JP2009244206A - Pressure sensitive sensor - Google Patents

Pressure sensitive sensor Download PDF

Info

Publication number
JP2009244206A
JP2009244206A JP2008093695A JP2008093695A JP2009244206A JP 2009244206 A JP2009244206 A JP 2009244206A JP 2008093695 A JP2008093695 A JP 2008093695A JP 2008093695 A JP2008093695 A JP 2008093695A JP 2009244206 A JP2009244206 A JP 2009244206A
Authority
JP
Japan
Prior art keywords
pressure
electrodes
pair
sensitive
sensitive conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008093695A
Other languages
Japanese (ja)
Inventor
雄一郎 ▲高▼井
Yuichiro Takai
Ryomei Omote
了明 面
Yoshihiro Kai
義宏 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2008093695A priority Critical patent/JP2009244206A/en
Publication of JP2009244206A publication Critical patent/JP2009244206A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure sensitive sensor for facilitating pressure detection by preventing excessive reduction in resistivity between a pair of electrodes by a tunnel barrier between the electrodes and a pressure sensitive conductive layer. <P>SOLUTION: This pressure sensitive sensor comprises a substrate 7 having a pair of electrodes 5 and 6, and the pressure sensitive conducting layer 8 where the pair of electrodes 5 and 6 in the substrate 7 and the gap between the pair of electrodes 5 and 6 are covered and tunnel current flows between conductive particles, included inside following the application of the pressure to change the insulation state to the current-carrying state. The insulation layer 9 with a thickness that allows the tunnel current flow to be interposed in between the electrodes 5 and 6 and the pressure sensitive conducting layer 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧力を検出するのに用いる感圧センサに関する。   The present invention relates to a pressure sensor used to detect pressure.

かかる感圧センサは、例えば、タッチパネルやペンタブレット等に設けられて、指の圧力やペンの筆圧等を検出できるようにしたものである。
従来、この種の感圧センサとして、圧力の印加に伴って内部に含まれる導電性の粒子同士が接触して導通経路が形成されて抵抗率が変化する感圧導電性ゴムを使用するものがあった(例えば、特許文献1参照。)。そして、感圧導電性ゴムに電極を取り付け、感圧導電性ゴムの抵抗変化を信号処理して圧力を検出することになる。
Such a pressure-sensitive sensor is provided on, for example, a touch panel or a pen tablet, and can detect a finger pressure, a pen writing pressure, or the like.
Conventionally, this type of pressure-sensitive sensor uses a pressure-sensitive conductive rubber in which the conductive particles contained therein are brought into contact with each other as pressure is applied to form a conduction path and the resistivity changes. (For example, see Patent Document 1). Then, an electrode is attached to the pressure-sensitive conductive rubber, and the pressure is detected by performing signal processing on the resistance change of the pressure-sensitive conductive rubber.

しかしながら、感圧導電性ゴムの押圧を繰り返すうちに、疲労により感圧導電性ゴムが経時的に塑性変形を起こして導電性の粒子同士が接触したまま離間復帰しなくなり、感圧導電性ゴムを押圧しても感圧導電性ゴムが抵抗変化し難く、圧力を検出し難くなる虞があった。しかも、感圧導電性ゴムをインキ化することが困難であることに加えて、加硫工程等の後処理が必要となる等、感圧導電性ゴムを印刷し難いために、例えば、感圧導電性ゴムを基材における一対の電極及びそれら一対の電極の間に亘って載置しなければならない等、手間が掛かることに加えて、感圧導電性ゴムの厚みが厚くなるという虞もあった。   However, as the pressure-sensitive conductive rubber is repeatedly pressed, the pressure-sensitive conductive rubber undergoes plastic deformation over time due to fatigue, so that the conductive particles do not come back apart and remain in contact with each other. Even if the pressure is applied, the pressure-sensitive conductive rubber hardly changes in resistance, and it may be difficult to detect pressure. In addition, it is difficult to make pressure-sensitive conductive rubber into ink, and it is difficult to print pressure-sensitive conductive rubber. In addition to being troublesome, such as the conductive rubber must be placed between the pair of electrodes and the pair of electrodes on the base material, there is a possibility that the thickness of the pressure-sensitive conductive rubber may increase. It was.

そこで、感圧導電性ゴムに変わる素材として、最近、圧力の印加に伴って内部に含まれる導電性の粒子間でトンネル電流が流れて絶縁状態から通電状態に変化する感圧導電性組成物が登場し、感圧導電性インキ等に応用することが提案されている。   Therefore, as a material that changes to pressure-sensitive conductive rubber, a pressure-sensitive conductive composition that changes from an insulating state to an energized state due to the tunnel current flowing between the conductive particles contained in the interior with the application of pressure recently. It has been proposed and applied to pressure-sensitive conductive inks.

これにより、基材における一対の電極及びそれら一対の電極の間に亘って感圧導電性インキを直接印刷して感圧導電層を形成することにより、感圧導電性インキを印刷して乾燥した後は形状の変化がほとんど無いので、押圧を繰り返しても、経時的に圧力を検出し難くなるという虞を防止し、手間が掛からず量産し易いことに加えて、感圧センサの厚みを薄くできるものとなる。ちなみに、導電性の粒子が接触してはいないがナノメートルオーダーで非常に近接している場合において、導電性の粒子間における電子の存在確率密度がゼロでないために、電子が染み出してこのようなトンネル電流が流れるものであり、本質的には量子力学で説明される現象である。   Thus, the pressure-sensitive conductive ink was printed and dried by directly printing the pressure-sensitive conductive ink between the pair of electrodes and the pair of electrodes on the base material to form the pressure-sensitive conductive layer. After that, since there is almost no change in shape, it is possible to prevent the pressure from becoming difficult to detect over time even if it is repeatedly pressed. It will be possible. By the way, when the conductive particles are not in contact but are very close in nanometer order, the existence probability density of electrons between the conductive particles is not zero, so that the electrons ooze out. Tunnel current flows, and this phenomenon is essentially explained by quantum mechanics.

そして、このような感圧導電性インキを用いた感圧センサとして、一対の電極が形成された基材としてのFPC(フレキシブル基板)と、FPCにおける一対の電極及びそれら一対の電極の間に亘って感圧導電性インキを直接印刷して感圧導電層を形成するものが考えられる。   As such a pressure-sensitive sensor using pressure-sensitive conductive ink, an FPC (flexible substrate) as a base material on which a pair of electrodes are formed, a pair of electrodes in the FPC, and the pair of electrodes It is conceivable to form a pressure-sensitive conductive layer by directly printing a pressure-sensitive conductive ink.

特開2005−135876号公報JP 2005-135876 A

従来提案の感圧センサにおいては、電極と感圧導電層とが直接接着しており、一対の電極の間の抵抗率が低くなりすぎて、圧力を検出し難いという問題点があった。   In the conventional pressure-sensitive sensor, the electrode and the pressure-sensitive conductive layer are directly bonded, and the resistivity between the pair of electrodes becomes too low, so that it is difficult to detect the pressure.

本発明は、上記実状に鑑みて為されたものであって、その目的は、圧力を検出し易い感圧センサを提供する点にある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a pressure-sensitive sensor that can easily detect pressure.

本発明の感圧センサの第1特徴構成は、一対の電極が形成された基材と、その基材における前記一対の電極及びそれら一対の電極の間を覆いかつ圧力の印加に伴って内部に含まれる導電性の粒子間でトンネル電流が流れて絶縁状態から通電状態に変化する感圧導電層とを備え、前記電極と前記感圧導電層との間にトンネル電流が流れる厚さの絶縁層を介在させてある点にある。   The first characteristic configuration of the pressure-sensitive sensor according to the present invention includes a base material on which a pair of electrodes are formed, the pair of electrodes on the base material, and a space between the pair of electrodes and the inside of the pair with the application of pressure. A pressure-sensitive conductive layer in which a tunnel current flows between contained conductive particles and changes from an insulating state to an energized state, and an insulating layer having a thickness through which the tunnel current flows between the electrode and the pressure-sensitive conductive layer The point is that there is intervening.

すなわち、電極と感圧導電層との間にトンネル電流が流れる厚さの絶縁層を介在させてあるので、電極と感圧導電層との間のトンネル障壁により、一対の電極の間の抵抗率が低くなりすぎることを防止して、圧力が検出し易いものとなる。   That is, since an insulating layer having a thickness through which a tunnel current flows is interposed between the electrode and the pressure-sensitive conductive layer, the resistivity between the pair of electrodes is caused by the tunnel barrier between the electrode and the pressure-sensitive conductive layer. Is prevented from becoming too low, and the pressure is easily detected.

本発明の第2特徴構成は、上記第1特徴構成に加えて、前記感圧導電層をインキによって形成してある点を特徴とする。   The second characteristic configuration of the present invention is characterized in that, in addition to the first characteristic configuration, the pressure-sensitive conductive layer is formed of ink.

すなわち、基材における一対の電極及びそれら一対の電極の間に亘って感圧導電性インキを直接印刷して感圧導電層を形成することにより、量産し易いことに加えて、感圧センサの厚みを薄くできる。   That is, in addition to being easy to mass-produce by forming a pressure-sensitive conductive layer by directly printing a pressure-sensitive conductive ink between the pair of electrodes and the pair of electrodes in the base material, The thickness can be reduced.

本発明の第3特徴構成は、上記第1又は第2特徴構成に加えて、前記絶縁層が無機酸化物からなる点を特徴とする。   The third characteristic configuration of the present invention is characterized in that, in addition to the first or second characteristic configuration, the insulating layer is made of an inorganic oxide.

すなわち、前記絶縁層が無機酸化物からなるので、変質し難く、絶縁層を好適に形成し易いものであり、加えて、厚み制御が容易であり、再現性に優れる。   That is, since the insulating layer is made of an inorganic oxide, it is difficult to change in quality, and it is easy to suitably form the insulating layer. In addition, the thickness control is easy and the reproducibility is excellent.

本発明の第4特徴構成は、上記第1又は第2特徴構成に加えて、前記絶縁層が有機材料からなる点を特徴とする。   According to a fourth characteristic configuration of the present invention, in addition to the first or second characteristic configuration, the insulating layer is made of an organic material.

すなわち、前記絶縁層が有機材料からなるので、絶縁層を好適に形成し易いものであり、加えて、スクリーン印刷等の印刷法を利用することが可能となり、コスト的に有利である。   That is, since the insulating layer is made of an organic material, it is easy to form the insulating layer suitably. In addition, a printing method such as screen printing can be used, which is advantageous in terms of cost.

本発明の第5特徴構成は、上記第1又は第2特徴構成に加えて、前記絶縁層が無機材料からなる点を特徴とする。   A fifth characteristic configuration of the present invention is characterized in that, in addition to the first or second characteristic configuration, the insulating layer is made of an inorganic material.

すなわち、前記絶縁層が無機材料からなるので、絶縁層を好適に形成し易いものであり、加えて、絶縁層の確保が容易になり、信頼性に優れる。   That is, since the insulating layer is made of an inorganic material, it is easy to form the insulating layer suitably. In addition, it is easy to secure the insulating layer, and the reliability is excellent.

〔第1実施の形態〕
以下、本発明に係る感圧センサを設けたタッチパネルについて説明する。
図1〜図3に示すように、PETやPE等の合成樹脂製のハードコートフィルム1の下面に意匠フィルム2が貼着され、意匠フィルム2の下面にタッチパネル部3が貼着されている。タッチパネル部3を構成するに、下面に透明電極3aを有する透明絶縁フィルム3bと上面に透明電極3aを有するガラス板3cとを多数のドットスペーサ3dを介して対向させてある。タッチパネル部分3の下面にサブストレート4が貼着されている。これにより、ハードコートフィルム1、意匠フィルム2、タッチパネル部3、サブストレート4がタッチパネルAを構成する。
[First embodiment]
Hereinafter, a touch panel provided with a pressure-sensitive sensor according to the present invention will be described.
As shown in FIGS. 1 to 3, a design film 2 is attached to the lower surface of a hard coat film 1 made of synthetic resin such as PET or PE, and a touch panel portion 3 is attached to the lower surface of the design film 2. To constitute the touch panel unit 3, a transparent insulating film 3b having a transparent electrode 3a on the lower surface and a glass plate 3c having a transparent electrode 3a on the upper surface are opposed to each other through a large number of dot spacers 3d. A substrate 4 is attached to the lower surface of the touch panel portion 3. Thereby, the hard coat film 1, the design film 2, the touch panel part 3, and the substrate 4 constitute the touch panel A.

前記タッチパネルAの下面に感圧センサBが貼着されている。感圧センサBは、一対の電極5、6が形成された基材としてのFPC7(フレキシブル基板)と、そのFPC7における一対の電極5、6及びそれら一対の電極5、6の間を覆いかつ圧力の印加に伴って内部に含まれる導電性の粒子間でトンネル電流が流れて絶縁状態から通電状態に変化する感圧導電層8とを備え、電極5、6と感圧導電層8との間にトンネル電流が流れる厚さすなわちほぼ20ナノメートルの厚さの二酸化ケイ素(SiO2)の絶縁層9を介在させてある。ちなみに、電極5、6、感圧導電層8、FPC7の厚みは、夫々18μm、20μm、35μmである。又、圧力の印加に伴って内部に含まれる導電性の粒子間でトンネル電流が流れて絶縁状態から通電状態に変化する感圧導電層8を構成する組成物は、英国、ダーリントン(Darlington)のペラテック社(PERATECH LTD)から商品名「QTC」で入手可能な量子トンネル性複合材(Quantum Tunneling Composite)である。 A pressure sensor B is attached to the lower surface of the touch panel A. The pressure-sensitive sensor B covers the pressure between the pair of electrodes 5 and 6 and the pair of electrodes 5 and 6 in the FPC 7 as a base material on which the pair of electrodes 5 and 6 is formed. Between the electrodes 5 and 6 and the pressure-sensitive conductive layer 8. The pressure-sensitive conductive layer 8 changes from an insulating state to an energized state due to a tunneling current flowing between the conductive particles contained therein. An insulating layer 9 of silicon dioxide (SiO 2 ) having a thickness through which a tunnel current flows, that is, a thickness of approximately 20 nanometers is interposed. Incidentally, the thicknesses of the electrodes 5 and 6, the pressure-sensitive conductive layer 8, and the FPC 7 are 18 μm, 20 μm, and 35 μm, respectively. In addition, a composition constituting the pressure-sensitive conductive layer 8 in which a tunnel current flows between conductive particles contained therein with application of pressure and changes from an insulating state to an energized state is a composition of Darlington, England. It is a quantum tunneling composite material (Quantum Tuning Composite) available from PERATECH LTD under the trade name “QTC”.

説明を加えると、図1に示すように、タッチパネルAの下面に保護フィルム10が貼着され、保護フィルム10の下面に弾性変形自在な粘着剤11を介してFPC7が貼着されている。そして、FPC7の上面に電極5、6及び感圧導電層8が形成されている。FPC7に一対の電極5、6が銀印刷によって形成されている。一対の電極5、6は、図2に示すように、夫々櫛歯部5a、6aを備えて、櫛歯部5a、6a同士を所定間隔を隔てて入り込ませている。そして、図3に示すように、スパッタ法により二酸化ケイ素の絶縁層9がFPC7における一対の電極5、6及びそれら一対の電極5、6の間を覆うように形成され、感圧導電性インキがFPC7における一対の電極5、6及びそれら一対の電極5、6の間を覆うように印刷され、感圧導電性インキを加熱して溶剤を揮発させるとともに、熱硬化樹脂を硬化させることにより感圧導電層8が形成されている。   If it demonstrates, as shown in FIG. 1, the protective film 10 will be affixed on the lower surface of the touchscreen A, and FPC7 will be affixed on the lower surface of the protective film 10 via the adhesive agent 11 which can be elastically deformed. Electrodes 5 and 6 and a pressure-sensitive conductive layer 8 are formed on the upper surface of the FPC 7. A pair of electrodes 5 and 6 are formed on the FPC 7 by silver printing. As shown in FIG. 2, the pair of electrodes 5 and 6 includes comb teeth 5a and 6a, respectively, and the comb teeth 5a and 6a are inserted at a predetermined interval. Then, as shown in FIG. 3, a silicon dioxide insulating layer 9 is formed so as to cover the pair of electrodes 5 and 6 and the pair of electrodes 5 and 6 in the FPC 7 by sputtering. The FPC 7 is printed so as to cover the pair of electrodes 5 and 6 and between the pair of electrodes 5 and 6, and the pressure-sensitive conductive ink is heated to volatilize the solvent and the thermosetting resin is cured to pressure-sensitive. A conductive layer 8 is formed.

これにより、電極5、6と感圧導電層8との間にトンネル電流が流れる厚さの絶縁層9を介在させてあるので、電極5、6と感圧導電層8との間のトンネル障壁により、一対の電極5、6の間の抵抗率が低くなりすぎることを防止して、圧力が検出し易いものとなる。又、感圧導電性インキを印刷することにより量産し易いことに加えて、感圧センサの厚みを薄くできる。   Accordingly, since the insulating layer 9 having a thickness through which a tunnel current flows is interposed between the electrodes 5 and 6 and the pressure-sensitive conductive layer 8, the tunnel barrier between the electrodes 5 and 6 and the pressure-sensitive conductive layer 8 is interposed. Therefore, the resistivity between the pair of electrodes 5 and 6 is prevented from becoming too low, and the pressure is easily detected. Moreover, in addition to being easily mass-produced by printing the pressure-sensitive conductive ink, the thickness of the pressure-sensitive sensor can be reduced.

以下、感圧導電性インキの抵抗の圧力変化について測定した実験結果について説明する。
(実験方法)
FPC基板に幅が100μmの一対の電極を130μmの間隔を隔てて並べて配設し、一対の電極の夫々の端部に抵抗計を接続し、スパッタ法により二酸化ケイ素を一対の電極及びそれら一対の電極の間を覆うように蒸着して20ナノメートルの厚さの絶縁層を形成し、一対の電極及びそれら一対の電極の間に亘って感圧導電性インキを直接印刷して20μmの厚さの感圧導電層を形成し、半球状のシリコーンゴムを一対の電極の上に被さるように所定の圧力で押圧して感圧導電性インキの抵抗の圧力変化を計測した。
Hereinafter, the experimental result measured about the pressure change of the resistance of pressure-sensitive conductive ink is demonstrated.
(experimental method)
A pair of electrodes having a width of 100 μm are arranged on the FPC board with an interval of 130 μm, a resistance meter is connected to each end of the pair of electrodes, and a pair of electrodes and a pair of silicon dioxide are formed by sputtering. An insulating layer having a thickness of 20 nanometers is formed by vapor deposition so as to cover between the electrodes, and a pressure sensitive conductive ink is directly printed between the pair of electrodes and the pair of electrodes to obtain a thickness of 20 μm. The pressure-sensitive conductive layer was formed, and a pressure change of the resistance of the pressure-sensitive conductive ink was measured by pressing the hemispherical silicone rubber with a predetermined pressure so as to cover the pair of electrodes.

(実験結果)
図7は、絶縁層を形成しないときの感圧導電性インキの抵抗と圧力との関係を示すものであり、図8は、20ナノメートルの厚さの絶縁層を形成したときの感圧導電性インキの抵抗と圧力との関係を示すものである。絶縁層を形成しないときよりも、20ナノメートルの厚さの絶縁層を形成したときのほうが、抵抗値が約一桁高くなっている。これにより、一対の電極の間の抵抗値が低くなりすぎることを防止して、圧力が検出し易いものとなる。しかも、絶縁層を形成しないときよりも、20ナノメートルの厚さの絶縁層を形成したときのほうが、抵抗値の圧力変化が大きいので、圧力変化を検出し易い。
(Experimental result)
FIG. 7 shows the relationship between pressure and resistance of pressure-sensitive conductive ink when an insulating layer is not formed, and FIG. 8 shows pressure-sensitive conductivity when an insulating layer having a thickness of 20 nanometers is formed. This shows the relationship between the resistance and pressure of the reactive ink. The resistance value is about an order of magnitude higher when the insulating layer having a thickness of 20 nanometers is formed than when the insulating layer is not formed. Thereby, the resistance value between the pair of electrodes is prevented from becoming too low, and the pressure is easily detected. Moreover, since the pressure change in resistance value is larger when the insulating layer having a thickness of 20 nanometers is formed than when the insulating layer is not formed, it is easier to detect the pressure change.

〔別実施の形態〕
(1)上記実施の形態では、タッチパネルAの下面に保護フィルム10が貼着され、保護フィルム10の下面に弾性変形自在な粘着剤11を介してFPC7が貼着されている。そして、FPC7の上面に電極5、6及び感圧導電層8が形成されている構成を例示したが、このような構成に限られるものではなく、例えば、図4に示すように、FPC7の上面に電極5、6及び感圧導電層8が形成された感圧層が形成され、第1実施形態に示すように、タッチパネルAの下面に弾性変形自在な粘着剤を介して前記感圧層が貼着される構成としてもよい。又、図5に示すように、FPC7の下面に電極5、6及び感圧導電層8が形成された感圧層が形成され、タッチパネルAの下面に前記感圧層が貼着され、第1実施形態に示すように、FPC7の下面に弾性変形自在な粘着剤を介して保護フィルム10が貼着されている構成としてもよい。又、図6に示すように、FPC7の下面に電極5、6及び感圧導電層8が形成された感圧層が形成され、タッチパネルAの下面に前記感圧層が貼着されるだけの構成としてもよい。
[Another embodiment]
(1) In the above embodiment, the protective film 10 is attached to the lower surface of the touch panel A, and the FPC 7 is attached to the lower surface of the protective film 10 via the elastically deformable adhesive 11. The configuration in which the electrodes 5 and 6 and the pressure-sensitive conductive layer 8 are formed on the upper surface of the FPC 7 is illustrated, but is not limited to such a configuration. For example, as illustrated in FIG. Are formed on the lower surface of the touch panel A via an elastically deformable adhesive, as shown in the first embodiment. It is good also as a structure stuck. Further, as shown in FIG. 5, a pressure-sensitive layer in which the electrodes 5 and 6 and the pressure-sensitive conductive layer 8 are formed is formed on the lower surface of the FPC 7, and the pressure-sensitive layer is adhered to the lower surface of the touch panel A. As shown in the embodiment, the protective film 10 may be attached to the lower surface of the FPC 7 via an elastically deformable adhesive. In addition, as shown in FIG. 6, a pressure-sensitive layer in which the electrodes 5 and 6 and the pressure-sensitive conductive layer 8 are formed is formed on the lower surface of the FPC 7, and the pressure-sensitive layer is simply attached to the lower surface of the touch panel A. It is good also as a structure.

(2)上記実施の形態では、絶縁層9の厚さがほぼ20ナノメートルである構成を例示したが、これに限られるものではない。 (2) In the above embodiment, the configuration in which the thickness of the insulating layer 9 is approximately 20 nanometers has been exemplified, but the present invention is not limited to this.

(3)上記実施の形態では、銀印刷によって電極が形成される構成を例示したが、このような構成に限られるものではなく、銀以外のメタリック印刷、例えば、カーボン、カーボンナノチューブ等の材料によって電極が形成される構成や、銅や金メッキ銅等の金属箔を張り合わせて電極が形成される構成としてもよく、あるいは、銅をめっきしたFPCの上にレジストで電極パターンを形成し,レジストで保護されていない部分の銅をエッチング処理して電極が形成される構成でもよい。 (3) In the above embodiment, the configuration in which the electrode is formed by silver printing is illustrated, but the configuration is not limited to such a configuration, and metallic printing other than silver, for example, by a material such as carbon or carbon nanotube The electrode may be formed, or the electrode may be formed by laminating a metal foil such as copper or gold-plated copper, or an electrode pattern is formed with a resist on a copper-plated FPC and protected by the resist. A configuration in which an electrode is formed by etching a portion of copper that is not formed may be employed.

(4)上記実施の形態では、絶縁層9をスパッタ法で形成する構成を例示したが、このような構成に限られるものではなく、CVD法、EB蒸着法、ゾルゲル法、ロールコータ、スピンコータ、オングストローマ、グラビア印刷、スクリーン印刷等、種々の方法で形成してもよい。 (4) In the above embodiment, the configuration in which the insulating layer 9 is formed by the sputtering method is exemplified, but the configuration is not limited to such a configuration, and the CVD method, the EB vapor deposition method, the sol-gel method, the roll coater, the spin coater, You may form by various methods, such as angstrom, gravure, and screen printing.

(5)上記実施の形態では、絶縁層9が二酸化ケイ素である構成を例示したが、酸化アルミニウム(Al23)、酸化ジルコニウム(ZrO2)、酸化ビスマス(Bi23)、酸化クロム(Cr23)、酸化鉄(FeO、Fe23、Fe34)、酸化コバルト(Co34)、酸化ニッケル(NiO)、酸化ニオブ(Nb25)、酸化モリブデン(MoO3)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)、酸化ランタン(La23)、シリカ(SiO2)、ケイ酸カルシウム(CaSiO3)、ホウ酸アルミニウム(Al18433)等の無機酸化物、窒化ケイ素(Si34)、窒化アルミニウム(ALN)等の窒化物、酸化窒化ケイ素(SiOX1-X)等の酸化窒化物、炭化ケイ素(SiC)等の炭化物、水酸化アルミニウム(Al(OH)3)、水酸化マグネシウム(Mg(OH)2)等の水酸化物、炭酸カルシウム(CaCO3)、炭酸カリウム(K2CO3)、炭酸バリウム(BaCO3)等の炭酸塩、リン酸カルシウム(CaH2(PO)4)等のリン酸塩、硫酸バリウム(BaSO4)等の硫酸塩、タルク、ハロサイト、セライト等の粘度鉱物、クレー、白土、ゼオライト、無機バルーン等の無機材料や、絶縁性を有する金属からなるアルコキシド(アルコラート)、アシレートや、β−ジケトン、ケトエステル、ヒドロキシアミネート、ジオレート、ヒドロキシアシレート等のキレート材料を用いたゾルゲル法による絶縁酸化物であってもよい。また、部分的に有機物を含んだ絶縁材料、例えば、ポリオルガノシロキサン等の有機材料であってもよく、あるいは、それら無機材料と有機材料とのハイブリッドであってもよい。 (5) In the above embodiment, the configuration in which the insulating layer 9 is silicon dioxide has been exemplified, but aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), bismuth oxide (Bi 2 O 3 ), chromium oxide (Cr 2 O 3 ), iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ), cobalt oxide (Co 3 O 4 ), nickel oxide (NiO), niobium oxide (Nb 2 O 5 ), molybdenum oxide ( MoO 3 ), calcium oxide (CaO), strontium oxide (SrO), barium oxide (BaO), lanthanum oxide (La 2 O 3 ), silica (SiO 2 ), calcium silicate (CaSiO 3 ), aluminum borate (Al Inorganic oxides such as 18 B 4 O 33 ), nitrides such as silicon nitride (Si 3 N 4 ) and aluminum nitride (ALN), oxynitrides such as silicon oxynitride (SiO X N 1-X ), carbonization Carbides such as silicon (SiC), hydroxides such as aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium carbonate (CaCO 3 ), potassium carbonate (K 2 CO 3 ) , Carbonates such as barium carbonate (BaCO 3 ), phosphates such as calcium phosphate (CaH 2 (PO) 4 ), sulfates such as barium sulfate (BaSO 4 ), viscosity minerals such as talc, halosite, celite, clay, Sol gel using inorganic materials such as clay, zeolite, inorganic balloon, and chelates such as alkoxides (alcolate), acylate, β-diketone, ketoester, hydroxyamate, geolate, hydroxyacylate made of insulating metal An insulating oxide obtained by a method may be used. In addition, an insulating material partially containing an organic material, for example, an organic material such as polyorganosiloxane, or a hybrid of these inorganic material and organic material may be used.

感圧センサを設けたタッチパネルの断面図Cross section of touch panel with pressure sensor FPCに電極及び感圧導電層が形成された状態を示す斜視図The perspective view which shows the state in which the electrode and the pressure-sensitive conductive layer were formed in FPC 感圧センサの断面図Cross section of pressure sensor 別実施形態における感圧センサの断面図Sectional drawing of the pressure-sensitive sensor in another embodiment 別実施形態における感圧センサの断面図Sectional drawing of the pressure-sensitive sensor in another embodiment 別実施形態における感圧センサの断面図Sectional drawing of the pressure-sensitive sensor in another embodiment 感圧導電性インキの抵抗と圧力との関係を示す図Diagram showing the relationship between resistance and pressure of pressure-sensitive conductive ink 感圧導電性インキの抵抗と圧力との関係を示す図Diagram showing the relationship between resistance and pressure of pressure-sensitive conductive ink

符号の説明Explanation of symbols

5、6 電極
7 基材
8 感圧導電層
9 絶縁層
5, 6 Electrode 7 Base material 8 Pressure sensitive conductive layer 9 Insulating layer

Claims (5)

一対の電極が形成された基材と、その基材における前記一対の電極及びそれら一対の電極の間を覆いかつ圧力の印加に伴って内部に含まれる導電性の粒子間でトンネル電流が流れて絶縁状態から通電状態に変化する感圧導電層とを備え、前記電極と前記感圧導電層との間にトンネル電流が流れる厚さの絶縁層を介在させてある感圧センサ。   A tunnel current flows between a base material on which a pair of electrodes are formed, the pair of electrodes on the base material, and the pair of electrodes, and the conductive particles contained therein as a result of application of pressure. A pressure-sensitive sensor comprising a pressure-sensitive conductive layer that changes from an insulating state to an energized state, and an insulating layer having a thickness through which a tunnel current flows between the electrode and the pressure-sensitive conductive layer. 前記感圧導電層をインキによって形成してある請求項1に記載の感圧センサ。   The pressure-sensitive sensor according to claim 1, wherein the pressure-sensitive conductive layer is formed of ink. 前記絶縁層が無機酸化物からなる請求項1又は2に記載の感圧センサ。   The pressure-sensitive sensor according to claim 1, wherein the insulating layer is made of an inorganic oxide. 前記絶縁層が有機材料からなる請求項1又は2に記載の感圧センサ。   The pressure-sensitive sensor according to claim 1, wherein the insulating layer is made of an organic material. 前記絶縁層が無機材料からなる請求項1又は2に記載の感圧センサ。   The pressure-sensitive sensor according to claim 1, wherein the insulating layer is made of an inorganic material.
JP2008093695A 2008-03-31 2008-03-31 Pressure sensitive sensor Pending JP2009244206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093695A JP2009244206A (en) 2008-03-31 2008-03-31 Pressure sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093695A JP2009244206A (en) 2008-03-31 2008-03-31 Pressure sensitive sensor

Publications (1)

Publication Number Publication Date
JP2009244206A true JP2009244206A (en) 2009-10-22

Family

ID=41306249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093695A Pending JP2009244206A (en) 2008-03-31 2008-03-31 Pressure sensitive sensor

Country Status (1)

Country Link
JP (1) JP2009244206A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209285A (en) * 2010-03-30 2011-10-20 Tk Holdings Inc Force measurement system
JP2011213342A (en) * 2010-03-31 2011-10-27 Tk Holdings Inc Occupant sensing system
JP2011221856A (en) * 2010-04-12 2011-11-04 Nissha Printing Co Ltd Information input device
KR101084782B1 (en) 2010-05-06 2011-11-21 삼성전기주식회사 Touch screen device
KR101420038B1 (en) 2010-04-08 2014-07-15 니혼샤신 인사츠 가부시키가이샤 Pressure detection unit and information input device provided with pressure detection unit
EP2874773A4 (en) * 2012-07-20 2016-05-25 Peter John Hosking Power tools and hand operated electrical devices
JP2017503256A (en) * 2013-12-11 2017-01-26 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. Pressure-sensitive display touch unit, touch screen and manufacturing method thereof
JP2018009820A (en) * 2016-07-11 2018-01-18 東京電力ホールディングス株式会社 Structural strain sensor and method of detecting structural strain

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152708A (en) * 1991-11-29 1993-06-18 Kyocera Corp Bonding structure of conductive resin
JPH0918070A (en) * 1994-10-05 1997-01-17 Matsushita Electric Ind Co Ltd Dynamical quantity sensor, distortion resistance element, manufacture of them and angular velocity sensor
JP2003004552A (en) * 2001-06-21 2003-01-08 Denso Corp Resistor for pressure-sensitive sensor and pressure- sensitive sensor using the same
JP2003106912A (en) * 2001-09-28 2003-04-09 Denso Corp Pressure-sensitive resistor and pressure-sensitive sensor
JP2004294074A (en) * 2003-03-25 2004-10-21 Denso Corp Pressure sensitive resistor and pressure sensitive sensor
JP2006277926A (en) * 1998-09-10 2006-10-12 Toshiba Corp Nonvolatile semiconductor memory
JP2006286234A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Material for battery positive electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152708A (en) * 1991-11-29 1993-06-18 Kyocera Corp Bonding structure of conductive resin
JPH0918070A (en) * 1994-10-05 1997-01-17 Matsushita Electric Ind Co Ltd Dynamical quantity sensor, distortion resistance element, manufacture of them and angular velocity sensor
JP2006277926A (en) * 1998-09-10 2006-10-12 Toshiba Corp Nonvolatile semiconductor memory
JP2003004552A (en) * 2001-06-21 2003-01-08 Denso Corp Resistor for pressure-sensitive sensor and pressure- sensitive sensor using the same
JP2003106912A (en) * 2001-09-28 2003-04-09 Denso Corp Pressure-sensitive resistor and pressure-sensitive sensor
JP2004294074A (en) * 2003-03-25 2004-10-21 Denso Corp Pressure sensitive resistor and pressure sensitive sensor
JP2006286234A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Material for battery positive electrode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209285A (en) * 2010-03-30 2011-10-20 Tk Holdings Inc Force measurement system
JP2011213342A (en) * 2010-03-31 2011-10-27 Tk Holdings Inc Occupant sensing system
KR101420038B1 (en) 2010-04-08 2014-07-15 니혼샤신 인사츠 가부시키가이샤 Pressure detection unit and information input device provided with pressure detection unit
JP2011221856A (en) * 2010-04-12 2011-11-04 Nissha Printing Co Ltd Information input device
KR101084782B1 (en) 2010-05-06 2011-11-21 삼성전기주식회사 Touch screen device
EP2874773A4 (en) * 2012-07-20 2016-05-25 Peter John Hosking Power tools and hand operated electrical devices
US9914204B2 (en) 2012-07-20 2018-03-13 Peter John Hosking Power tools and hand operated electrical devices
JP2017503256A (en) * 2013-12-11 2017-01-26 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. Pressure-sensitive display touch unit, touch screen and manufacturing method thereof
US10558287B2 (en) 2013-12-11 2020-02-11 Kunshan New Flat Panel Display Technology Center Co., Ltd. Pressure-sensitive display touch unit, touch screen, and manufacturing method thereof
JP2018009820A (en) * 2016-07-11 2018-01-18 東京電力ホールディングス株式会社 Structural strain sensor and method of detecting structural strain

Similar Documents

Publication Publication Date Title
JP2009244206A (en) Pressure sensitive sensor
CN102622089B (en) Flexible keyboard
CN100527059C (en) Touch panel and electronic device display window protection panel using the same
CN104205030B (en) Touch sensor and manufacture method thereof and touch sensor manufacture transfer printing ribbon
TWI570475B (en) Touch screen panel
JP4874145B2 (en) Transparent sheet and transparent touch switch
TWI557606B (en) Touch panel and method for manufacturing the same
KR102154136B1 (en) Input elements and input devices
TW201131442A (en) Touch panel and mobile device utilizing touch panel
TW200928937A (en) Panel-type input device and electronic apparatus having the same
KR20120078972A (en) Method for manufacturing touch panel
JP2012099086A (en) Resistance film type touch screen
KR101140377B1 (en) touch screen panel and method for manufacturing touch screen panel
TW201107831A (en) Protection panel having a function of touch input for a display window of electronic machine
KR101269395B1 (en) A Sensor device and Method for fabricating the same
CN102725145B (en) Thermal head
JP2012064189A (en) Resistive film type touch screen
US20150070600A1 (en) Sensor device, method of manufacturing sensor device, display apparatus, and input apparatus
KR101089873B1 (en) Input device of touch screen and manufacturing method thereof
CN110244868A (en) Input pickup and display device including the input pickup
CN106553789A (en) A kind of screen intelligence pad pasting and preparation method thereof
KR20170141019A (en) Touch force sensing sensor for flexible material
JP6820926B2 (en) Capacitive 3D sensor
KR101336252B1 (en) Touch input structure for acquiring touch location and intensity of force, and method for manufacturing the same
JP6489710B2 (en) Capacitance type 3D sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Effective date: 20110729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120301