定値である。また、上記チキソトロピー指数には種々の定義が存在するが、スクリーン印刷の分野では、一般に、粘度のずり速度依存性を表すもので、上記特許文献3では、0.5(rpm)で測定した粘度を2.5(rpm)で測定した粘度で除した値である。   In contrast, by using a conductive paste with a viscosity of 200 to 500 (Pas) and a thixotropy index of 1.5 to 4.5, the electrode width is reduced while keeping the coating thickness thick. It has been proposed to form a light-receiving surface electrode that suppresses the reduction of the area and has a narrow width and a low electric resistance (see, for example, Patent Document 3). In Patent Document 3, the viscosity is a value measured at 25 (° C.) and 0.5 (rpm) using a 3 ° cone with an E-type viscometer. The thixotropy index has various definitions. In the field of screen printing, the thixotropy index generally represents the shear rate dependency of the viscosity. In Patent Document 3, the viscosity measured at 0.5 (rpm) is 2.5. It is a value divided by the viscosity measured in (rpm).

上記特許文献3に記載された導電性ペーストは、比較的高い粘度を有し流動性が低いことから塗布面上で広がり難いので、塗布厚みを比較的厚く保ったまま印刷パターン幅寸法を細くすることができる。導電性ペーストにはスクリーン印刷に適当な流動性を有すること、すなわちメッシュを容易に通過できる程度に粘度が十分に低いことが望まれる。チキソトロピー指数が十分に大きいとスキージングの際にスキージから作用するずり応力で低粘度化するので、印刷性を損なうことなく塗布面上における流動を抑制できる。なお、チキソトロピー指数が大きすぎると、メッシュ通過後に急激に粘度が上昇して流動性が失われるので、滑らかな印刷パターンが得られ難くなる。   Since the conductive paste described in Patent Document 3 has a relatively high viscosity and low fluidity, it is difficult to spread on the coating surface, so the width of the printed pattern is reduced while keeping the coating thickness relatively thick. be able to. It is desired that the conductive paste has fluidity suitable for screen printing, that is, has a sufficiently low viscosity so that it can easily pass through the mesh. If the thixotropy index is sufficiently large, the viscosity is lowered by the shear stress acting from the squeegee during squeezing, so that the flow on the coated surface can be suppressed without impairing the printability. If the thixotropy index is too large, the viscosity rapidly increases after passing through the mesh and the fluidity is lost, so that it becomes difficult to obtain a smooth print pattern.

しかしながら、本願発明者等が上記特許文献3に記載の導電ペーストの再現を試みたところ、同文献に記載されているように導電性粉末および樹脂の構成割合を一定の範囲に定めても、粘度およびチキソトロピー指数の制御が困難であると共に、必ずしも印刷性を保ったまま断面積の大きな細幅寸法の印刷パターンを得ることができなかった。そして、この結果を受けてペースト構成を見直した結果、単に導電性粉末および樹脂の構成割合を一定の範囲に定めるだけでは所望の特性を得ることはできず、ペーストを構成する樹脂に一定の範囲内のエトキシ化度のエチルセルロースを用いれば好ましい結果が得られることを見出した。   However, when the inventors of the present application tried to reproduce the conductive paste described in Patent Document 3, the viscosity of the conductive powder and the resin was determined within a certain range as described in the same document. In addition, it was difficult to control the thixotropy index, and it was impossible to obtain a print pattern having a narrow cross-sectional area with a large cross-sectional area while maintaining printability. And, as a result of reviewing the paste composition in response to this result, it is not possible to obtain desired characteristics simply by setting the composition ratio of the conductive powder and the resin within a certain range, and the resin constituting the paste has a certain range. It has been found that preferable results can be obtained by using ethyl cellulose having a degree of ethoxylation.

本発明は、上述した事情を背景として為されたもので、その目的は、印刷性を損なうことなく細幅寸法で断面積の大きな印刷パターンを好適に形成し得る太陽電池電極用導電性ペースト組成物を提供することにある。   The present invention has been made against the background described above, and its purpose is to provide a conductive paste composition for solar cell electrodes that can suitably form a print pattern having a narrow width and a large cross-sectional area without impairing printability. To provide things.

斯かる目的を達成するため、本発明の要旨とするところは、導体粉末と、ガラス粉末と、ベヒクルとを含む太陽電池電極用ペースト組成物であって、(a)前記ベヒクルは45〜47(%)のエトキシ化度のエチルセルロースが60(重量%)以上を占め且つ48(%)以上のエトキシ化度のエチルセルロースが残部を占める樹脂と溶剤とを含むことにある。   In order to achieve such an object, the gist of the present invention is a paste composition for a solar cell electrode comprising a conductor powder, a glass powder, and a vehicle, wherein (a) the vehicle is 45 to 47 ( %) Of ethyl cellulose having a degree of ethoxylation of 60% (% by weight) or more and ethyl cellulose having a degree of ethoxylation of 48% (%) or more comprising a resin and a solvent.

このようにすれば、太陽電池電極用ペースト組成物は、樹脂としてエチルセルロースが用いられると共に、45〜47(%)とエトキシ化度の低いエチルセルロースを樹脂全体の60(%)以上の割合で含むことから、ペーストのチキソトロピーが高められるので、スキージング時の適度な流動性を確保しながら、ペーストの塗布面における広がりを好適に抑制できる。そのため、印刷性を損なうことなく細幅寸法で断面積の大きな印刷パターンを形成することの可能な太陽電池電極用導電性ペースト組成物が得られる。   In this way, the solar cell electrode paste composition uses ethyl cellulose as the resin, and contains 45 to 47 (%) and ethyl cellulose with a low degree of ethoxylation in a proportion of 60 (%) or more of the entire resin. Therefore, the thixotropy of the paste is enhanced, so that the spread on the coated surface of the paste can be suitably suppressed while ensuring appropriate fluidity during squeezing. Therefore, the conductive paste composition for solar cell electrodes capable of forming a print pattern having a narrow width and a large cross-sectional area without impairing printability is obtained.

因みに、エチルセルロースは、塩化エチル(C2H5Cl)を用いてセルロース((C6H10O5)n)の水酸基(-OH)を部分的にエーテル化すなわちエトキシ基(C2H5O-)に置換したもので、エーテル化前の全水酸基に対する置換の割合をエトキシ化度或いはエトキシ化率と称する。導電性ペースト等の印刷用ペーストの樹脂としては、一般にエトキシ化度が48〜49.5(%)の範囲内、例えば49(%)のエチルセルロースが用いられている(例えば、前記特許文献1を参照。)。このようなエチルセルロースは糸引きなどが無いのでスクリーン印刷に好適であると共に、焼成時に燃え抜けやすいので電極用ペーストに好適である。 Incidentally, ethylcellulose is partially etherified with ethyl chloride (C 2 H 5 Cl) to partially hydroxylate the hydroxyl group (-OH) of cellulose ((C 6 H 10 O 5 ) n ), that is, ethoxy group (C 2 H 5 O The ratio of substitution with respect to all hydroxyl groups before etherification is referred to as ethoxylation degree or ethoxylation ratio. As a resin for a printing paste such as a conductive paste, ethylcellulose having a degree of ethoxylation in the range of 48 to 49.5 (%), for example, 49 (%) is generally used (see, for example, Patent Document 1). ). Such ethyl cellulose is suitable for screen printing because it does not have stringing or the like, and is suitable for an electrode paste because it easily burns off during firing.

本発明者等は、上記エトキシ化度の範囲のエチルセルロースを用いて調合組成を種々変更して導電ペーストを調製して評価した結果、適当なチキソトロピーを得ることは困難であるとの結論に至った。そして、エチルセルロースの一部を電極用ペーストには通常は用いられていないエトキシ化度の低いエチルセルロースで置き換えて試験を行った結果、これを樹脂全体に対して60(%)以上の割合で含む場合に、印刷性を保ったまま適度なチキソトロピーが得られることを見出した。本発明は、このような知見に基づいて為されたものである。なお、樹脂の残部を占めるエトキシ化度が48(%)以上のエチルセルロースは、例えば印刷用途に一般に用いられるエトキシ化度が48〜49.5(%)のものでよいが、それよりもエトキシ化度の高いものでも差し支えない。   As a result of preparing and evaluating a conductive paste by variously changing the formulation composition using ethyl cellulose in the above-mentioned range of ethoxylation degree, the present inventors have come to the conclusion that it is difficult to obtain an appropriate thixotropy. . And, as a result of conducting a test by replacing a part of ethyl cellulose with ethyl cellulose having a low ethoxylation degree that is not usually used for electrode paste, when this is included at a ratio of 60% or more with respect to the whole resin Furthermore, it has been found that an appropriate thixotropy can be obtained while maintaining printability. The present invention has been made based on such knowledge. The ethyl cellulose having an ethoxylation degree of 48 (%) or more that occupies the rest of the resin may have an ethoxylation degree of 48 to 49.5 (%) that is generally used for printing applications, for example. It can be expensive.

なお、上記範囲よりも広い45〜53(%)のエトキシ化度のエチルセルロースを含む導電ペーストも提案されている(例えば、前記特許文献2を参照。)。この導電ペーストは、電気回路の導体パターン形成に用いられるものであるが、上記エトキシ化度の範囲は、市販されているエチルセルロースにおける数値範囲をやや広めに記載したものに過ぎない。すなわち、上記特許文献2は、セルロース系樹脂とアクリル系樹脂とを併用して転写性を高めることを目的とするもので、上記エトキシ化度の範囲のものを用いる理由や、その作用効果は何ら示されていない。   In addition, a conductive paste containing ethyl cellulose having an ethoxylation degree of 45 to 53 (%) wider than the above range has also been proposed (see, for example, Patent Document 2). This conductive paste is used for forming a conductor pattern of an electric circuit, but the range of the degree of ethoxylation is merely a slightly larger numerical value range for commercially available ethyl cellulose. That is, the above-mentioned Patent Document 2 aims to improve transferability by using a cellulose resin and an acrylic resin in combination. Not shown.

ここで、好適には、前記ペースト組成物において、前記導体粉末は球状の銀粉末である。このようにすれば、塗布膜における導体粉末の充填率が高くなるため、導電性の高い銀が用いられることと相俟って、鱗片状等の他の形状の導体粉末が用いられる場合に比較して、その塗布膜から生成される導体の導電率が高くなる。そのため、一定の導電性を得るために必要な断面積が小さくなるので、必要な導電性を確保したまま線幅を一層細くすることが可能となる。したがって、このペースト組成物を受光面電極に適用して線幅を細くすれば、太陽エネルギーを吸収できる受光面積を一層大きくできるので、変換効率の一層高い太陽電池を得ることができる。   Here, preferably, in the paste composition, the conductor powder is a spherical silver powder. In this way, since the filling rate of the conductor powder in the coating film is increased, in combination with the use of highly conductive silver, it is compared with the case where conductor powder of other shapes such as scales is used. And the electrical conductivity of the conductor produced | generated from the coating film becomes high. For this reason, the cross-sectional area required for obtaining a certain level of conductivity is reduced, so that the line width can be further reduced while ensuring the necessary conductivity. Therefore, if the paste composition is applied to the light-receiving surface electrode to reduce the line width, the light-receiving area capable of absorbing solar energy can be further increased, so that a solar cell with higher conversion efficiency can be obtained.

しかも、上記のような球状の導体粉末は滑らかな表面形状を備えていることから、ペーストを流れ易くし、延いては版から抜け易くするので、版離れ性が悪いことに起因して印刷パターンの断面積が小さくなることが好適に抑制される利点もある。すなわち、膜厚を厚くすることに伴って断面形状が矩形断面から崩れることが抑制されるので、断面積が大きくなる。また、印刷用スクリーンの目詰まりも生じにくいので連続印刷が容易になる利点もある。なお、ペーストが流れ易くなると、塗布面上でペーストが広がり易くなる傾向があるが、本願発明のペーストによれば、前記のようにエトキシ化度の低いエチルセルロースが含まれることによってチキソトロピーが高められているので、上記のような球状粉末を用いても、塗布面上におけるペーストの広がりが好適に抑制される。   In addition, since the spherical conductor powder as described above has a smooth surface shape, it facilitates the flow of the paste, and thus easily escapes from the plate. There is also an advantage that a reduction in the cross-sectional area is preferably suppressed. That is, since the cross-sectional shape is prevented from collapsing from the rectangular cross-section as the film thickness is increased, the cross-sectional area is increased. In addition, there is an advantage that continuous printing is easy because clogging of the printing screen hardly occurs. If the paste is easy to flow, the paste tends to spread on the coated surface. However, according to the paste of the present invention, the thixotropy is increased by including ethylcellulose having a low degree of ethoxylation as described above. Therefore, even if the above spherical powder is used, the spread of the paste on the coated surface is suitably suppressed.

また、好適には、上記導体粉末は、平均粒径が2(μm)以下である。このようにすれば、平均粒径が十分に小さい導体粉末が用いられていることから、塗布膜における導体粉末の充填率が高められるため、その塗布膜から生成される導体の導電率が高められる。   Preferably, the conductor powder has an average particle size of 2 (μm) or less. In this way, since the conductor powder having a sufficiently small average particle diameter is used, the filling rate of the conductor powder in the coating film is increased, so that the conductivity of the conductor generated from the coating film is increased. .

また、前記導体粉末は、特に限定されず、必要な導電性その他の物性に応じて適宜のものを用い得る。但し、太陽電池電極用ペースト組成物には高い導電性や半田付け性が求められるため、このような観点から銀が最も好ましい。   Moreover, the said conductor powder is not specifically limited, According to required electroconductivity and other physical properties, an appropriate thing can be used. However, since the paste composition for solar cell electrodes is required to have high conductivity and solderability, silver is most preferable from such a viewpoint.

また、前記ガラス粉末は、特に限定されず、処理温度や導電性その他の物性に応じて適宜のものを用い得るが、例えば、硼珪酸鉛ガラス等が好適である。   Further, the glass powder is not particularly limited, and an appropriate one can be used depending on the processing temperature, conductivity, and other physical properties. For example, lead borosilicate glass is preferable.

また、好適には、前記導電性ペースト組成物は、前記導体粉末を70〜84重量部、前記ガラス粉末を3〜8重量部、および前記ベヒクルを10〜20重量部の範囲内の割合で含むものである。このようにすれば、印刷性が良好であり、導電性が高く、半田濡れ良好な電極を作製し得るペースト組成物が得られる。導体粉末が過少では高い導電性が得られず、過剰では流動性が低くなって印刷性が悪くなる。また、ガラス粉末が過少では基板との密着力が不足し、過剰では焼成後にガラスが電極表面に浮いて半田濡れ性が悪くなる。   Preferably, the conductive paste composition contains 70 to 84 parts by weight of the conductor powder, 3 to 8 parts by weight of the glass powder, and 10 to 20 parts by weight of the vehicle. It is a waste. In this way, a paste composition that can produce an electrode having good printability, high conductivity, and good solder wettability can be obtained. If the conductor powder is too small, high conductivity cannot be obtained, and if it is excessive, the fluidity is lowered and the printability is deteriorated. If the glass powder is too small, the adhesion to the substrate is insufficient, and if it is excessive, the glass floats on the electrode surface after firing and solder wettability is deteriorated.

また、本願発明のペースト組成物は、前述したように細幅で断面積の大きい導体パターンを形成できることから、太陽電池電極のうち特に受光面電極に好適に用い得る。しかしながら、受光面電極に限られず、裏面電極としても用いることができる。例えば、裏面電極は全面を覆うアルミニウム膜とこれに重なる帯状等の電極とから構成されるが、その帯状電極の構成材料としても好適である。   Moreover, since the paste composition of the present invention can form a conductor pattern having a narrow width and a large cross-sectional area as described above, it can be suitably used for a light receiving surface electrode among solar cell electrodes. However, it is not limited to the light receiving surface electrode, and can be used as a back surface electrode. For example, the back electrode is composed of an aluminum film covering the entire surface and a strip-like electrode overlapping therewith, but is also suitable as a constituent material of the strip-like electrode.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例のペースト組成物が適用されたシリコン系太陽電池10の断面構造を模式的に示す図である。図1において、太陽電池10は、例えばp型多結晶半導体であるシリコン基板12と、その上下面にそれぞれ形成されたn+層14およびp+層16と、そのn+層14上に形成された反射防止膜18および受光面電極20と、そのp+層16上に形成された裏面電極22とを備えている。 FIG. 1 is a diagram schematically showing a cross-sectional structure of a silicon-based solar cell 10 to which a paste composition according to an embodiment of the present invention is applied. In FIG. 1, a solar cell 10 is formed on a silicon substrate 12 which is, for example, a p-type polycrystalline semiconductor, an n + layer 14 and a p + layer 16 respectively formed on the upper and lower surfaces thereof, and the n + layer 14. The antireflection film 18 and the light receiving surface electrode 20, and the back electrode 22 formed on the p + layer 16 are provided.

上記のn+層14およびp+層16は、シリコン基板12の上下面に不純物濃度の高い層を形成することで設けられたもので、その高濃度層の厚さ寸法すなわち層14,16の厚さ寸法は例えばそれぞれ0.5(μm)程度である。n+層14に含まれる不純物は、例えばn型のドーパントである燐(P)であり、p+層16に含まれる不純物は、例えばp型のドーパントである硼素(B)である。 The n + layer 14 and the p + layer 16 are provided by forming layers having a high impurity concentration on the upper and lower surfaces of the silicon substrate 12, and the thickness dimension of the high concentration layer, that is, the layers 14 and 16 are formed. The thickness dimension is, for example, about 0.5 (μm). The impurity contained in the n + layer 14 is, for example, phosphorus (P) that is an n-type dopant, and the impurity contained in the p + layer 16 is, for example, boron (B) that is a p-type dopant.

また、前記の反射防止膜18は、例えば、窒化珪素等から成る薄膜で、例えば可視光波長の1/4程度の光学的厚さで設けられることによって10(%)以下、例えば2(%)程度の極めて低い反射率に構成されている。   The antireflection film 18 is a thin film made of, for example, silicon nitride, and is provided with an optical thickness of about 1/4 of the visible light wavelength, for example, 10% or less, for example, 2 (%). It has a very low reflectivity.

また、前記の受光面電極20は、例えば一様な厚さ寸法の厚膜導体から成るもので、図2に示されるように、多数本の細線部を有する櫛状を成す平面形状で受光面24の略全面に設けられている。上記の厚膜導体は、Agを93(重量%)程度および硼珪酸鉛ガラスを7(重量%)程度を含む厚膜銀から成るものである。また、上記の導体層の厚さ寸法は例えば15〜20(μm)の範囲内、例えば17(μm)程度で、細線部の各々の幅寸法は例えば80〜130(μm)の範囲内、例えば100(μm)程度、断面積は1400〜1900(μm2)の範囲内、例えば1500(μm2)程度である。そのため、受光面電極20はライン抵抗が例えば500〜530(Ω)の範囲内、例えば515(Ω)程度と低く、高い導電性を備えている。 The light receiving surface electrode 20 is made of, for example, a thick film conductor having a uniform thickness, and as shown in FIG. 2, the light receiving surface has a planar shape that forms a comb shape having a plurality of thin wire portions. 24 is provided on substantially the entire surface. The above thick film conductor is made of thick film silver containing about 93 (% by weight) Ag and about 7 (% by weight) lead borosilicate glass. Further, the thickness dimension of the conductor layer is, for example, in the range of 15 to 20 (μm), for example, about 17 (μm), and the width dimension of each thin line portion is in the range of, for example, 80 to 130 (μm), for example, About 100 (μm), the cross-sectional area is in the range of 1400 to 1900 (μm 2 ), for example, about 1500 (μm 2 ). For this reason, the light-receiving surface electrode 20 has a low line resistance within a range of, for example, 500 to 530 (Ω), for example, about 515 (Ω), and has high conductivity.

また、前記の裏面電極22は、p+層16上にアルミニウムを導体成分とする厚膜材料を略全面に塗布して形成された全面電極26と、その全面電極26上に帯状に塗布して形成された厚膜銀から成る帯状電極28とから構成されている。この帯状電極28は、裏面電極22に導線等を半田付け可能にするために設けられたものである。 Further, the back electrode 22 is formed by applying a full-surface electrode 26 formed by applying a thick film material containing aluminum as a conductor component on the p + layer 16 over almost the entire surface, and a strip-like application on the full-surface electrode 26. The band-shaped electrode 28 made of thick film silver is formed. The belt-like electrode 28 is provided in order to make it possible to solder a conducting wire or the like to the back electrode 22.

以上のように構成された太陽電池10は、前述したように受光面電極20のライン幅が細く、且つ、断面積が大きいことから、高い導電性を備えているので、短絡電流密度Jsc、フィルファクターFFが、何れも従来に比較して大きく、開放電圧Vocは従来並に保たれ、その結果、高い変換効率を有している。   Since the solar cell 10 configured as described above has high conductivity because the line width of the light-receiving surface electrode 20 is narrow and the cross-sectional area is large as described above, the short-circuit current density Jsc, filter The factor FF is large compared to the conventional case, and the open-circuit voltage Voc is kept at the same level as the conventional case. As a result, the conversion efficiency is high.

上記のような受光面電極20は、例えば、良く知られたファイヤースルー法によって形成されたものである。その受光面電極形成を含む太陽電池10の製造方法の一例を以下に説明する。   The light receiving surface electrode 20 as described above is formed by, for example, a well-known fire-through method. An example of the manufacturing method of the solar cell 10 including the formation of the light receiving surface electrode will be described below.

まず、下記表1に示す調合組成でベヒクルを調製する。例えば、下記の構成材料を攪拌機等を用いて混合し、例えば90(℃)で6〜8時間程度加熱することにより、エチルセルロースを溶解する。

Figure 2009246277
First, a vehicle is prepared with the composition shown in Table 1 below. For example, the following constituent materials are mixed using a stirrer or the like, and heated at 90 (° C.) for about 6 to 8 hours to dissolve ethyl cellulose.
Figure 2009246277

上記の構成材料のうち2種のエチルセルロースは、何れも市販品(例えば、ダウケミカル社製エトセル(登録商標))であるが、エトキシ化度が48〜49.5(%)のエチルセルロースは、従来から電極用の導電性ペーストに用いられているもの(例えばエトセル(登録商標)STD型)である。また、エトキシ化度が45〜47(%)のエチルセルロースは、電極用のペースト用途ではなく、火薬原料等に用いられているもの(例えばエトセル(登録商標)MED型)である。これら2種のエチルセルロースは、STD型が40(wt%)、MED型が60(wt%)の割合で用いられており、このように調製されたベヒクルを、以下、改良ベヒクルと称する。   Of the above constituent materials, the two types of ethyl cellulose are both commercially available products (for example, Etocel (registered trademark) manufactured by Dow Chemical Co., Ltd.), but ethyl cellulose having an ethoxylation degree of 48 to 49.5 (%) has been conventionally used as an electrode. Used for conductive pastes (for example, Etocel (registered trademark) STD type). Further, ethylcellulose having an ethoxylation degree of 45 to 47 (%) is not used as an electrode paste, but is used as an explosive material or the like (for example, Etocel (registered trademark) MED type). These two types of ethyl cellulose are used in a ratio of STD type of 40 (wt%) and MED type of 60 (wt%). The vehicle thus prepared is hereinafter referred to as an improved vehicle.

次いで、上記のベヒクルを用いて、下記表2に示す調合組成で導電性ペーストを調製する。この調製工程は、下記の構成材料を混合し、例えば三本ロールミルで分散することによって行う。

Figure 2009246277
Next, using the vehicle, a conductive paste is prepared with the composition shown in Table 2 below. This preparation process is performed by mixing the following constituent materials and dispersing them with, for example, a three-roll mill.
Figure 2009246277

上記の構成材料のうち、Ag粉末は球状粉で、平均粒径は2(μm)程度である。また、硼珪酸鉛ガラスは別途調製したガラスフリットを用いた。   Among the above constituent materials, the Ag powder is a spherical powder, and the average particle size is about 2 (μm). Separately prepared glass frit was used for lead borosilicate glass.

上記のようにして導電性ペーストを調製する一方、適宜のシリコン基板に例えば、熱拡散法やイオンプランテーション等の良く知られた方法で不純物を拡散し或いは注入して前記n+層14およびp+層16を形成することにより、前記シリコン基板12を作製する。次いで、これに例えばスピンコーティング等の適宜の方法で窒化珪素薄膜を形成し、前記反射防止膜18を設ける。 While preparing the conductive paste as described above, the n + layer 14 and the p + are diffused or implanted into an appropriate silicon substrate by a well-known method such as thermal diffusion or ion plantation. By forming the layer 16, the silicon substrate 12 is produced. Next, a silicon nitride thin film is formed thereon by an appropriate method such as spin coating, and the antireflection film 18 is provided.

次いで、上記の反射防止膜18上に前記図2に示すパターンで前記導電性ペーストをスクリーン印刷する。印刷線幅は100(μm)とした。これを例えば120(℃)で乾燥し、更に、近赤外炉において820(℃)で焼成処理を施す。これにより、その焼成過程で導電ペースト中のガラス成分が反射防止膜18を溶かし、その導電性ペーストが反射防止膜18を破るので、導電ペースト中の導体成分すなわち銀とn+層14との電気的接続が得られ、前記図1に示されるようにシリコン基板12と受光面電極20とのオーミックコンタクトが得られる。受光面電極20は、このようにして形成される。 Next, the conductive paste is screen-printed on the antireflection film 18 with the pattern shown in FIG. The printing line width was 100 (μm). This is dried at, for example, 120 (° C.), and further subjected to a baking treatment at 820 (° C.) in a near infrared furnace. As a result, the glass component in the conductive paste dissolves the antireflection film 18 in the firing process, and the conductive paste breaks the antireflection film 18, so that the electrical component between the conductive component in the conductive paste, that is, silver and the n + layer 14. As shown in FIG. 1, ohmic contact between the silicon substrate 12 and the light-receiving surface electrode 20 is obtained. The light receiving surface electrode 20 is formed in this way.

次いで、上記シリコン基板12の裏面全面に、例えばアルミニウムペーストをスクリーン印刷法等で塗布し、焼成処理を施すことによってアルミニウム厚膜から成る前記全面電極26を形成する。更に、その全面電極26の表面に前記導電性ペーストをスクリーン印刷法等を用いて帯状に塗布して焼成処理を施すことによって、前記帯状電極28を形成する。これにより、裏面全面を覆う全面電極26と、その表面の一部に帯状に設けられた帯状電極28とから成る裏面電極22が形成され、前記の太陽電池10が得られる。   Next, for example, an aluminum paste is applied to the entire back surface of the silicon substrate 12 by a screen printing method or the like, and a baking process is performed to form the entire surface electrode 26 made of a thick aluminum film. Further, the band-like electrode 28 is formed by applying the conductive paste on the surface of the entire surface electrode 26 in a band-like form using a screen printing method or the like and performing a baking treatment. Thereby, the back electrode 22 which consists of the full surface electrode 26 which covers the whole back surface, and the strip | belt-shaped electrode 28 provided in strip shape on a part of the surface is formed, and the said solar cell 10 is obtained.

このようにして得られた太陽電池10について、受光面電極20の特性を評価した結果を、前記表1に示したものとは異なる組成のベヒクル或いは前記表2に示したものとは異なる組成のペーストを用いた他の実施例や比較例の評価結果と併せて説明する。   As a result of evaluating the characteristics of the light-receiving surface electrode 20 for the solar cell 10 thus obtained, a vehicle having a composition different from that shown in Table 1 above or a composition different from that shown in Table 2 above was obtained. This will be described together with evaluation results of other examples and comparative examples using paste.

表3は、実施例および比較例の調合組成および評価結果をまとめたものである。表3において、実施例1は、前記表1に示す改良ベヒクルを用いて前記表2の仕様で調合したペーストである。また、実施例2〜5は、同じ改良ベヒクルを用いているが、調合組成を異なるものとしたペーストである。これらのうち実施例2,3は固形分である銀粉末およびガラスフリットの合計量を保ったまま、実施例1よりも銀粉末量を多く或いは少なくしたものである。また、実施例4,5は実施例1よりも固形分量を減じ或いは増したものである。また、実施例6,7は、ベヒクルを調製するに際してエチルセルロース中のMED型の割合を変更したもので、実施例6はMED型を75(%)、実施例7は全てMED型としたもので、ペーストの調合仕様は実施例1と同一である。これら実施例6,7に用いたものも、特に区別する必要が無ければ改良ベヒクルと称する。   Table 3 summarizes the preparation compositions and evaluation results of Examples and Comparative Examples. In Table 3, Example 1 is a paste prepared using the improved vehicle shown in Table 1 with the specifications in Table 2. Examples 2 to 5 are pastes using the same improved vehicle but having different blending compositions. Of these, Examples 2 and 3 were obtained by increasing or decreasing the amount of silver powder as compared with Example 1 while maintaining the total amount of silver powder and glass frit as solids. In Examples 4 and 5, the solid content was reduced or increased compared to Example 1. In Examples 6 and 7, the ratio of MED type in ethyl cellulose was changed when preparing the vehicle. Example 6 was obtained by changing the MED type to 75 (%), and Example 7 was all made MED type. The preparation specifications of the paste are the same as in Example 1. Those used in Examples 6 and 7 are also called improved vehicles unless there is a particular need to distinguish them.

Figure 2009246277
Figure 2009246277

また、比較例1〜4のペーストは、以下のようにベヒクルや銀粉末が異なる他は何れも前記実施例1と同一のペースト調合組成で調製したものである。比較例1は前記改良ベヒクルに代えて表4に示す従来ベヒクルを用いた。この従来ベヒクルはエチルセルロースの全量をSTD型にしたもので、比較例1のペーストはMED型のエチルセルロースを含まない従来のペーストである。比較例2は前記改良ベヒクルに代えてMED型のエチルセルロースの割合がそれよりも少ない50(wt%)に留まるベヒクルを用いた。比較例3は上記従来ベヒクルを用いると共に球状の銀粉末に代えて鱗片状の銀粉末を用いた。比較例4は球状の銀粉末に代えて鱗片状の銀粉末を用いた。   Further, the pastes of Comparative Examples 1 to 4 were prepared with the same paste preparation composition as in Example 1 except that the vehicle and silver powder were different as follows. In Comparative Example 1, a conventional vehicle shown in Table 4 was used in place of the improved vehicle. In this conventional vehicle, the total amount of ethyl cellulose is STD type, and the paste of Comparative Example 1 is a conventional paste that does not contain MED type ethyl cellulose. In Comparative Example 2, instead of the improved vehicle, a vehicle in which the proportion of MED-type ethyl cellulose remained at 50 (wt%), which is smaller than that, was used. In Comparative Example 3, the above-described conventional vehicle was used, and a scaly silver powder was used in place of the spherical silver powder. In Comparative Example 4, scaly silver powder was used instead of spherical silver powder.

Figure 2009246277
Figure 2009246277

上記表3の評価結果に示されるように、実施例1〜7のように改良ベヒクルおよび球状のAg粉末を用いると、抵抗率を従来(比較例1)並の3.1〜3.3(Ω・cm)に保ちながら、焼成膜厚が増大し且つライン幅が縮小する。すなわち、焼成膜厚は、従来が10〜12(μm)であったのに対し、実施例1,3では14〜19(μm)、実施例2では15〜20(μm)、実施例4では14〜18(μm)、実施例5では16〜20(μm)、実施例6では16〜21(μm)にそれぞれ増大した。また、ライン幅は、従来が126〜136(μm)であったのに対し、実施例1では98〜105(μm)、実施例2では99〜104(μm)、実施例3では101〜107(μm)、実施例4では102〜108(μm)、実施例5では97〜104(μm)、実施例6では98〜105(μm)に、実施例7では98〜103(μm)にそれぞれ縮小した。   As shown in the evaluation results of Table 3 above, when the improved vehicle and spherical Ag powder were used as in Examples 1 to 7, the resistivity was 3.1 to 3.3 (Ω · cm), which is the same as the conventional (Comparative Example 1). The film thickness is increased while the line width is reduced. That is, the fired film thickness was 10 to 12 (μm) in the past, but 14 to 19 (μm) in Examples 1 and 3, 15 to 20 (μm) in Example 2, and It increased to 14 to 18 (μm), in Example 5 to 16 to 20 (μm), and in Example 6 to 16 to 21 (μm). Further, the line width is 126 to 136 (μm) in the prior art, 98 to 105 (μm) in Example 1, 99 to 104 (μm) in Example 2, and 101 to 107 in Example 3. (μm), 102 to 108 (μm) in Example 4, 97 to 104 (μm) in Example 5, 98 to 105 (μm) in Example 6, 98 to 103 (μm) in Example 7, respectively Reduced.

なお、抵抗率は、太陽電池製造用とは別にシリコン基板を用意して、そのシリコン基板にペーストを十分に大きい面積で塗布し、120(℃)で乾燥後、近赤外炉にて820(℃)で焼成することによって評価用導体膜を形成して測定した。その評価用導体膜の抵抗率を抵抗率計を用いて四端子法で測定し、焼成膜厚で換算して比較した。   In addition, the resistivity is prepared for a silicon substrate separately from the solar cell manufacturing, the paste is applied to the silicon substrate in a sufficiently large area, dried at 120 (° C.), and then in a near infrared furnace 820 ( The conductive film for evaluation was formed by baking at [° C.] and measured. The resistivity of the conductor film for evaluation was measured by a four-terminal method using a resistivity meter, and converted by a fired film thickness for comparison.

このようにして、断面積が、従来では1248〜1453(μm2)であったのに対し、実施例1では1423〜1890(μm2)、実施例2では1503〜1804(μm2)、実施例3では1405〜1857(μm2)、実施例4では1432〜1869(μm2)、実施例5では1521〜1908(μm2)、実施例6では1435〜1925(μm2)、実施例7では1310〜1960(μm2)にそれぞれ増大させられた結果として、ライン抵抗が、従来では654(Ω)であったのに対し、実施例1〜7では508〜538(Ω)に著しく減じられる。したがって、実施例1〜7の何れの導電ペーストを用いて受光面電極20を形成した場合にも、ライン抵抗を減じつつ有効な受光面積が増大させられることから、変換効率Effが、従来では15.28(%)であったのに対し、例えば実施例1では16.45(%)に飛躍的に高められる。 In this way, the cross-sectional area, whereas was 1248~1453 (μm 2) In the conventional, in Example 1 1423~1890 (μm 2), in Example 2 1503~1804 (μm 2), carried out In Example 3, 1405-1857 (μm 2 ), in Example 4, from 1432 to 1869 (μm 2 ), in Example 5, from 1521 to 1908 (μm 2 ), in Example 6, from 1435 to 1925 (μm 2 ), and from Example 7 As a result, the line resistance was reduced to 508 to 538 (Ω) in Examples 1 to 7 as compared with the conventional line resistance of 654 (Ω) as a result of being increased to 1310 to 1960 (μm 2 ). . Therefore, even when the light receiving surface electrode 20 is formed using any of the conductive pastes of Examples 1 to 7, since the effective light receiving area can be increased while reducing the line resistance, the conversion efficiency Eff is conventionally 15.28. For example, in Example 1, it was dramatically increased to 16.45 (%).

なお、太陽電池特性の評価は、ソーラーシミュレータを使用して、負荷を変化させることで出力電流値を変化させつつ電流値および電圧値を測定し、短絡光電流密度Jsc、開放電圧Voc、フィルファクターFF、変換効率Effを求めることで行った。実施例によれば、ライン幅寸法が縮小されることから有効な受光面積が増大するので、短絡電流密度Jscが増大する。また、断面積が増大し延いてはライン抵抗が低下することから、フィルファクターFFが増大する。一方、開放電圧Vocは導電ペーストによらず従来並の0.61(V)程度に保たれた。このように、本実施例によれば、Jsc、FFが増大し且つVocが維持されるので、変換効率Effが向上するのである。   In addition, the evaluation of solar cell characteristics uses a solar simulator to measure the current value and voltage value while changing the output current value by changing the load, and the short-circuit photocurrent density Jsc, open circuit voltage Voc, fill factor This was done by obtaining FF and conversion efficiency Eff. According to the embodiment, since the effective light receiving area increases because the line width dimension is reduced, the short circuit current density Jsc increases. In addition, since the cross-sectional area increases and the line resistance decreases, the fill factor FF increases. On the other hand, the open-circuit voltage Voc was maintained at about 0.61 (V), which is the same level as before, regardless of the conductive paste. Thus, according to the present embodiment, Jsc and FF increase and Voc is maintained, so that the conversion efficiency Eff is improved.

なお、比較例1のペーストは、エトキシ化度が48〜49.5(%)のエチルセルロースおよびBDGAのみから成るベヒクルが用いられていることから、印刷に適した粘度に調節すると、塗布面上で流れ易くなる。そのため、このペーストを用いて受光面電極を形成すると、図3に断面を模式的に示すように、薄く且つ幅寸法の広い導体膜30が形成される。これに対して、実施例のペーストは、エトキシ化度が45〜47(%)のエチルセルロースをエチルセルロース全体の60(%)以上の割合で含むベヒクルが用いられていることから、チキソトロピーが改善され、良好な印刷性を保ったまま塗布面上で流れにくくなる。そのため、これを用いて形成された受光面電極20の断面は図4に模式的に示すように比較例1のものに比較して幅が狭く且つ高さが高くなるから、前述したようにライン幅を減じ且つライン抵抗を低くできるのである。   The paste of Comparative Example 1 uses a vehicle consisting only of ethyl cellulose having a degree of ethoxylation of 48 to 49.5 (%) and BDGA. Therefore, when the viscosity is adjusted to be suitable for printing, it easily flows on the coated surface. Become. Therefore, when the light-receiving surface electrode is formed using this paste, a thin conductor film 30 having a wide width dimension is formed as schematically shown in FIG. On the other hand, the paste of the example uses a vehicle containing ethyl cellulose having an ethoxylation degree of 45 to 47 (%) in a ratio of 60 (%) or more of the whole ethyl cellulose, so that thixotropy is improved. It becomes difficult to flow on the coated surface while maintaining good printability. For this reason, the cross section of the light-receiving surface electrode 20 formed using this is narrower and higher in height than the comparative example 1 as schematically shown in FIG. The width can be reduced and the line resistance can be lowered.

また、比較例2のペーストに用いられているベヒクルは、MED型のエチルセルロースを含んでいるが、樹脂全体に占める割合が50(wt%)に留まることから、焼成膜厚、ライン幅共に比較例1と同等かそれよりも僅かに改善された程度である。すなわち、チキソトロピーの改善傾向は認められるものの不十分で、ライン抵抗は659(Ω)と比較例1と同等である。   In addition, the vehicle used in the paste of Comparative Example 2 contains MED type ethyl cellulose, but the proportion of the total resin is only 50 (wt%), so both the fired film thickness and the line width are comparative examples. This is equivalent to 1 or slightly improved. That is, although a tendency to improve thixotropy is recognized, it is insufficient, and the line resistance is 659 (Ω), which is equivalent to that of Comparative Example 1.

なお、前記実施例6,7では、樹脂がMED型75(wt%)或いは100(wt%)の改良ベヒクルが用いられているが、このような仕様でも、焼成膜厚、ライン幅共に実施例1と同等で、ライン抵抗も前述したように同等の値になる。したがって、これら比較例1,2,実施例1,6,7等の評価結果によれば、MED型のエチルセルロースが樹脂全体の60(wt%)以上の割合で含まれることが必須であり、上限は特に定められないことが明らかである。   In Examples 6 and 7, an improved vehicle whose resin is MED type 75 (wt%) or 100 (wt%) is used. Even in such a specification, both the fired film thickness and the line width are examples. It is equivalent to 1, and the line resistance is also equivalent as described above. Therefore, according to the evaluation results of Comparative Examples 1 and 2, Examples 1, 6, and 7 and the like, it is essential that MED type ethyl cellulose is contained in a proportion of 60 (wt%) or more of the entire resin. It is clear that is not particularly defined.

また、従来ベヒクルのまま鱗片状のAg粉末を用いた比較例3では、鱗片状のAg粉末がペーストの流れ性を低下させることから、焼成膜厚が15〜20(μm)と厚くなり、ライン幅も120〜124(μm)とやや狭くなる。しかしながら、この比較例3のペーストは、鱗片状のAg粉末がスクリーン製版をペーストが滑らかに通過することを妨げると共に、版離れ性も低下させるので、図5に模式的に示すように、導体膜32の断面が三角形に近い形状になる。この結果、焼成膜厚が上記のように厚くなっているにも拘わらず、断面積が900〜1879(μm2)と小さくなり、延いてはライン抵抗が728(Ω)と高くなる。しかも、鱗片状粉末は、粉末相互の接触面積が小さく、抵抗率が4.4(Ω・cm)と高くなることも不利に働く。したがって、ライン幅寸法が小さくなって有効な受光面積が増大していることが有効に生かされず、発光効率は15.70(%)と、比較例1に対して僅かな改善或いは同等レベルに留まる。これに対して、前記実施例1〜7では、球状粉末が用いられていることから、塗布膜中における充填率が高くなるため、比較例3のように鱗片状の銀粉末が用いられる場合に比較して、その塗布膜から生成される導体の導電率が高くなる。 Further, in Comparative Example 3 in which the flaky Ag powder was used in the conventional vehicle, since the flaky Ag powder reduces the flowability of the paste, the fired film thickness increases to 15 to 20 (μm), and the line The width is also slightly narrower, 120-124 (μm). However, in the paste of Comparative Example 3, the scale-like Ag powder prevents the paste from smoothly passing through the screen plate making and also reduces the plate separation property. Therefore, as schematically shown in FIG. The cross section of 32 becomes a shape close to a triangle. As a result, although the fired film thickness is increased as described above, the cross-sectional area is reduced to 900 to 1879 (μm 2 ), and the line resistance is increased to 728 (Ω). In addition, the scaly powder has a disadvantage that the contact area between the powders is small and the resistivity is as high as 4.4 (Ω · cm). Therefore, the fact that the effective light receiving area is increased by reducing the line width dimension is not effectively utilized, and the light emission efficiency is 15.70 (%), which is a slight improvement over Comparative Example 1 or remains at an equivalent level. On the other hand, in Examples 1-7, since spherical powder is used, the filling rate in the coating film is increased, and therefore, when scaly silver powder is used as in Comparative Example 3, In comparison, the conductivity of the conductor generated from the coating film is increased.

また、改良ベヒクルを用いているが鱗片状のAg粉末を用いた比較例4では、ベヒクルおよびAg粉末がそれぞれペーストの流れ性を低下させることから、焼成膜厚が15〜25(μm)と一層厚くなると共に、ライン幅も98〜106(μm)と一層狭くなる。この結果、ライン抵抗は542(Ω)と十分に低い。しかしながら、スクリーン製版の通過性や版離れ性は一層低下することとなるので、図6に模式的に示すように、導体膜34の断面は一層三角形に近づく上、メッシュ跡が大きく、形成された導体膜の膜厚のばらつきが大きく、且つライン性も悪い。したがって、一応の特性は得られ、変換効率Effも実施例1と同等の16.43(%)であるが、安定して膜形成することが困難で、太陽電池電極用の導電ペーストとしては適さない。   Further, in Comparative Example 4 using the improved vehicle but using the flaky Ag powder, since the vehicle and the Ag powder each decrease the flowability of the paste, the fired film thickness is further 15 to 25 (μm). As the thickness increases, the line width also decreases to 98-106 (μm). As a result, the line resistance is sufficiently low as 542 (Ω). However, since the screen plate making ability and the plate releasability are further lowered, as shown schematically in FIG. 6, the cross-section of the conductor film 34 is closer to a triangle, and the mesh marks are larger and formed. Variations in the film thickness of the conductor film are large, and the lineability is also poor. Therefore, a temporary characteristic can be obtained, and the conversion efficiency Eff is 16.43 (%) equivalent to that in Example 1. However, it is difficult to form a stable film, which is not suitable as a conductive paste for a solar cell electrode.

なお、改良ベヒクルおよび鱗片状Ag粉末を用いた上記比較例4は、前述したように印刷性には問題があるものの、ライン幅やライン抵抗等は優れており、その結果、実施例と同等の変換効率が得られている。したがって、前記表3では、評価結果に鑑みてこれを比較例としたが、印刷方法を工夫する等により、実施例と同等の特性が得られるペースト仕様として用い得る。すなわち、Ag粉末は球状のものを用いることが好ましいが必須ではなく、鱗片状のものを用いたペーストも本願発明の範囲に含まれる。   In addition, although the comparative example 4 using the improved vehicle and the scale-like Ag powder has a problem in printability as described above, the line width, the line resistance, and the like are excellent, and as a result, the same as the example. Conversion efficiency is obtained. Therefore, in Table 3 above, this was taken as a comparative example in view of the evaluation results, but it can be used as a paste specification that provides the same characteristics as the examples by devising the printing method. That is, it is preferable to use a spherical Ag powder, but it is not essential, and a paste using a scaly powder is also included in the scope of the present invention.

上述したように、本実施例によれば、MED型すなわち45〜47(%)とエトキシ化度の低いエチルセルロースが樹脂全体の60(%)以上の割合で含まれることから、ペーストのチキソトロピーが高められるので、スキージング時の適度な流動性を確保しながら、ペーストの塗布面における広がりを好適に抑制できる。そのため、印刷性を損なうことなく細幅寸法で断面積の大きな印刷パターンを形成することができる。   As described above, according to this example, the MED type, that is, 45 to 47 (%) and ethyl cellulose having a low degree of ethoxylation are contained in a proportion of 60 (%) or more of the entire resin, so that the thixotropy of the paste is increased. Therefore, the spread on the coated surface of the paste can be suitably suppressed while ensuring appropriate fluidity during squeezing. Therefore, a print pattern having a narrow width and a large cross-sectional area can be formed without impairing printability.

また、本実施例によれば、球状の銀粉末が導体粉末として用いられていることから塗布膜中における充填率が高くなるため、鱗片状等の他の形状の粉末が用いられる場合に比較して導電率が高められ、延いては線幅を一層細くして変換効率を高めることができる。   In addition, according to this example, since the spherical silver powder is used as the conductor powder, the filling rate in the coating film is increased, so compared with the case where powder of other shapes such as scales is used. Thus, the conductivity can be increased, and the line width can be further reduced to increase the conversion efficiency.

しかも、本実施例によれば、滑らかな表面形状を備えた球状粉末が、ペーストを流れ易くし、延いては版から抜け易くする。そのため、塗布面上における広がりを抑制することに伴って、版離れ性が悪くなること、延いては印刷パターンの断面積が小さくなることが抑制されるので、断面積が一層大きい導体膜を安定的に形成できる利点がある。   In addition, according to the present embodiment, the spherical powder having a smooth surface shape facilitates the flow of the paste, and thus easily escapes from the plate. For this reason, it is possible to suppress the deterioration of the plate separation and the reduction of the cross-sectional area of the printed pattern with the suppression of the spread on the coated surface. There is an advantage that can be formed.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

本発明の一実施例のペースト組成物が適用された太陽電池の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the solar cell to which the paste composition of one Example of this invention was applied. 図1の太陽電池の受光面電極パターンの一例を示す図である。It is a figure which shows an example of the light-receiving surface electrode pattern of the solar cell of FIG. 比較例1の導体膜の断面を示す図である。6 is a view showing a cross section of a conductor film of Comparative Example 1. FIG. 実施例1の導体膜の断面を示す図である。3 is a view showing a cross section of a conductor film of Example 1. FIG. 比較例3の導体膜の断面を示す図である。10 is a view showing a cross section of a conductor film of Comparative Example 3. FIG. 比較例4の導体膜の断面を示す図である。It is a figure which shows the cross section of the conductor film of the comparative example 4.

符号の説明Explanation of symbols

10:太陽電池、12:シリコン基板、14:n+層、16:p+層、18:反射防止膜、20:受光面電極、22:裏面電極、24:受光面、26:全面電極、28:帯状電極 10: solar cell, 12: silicon substrate, 14: n + layer, 16: p + layer, 18: antireflection film, 20: light receiving surface electrode, 22: back electrode, 24: light receiving surface, 26: full surface electrode, 28 : Strip electrode

Claims (3)

導体粉末と、ガラス粉末と、ベヒクルとを含む太陽電池電極用ペースト組成物であって、
前記ベヒクルは45〜47(%)のエトキシ化度のエチルセルロースが60(重量%)以上を占め且つ48(%)以上のエトキシ化度のエチルセルロースが残部を占める樹脂と溶剤とを含むことを特徴とする太陽電池電極用ペースト組成物。
A solar cell electrode paste composition comprising a conductor powder, a glass powder, and a vehicle,
The vehicle includes a resin and a solvent in which ethyl cellulose having an ethoxylation degree of 45 to 47 (%) occupies 60 (% by weight) or more and ethyl cellulose having an ethoxylation degree of 48 (%) or more occupies the balance. A solar cell electrode paste composition.
前記導体粉末は球状の銀粉末である請求項1の太陽電池電極用ペースト組成物。   The solar cell electrode paste composition according to claim 1, wherein the conductor powder is a spherical silver powder. 前記導体粉末を70〜84重量部、前記ガラス粉末を3〜8重量部、および前記ベヒクルを10〜20重量部の範囲内の割合で含むものである請求項1または請求項2に記載の太陽電池用ペースト組成物。   3. The solar cell according to claim 1, comprising 70 to 84 parts by weight of the conductor powder, 3 to 8 parts by weight of the glass powder, and 10 to 20 parts by weight of the vehicle. Paste composition.
JP2008093899A 2008-03-31 2008-03-31 Paste composition for solar cell light-receiving surface electrode Expired - Fee Related JP5205108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093899A JP5205108B2 (en) 2008-03-31 2008-03-31 Paste composition for solar cell light-receiving surface electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093899A JP5205108B2 (en) 2008-03-31 2008-03-31 Paste composition for solar cell light-receiving surface electrode

Publications (2)

Publication Number Publication Date
JP2009246277A true JP2009246277A (en) 2009-10-22
JP5205108B2 JP5205108B2 (en) 2013-06-05

Family

ID=41307825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093899A Expired - Fee Related JP5205108B2 (en) 2008-03-31 2008-03-31 Paste composition for solar cell light-receiving surface electrode

Country Status (1)

Country Link
JP (1) JP5205108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258584A (en) * 2013-01-09 2013-08-21 深圳市创智材料科技有限公司 Electric conductive silver paste and manufacturing method thereof
JP2014003175A (en) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd Method of manufacturing solar cell element, solar cell element, and solar cell
US8815637B2 (en) 2010-09-30 2014-08-26 Kyocera Corporation Conductive paste for photovoltaic cell and method of producing photovoltaic cell element using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191177A (en) * 1995-01-10 1996-07-23 Matsushita Electric Ind Co Ltd Via conducting paste and its manufacture
JP2007184247A (en) * 2005-11-22 2007-07-19 E I Du Pont De Nemours & Co Thick film conductor composition for multilayered electronic circuit and device, and its processing technology
JP2007235082A (en) * 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co Paste for solar battery electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191177A (en) * 1995-01-10 1996-07-23 Matsushita Electric Ind Co Ltd Via conducting paste and its manufacture
JP2007184247A (en) * 2005-11-22 2007-07-19 E I Du Pont De Nemours & Co Thick film conductor composition for multilayered electronic circuit and device, and its processing technology
JP2007235082A (en) * 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co Paste for solar battery electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815637B2 (en) 2010-09-30 2014-08-26 Kyocera Corporation Conductive paste for photovoltaic cell and method of producing photovoltaic cell element using the same
JP2014003175A (en) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd Method of manufacturing solar cell element, solar cell element, and solar cell
CN103258584A (en) * 2013-01-09 2013-08-21 深圳市创智材料科技有限公司 Electric conductive silver paste and manufacturing method thereof
CN103258584B (en) * 2013-01-09 2018-04-10 深圳市创智材料科技有限公司 A kind of conductive silver paste and preparation method thereof

Also Published As

Publication number Publication date
JP5205108B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US10347787B2 (en) Method for forming a solar cell electrode with conductive paste
KR101765986B1 (en) Conductive paste
KR100868621B1 (en) Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
CA2718207C (en) Solar cell device and manufacturing method therefor
JP6735046B2 (en) Conductive paste for solar cell electrode formation
EP2490228B1 (en) Silver paste composition and solar cell using same
JP5957546B2 (en) Conductive composition
JP5137923B2 (en) Electrode paste composition for solar cell
JP5323307B2 (en) Solar cell electrode paste
KR100801168B1 (en) Rear electrode material for fabrication of solar cell
CN105225722A (en) A kind of crystal silicon solar batteries aluminium paste of high conduction performance
JP2009194121A (en) Conductive paste for forming crystal system silicon solar cell electrode
JP5205108B2 (en) Paste composition for solar cell light-receiving surface electrode
JP7027025B2 (en) Conductive composition
JP2007026934A (en) Conductive paste and solar cell element produced using same
JP6084270B1 (en) Conductive composition
RU2303831C2 (en) Aluminum active material for silicon solar cells
US9640298B2 (en) Silver paste composition for forming an electrode, and silicon solar cell using same
CN111630012A (en) Conductive paste for solar cell electrode, glass frit contained in conductive paste, and solar cell
DE112012005812T5 (en) Conductive silver paste for the rear electrode of the solar element
JP2012142422A (en) Glass for conductive paste for solar cell
KR20180077545A (en) Glass frit composition and glass frit paste compisition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5205108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees