JP2009242173A - Method for joining silicon carbide sintered compact - Google Patents

Method for joining silicon carbide sintered compact Download PDF

Info

Publication number
JP2009242173A
JP2009242173A JP2008091220A JP2008091220A JP2009242173A JP 2009242173 A JP2009242173 A JP 2009242173A JP 2008091220 A JP2008091220 A JP 2008091220A JP 2008091220 A JP2008091220 A JP 2008091220A JP 2009242173 A JP2009242173 A JP 2009242173A
Authority
JP
Japan
Prior art keywords
joining
metal silicon
silicon
silicon carbide
counterbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008091220A
Other languages
Japanese (ja)
Other versions
JP5000567B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Ryota Sato
良太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2008091220A priority Critical patent/JP5000567B2/en
Publication of JP2009242173A publication Critical patent/JP2009242173A/en
Application granted granted Critical
Publication of JP5000567B2 publication Critical patent/JP5000567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining a silicon carbide sintered compact which can obtain a joined body in which a position shift after joining is reduced, further joining strength and airtightness are high, and, even in the case of being provided with a hollow part, the dimensional precision of the hollow part is excellent. <P>SOLUTION: The method for joining the first member composed of a silicon carbide sintered compact having a counter boring part and the second member composed of a silicon carbide sintered compact into which the counter boring part is inserted by metal silicon includes: a melting stage where metal silicon is packed into the counter boring part, and thereafter, heating is caused, so as to melt the metal silicon in the counter boring part; a working stage where the melted metal silicon is cooled and solidified, and thereafter, the metal silicon layer formed at the counter boring part is ground, so as to control its thickness; and a joining stage where the second member is inserted into the counter boring part, and heating is caused. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭化珪素焼結体の接合方法に関する。特に、接合部の気密性、高い密着性を要する部材に適した接合体に関する。例えば、液侵露光装置における液体回収部や、CVD装置等のガス供給部であるシャワープレートに適用可能である。 The present invention relates to a method for joining silicon carbide sintered bodies. In particular, the present invention relates to a joined body suitable for a member that requires airtightness and high adhesion at a joint. For example, the present invention can be applied to a liquid recovery unit in an immersion exposure apparatus and a shower plate which is a gas supply unit such as a CVD apparatus.

SiCは耐熱性、耐食性に優れており、半導体製造装置用の部材に多く用いられているが、SiCは焼結温度が高く、雰囲気も不活性ガス下で行うことから製法上、一体で形成するには大きさに制限がある。また、特に液侵露光装置やCVD装置等では、液体や気体を供給したり回収したりする微細な溝や穴が形成され、中空部を有するような一体形成が困難な形状の部材がある。このような問題を解決するために、接合技術が種々提案されている。 SiC is excellent in heat resistance and corrosion resistance, and is widely used as a member for semiconductor manufacturing equipment. However, SiC has a high sintering temperature, and the atmosphere is also carried out under an inert gas. Is limited in size. In particular, in an immersion exposure apparatus, a CVD apparatus, or the like, there is a member having a shape that is difficult to be integrally formed such that a minute groove or hole for supplying or recovering liquid or gas is formed and a hollow portion is formed. In order to solve such a problem, various joining techniques have been proposed.

例えば、特許文献1には、受け入れ用の雌の接合部材を提供する第一の部品と挿入用の雄の接合部材を提供する第二の部品はおのおの、雄部材を雌部材に挿入する方向に対し実質的に平行な向き合う側壁を有し、これらの側壁の間に最大で約0.003インチ(0.076mm)までの平均の間隙をもたらすように形作られ、雌部材は更に、それに雄部材を挿入したときにケイ素を収容するためのリザーバ手段を有し、該リザーバ手段に固体状態のケイ素を詰め、雄部材を雌部材に挿入し、第一及び第二の部品をケイ素の融点より高く加熱して、融解したケイ素を上記間隙に毛細管作用により引き入れ、その後冷却して凝固したケイ素により両部材を接合する方法が開示されている。 For example, in Patent Document 1, a first part that provides a female joint member for receiving and a second part that provides a male joint member for insertion are each in a direction in which the male member is inserted into the female member. Having opposite side walls substantially parallel to each other and shaped to provide an average gap of up to about 0.003 inch (0.076 mm) between the side walls, the female member further comprising a male member Reservoir means for containing silicon when inserted into the reservoir means, the reservoir means is filled with solid silicon, the male member is inserted into the female member, and the first and second parts are above the melting point of silicon. A method is disclosed in which heated and melted silicon is drawn into the gap by capillary action, and then both members are joined by cooled and solidified silicon.

また、特許文献2には、第1の炭化珪素焼結体の遊嵌凹部に第2の炭化珪素焼結体を遊嵌して形成される空隙に介在する溶融Siを凝固させて、両炭化珪素焼結体を接合するとともに、空隙に水平方向空隙と垂直方向空隙を形成し、この垂直方向空隙を0.1mm以上0.2mm以下にし、第1及び第2の炭化珪素焼結体1、2を水平方向と垂直方向を同時に接合する方法が開示されている。 Further, Patent Document 2 discloses that both of the carbonized carbons are solidified by solidifying molten Si present in a gap formed by loosely fitting the second silicon carbide sintered body in the loosely fitting recess of the first silicon carbide sintered body. The silicon sintered body is joined, and a horizontal gap and a vertical gap are formed in the gap. The vertical gap is 0.1 mm or more and 0.2 mm or less, and the first and second silicon carbide sintered bodies 1, A method of joining 2 in the horizontal direction and the vertical direction simultaneously is disclosed.

特開平10−87376号公報JP-A-10-87376 特開2007−302500号公報JP 2007-302500 A

しかしながら、これらの文献に開示されたように、金属珪素粉末を充填して接合する方法では、金属珪素粉末の充填率を一定にすることが難しく、接合後で高さ方向の位置ズレを制御することは困難であった。また、溶融して染み出る金属珪素の量を制御できないことから、微細で複雑な形状を有した部材の接合では、染み出しにより形状精度が得られなかったり、溝や穴が埋まったりといった問題が生じていた。 However, as disclosed in these documents, it is difficult to make the filling rate of the metal silicon powder constant in the method of filling and bonding the metal silicon powder, and the positional deviation in the height direction is controlled after the bonding. It was difficult. In addition, since the amount of metallic silicon that melts and oozes out cannot be controlled, there is a problem that in joining of members having fine and complicated shapes, shape accuracy cannot be obtained due to oozing, and grooves and holes are buried. It was happening.

また、金属珪素粉末の溶融時に金属珪素内部に気泡等により空隙が生じやすく、これにより接合強度や気密性が低下する問題があった。 Further, when the metal silicon powder is melted, voids are likely to be generated inside the metal silicon due to bubbles or the like, thereby causing a problem that the bonding strength and airtightness are lowered.

さらに、特許文献2では、板材の金属珪素を接合材として用いた例もあげられているが、板材を挟み込む場合は、板材の厚さや平行度等の形状精度が厳しく要求される。さらに、板材の形状を接合部の形状と完全に一致させることはできないので、溶融前の状態では、必然的に部材間に隙間が生じるため、これを溶融時に確実に埋められる方法はなく、粉末を充填する方法と同様に接合強度や、気密性が得られないおそれがあった。 Furthermore, Patent Document 2 also gives an example in which metal silicon of a plate material is used as a bonding material. However, when the plate material is sandwiched, shape accuracy such as thickness and parallelism of the plate material is strictly required. Furthermore, since the shape of the plate material cannot be completely matched with the shape of the joint, there is inevitably a gap between the members in the state before melting, so there is no way to reliably fill this when melting, As with the method of filling, the bonding strength and the airtightness may not be obtained.

特に、複数箇所を同時に接合する場合には、少しでも位置ズレが起きるといずれかの箇所に隙間が生じるため、全ての接合箇所について気密性を確保することは極めて困難であった。また、隙間を防止するため、接合材を大量に用いると接合部からの染み出しが多くなり、例えば中空部を有する接合体の場合には、中空部の形状精度が得られず、閉塞してしまう問題があった。 In particular, when joining a plurality of locations at the same time, if even a slight misalignment occurs, a gap is generated at any location, making it very difficult to ensure airtightness at all locations. In addition, in order to prevent gaps, if a large amount of bonding material is used, the amount of seepage from the bonded portion increases.For example, in the case of a bonded body having a hollow portion, the shape accuracy of the hollow portion cannot be obtained and is blocked. There was a problem.

本発明は、これらの問題に鑑みてなされたものであり、接合後の位置ズレが小さく、また、接合強度及び気密性が高く、中空部を有する場合でも中空部の形状精度に優れた接合体が得られる炭化珪素焼結体の接合方法を提供する。 The present invention has been made in view of these problems, and has a small positional deviation after joining, a high joining strength and airtightness, and a joined body excellent in shape accuracy of the hollow part even when it has a hollow part. A method for joining silicon carbide sintered bodies is obtained.

これらの問題を解決するため、ザグリ部を有する炭化珪素焼結体からなる第一部材と、前記ザグリ部に挿入される炭化珪素焼結体からなる第二部材とを金属珪素により接合する方法であって、前記ザグリ部に金属珪素を充填した後に加熱して前記ザグリ部において金属珪素を溶融させる溶融工程と、溶融した金属珪素を冷却固化させた後、前記ザグリ部に形成された金属珪素層を研削して厚さを調整する加工工程と、第二部材を前記ザグリ部に挿入し加熱する接合工程と、を含む炭化珪素焼結体の接合方法を提供する。 In order to solve these problems, a first member made of a silicon carbide sintered body having a counterbore part and a second member made of a silicon carbide sintered body inserted into the counterbore part are joined by metallic silicon. A melting step of filling the counterbored portion with metal silicon and heating to melt the metal silicon in the counterbored portion; and a metal silicon layer formed on the counterbored portion after cooling and solidifying the molten metal silicon A bonding method of a silicon carbide sintered body is provided that includes a processing step of adjusting the thickness by grinding and a bonding step of inserting and heating a second member into the counterbore portion.

本発明では、接合材として、金属珪素を用いているが、接合部においていったん溶融させている。特許文献1や2に記載されたように金属珪素粉末の溶融と同時に炭化珪素焼結体同士の接合を行おうとすると、金属珪素粉末が溶融したときの位置ズレが著しく、接合後の形状に狂いが生じやすい。一方、本発明のように、いったん溶融させることにより、再溶融させても位置ズレを少なく抑えられるので接合後の形状が狂い難い。 In the present invention, metallic silicon is used as the bonding material, but it is once melted at the bonded portion. As described in Patent Documents 1 and 2, when the silicon carbide sintered bodies are joined together with the melting of the metal silicon powder, the positional deviation when the metal silicon powder is melted is remarkable, and the shape after the joining is distorted. Is likely to occur. On the other hand, as in the present invention, once melted, misalignment can be suppressed to a minimum even if remelted, so that the shape after joining is not likely to go wrong.

また、本発明では、溶融工程で形成した金属珪素層に研削加工を施して、その厚さを調整する。研削加工により、金属珪素層の表面を研削して、酸化膜や炭化膜等の溶融を阻害するような層を除去することにより溶融がスムーズに起こり、第二部材との密着が高めることができる。 In the present invention, the metal silicon layer formed in the melting step is ground to adjust its thickness. By grinding the surface of the metal silicon layer by grinding and removing the layer that hinders the melting of the oxide film, the carbide film, etc., the melting occurs smoothly and the adhesion with the second member can be enhanced. .

溶融した金属珪素を冷却固化させた後、研削前の金属珪素層は少なくとも前記ザグリ部の底面全部及び、側面の一部を濡らして密着して形成されていることが好ましく、より好ましくは、金属珪素層がザグリ部を満たすことが望ましい。このように、接合前に予め溶融させて、ザグリ部の形状に沿った形で空隙のない金属珪素層を形成しているので、接合工程において空隙が入ることがなく密着を高めることができる。 After the molten metal silicon is cooled and solidified, the metal silicon layer before grinding is preferably formed by wetting and adhering at least the entire bottom surface and part of the side surface of the counterbore part, more preferably the metal It is desirable for the silicon layer to fill the counterbore. As described above, since the metal silicon layer without voids is formed in advance along the shape of the counterbored portion before bonding, adhesion can be improved without voids entering in the bonding step.

加工工程においては、金属珪素層の厚さを0.1〜0.3mmとすることが望ましい。これは、接合材の染み出しを抑えるためである。このような範囲であれば、容易に厚さ調整が可能であり、しかも染み出しにより精度不良や微細穴の閉塞等の不具合が起きることを防ぐことができる。さらに、複数の接合部を有する場合であっても、位置ズレにより一部の箇所に空隙が生じることなく確実に接合することが可能となる。 In the processing step, the thickness of the metal silicon layer is preferably 0.1 to 0.3 mm. This is for suppressing the seepage of the bonding material. Within such a range, the thickness can be easily adjusted, and it is possible to prevent problems such as inaccuracy and blockage of fine holes due to bleeding. Furthermore, even when it has a plurality of joints, it is possible to reliably join without causing gaps in some places due to positional misalignment.

また、本発明では、ザグリ部に第二部材を挿入したときに形成される隙間が0.1mmよりも小さいことが望ましい。0.1mm以上では、横方向の位置ズレだけでなく、高さ方向の位置ズレも大きくなるので好ましくない。なお、隙間は0.02mm以上とすることが望ましい。これよりも小さくすると染み出しが多くなるためである。なお、ここでいう隙間とは、第二部材の挿入部分の両側にできる隙間の平均を意味する。したがって、ザグリ部の幅と第二部材の挿入する部分の幅との差が0.2mmより小さく、0.04mm以上とすることが望ましい。 In the present invention, it is desirable that the gap formed when the second member is inserted into the counterbore is smaller than 0.1 mm. If it is 0.1 mm or more, not only the positional deviation in the horizontal direction but also the positional deviation in the height direction becomes large, which is not preferable. The gap is preferably 0.02 mm or more. This is because, if it is smaller than this, the amount of seepage increases. In addition, the clearance gap here means the average of the clearance gap which can be formed in the both sides of the insertion part of a 2nd member. Accordingly, it is desirable that the difference between the width of the counterbore part and the width of the portion into which the second member is inserted is smaller than 0.2 mm and 0.04 mm or more.

本発明によれば、第一部材と第二部材に密着した接合層が形成される。ここで言う接合層は、第一部材のザグリ部の底面と、それと略平行な第二部材の面との間に形成された層である。この接合層と第一、第二部材との間には、隙間が無く、接合層内部に空隙も無いことから気密性は極めて高い。 According to the present invention, a bonding layer in close contact with the first member and the second member is formed. The joining layer here is a layer formed between the bottom surface of the counterbore part of the first member and the surface of the second member substantially parallel thereto. There is no gap between the bonding layer and the first and second members, and the airtightness is extremely high because there is no gap inside the bonding layer.

このように、空隙が無く緻密で密着した接合層が得られるのは、上述のように接合前に予め溶融させて空隙の無い緻密な金属珪素層をザグリ部に形成し、さらに研削加工を施して部材との密着を高めているためである。 As described above, a dense and tightly bonded bonding layer without voids is obtained by previously melting before bonding to form a dense metal silicon layer without voids in the counterbore part and further grinding. This is because the contact with the member is enhanced.

上述のように、本発明では、金属珪素層を所定厚さに加工するので、第一部材と第二部材との接合部が2箇所以上ある場合であっても、位置ズレにより一部の箇所に隙間が生じることなく接合することが可能となる。 As described above, in the present invention, since the metal silicon layer is processed to a predetermined thickness, even if there are two or more joint portions between the first member and the second member, some locations are displaced due to misalignment. It becomes possible to join without generating a gap.

したがって、本発明の接合方法は、第一部材と第二部材を接合させて中空部が形成されるような接合に好適に用いることができる。 Therefore, the joining method of the present invention can be suitably used for joining in which a hollow portion is formed by joining the first member and the second member.

接合後の位置ズレが小さく、また、接合強度及び気密性が高く、中空部を有する場合でも中空部の形状精度に優れた接合体が得られる炭化珪素焼結体の接合方法を提供することができる。 Provided is a method for joining silicon carbide sintered bodies in which a positional deviation after joining is small, joining strength and airtightness are high, and a joined body having a hollow portion having excellent shape accuracy can be obtained even when the hollow portion is provided. it can.

以下、図面を参照して本発明の炭化珪素焼結体の接合方法について、より詳細に説明する。図1は、本発明の接合方法を示した概略図である。 Hereinafter, the silicon carbide sintered body joining method of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic view showing a joining method of the present invention.

図1(A)はザグリ部11aを有する炭化珪素焼結体からなる第一部材11を示している。 FIG. 1A shows a first member 11 made of a silicon carbide sintered body having a counterbore portion 11a.

炭化珪素焼結体は、プレス成形、CIP成形、鋳込み成形等の成形方法、及び常圧焼結、加圧焼結、反応焼結等の焼結方法により作製できる。ザグリ部の加工は、焼結前の成形体について生加工を行っても良いし、焼結体についてマシニングセンタ等により研削を行っても良い。ただし、形状精度の観点から焼結体に対して研削加工を行うことが望ましい。 The silicon carbide sintered body can be produced by a molding method such as press molding, CIP molding, or cast molding, and a sintering method such as atmospheric pressure sintering, pressure sintering, or reactive sintering. The counterbore part may be processed by processing the green body before sintering, or by grinding the sintered body with a machining center or the like. However, it is desirable to grind the sintered body from the viewpoint of shape accuracy.

ザグリ部の深さについては、ザグリ部11aの幅に対して10〜30%の深さとすることが好ましい。深さが浅すぎると染み出しが起こり、深すぎると空隙が生じやすくなるためである。 About the depth of a counterbore part, it is preferable to set it as the depth of 10 to 30% with respect to the width | variety of the counterbore part 11a. This is because if the depth is too shallow, exudation occurs, and if it is too deep, voids are likely to occur.

図1(B)は、第一部材11のザグリ部11aに金属珪素を充填した後、加熱して、ザグリ部において金属珪素を溶融させて金属珪素層13(加工前の金属珪素層を13aとする)を形成する溶融工程を示した図である。 In FIG. 1B, after filling the counterbore part 11a of the first member 11 with metal silicon, the metal silicon layer 13 (the metal silicon layer before processing is formed as 13a) is heated and melted in the counterbore part. It is the figure which showed the fusion | melting process which forms.

充填する金属珪素は、粉末状、粒子状、塊状、板状等、形状は問わないが、図1(B)に示したように、金属珪素層13aは、ザグリ部を満たすように十分な量を充填することが望ましい。このようにザグリ部を満たすように金属珪素層を形成することにより、その後の金属珪素層の厚さ調整を確実に行うことができる。金属珪素の純度としては、97%以上、より好ましくは99%%以上、さらに望ましくは、99.9%以上の高純度のものを使用することが望ましい。不純物が多いと溶融温度が低下し、染み出し等の不具合が生じるためである。 The metal silicon to be filled may have any shape such as powder, particle, block, plate, etc., but as shown in FIG. 1B, the metal silicon layer 13a has a sufficient amount to fill the counterbore. It is desirable to fill. By forming the metal silicon layer so as to fill the counterbore in this way, it is possible to reliably adjust the thickness of the subsequent metal silicon layer. The purity of the metal silicon is preferably 97% or more, more preferably 99 %% or more, and still more preferably 99.9% or more. This is because when there are many impurities, the melting temperature is lowered, and problems such as seepage occur.

溶融工程の加熱は、真空中が好ましく、熱処理温度は金属珪素が溶融する1410〜1500℃とし、熱処理時間は10〜60分とすることが好ましい。 The heating in the melting step is preferably in a vacuum, the heat treatment temperature is preferably 1410 to 1500 ° C. at which metal silicon is melted, and the heat treatment time is preferably 10 to 60 minutes.

溶融後、冷却させて得られる金属珪素層13aのザグリ部における形状としては、図1(B)に示したように、ザグリ部を満たすことが望ましく、少なくとも底面111の全面および、底面から所定高さの一部の側面112と金属珪素とが濡れて密着した形に形成されることが好ましい。このように金属珪素層を形成するには、ザグリ部の体積よりも十分な量の金属珪素を溶融させたり、ザグリ部の底面および側面に濡れ性を向上させるような処理を施したりすると良い。このような処理としては、カーボンを塗布することが挙げられる。 As shown in FIG. 1B, the shape of the counterbored portion of the metal silicon layer 13a obtained by cooling after melting is preferably filled, and at least the entire bottom surface 111 and a predetermined height from the bottom surface. It is preferable that a part of the side surface 112 and the metal silicon are formed so as to be in close contact with each other. In order to form the metal silicon layer in this manner, it is preferable that a sufficient amount of metal silicon is melted than the volume of the counterbore part, or that the wettability is improved on the bottom and side surfaces of the counterbore part. Such treatment includes applying carbon.

図1(C)は、金属珪素層を加工して所定厚さの金属珪素層13bを形成した加工工程後の様子を示した図である。このように加工を施すことにより、第二部材との十分な強度で気密な接合が可能となる。金属珪素層13bの形成は、マシニングセンタ等の公知の加工方法を適用できる。加工工程において金属珪素層の厚さを0.1〜0.3mmとすることにより、複数の接合部を有する場合であっても、位置ズレにより一部の箇所に隙間が生じることなく確実に接合することが可能となる。また、接合材の染み出しを抑えられるので、精度不良や微細穴の閉塞等の不具合が起きることを防ぐことができ中空部を有する場合でも中空部の形状精度に優れた接合体を得ることができる。 FIG. 1C is a view showing a state after a processing step in which a metal silicon layer is processed to form a metal silicon layer 13b having a predetermined thickness. By performing processing in this way, airtight joining with sufficient strength with the second member becomes possible. A known processing method such as a machining center can be applied to form the metal silicon layer 13b. By setting the thickness of the metal silicon layer to 0.1 to 0.3 mm in the processing step, even when there are a plurality of joints, it is possible to reliably join without causing gaps in some locations due to misalignment. It becomes possible to do. In addition, since the bleeding of the bonding material can be suppressed, it is possible to prevent inconveniences such as inaccuracy and blockage of fine holes, and it is possible to obtain a bonded body having excellent hollow portion shape accuracy even when it has a hollow portion. it can.

なお、図1では、接合部のザグリ部11aが同一高さの例を示しているが、本発明は、これに限定されるものでは無く、高さの異なる複数の接合部を構成するような接合にも適用することができる。 In addition, in FIG. 1, although the counterbore part 11a of a junction part has shown the example of the same height, this invention is not limited to this, As it comprises several junction parts from which height differs It can also be applied to bonding.

次に、第二部材12を金属珪素層13bが形成されたザグリ部に挿入し、加熱して接合する。金属珪素層13bは、厚さが整えられているので、図1(D)に示したように、第二部材12を挿入したときに、金属珪素層13bと確実に接触する。そして金属珪素層を再溶融させると、金属珪素が染み出したり、接合層の厚さがバラついて隙間が生じたりすることなく確実に接合することができる。図1(D)の工程において、ザグリ部に第二部材に挿入したときに形成される隙間Gが0.1mmよりも小さいことが望ましい。0.1mm以上では、横方向の位置ズレだけでなく、高さ方向の位置ズレも大きくなるので好ましくない。なお、隙間Gは0.02mm以上とすることが望ましい。これよりも小さくすると染み出しが多くなるためである。 Next, the 2nd member 12 is inserted in the counterbore part in which the metal silicon layer 13b was formed, and it heats and joins. Since the thickness of the metal silicon layer 13b is adjusted, as shown in FIG. 1D, when the second member 12 is inserted, the metal silicon layer 13b reliably contacts the metal silicon layer 13b. Then, when the metal silicon layer is remelted, the metal silicon can be reliably bonded without oozing out or without the gap of the bonding layer becoming uneven. In the step of FIG. 1D, it is desirable that the gap G formed when the second member is inserted into the counterbore part is smaller than 0.1 mm. If it is 0.1 mm or more, not only the positional deviation in the horizontal direction but also the positional deviation in the height direction becomes large, which is not preferable. The gap G is preferably 0.02 mm or more. This is because, if it is smaller than this, the amount of seepage increases.

接合工程の加熱も溶融工程と同様に、真空中が好ましく、熱処理温度は金属珪素が溶融する1410〜1500℃とし、熱処理時間は30〜60分とすることが好ましい。また、接合時には、4〜20g/cmの荷重をかけることが望ましい。これよりも大きな荷重をかけると接合部に炭化珪素が生じて接合強度が低下しやすいので好ましくない。 As in the melting step, the heating in the joining step is preferably in vacuum, the heat treatment temperature is preferably 1410 to 1500 ° C. at which the metal silicon is melted, and the heat treatment time is preferably 30 to 60 minutes. Moreover, it is desirable to apply a load of 4 to 20 g / cm 2 at the time of joining. If a load larger than this is applied, silicon carbide is generated at the joint and the joint strength is likely to be lowered, which is not preferable.

接合後の接合層Lの厚さは、0.05〜0.2mmに調整することが好ましい。金属珪素層の厚さを加工により調整し、さらに、熱処理温度、時間、荷重を調整することにより上記範囲に調整することが可能である。 It is preferable to adjust the thickness of the bonding layer L after bonding to 0.05 to 0.2 mm. It is possible to adjust the thickness of the metal silicon layer to the above range by adjusting the thickness, and further adjusting the heat treatment temperature, time, and load.

図1(E)では、接合体10に中空部14が形成されている。このように、本発明の接合方法は、中空部を有するような接合に適している。中空部としては、閉空間を形成するような箱型であっても良く、貫通穴を形成するような溝型であっても良い。接合材の金属珪素が染み出して中空部を閉塞することが無いので、微細な中空部を有するような接合体の製造に好適である。 In FIG. 1E, a hollow portion 14 is formed in the joined body 10. Thus, the joining method of the present invention is suitable for joining having a hollow portion. The hollow portion may be a box shape that forms a closed space or a groove shape that forms a through hole. Since the metallic silicon of the bonding material does not ooze out and close the hollow portion, it is suitable for manufacturing a bonded body having a fine hollow portion.

以下、実施例と比較例を示して、本発明を説明する。 Hereinafter, the present invention will be described with reference to examples and comparative examples.

被接合材の炭化珪素焼結体は、市販の炭化珪素粉末(シュタルク社製UF−10)を用い、CIP法により成形、アルゴン中2100℃で焼成し、作製した。 The silicon carbide sintered body to be bonded was produced by using a commercially available silicon carbide powder (UF-10 manufactured by Stark Co.), molded by CIP method, and fired at 2100 ° C. in argon.

炭化珪素焼結体の形状は、一方を図1の第一部材11に示したようにザグリ部(幅2.5mm、深さ0.5mm、長さ80mm)を2箇所形成した幅20mm、奥行80mm、厚さ25mmの板状の第一部材とし、もう一方を図1の第二部材12に示したように略中央に幅5.1mm、深さ5mm、長さ80mmの接合後に中空部を形成する溝部を有する幅9.9mm、奥行80mm、厚さ7.5mmの第二部材とした。これらの形状加工は、平面研削、マシニングセンタ等の公知の方法により行った。 As for the shape of the silicon carbide sintered body, as shown in the first member 11 of FIG. 1, the counterbore part (width 2.5 mm, depth 0.5 mm, length 80 mm) is formed at a width of 20 mm, depth. A plate-shaped first member having a thickness of 80 mm and a thickness of 25 mm is used, and the other part is formed at a substantially central portion with a width of 5.1 mm, a depth of 5 mm, and a length of 80 mm as shown in the second member 12 of FIG. A second member having a width of 9.9 mm, a depth of 80 mm, and a thickness of 7.5 mm having a groove to be formed was formed. These shape processings were performed by known methods such as surface grinding and machining centers.

次に、ザグリ部への金属珪素層を形成するために、金属珪素粉末(純度99.9%、レーザー回折式粒度分布計によるD50:2.23μm)に蒸留水を加えてスラリー化したものをザグリ部へ充填した。このとき、ザグリ部の周囲に壁を設けて十分な量の金属珪素が充填できるようにした。乾燥して水分を除去した後、真空中、1450℃で10min保持して溶融後、冷却させた。金属珪素は、ザグリ部内を満たすように形成されていた。 Next, in order to form a metal silicon layer on the counterbore, a slurry obtained by adding distilled water to metal silicon powder (purity 99.9%, D50 by laser diffraction particle size distribution meter): 2.23 μm is used. The counterbore was filled. At this time, a wall was provided around the counterbore so that a sufficient amount of metal silicon could be filled. After drying to remove moisture, the mixture was held at 1450 ° C. in a vacuum for 10 minutes, melted and then cooled. Metallic silicon was formed so as to fill the counterbore part.

しかる後に、図1(D)に示したように金属珪素層をマシニングセンタにより、厚さを0.15mmに加工した。接合工程は、溶融と同様に、真空中、1450℃で60min保持して行った。これにより図1(E)のように内部に中空部(貫通穴:幅5.1mm、高さ4.6mm、長さ80mm)を有する接合体を得た。 Thereafter, as shown in FIG. 1D, the metal silicon layer was processed to a thickness of 0.15 mm by a machining center. The joining process was performed by holding at 1450 ° C. for 60 minutes in a vacuum as in the case of melting. As a result, a joined body having a hollow portion (through hole: width 5.1 mm, height 4.6 mm, length 80 mm) was obtained as shown in FIG.

比較のため、同形状の第一部材、第二部材を用いて、本発明における溶融工程および加工工程を経ずに接合体の作製を行った。接合材として、上記した金属珪素粉末と、金属珪素基板(厚さ0.2mm)を用いた。金属珪素粉末の場合は、単に粉末をザグリ部に充填したものと、バインダーを加えてペースト化してザグリ部に塗布したものとを作製した。いずれの例でも接合材を充填した後、溶融工程は行わずに、第二部材を挿入し接合のための加熱処理を上記作製例と同条件で行った。 For comparison, a joined body was manufactured using the first member and the second member having the same shape without going through the melting step and the processing step in the present invention. As the bonding material, the above-described metal silicon powder and a metal silicon substrate (thickness 0.2 mm) were used. In the case of metallic silicon powder, a powder in which the powder was simply filled in the counterbore part and a paste in which a binder was added to form a paste were prepared. In any of the examples, after filling the bonding material, the second member was inserted and the heat treatment for bonding was performed under the same conditions as in the above manufacturing example without performing the melting step.

結果を表1に示す。気密試験では、貫通穴の両端に試験のための冶具を取り付けて、0.5MPaの高圧空気を導入し、接合部から漏れがないか調べた。接合層については、切断面を光学顕微鏡観察し、その厚さ及び空隙の有無を調べた。接合強度は、別途接合強度試験用の接合体を同条件で作製し、接合体から試験片(3mm×4mm×40mm)を切り出して、下部スパン30mm、上部スパン10mmの4点曲げ試験(JISR1624準拠)を行い、接合強度を求めた。 The results are shown in Table 1. In the airtight test, jigs for testing were attached to both ends of the through hole, high pressure air of 0.5 MPa was introduced, and it was examined whether there was any leakage from the joint. About the joining layer, the cut surface was observed with the optical microscope, and the thickness and the presence or absence of the space | gap were investigated. For the joint strength, a joint for a joint strength test is separately prepared under the same conditions, a test piece (3 mm × 4 mm × 40 mm) is cut out from the joint, and a four-point bending test with a lower span of 30 mm and an upper span of 10 mm (conforms to JISR1624). ) To obtain the bonding strength.

Figure 2009242173
Figure 2009242173

本発明の実施例である作製No.1では、部材と接合層の密着が良く、接合層に気泡等の空隙が無いため、十分な接合強度を有し、また気密性も良好であった。接合材の染み出しによる閉塞もなく、貫通穴の内面の形状精度も良好であった。一方、比較例の作製No.2では、粉末の充填率が悪いため、空隙が発生し、接合強度も不十分であった。ペーストを用いた作製No.3では、添加したバインダーと金属珪素が反応して炭化珪素が生じていた。この反応焼結炭化珪素は、脆いため接合強度が不十分であった。また、バインダーの揮発も起こるので、その分が空隙となり気密性も得られなかった。金属珪素基板を用いた作製No.4では、ザグリ部と濡れが悪く、接合層と部材との間に空隙が生じていた。また、これらの比較例では、2箇所のザグリ部のうち、一方に空隙が集中し、他方は、貫通穴に接合材が染み出している箇所が多く見られた。染み出しが生じた箇所では、貫通穴内面の形状精度が得られなかった。 In Production No. 1 which is an example of the present invention, the adhesion between the member and the bonding layer was good, and the bonding layer had no voids such as bubbles, so that it had sufficient bonding strength and good airtightness. There was no blockage due to seepage of the bonding material, and the shape accuracy of the inner surface of the through hole was good. On the other hand, in Production No. 2 of the comparative example, since the powder filling rate was poor, voids were generated and the bonding strength was insufficient. In Production No. 3 using a paste, the added binder and metal silicon reacted to generate silicon carbide. Since this reaction sintered silicon carbide is brittle, its bonding strength was insufficient. Further, since the binder was volatilized, the air gap was generated, and airtightness was not obtained. In Production No. 4 using the metal silicon substrate, the counterbore part and the wettability were poor, and a gap was generated between the bonding layer and the member. Moreover, in these comparative examples, the space | gap concentrated on one side among two counterbore parts, and the location where the joining material oozed out to the through-hole was seen many. The shape accuracy of the inner surface of the through hole could not be obtained at the location where the bleeding occurred.

本発明の接合方法を示した概略図。Schematic which showed the joining method of this invention.

符号の説明Explanation of symbols

10;接合体
11;第一部材
11a;ザグリ部
111;ザグリ部の底面
112;ザグリ部の側面
12;第二部材
13a;加工前の金属珪素層
13b;加工後の金属珪素層
14;中空部
G;隙間
L;接合層
10; joined body 11; first member 11a; counterbore part 111; bottom face 112 of counterbore part; side surface 12 of counterbore part; second member 13a; metal silicon layer 13b before processing; metal silicon layer 14 after processing; G; gap L; bonding layer

Claims (4)

ザグリ部を有する炭化珪素焼結体からなる第一部材と、前記ザグリ部に挿入される炭化珪素焼結体からなる第二部材とを金属珪素により接合する方法であって、
前記ザグリ部に金属珪素を充填した後に加熱して前記ザグリ部において金属珪素を溶融させる溶融工程と、
溶融した金属珪素を冷却固化させた後、前記ザグリ部に形成された金属珪素層を研削して厚さを調整する加工工程と、
第二部材を前記ザグリ部に挿入し加熱する接合工程と、
を含む炭化珪素焼結体の接合方法。
A method of joining a first member made of a silicon carbide sintered body having a counterbore part and a second member made of a silicon carbide sintered body inserted into the counterbore part with metallic silicon,
A melting step in which the silicon silicon is melted in the counterbore part by heating after filling the counterbore part with metal silicon;
After cooling and solidifying the molten metal silicon, a processing step of adjusting the thickness by grinding the metal silicon layer formed in the counterbore part,
A joining step of inserting and heating the second member into the counterbore part;
A method for joining a sintered silicon carbide body.
前記加工工程において、冷却固化させた後、研削前の金属珪素層は、少なくとも前記ザグリ部の底面全部及び、側面の一部に密着して形成されたことを特徴とする請求項1記載の炭化珪素焼結体の接合方法。 2. The carbonization according to claim 1, wherein the metal silicon layer after being cooled and solidified before being ground in the processing step is formed in close contact with at least the entire bottom surface and a part of the side surface of the counterbore portion. A method for joining silicon sintered bodies. 前記第一部材と前記第二部材との接合部が2箇所以上ある請求項1または2記載の接合方法。 The joining method according to claim 1 or 2, wherein there are two or more joint portions between the first member and the second member. 前記第一部材と前記第二部材を接合することにより中空部が形成される請求項1〜3記載の接合方法。 The joining method according to claim 1, wherein a hollow portion is formed by joining the first member and the second member.
JP2008091220A 2008-03-31 2008-03-31 Joining method of sintered silicon carbide Active JP5000567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091220A JP5000567B2 (en) 2008-03-31 2008-03-31 Joining method of sintered silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091220A JP5000567B2 (en) 2008-03-31 2008-03-31 Joining method of sintered silicon carbide

Publications (2)

Publication Number Publication Date
JP2009242173A true JP2009242173A (en) 2009-10-22
JP5000567B2 JP5000567B2 (en) 2012-08-15

Family

ID=41304540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091220A Active JP5000567B2 (en) 2008-03-31 2008-03-31 Joining method of sintered silicon carbide

Country Status (1)

Country Link
JP (1) JP5000567B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087376A (en) * 1996-05-03 1998-04-07 Cvd Inc Method for bonding silicon carbide parts
JP2007112687A (en) * 2005-10-24 2007-05-10 Noritake Co Ltd Metallic silicon based cementing material, bonded product and its manufacturing method
JP2007302500A (en) * 2006-05-10 2007-11-22 Covalent Materials Corp Method of joining silicon carbide sintered compacts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087376A (en) * 1996-05-03 1998-04-07 Cvd Inc Method for bonding silicon carbide parts
JP2007112687A (en) * 2005-10-24 2007-05-10 Noritake Co Ltd Metallic silicon based cementing material, bonded product and its manufacturing method
JP2007302500A (en) * 2006-05-10 2007-11-22 Covalent Materials Corp Method of joining silicon carbide sintered compacts

Also Published As

Publication number Publication date
JP5000567B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
CN107914014A (en) A kind of electron beam selective melting manufacturing process of pure tungsten metal part
CN101578387B (en) Sputtering target
TW201626510A (en) Substrate for power module and method for manufacturing the same
JP5000567B2 (en) Joining method of sintered silicon carbide
KR101338256B1 (en) Method of assembling carbon parts by refractory brazing
JP2005125380A (en) Mold for casting silicon and its production method
CN109564869B (en) Ring for electrode
JP5324945B2 (en) Silicon carbide bonded body and method for manufacturing the same
JP2013091603A (en) Method of manufacturing silicon carbide joined body
JP5198171B2 (en) Method for manufacturing silicon carbide joined body
JP5798429B2 (en) B4C / Si composite body bonding method
JP2010173922A (en) Silicon carbide joined body and method for producing the same
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP5209356B2 (en) Al alloy-ceramic composite material joining method and joined body using the same
CN116648521A (en) Aluminum powder mixture and method for producing aluminum sintered body
CN113102731A (en) Use method of pressed borax in copper-steel bimetal casting process
JP2002368083A (en) Method and device for filling metal into fine space
JP4446093B2 (en) Metal-ceramic composite member production mold and production apparatus
JP2010207831A (en) JOINING MATERIAL FOR Al ALLOY AND CERAMIC COMPOUND MATERIAL, AND METHOD FOR MANUFACTURING THE SAME
JP2004122150A (en) Casting mold for manufacturing metal-ceramic composite member and manufacturing method using it
JP5324969B2 (en) SiC bonded body
WO2020170877A1 (en) Metal-ceramic joined substrate and manufacturing method thereof
JP5572354B2 (en) Aluminum-ceramic bonding substrate and manufacturing method thereof
JP2007302500A (en) Method of joining silicon carbide sintered compacts
JP5753991B2 (en) Method for producing metal-ceramic bonding member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R150 Certificate of patent or registration of utility model

Ref document number: 5000567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250