JP2009243797A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2009243797A
JP2009243797A JP2008091960A JP2008091960A JP2009243797A JP 2009243797 A JP2009243797 A JP 2009243797A JP 2008091960 A JP2008091960 A JP 2008091960A JP 2008091960 A JP2008091960 A JP 2008091960A JP 2009243797 A JP2009243797 A JP 2009243797A
Authority
JP
Japan
Prior art keywords
water
refrigerant
heat transfer
heat exchanger
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008091960A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ota
光昭 太田
Sosuke Murase
壮介 村瀬
Masayoshi Obayashi
誠善 大林
Toshiro Abe
敏郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008091960A priority Critical patent/JP2009243797A/en
Publication of JP2009243797A publication Critical patent/JP2009243797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heater for suppressing scale adhesion by removing a large amount of air bubbles generated within a water side heat-transfer pipe of a water refrigerant heat exchanger. <P>SOLUTION: The water heater K includes a heat pump refrigerant circuit 1 constituted by interconnecting a compressor 4, a refrigerant side heat-transfer pipe 30 of the water refrigerant heat exchanger 3, an expansion valve 6 and a heat source side heat exchanger 7; and with a water channel 2 for hot water supply constituted by interconnecting a water pump 22 and the water side heat-transfer pipe 29 of the water refrigerant heat exchanger 3 performing heat exchange with a refrigerant within the refrigerant side heat-transfer pipe 30. The water heater K is further provided with a connection member 31 or vibration drivers 32, 33 (water outlet part vibration means) for vibrating a water outlet part 29E of the water side heat-transfer pipe 29 of the water refrigerant heat exchanger 3. The drivers 32, 33 are controlled by a control part 20 of a control device 19 based on detection values by respective sensors 15, 16, 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ヒートポンプ式の給湯機に係り、水冷媒熱交換器の水流路内で発生する気泡を物理的に除去するようにした給湯機に関するものである。 The present invention relates to a heat pump type water heater, and more particularly to a water heater that physically removes bubbles generated in a water flow path of a water-refrigerant heat exchanger.

近年、脱フロン化の流れを受けて天然冷媒を用いた冷凍サイクル装置の開発が進められている。なかでも二酸化炭素(CO2)を冷媒とした冷凍サイクル装置の普及は年々増加傾向であり、その用途もカーエアコン、空調機、冷凍機等に広がりつつある。CO2冷媒の特徴としては、オゾン破壊係数が0、地球温暖化係数が1で、環境への負荷は小さい。因みに、冷凍サイクル装置に長年用いられてきたHFC冷媒は、オゾン破壊係数が0であるが、地球温暖化係数は1000〜2000であった。また、CO2冷媒は、毒性が無く、可燃性も無く安価である。 In recent years, a refrigeration cycle apparatus using a natural refrigerant has been developed in response to the flow of defluorination. Among them, the popularization of refrigeration cycle apparatuses using carbon dioxide (CO2) as a refrigerant is increasing year by year, and uses thereof are expanding to car air conditioners, air conditioners, refrigerators and the like. The characteristics of the CO2 refrigerant are an ozone depletion coefficient of 0, a global warming coefficient of 1, and a low environmental load. Incidentally, the HFC refrigerant that has been used in the refrigeration cycle apparatus for many years has an ozone depletion coefficient of 0, but a global warming coefficient of 1000 to 2000. In addition, the CO2 refrigerant is not toxic, flammable and inexpensive.

一方で、大気熱等をヒートポンプ冷媒回路の熱源として、冷媒の凝縮熱等を用いて水を加熱するヒートポンプ式の給湯機が知られている。この給湯機に使用される水は水道水や地下水などである。一般に、水道水や地下水などはカルシウムやマグネシウム等の硬度成分を含んでいるが、地域によっては硬度成分を非常に多く含んでいる場合がある。そこで、硬度成分を比較的多く含む水を、ヒートポンプ式給湯機の水冷媒熱交換器で長期間高温に加熱すると、最も高温となる水流路の水出口部近傍を中心に、硬度成分がスケール (例えば、炭酸カルシウム)として析出することが多い。このようなスケールが、水冷媒熱交換器の水流路内の伝熱面に付着し蓄積していくと、水の流路抵抗となって圧力損失が増大する。また、冷媒と水とが熱交換する際の伝熱面の熱抵抗となり、熱交換器としての性能を著しく低減させる。さらに、水流路がスケールにより完全に閉塞されると、ヒートポンプ式給湯機による給湯運転が不可能になるおそれもある。 On the other hand, a heat pump type water heater is known that heats water using the heat of condensation of a refrigerant or the like using atmospheric heat or the like as a heat source of a heat pump refrigerant circuit. The water used for this water heater is tap water or groundwater. In general, tap water, groundwater, and the like contain hardness components such as calcium and magnesium, but depending on the region, they may contain a very large amount of hardness components. Therefore, when water containing a relatively large hardness component is heated to a high temperature for a long time with a water-refrigerant heat exchanger of a heat pump type hot water heater, the hardness component is scaled around the water outlet portion of the water channel that is at the highest temperature. For example, it often precipitates as calcium carbonate). When such a scale adheres and accumulates on the heat transfer surface in the water flow path of the water-refrigerant heat exchanger, the flow loss becomes water flow resistance and pressure loss increases. Moreover, it becomes the heat resistance of the heat transfer surface when the refrigerant and water exchange heat, and the performance as a heat exchanger is significantly reduced. Furthermore, if the water flow path is completely blocked by the scale, there is a possibility that the hot water supply operation by the heat pump type hot water heater becomes impossible.

特開2005−077062号公報Japanese Patent Laying-Open No. 2005-077062

ところで、高温出湯(90℃程度)が可能なCO2冷媒使用のヒートポンプ給湯機では、水に溶存可能な空気の量が低下するため、気泡の発生率が高くなる。気泡の発生が多くなると、水冷媒熱交換器の水流路の内面に気泡が溜まり、流路抵抗が大きくなる。また、スケールの原因となる炭酸カルシウムも水温が高いほど析出しやすくなる。連続運転ではスケールが析出してもそのほとんどが排出されるために水流路内面に付着する量は比較的少ないが、断続運転では停止時に浮遊しているスケールは排出されないため付着量が多くなる。高温出湯が可能なCO2冷媒使用のヒートポンプ式給湯機は気泡の発生率が高いので、連続運転中であっても水流路内に気泡が溜まっていくため、熱交換率が低下し性能が著しく低下する。また、溶存していた気体が気泡として発生し、水流路内面に溜まると流路抵抗が大きくなるため、浮遊しているスケールが付着しやすくなる。スケールが付着した場合、有効伝熱面積の低下に留まらず、配管の詰まりが発生するおそれがあるため、閉塞の可能性が高くなる。 By the way, in the heat pump water heater using a CO2 refrigerant capable of high temperature hot water (about 90 ° C.), the amount of air that can be dissolved in water is decreased, and the generation rate of bubbles is increased. When the generation of bubbles increases, bubbles accumulate on the inner surface of the water flow path of the water-refrigerant heat exchanger, and the flow path resistance increases. In addition, calcium carbonate that causes scales is more likely to precipitate as the water temperature increases. In the continuous operation, even if the scale is deposited, most of the scale is discharged, so that the amount adhering to the inner surface of the water flow path is relatively small. However, in the intermittent operation, the scale floating at the time of stop is not discharged and the amount of adhesion increases. The heat pump water heater using CO2 refrigerant that can discharge hot water has a high bubble generation rate, so bubbles accumulate in the water flow path even during continuous operation. To do. Moreover, since the dissolved gas is generated as bubbles and accumulated on the inner surface of the water channel, the channel resistance increases, so that the floating scale tends to adhere. When the scale adheres, the possibility of clogging increases because there is a risk that the clogging of the piping may occur, as well as a reduction in the effective heat transfer area.

従来のHFC冷媒を使用したヒートポンプ式給湯機は循環加温方式を採用していた。これは、HFC冷媒の特性が水を少しずつ昇温する方が高効率に運転できるためである。そのため、図11(A)に示すように、給湯機K1と貯湯槽60との間で水を数回循環させることにより目標出湯温度まで昇温していたのである。この場合、最高出湯温度が70℃までしか昇温出来ないため、給湯機K1の水流路における気泡の発生率は少ない。 A conventional heat pump type water heater using an HFC refrigerant has adopted a circulating heating method. This is because the characteristics of the HFC refrigerant can be operated more efficiently when the temperature of water is gradually increased. Therefore, as shown in FIG. 11A, the temperature is raised to the target hot water temperature by circulating water several times between the hot water supply device K1 and the hot water storage tank 60. In this case, since the maximum hot water temperature can only be raised to 70 ° C., the rate of occurrence of bubbles in the water flow path of the water heater K1 is small.

一方で、CO2冷媒を使用したヒートポンプ式給湯機は一過式昇温方式を採用しているものが多い。これは、CO2冷媒の特性が低温から高温へ一気に昇温した方が高効率に運転できるからである。CO2は低温時の温度に対する熱量変化が大きく、低温入水時に有利な冷媒である。ヒートポンプ式の給湯機K2と貯湯槽60の概略構成を図11(B)に示す。この構成では、給湯機K2の水冷媒熱交換器の水流路内で一気に90℃まで昇温させて貯湯槽60に供給するため、水流路における気泡の発生率が高い。 On the other hand, many heat pump water heaters using CO2 refrigerant adopt a one-time temperature rising method. This is because the characteristics of the CO2 refrigerant can be operated more efficiently when the temperature is increased from low temperature to high temperature all at once. CO2 has a large change in calorie with respect to temperature at low temperatures, and is an advantageous refrigerant at low temperature water entry. A schematic configuration of the heat pump type hot water heater K2 and the hot water storage tank 60 is shown in FIG. In this configuration, since the temperature is raised to 90 ° C. at a stretch in the water flow path of the water refrigerant heat exchanger of the water heater K2 and supplied to the hot water storage tank 60, the rate of occurrence of bubbles in the water flow path is high.

図12に水温と水に対する溶存酸素濃度との一般的な関係を示す。図中の曲線から、水温80℃の近辺に変曲点があり、80℃を超えると、溶存可能な酸素の量が一段と下がってくることが分かる。 FIG. 12 shows a general relationship between the water temperature and the dissolved oxygen concentration with respect to water. From the curve in the figure, it can be seen that there is an inflection point in the vicinity of the water temperature of 80 ° C., and when it exceeds 80 ° C., the amount of dissolved oxygen further decreases.

図13に全国 平均の水質であるpH=7.0およびpH=8.0の水の水温と炭酸カルシウムの溶解度との関係を示す。図中の曲線から、水温が80℃を超えると、炭酸カルシウムが水にほとんど溶けず析出しやすいことが分かる。 FIG. 13 shows the relationship between the water temperature of pH = 7.0 and pH = 8.0, which is the national average water quality, and the solubility of calcium carbonate. From the curve in the figure, it can be seen that when the water temperature exceeds 80 ° C., calcium carbonate hardly dissolves in water and tends to precipitate.

つまり、上記したそれぞれの知見は、最高出湯温度の高いCO2冷媒を用いたヒートポンプ式給湯機特有の課題となることを示している。このように、水冷媒熱交換器の水流路のスケールが原因となって熱交換効率が低下したり閉塞による熱交換器の交換を行なうことになれば、運転コストやメンテナンス費が高くなる。 That is, each knowledge mentioned above has shown that it becomes a subject peculiar to the heat pump type water heater using the CO2 refrigerant | coolant with the highest maximum hot-water temperature. As described above, if the heat exchange efficiency is lowered due to the scale of the water flow path of the water-refrigerant heat exchanger or the heat exchanger is replaced due to blockage, the operation cost and the maintenance cost are increased.

この発明は、前記のような課題を解決するためになされたもので、水冷媒熱交換器の水側伝熱管内で多量に発生する気泡を除去することにより、スケール付着を抑制することのできる給湯機の提供を目的とする。 The present invention has been made to solve the above-described problems, and scale adhesion can be suppressed by removing a large amount of bubbles generated in the water-side heat transfer tube of the water-refrigerant heat exchanger. The purpose is to provide a water heater.

この発明に係る給湯機は、圧縮機、水冷媒熱交換器の冷媒側伝熱管、膨張弁、および熱源側熱交換器を連結して成るヒートポンプ冷媒回路と、水ポンプ、および冷媒側伝熱管内の冷媒との間で熱交換を行なう水冷媒熱交換器の水側伝熱管を連結して成る給湯用水路とを有する給湯機において、水冷媒熱交換器の水側伝熱管の水出口部を振動させる水出口部振動手段を備えているものである。 A water heater according to the present invention includes a heat pump refrigerant circuit formed by connecting a compressor, a refrigerant side heat transfer tube, an expansion valve, and a heat source side heat exchanger of a water refrigerant heat exchanger, a water pump, and a refrigerant side heat transfer tube. The water outlet of the water-side heat transfer tube of the water-refrigerant heat exchanger is vibrated in a water heater having a hot-water supply channel formed by connecting water-side heat transfer tubes of a water-refrigerant heat exchanger that exchanges heat with other refrigerants. The water outlet portion vibrating means is provided.

この発明の給湯機では、給湯用水路内を流れる水が高温になる水冷媒熱交換器の水側伝熱管の水出口部で気泡の発生率が増加することに着目し、水冷媒熱交換器の水側伝熱管の水出口部を水出口部振動手段により振動させることにより気泡を除去するようにした。これは、鍋で湯を沸かすと内面に気泡が発生してくるが、その時、鍋に少しの振動を与えるだけで気泡を除去できるのと同じ理屈である。このように水流路内の気泡を取り除くことで流路抵抗の増大を抑制することができ、スケール付着を抑制できる。その結果、有効伝熱面積の低下及びスケールによる閉塞を抑制することができる。これにより、スケールの付着に対して信頼性に優れたヒートポンプ式の給湯機を提供できるのである。 In the water heater of the present invention, focusing on the fact that the rate of bubbles increases at the water outlet of the water-side heat transfer tube of the water-refrigerant heat exchanger where the water flowing in the hot-water supply channel becomes hot, the water-refrigerant heat exchanger Bubbles were removed by vibrating the water outlet portion of the water-side heat transfer tube by the water outlet portion vibration means. This is the same reason that bubbles are generated on the inner surface when boiling water in a pan, but at that time, the bubbles can be removed by applying a little vibration to the pan. Thus, by removing the bubbles in the water flow path, an increase in flow path resistance can be suppressed, and scale adhesion can be suppressed. As a result, it is possible to suppress a decrease in effective heat transfer area and blockage due to scale. Thereby, it is possible to provide a heat pump type hot water heater excellent in reliability against the adhesion of scale.

実施の形態1.
図1はこの発明の実施の形態1における給湯機の回路構成図である。
図において、この実施の形態1に係る給湯機Kは、ヒートポンプ冷媒回路1と給湯用水路2とを備えている。ヒートポンプ冷媒回路1は、圧縮機4、水冷媒熱交換器3の伝熱管コイル24の冷媒側伝熱管30、膨張弁6、熱源側熱交換器7、およびアキュムレータ8が冷媒配管9で環状に連結されて構成されている。このヒートポンプ冷媒回路1には、二酸化炭素(CO2)が冷媒として用いられる。給湯用水路2は、水ポンプ22、水流量調整弁12、および水冷媒熱交換器3の伝熱管コイル24の水側伝熱管29が水配管14で一連に連結して構成されている。水冷媒熱交換器3においては、水側伝熱管29の水流路13内の水と冷媒側伝熱管30の冷媒流路5内の冷媒との間で熱交換を行なうようになっている。そして、熱源側熱交換器7には、モータ11により駆動されるファン10によって室外空気が送風される。また、出側水温度センサ18が伝熱管コイル24の水側伝熱管29の水出口部29Eに配備されている。この出側水温度センサ18による検出温度を給湯目標温度(例えば、90℃)とするように、ヒートポンプ冷媒回路1の運転容量が制御される。この給湯機Kは高温出湯が可能な一過式昇温方式を採用している。
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram of a water heater in Embodiment 1 of the present invention.
In the figure, a water heater K according to the first embodiment includes a heat pump refrigerant circuit 1 and a hot water supply channel 2. In the heat pump refrigerant circuit 1, the compressor 4, the refrigerant side heat transfer tube 30 of the heat transfer tube coil 24 of the water refrigerant heat exchanger 3, the expansion valve 6, the heat source side heat exchanger 7, and the accumulator 8 are connected in an annular shape by the refrigerant pipe 9. Has been configured. In the heat pump refrigerant circuit 1, carbon dioxide (CO2) is used as a refrigerant. The hot water supply channel 2 includes a water pump 22, a water flow rate adjustment valve 12, and a water side heat transfer tube 29 of a heat transfer tube coil 24 of the water refrigerant heat exchanger 3 connected in series by a water pipe 14. In the water-refrigerant heat exchanger 3, heat is exchanged between the water in the water flow path 13 of the water-side heat transfer tube 29 and the refrigerant in the refrigerant flow path 5 of the refrigerant-side heat transfer tube 30. Then, outdoor air is blown to the heat source side heat exchanger 7 by a fan 10 driven by a motor 11. Further, the outlet side water temperature sensor 18 is arranged at the water outlet 29 </ b> E of the water side heat transfer tube 29 of the heat transfer tube coil 24. The operating capacity of the heat pump refrigerant circuit 1 is controlled such that the temperature detected by the outlet water temperature sensor 18 is the hot water supply target temperature (for example, 90 ° C.). This hot water heater K employs a one-time temperature raising method capable of high temperature hot water.

次に、この給湯機Kの外郭構造を図2〜図4に示す。基盤41の前部に前パネル42、フィンガード43、および上部パネル44が配置され、基盤41の両側部にサイドパネル45およびサイドパネル46が配備され、基盤41の背部に後パネル49および後上部パネル47が配備されている。上部パネル44、サイドパネル45、サイドパネル46、および後上部パネル47に囲まれた上面開口にはファンガード48が設置されている。そして、サイドパネル45,46、ベルマウス50、および機械室仕切板51により形成された空気通路を横切るように熱源側熱交換器7が配置され、熱源側熱交換器7の上方にファン10およびモータ11が配置されている。また、ケーシング下部の機械室仕切板51、前パネル42、および後パネル49によって外環境から区画された機械室内には、圧縮機4、膨張弁6、アキュムレータ8、電磁弁36、水冷媒熱交換器3、水ポンプ22、水流量調整弁12、それらを接続する配管群、制御ボックス23、その他が配備されている。 Next, the outer structure of the water heater K is shown in FIGS. The front panel 42, the fingered 43, and the upper panel 44 are disposed in the front part of the base 41, the side panel 45 and the side panel 46 are provided on both sides of the base 41, and the rear panel 49 and the rear upper part are disposed on the back of the base 41. A panel 47 is provided. A fan guard 48 is installed in an upper surface opening surrounded by the upper panel 44, the side panel 45, the side panel 46, and the rear upper panel 47. The heat source side heat exchanger 7 is disposed so as to cross the air passage formed by the side panels 45, 46, the bell mouth 50, and the machine room partition plate 51, and the fan 10 and the heat source side heat exchanger 7 are disposed above the heat source side heat exchanger 7. A motor 11 is arranged. Further, in the machine room partitioned from the outside environment by the machine room partition plate 51, the front panel 42, and the rear panel 49 in the lower part of the casing, the compressor 4, the expansion valve 6, the accumulator 8, the electromagnetic valve 36, the water refrigerant heat exchange. The vessel 3, the water pump 22, the water flow rate adjusting valve 12, the piping group connecting them, the control box 23, and others are provided.

一方で、圧縮機4、膨張弁6、電磁弁36、制御ボックス23、水ポンプ22については、サービス頻度が高いため、基盤41の前部に配置されており、ユニット下部の前パネル42を外して修理・交換等の作業が行われる。よって、体積が大きくサービス頻度が比較的低い水冷媒熱交換器3は前部に配置することができず、基盤41の後部に配置されている。 On the other hand, the compressor 4, the expansion valve 6, the electromagnetic valve 36, the control box 23, and the water pump 22 are arranged at the front of the base 41 because the service frequency is high, and the front panel 42 at the bottom of the unit is removed. Repair and replacement work is performed. Therefore, the water-refrigerant heat exchanger 3 having a large volume and a relatively low service frequency cannot be disposed at the front portion, and is disposed at the rear portion of the base 41.

尚、水冷媒熱交換器3の修理や交換等のサービス作業については、前方からは圧縮機4や制御ボックス23、冷媒配管群等が障害となるために困難であり、後パネル49からは作業スペースが狭いために作業ができない。また、サイドパネル45,46はファン10やその他パネル等の重量を支える構造部材となっているため、取外しが困難である。また、水冷媒熱交換器3の上部においても熱源側熱交換器7が配置されているため、作業が困難となる。 The service work such as repair and replacement of the water refrigerant heat exchanger 3 is difficult from the front because the compressor 4, the control box 23, the refrigerant piping group and the like are obstructed, and the service work is started from the rear panel 49. The work is not possible due to the small space. Moreover, since the side panels 45 and 46 are structural members that support the weight of the fan 10 and other panels, it is difficult to remove them. In addition, since the heat source side heat exchanger 7 is arranged also in the upper part of the water refrigerant heat exchanger 3, the operation becomes difficult.

水冷媒熱交換器3は、図5に示すように、5パスの伝熱管コイル24(1),24(2),24(3),24(4),24(5)と、伝熱管コイル24(1),24(2),24(3),24(4),24(5)への水側伝熱管29,29,29,29,29の水入側が接続された水入口ヘッダー26と、伝熱管コイル24(1),24(2),24(3),24(4),24(5)からの水側伝熱管29,29,29,29,29の水出側が接続された水出口ヘッダー25と、伝熱管コイル24(1),24(2),24(3),24(4),24(5)への冷媒側伝熱管30,30,30,30,30の冷媒入側が接続された冷媒入口ヘッダー27と、伝熱管コイル24(1),24(2),24(3),24(4),24(5)からの冷媒側伝熱管30,30,30,30,30の冷媒出側が接続された冷媒出口ヘッダー28とにより構成される。これらの伝熱管コイル24、水入口ヘッダー26、水出口ヘッダー25、冷媒入口ヘッダー27、および冷媒出口ヘッダー28はそれぞれ、ろう付け等により接続される。ところで、給湯能力を大きくするためには水冷媒熱交換器3を大きくする必要がある。しかし、水冷媒熱交換器3の伝熱管長さが長くなると水流路13側および冷媒流路5側の圧損が大きくなるため、複数パスに分流させることにより1パスの圧損を抑制する。したがって、給湯能力を大きくする場合には、図5のように伝熱管コイル24を複数パス並列に配置する。なお、この給湯機Kは最大能力20馬力相当の能力を有しているため、5パス(5本)の伝熱管コイル24(n=1〜5)を搭載している。1パスの伝熱管コイル24の長さは約10mである。 As shown in FIG. 5, the water-refrigerant heat exchanger 3 includes five-pass heat transfer tube coils 24 (1), 24 (2), 24 (3), 24 (4), 24 (5), and a heat transfer tube coil. Water inlet header 26 to which the water inlet side of water side heat transfer tubes 29, 29, 29, 29, 29 to 24 (1), 24 (2), 24 (3), 24 (4), 24 (5) is connected. And the water discharge side of the water side heat transfer tubes 29, 29, 29, 29, 29 from the heat transfer tube coils 24 (1), 24 (2), 24 (3), 24 (4), 24 (5) are connected. The water outlet header 25 and the refrigerant side heat transfer tubes 30, 30, 30, 30, 30 to the heat transfer tube coils 24 (1), 24 (2), 24 (3), 24 (4), 24 (5) The refrigerant inlet header 27 connected to the refrigerant inlet side and the heat transfer tube coils 24 (1), 24 (2), 24 (3), 24 (4), 24 (5) Constituted by a refrigerant outlet header 28 the refrigerant outlet side of the medium side heat transfer tubes 30,30,30,30,30 are connected. These heat transfer tube coil 24, water inlet header 26, water outlet header 25, refrigerant inlet header 27, and refrigerant outlet header 28 are connected by brazing or the like. By the way, in order to increase the hot water supply capacity, it is necessary to enlarge the water-refrigerant heat exchanger 3. However, if the heat transfer tube length of the water-refrigerant heat exchanger 3 is increased, the pressure loss on the water flow path 13 side and the refrigerant flow path 5 side is increased. Therefore, when increasing the hot water supply capacity, the heat transfer tube coils 24 are arranged in parallel in a plurality of paths as shown in FIG. In addition, since this water heater K has the capacity | capacitance equivalent to the maximum capacity | capacitance of 20 horsepower, the heat transfer tube coil 24 (n = 1-5) of 5 paths | paths (5) is mounted. The length of the one-pass heat transfer tube coil 24 is about 10 m.

図6(A)に図5の水冷媒熱交換器3の伝熱管コイル24の断面図の例を示す。この伝熱管コイル24は水側伝熱管29(内径約15mmφ)に3本の冷媒側伝熱管30,30,30(それぞれ内径約4mmφ)をねじって巻き付けて固着することで伝熱面積を増やし、水と冷媒を対向流にして熱交換を行なうようにしたものである。尚、この伝熱管コイル24は、高効率・省スペース化を図ることができるが、水側伝熱管29の内面構造が複雑なため、気泡が滞留しやすくなっている。滞留懸念場所を図6(A)中で一点鎖線の円内に示す。滞留懸念場所に気泡が滞留すると、有効な伝熱面積が低下する。そのため、気泡の確実な除去方法が必要となる。 FIG. 6A shows an example of a cross-sectional view of the heat transfer tube coil 24 of the water-refrigerant heat exchanger 3 of FIG. The heat transfer tube coil 24 increases the heat transfer area by twisting and fixing three refrigerant side heat transfer tubes 30, 30, 30 (each inner diameter of about 4 mmφ) around the water side heat transfer tube 29 (inner diameter of about 15 mmφ), Heat exchange is performed using water and a refrigerant as opposed flows. The heat transfer tube coil 24 can achieve high efficiency and space saving. However, since the inner surface structure of the water-side heat transfer tube 29 is complicated, bubbles are likely to stay. Locations of concern for staying are shown in a circle of a one-dot chain line in FIG. If air bubbles stay in the place where the stagnation is concerned, the effective heat transfer area decreases. Therefore, a reliable method for removing bubbles is required.

尚、この発明に用いる伝熱管コイルとしては、前記した伝熱管コイル24に限るものでなく、図6(B)に示すような伝熱管コイル24Aであっても構わない。この伝熱管コイル24Aは、冷媒側伝熱管30A内に水側伝熱管29Aが収容された二重管構造を有している。この場合、水と冷媒を対向流とし水側伝熱管29Aの周囲の冷媒流路5Aに冷媒を流すことにより水流路13A内の水と熱交換するようになっている。 The heat transfer tube coil used in the present invention is not limited to the heat transfer tube coil 24 described above, and may be a heat transfer tube coil 24A as shown in FIG. This heat transfer tube coil 24A has a double tube structure in which a water side heat transfer tube 29A is accommodated in a refrigerant side heat transfer tube 30A. In this case, heat is exchanged with water in the water flow path 13A by using water and a refrigerant as opposed flows and flowing the refrigerant through the refrigerant flow path 5A around the water side heat transfer tube 29A.

図7は異なる地区で使用してスケールが付着した給湯機の水冷媒熱交換器内における水温とスケール膜厚との関係を示している。図中の曲線からわかるように、傾向に多少の違いはあるが水温が80℃以上になる部分からスケールの付着が顕著になる傾向が認められる。地域によってカルシウムやマグネシウム等の硬度成分量に違いがあることより、溶け出し時のスケール膜圧に違いを生じるが、90℃以上では同等の膜厚となることが分かる。これより、硬度成分量に違いがあってもスケールの付着量に差異はなく、高温になるにつれて溶存できる空気の量が低下して気泡が発生し、水側伝熱管内面に溜まり、流路抵抗が大きくなったことでスケールの発生率が上がったと言える。 FIG. 7 shows the relationship between the water temperature and the scale film thickness in the water-refrigerant heat exchanger of the hot water heater used in different areas. As can be seen from the curve in the figure, although there is a slight difference in the tendency, there is a tendency that the adhesion of the scale becomes remarkable from the portion where the water temperature is 80 ° C. or higher. Although there is a difference in the amount of hardness components such as calcium and magnesium depending on the region, the scale film pressure at the time of melting varies, but it can be seen that the film thickness is equivalent at 90 ° C. or higher. As a result, even if there is a difference in the amount of hardness component, there is no difference in the amount of adhesion of the scale, and as the temperature rises, the amount of air that can be dissolved decreases and bubbles are generated, collecting on the inner surface of the water-side heat transfer tube, and the flow resistance It can be said that the occurrence rate of scale has increased due to the increase of.

図8はスケールが付着した水冷媒熱交換器の水側伝熱管内における水出口端からの距離とスケール膜厚との関係を示している。図中の曲線からわかるように、スケールが付着しやすい部分は熱交換器全体の4〜8%であり、この範囲において気泡が大量に発生するため、振動を与えて除去すればよいことがわかる。この給湯機Kの伝熱管コイル1パスの全長は約10mであるため、水出口端部から遡って全長の約1割(この場合、約1m)までの部分(水出口部29E)に振動を与えて気泡を除去すればスケール析出の抑制につながる。 FIG. 8 shows the relationship between the distance from the water outlet end in the water-side heat transfer tube of the water-refrigerant heat exchanger with the scale attached and the scale film thickness. As can be seen from the curve in the figure, the portion where the scale easily adheres is 4 to 8% of the entire heat exchanger, and a large amount of bubbles are generated in this range. . Since the total length of one path of the heat transfer tube coil of the water heater K is about 10 m, the vibration (water outlet portion 29E) extends from the water outlet end to about 10% of the total length (in this case, about 1 m). Giving and removing bubbles leads to suppression of scale deposition.

そこで、この給湯機Kでは、ケーシング内にあって振動する振動部品、例えば水ポンプ22、圧縮機4、圧縮機4の吸込み配管、または吐出配管と、水出口ヘッダー25または水側伝熱管29の露出部分とを結束バンド31などの連結部材で連結してある。この給湯機Kではケーシング内配管の取り廻し上の利便性により、図9に示すように、例えば、圧縮機4の吸込み配管9Aと、水冷媒熱交換器3の水側伝熱管29の水出口部29Eとが結束バンド31で連結されている。これにより、圧縮機4の運転中は常に振動部品の振動が水出口ヘッダー25から水側伝熱管29に伝わって水出口部29Eを共振させ、その結果、水出口部29Eの内面に気泡を付着させないか、あるいは内面から離脱させて除去する。尚、配管同士を直接接触させると騒音の原因となるため、間に緩衝材を介在させて固定するとよい。
すなわち、この結束バンド31が、水冷媒熱交換器の水側伝熱管の水出口部を振動させる、本発明にいう水出口部振動手段および連結部材の一例である。
Therefore, in this water heater K, vibration parts in the casing that vibrate, such as the water pump 22, the compressor 4, the suction pipe or the discharge pipe of the compressor 4, the water outlet header 25, or the water-side heat transfer pipe 29. The exposed portion is connected by a connecting member such as a binding band 31. In this water heater K, for convenience in handling the piping in the casing, as shown in FIG. 9, for example, the suction pipe 9A of the compressor 4 and the water outlet of the water-side heat transfer pipe 29 of the water-refrigerant heat exchanger 3 are used. The portion 29E is connected by a binding band 31. Thereby, during the operation of the compressor 4, the vibration of the vibration component is always transmitted from the water outlet header 25 to the water side heat transfer pipe 29 to resonate the water outlet portion 29E, and as a result, bubbles are attached to the inner surface of the water outlet portion 29E. Remove or remove from the inner surface. In addition, since it will cause a noise when piping is made to contact directly, it is good to fix by interposing a buffering material in between.
That is, the binding band 31 is an example of the water outlet vibration means and the connecting member according to the present invention that vibrates the water outlet of the water side heat transfer tube of the water refrigerant heat exchanger.

上記したように、この実施の形態1の給湯機Kによれば、結束バンド31を介して振動伝達可能に連結された圧縮機4の吸込み配管9Aと共振させることで、水側伝熱管29の水流路13の内面に滞留させることなく、流通する水により気泡を水側伝熱管29内より追い出して、水出口ヘッダー25から排出することができる。これにより、十分な伝熱面積を確保することができ、性能低下およびスケール付着の抑制が可能となる。更には、付着していたスケールの剥離・離脱に寄与する。尚、水出口ヘッダー25は竪型配置にされており、且つ、水がヘッダー内を上向きに流れるので、水側伝熱管29からの気泡を効率よく迅速に排出することができる。 As described above, according to the water heater K of the first embodiment, the water-side heat transfer tube 29 is resonated with the suction pipe 9A of the compressor 4 connected so as to be able to transmit vibration through the binding band 31. Without staying on the inner surface of the water flow path 13, bubbles can be expelled from the water side heat transfer tube 29 by the flowing water and discharged from the water outlet header 25. As a result, a sufficient heat transfer area can be ensured, and performance degradation and scale adhesion can be suppressed. Furthermore, it contributes to peeling and detachment of the attached scale. Note that the water outlet header 25 has a vertical arrangement, and water flows upward in the header, so that air bubbles from the water-side heat transfer tube 29 can be discharged efficiently and quickly.

実施の形態2.
実施の形態1では、圧縮機4など振動部品の振動を利用した例を示したが、この実施の形態2では、水出口ヘッダー25または水側伝熱管29を直接振動させる例を示す。
図10(A)に示すように、小型の電動振動子でそれぞれ構成された振動駆動機32,32,32,32,32が、水冷媒熱交換器3の本体から出た水側伝熱管29,29,29,29,29の各露出部分に付設されている。これらの振動駆動機32,32,32,32,32は外部からの電源により駆動して水側伝熱管29,29,29,29,29の各露出部分を振動させる。これらの振動は各水側伝熱管29に伝わってそれぞれの水出口部29Eを共振させ、その内面の気泡を除去する。
Embodiment 2. FIG.
In the first embodiment, the example using the vibration of the vibration component such as the compressor 4 is shown. However, in the second embodiment, the water outlet header 25 or the water-side heat transfer tube 29 is directly vibrated.
As shown in FIG. 10 (A), the vibration drive units 32, 32, 32, 32, 32 each composed of a small electric vibrator are connected to the water-side heat transfer tube 29 from the main body of the water-refrigerant heat exchanger 3. , 29, 29, 29, 29 are attached to each exposed portion. These vibration drive units 32, 32, 32, 32, 32 are driven by an external power source to vibrate the exposed portions of the water-side heat transfer tubes 29, 29, 29, 29, 29. These vibrations are transmitted to each water-side heat transfer tube 29 to resonate each water outlet 29E and remove bubbles on the inner surface.

あるいは、図10(B)に示すように、バイブレータなどで構成される振動駆動機33が、水冷媒熱交換器3の水側伝熱管29,29,29,29,29が集まって連結された水出側ヘッダー25に付設されている。この振動駆動機33は外部からの電源により駆動して水出側ヘッダー25を振動させる。この振動は各水側伝熱管29に伝わってそれぞれの水出口部29Eを共振させ、その内面の気泡を除去する。
すなわち、これらの振動駆動機32,33が、水冷媒熱交換器の水側伝熱管の水出口部を振動させる、本発明にいう水出口部振動手段の別例となる。
Alternatively, as shown in FIG. 10 (B), the vibration driving machine 33 constituted by a vibrator or the like is connected to the water side heat transfer tubes 29, 29, 29, 29, 29 of the water refrigerant heat exchanger 3. Attached to the water discharge side header 25. The vibration driving machine 33 is driven by an external power source to vibrate the water discharge side header 25. This vibration is transmitted to each water-side heat transfer tube 29 to resonate each water outlet 29E and remove bubbles on the inner surface.
That is, these vibration driving machines 32 and 33 are another example of the water outlet portion vibration means according to the present invention, which vibrates the water outlet portion of the water side heat transfer tube of the water refrigerant heat exchanger.

従って、この実施の形態2の給湯機Kによれば、実施の形態1で述べた効果を奏することはもとより、外部の電源により振動駆動機32,33を駆動するので、必要なタイミングで水側伝熱管29の水出口部29Eを振動させることができ、振動の大きさも変更できるという利点がある。   Therefore, according to the water heater K of the second embodiment, the vibration driving machines 32 and 33 are driven by an external power source as well as the effects described in the first embodiment. There is an advantage that the water outlet 29E of the heat transfer tube 29 can be vibrated and the magnitude of the vibration can be changed.

実施の形態3.
次に、前記した実施の形態2の振動駆動機32または振動駆動機33の制御例を説明する。この構成では、図1に示すように、水冷媒熱交換器3の水側伝熱管29の入側に、入側水温度センサ(入側水温度検出手段)15が配備されている。入側水温度センサ15は水側伝熱管29入側の水温度を検出する。水冷媒熱交換器3の水側伝熱管29の出側には、出側水温度センサ(出側水温度検出手段)16が配備されている。出側水温度センサ16は水側伝熱管29出側の水温度を検出する。水冷媒熱交換器3の水側伝熱管29の出側には、水流速センサ(水流速検出手段)17が配備されている。水流速センサ17は水冷媒熱交換器3の水側伝熱管29内を流通する出側水の流速を検出する。また、給湯機Kはその制御を行なう制御装置19を備えている。この制御装置19は、MPUなどで構成される制御部20と、給湯機Kに関する所定給湯運転効率などのデータを記憶したメモリ21を備えている。
Embodiment 3 FIG.
Next, a control example of the vibration driving machine 32 or the vibration driving machine 33 according to the second embodiment will be described. In this configuration, as shown in FIG. 1, an inlet side water temperature sensor (inlet side water temperature detecting means) 15 is provided on the inlet side of the water side heat transfer tube 29 of the water refrigerant heat exchanger 3. The inlet water temperature sensor 15 detects the water temperature on the inlet side of the water heat transfer tube 29. On the outlet side of the water-side heat transfer tube 29 of the water-refrigerant heat exchanger 3, an outlet-side water temperature sensor (outlet-side water temperature detecting means) 16 is provided. The outlet water temperature sensor 16 detects the water temperature on the outlet side of the water heat transfer tube 29. A water flow rate sensor (water flow rate detection means) 17 is provided on the outlet side of the water side heat transfer tube 29 of the water refrigerant heat exchanger 3. The water flow rate sensor 17 detects the flow rate of the outlet water flowing through the water heat transfer tube 29 of the water refrigerant heat exchanger 3. The hot water heater K is provided with a control device 19 for performing the control. The control device 19 includes a control unit 20 configured by an MPU or the like, and a memory 21 that stores data such as predetermined hot water supply operation efficiency related to the hot water heater K.

そこで、制御部20(制御手段)は、各センサ15,16,17によりそれぞれ検出された、水側伝熱管29の入側水温度と出側水温度との温度差を求め、求めた温度差と検出した水流速とから給湯運転効率を算出する。算出した給湯運転効率が、予めメモリ21に格納されている所定給湯運転効率よりも低い場合に振動駆動機32または振動駆動機33を駆動して水側伝熱管29の水出口部29Eを振動させるのである。
従って、この実施の形態3の給湯機Kによれば、給湯運転効率の低下を検出でき、給湯運転効率の低下が検出されたときに振動駆動機32,33の駆動により水側伝熱管29の水出口部29Eを振動させるので、水出口部29Eにおける気泡の滞留とスケール付着の抑制を図り、更には付着していたスケールの剥離にもつながることから給湯運転効率を現状に保持するか、または改善することができる。
Therefore, the control unit 20 (control means) obtains a temperature difference between the inlet side water temperature and the outlet side water temperature of the water side heat transfer tube 29 detected by each of the sensors 15, 16, and 17, and the obtained temperature difference. The hot water supply operation efficiency is calculated from the detected water flow velocity. When the calculated hot water supply operation efficiency is lower than the predetermined hot water supply operation efficiency stored in the memory 21 in advance, the vibration drive unit 32 or the vibration drive unit 33 is driven to vibrate the water outlet 29E of the water-side heat transfer tube 29. It is.
Therefore, according to the hot water supply apparatus K of the third embodiment, a decrease in hot water supply operation efficiency can be detected. When a decrease in hot water supply operation efficiency is detected, the vibration side drive tubes 29 and 33 are driven to drive the water side heat transfer tube 29. Since the water outlet portion 29E is vibrated, the retention of bubbles and scale adhesion in the water outlet portion 29E are suppressed, and further, the attached scale is peeled off, so that the hot water supply operation efficiency is maintained as it is, or Can be improved.

尚、水冷媒熱交換器3の水出口部29Eの水温を検出する出側水温度センサ18(図1参照)を配備し、出側水温度センサ18の水温検出値が、予め制御装置19のメモリ21に記憶されている所定水温(例えば気泡の発生が増えてくる70℃)を超えたときに、制御部20が振動駆動機32,33を作動させるように構成することも可能である。 An outlet water temperature sensor 18 (see FIG. 1) for detecting the water temperature of the water outlet 29E of the water refrigerant heat exchanger 3 is provided, and the water temperature detection value of the outlet water temperature sensor 18 is previously set in the controller 19. It is also possible to configure the control unit 20 to activate the vibration drivers 32 and 33 when a predetermined water temperature (for example, 70 ° C. at which bubbles are increased) stored in the memory 21 is exceeded.

また、給湯機のヒートポンプ冷媒回路に用いる冷媒としては、先述した二酸化炭素が最も好適なのであるが、それ以外でも、出湯温度を70℃以上にする冷媒を用いることも可能である。   As the refrigerant used in the heat pump refrigerant circuit of the water heater, the carbon dioxide described above is most suitable, but other than that, it is also possible to use a refrigerant that makes the hot water temperature 70 ° C. or higher.

この発明の実施の形態1における給湯機の回路構成図である。It is a circuit block diagram of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の外観図である。It is an external view of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の分解斜視図である。It is a disassembled perspective view of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の機械室内の平面図である。It is a top view in the machine room of the water heater in Embodiment 1 of this invention. この発明の実施の形態1における給湯機の水冷媒熱交換器の斜視図である。It is a perspective view of the water refrigerant | coolant heat exchanger of the water heater in Embodiment 1 of this invention. 図5におけるA−A矢視断面を示し、(A)は実施の形態1における給湯機の伝熱管コイルの断面図、(B)は伝熱管コイルの別例を示す断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG. 5, (A) is a cross-sectional view of the heat transfer tube coil of the water heater in Embodiment 1, and (B) is a cross-sectional view illustrating another example of the heat transfer tube coil. 異なる地区で使用してスケールが付着した給湯機の水冷媒熱交換器内における水温とスケール膜厚との関係を示す図である。It is a figure which shows the relationship between the water temperature and the scale film thickness in the water refrigerant | coolant heat exchanger of the water heater used in a different area and to which the scale adhered. スケールが付着した水冷媒熱交換器の水側伝熱管内における水出口端からの距離とスケール膜厚との関係を示す図である。It is a figure which shows the relationship between the distance from the water exit end in the water side heat exchanger tube of the water refrigerant heat exchanger to which the scale adhered, and a scale film thickness. この発明の実施の形態1における給湯機に水出口部振動手段を設けた一例を示す外観図である。It is an external view which shows an example which provided the water exit part vibration means in the water heater in Embodiment 1 of this invention. この発明の実施の形態2における給湯機に水出口部振動手段を設けた例を示す図であって、(A)は水出口部振動手段の別例を示す斜視図、(B)は水出口部振動手段の他例を示す斜視図である。It is a figure which shows the example which provided the water outlet part vibration means in the water heater in Embodiment 2 of this invention, Comprising: (A) is a perspective view which shows another example of a water outlet part vibration means, (B) is a water outlet. It is a perspective view which shows the other example of a part vibration means. 一般のヒートポンプ給湯機と貯湯槽の概略構成図を示す図であって、(A)は湯を循環させる循環式昇温方式のもの示す図、(B)は水から湯を生成する一過式昇温方式のものを示す図である。It is a figure which shows schematic structure figure of a general heat pump water heater and a hot water storage tank, Comprising: (A) is a figure which shows the thing of the circulation-type temperature rising system which circulates hot water, (B) is a transient type which produces | generates hot water from water It is a figure which shows the thing of a temperature rising system. 水温と水に対する溶存酸素濃度との一般的な関係を示す図である。It is a figure which shows the general relationship between water temperature and the dissolved oxygen concentration with respect to water. 全国平均の水質であるpH=7.0およびpH=8.0の水の水温と炭酸カルシウムの溶解度との関係を示す図である。It is a figure which shows the relationship between the water temperature of water of pH = 7.0 and pH = 8.0 which are national average water quality, and the solubility of calcium carbonate.

符号の説明Explanation of symbols

1 ヒートポンプ冷媒回路、2 給湯用水路、3 水冷媒熱交換器、4 圧縮機、6 膨張弁、7 熱源側熱交換器、9 冷媒配管、9A 吸込み配管、14 水配管、15 入側水温度センサ、16 出側水温度センサ、17 水流速センサ、20 制御部、21 メモリ、22 水ポンプ、25 水出口ヘッダー、29,29A 水側伝熱管、29E 水出口部、30,30A 冷媒側伝熱管、31 結束バンド、32,33 振動駆動機、K 給湯機。 DESCRIPTION OF SYMBOLS 1 Heat pump refrigerant circuit, 2 Hot water supply channel, 3 Water refrigerant heat exchanger, 4 Compressor, 6 Expansion valve, 7 Heat source side heat exchanger, 9 Refrigerant piping, 9A Suction piping, 14 Water piping, 15 Inlet water temperature sensor, 16 Outlet water temperature sensor, 17 Water flow rate sensor, 20 Control part, 21 Memory, 22 Water pump, 25 Water outlet header, 29, 29A Water side heat transfer pipe, 29E Water outlet part, 30, 30A Refrigerant side heat transfer pipe, 31 Cable ties, 32, 33 Vibration drive, K Water heater.

Claims (5)

圧縮機、水冷媒熱交換器の冷媒側伝熱管、膨張弁、および熱源側熱交換器を連結して成るヒートポンプ冷媒回路と、水ポンプ、および前記冷媒側伝熱管内の冷媒との間で熱交換を行なう水冷媒熱交換器の水側伝熱管を連結して成る給湯用水路とを有する給湯機において、前記水冷媒熱交換器の水側伝熱管の水出口部を振動させる水出口部振動手段を備えていることを特徴とする給湯機。 Heat is generated between the heat pump refrigerant circuit formed by connecting the compressor, the refrigerant side heat transfer tube of the water refrigerant heat exchanger, the expansion valve, and the heat source side heat exchanger, and the water pump and the refrigerant in the refrigerant side heat transfer tube. A water outlet portion vibration means for vibrating a water outlet portion of the water-side heat transfer tube of the water-refrigerant heat exchanger in a water heater having a hot-water supply channel formed by connecting water-side heat transfer tubes of a water-refrigerant heat exchanger that performs exchange A water heater characterized by comprising. 水出口部振動手段が、給湯機の振動部品と、水冷媒熱交換器の水側伝熱管の水出口部とを振動伝達可能に連結する連結部材を備えていることを特徴とする請求項1に記載の給湯機。 The water outlet portion vibration means includes a connecting member that connects the vibration component of the water heater and the water outlet portion of the water-side heat transfer tube of the water refrigerant heat exchanger so as to be able to transmit vibrations. The water heater described in 1. 水出口部振動手段が、水冷媒熱交換器の水側伝熱管の水出口部に付設されて前記水出口部を振動させる振動駆動機であることを特徴とする請求項1に記載の給湯機。 2. The water heater according to claim 1, wherein the water outlet vibration means is a vibration drive unit that is attached to a water outlet of a water-side heat transfer tube of a water refrigerant heat exchanger and vibrates the water outlet. . 水冷媒熱交換器の水側伝熱管の入側の水温度を検出する入側水温度検出手段と、前記水冷媒熱交換器の水側伝熱管の出側の水温度を検出する出側水温度検出手段と、前記水冷媒熱交換器の水側伝熱管内を流通する水の流速を検出する水流速検出手段と、前記それぞれ検出された、水側伝熱管の入側の水温度と出側の水温度との温度差、および、水流速に基づいて振動駆動機を駆動制御する制御手段とを具備してなることを特徴とする請求項3に記載の給湯機。 Inlet water temperature detecting means for detecting the water temperature on the inlet side of the water side heat transfer tube of the water refrigerant heat exchanger, and outlet water for detecting the water temperature on the outlet side of the water side heat transfer tube of the water refrigerant heat exchanger A temperature detecting means; a water flow rate detecting means for detecting a flow speed of water flowing through the water side heat transfer pipe of the water refrigerant heat exchanger; and the detected water temperature on the inlet side of the water side heat transfer pipe and the output water temperature. The hot water heater according to claim 3, further comprising a control means for driving and controlling the vibration driving machine based on a temperature difference with the side water temperature and a water flow velocity. ヒートポンプ冷媒回路に用いられる冷媒が二酸化炭素であることを特徴とする請求項1から請求項4のいずれか一項に記載の給湯機。 The water heater according to any one of claims 1 to 4, wherein the refrigerant used in the heat pump refrigerant circuit is carbon dioxide.
JP2008091960A 2008-03-31 2008-03-31 Water heater Pending JP2009243797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091960A JP2009243797A (en) 2008-03-31 2008-03-31 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091960A JP2009243797A (en) 2008-03-31 2008-03-31 Water heater

Publications (1)

Publication Number Publication Date
JP2009243797A true JP2009243797A (en) 2009-10-22

Family

ID=41305900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091960A Pending JP2009243797A (en) 2008-03-31 2008-03-31 Water heater

Country Status (1)

Country Link
JP (1) JP2009243797A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151933A1 (en) * 2010-06-03 2011-12-08 日立アプライアンス株式会社 Heat pump hot-water supply device
WO2012137281A1 (en) * 2011-04-01 2012-10-11 三菱電機株式会社 Hot water supply device and flow volumen control method
JP5946563B1 (en) * 2015-06-16 2016-07-06 イノベーティブ・デザイン&テクノロジー株式会社 Purification device and heat exchange system using the purification device
CN106225553A (en) * 2016-08-24 2016-12-14 调兵山市尖峰科技有限公司 Ultrasonic scale removal sewage heat exchanger
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
WO2017095057A1 (en) * 2015-12-02 2017-06-08 인지에이엠티 주식회사 Production method of low crank case for engine by hybrid die casting
JP2017198365A (en) * 2016-04-26 2017-11-02 三浦工業株式会社 Heat recovery system
CN111692756A (en) * 2020-06-09 2020-09-22 珠海格力电器股份有限公司 Heat exchange self-cleaning structure, gas water heater and control method
CN112577193A (en) * 2020-11-24 2021-03-30 王意舒 Automatic cleaning device for gas water heater using temperature change

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252676A (en) * 2010-06-03 2011-12-15 Hitachi Appliances Inc Heat pump water heater
CN102918332A (en) * 2010-06-03 2013-02-06 日立空调·家用电器株式会社 Heat pump hot-water supply device
CN102918332B (en) * 2010-06-03 2015-05-13 日立空调·家用电器株式会社 Heat pump hot-water supply device
WO2011151933A1 (en) * 2010-06-03 2011-12-08 日立アプライアンス株式会社 Heat pump hot-water supply device
WO2012137281A1 (en) * 2011-04-01 2012-10-11 三菱電機株式会社 Hot water supply device and flow volumen control method
CN103492828A (en) * 2011-04-01 2014-01-01 三菱电机株式会社 Hot water supply device and flow volumen control method
JP5546680B2 (en) * 2011-04-01 2014-07-09 三菱電機株式会社 Water heater and flow rate control method
US9021993B2 (en) 2011-04-01 2015-05-05 Mitsubishi Electric Corporation Water heater and flow rate control method
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP5946563B1 (en) * 2015-06-16 2016-07-06 イノベーティブ・デザイン&テクノロジー株式会社 Purification device and heat exchange system using the purification device
JP2017001004A (en) * 2015-06-16 2017-01-05 イノベーティブ・デザイン&テクノロジー株式会社 Cleaning apparatus and heat exchange system using the same
WO2017095057A1 (en) * 2015-12-02 2017-06-08 인지에이엠티 주식회사 Production method of low crank case for engine by hybrid die casting
KR101789658B1 (en) * 2015-12-02 2017-10-26 인지에이엠티 주식회사 Manufacturing method of lower crank case for engine by hybrid die casting
JP2017198365A (en) * 2016-04-26 2017-11-02 三浦工業株式会社 Heat recovery system
CN106225553A (en) * 2016-08-24 2016-12-14 调兵山市尖峰科技有限公司 Ultrasonic scale removal sewage heat exchanger
CN111692756A (en) * 2020-06-09 2020-09-22 珠海格力电器股份有限公司 Heat exchange self-cleaning structure, gas water heater and control method
CN112577193A (en) * 2020-11-24 2021-03-30 王意舒 Automatic cleaning device for gas water heater using temperature change

Similar Documents

Publication Publication Date Title
JP2009243797A (en) Water heater
JP5806581B2 (en) Cooling system and cooling method
JP6827388B2 (en) Heat pump device
JP2004144445A (en) Heat pump water heater
JP2008111574A (en) Heat pump heat supply system
KR20220030206A (en) Valve systems and methods
CN102326036B (en) Heat pump system
JP2013119954A (en) Heat pump hot water heater
JP5501279B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP6570766B2 (en) Heating control system and heat pump hot water supply heating system
JP5594220B2 (en) Heat pump type water heater
JP2009092258A (en) Refrigerating cycle device
JP2008267381A (en) Turbine generator and refrigeration device provided with turbine generator
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2010133600A (en) Heat pump water heater
CN101929770B (en) Control circuit of hot water air conditioner
JP5107884B2 (en) Heat pump type hot water heater
JP6152063B2 (en) Heat pump hot water storage system
JP2009243798A (en) Heater for water for hot-water supply system, and hot-water supply system
JP5516332B2 (en) Heat pump type hot water heater
JP2005337550A (en) Heat pump water heater
EP3130867B1 (en) Heat pump type water heater system
JP2007178059A (en) Heat pump type hot-water supply device
JP2013024458A (en) Heat pump type hot water heating device
JP2010091177A (en) Heat exchanger