JP2009240081A - Controller - Google Patents

Controller Download PDF

Info

Publication number
JP2009240081A
JP2009240081A JP2008083811A JP2008083811A JP2009240081A JP 2009240081 A JP2009240081 A JP 2009240081A JP 2008083811 A JP2008083811 A JP 2008083811A JP 2008083811 A JP2008083811 A JP 2008083811A JP 2009240081 A JP2009240081 A JP 2009240081A
Authority
JP
Japan
Prior art keywords
voltage
assembled battery
inverter
load
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008083811A
Other languages
Japanese (ja)
Inventor
Tomonori Kodama
知則 児玉
Akihiko Kudo
彰彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Vehicle Energy Japan Inc
Original Assignee
Hitachi Ltd
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Vehicle Energy Ltd filed Critical Hitachi Ltd
Priority to JP2008083811A priority Critical patent/JP2009240081A/en
Publication of JP2009240081A publication Critical patent/JP2009240081A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller capable of detecting a voltage and load on a battery pack side or a voltage on a charge/discharge apparatus side without correcting variations in voltage detection. <P>SOLUTION: A power supply part of a hybrid vehicle includes: the battery pack 100; an inverter 102 as the load or the charge/discharge apparatus; and a controller 101 that detects the voltage of the battery pack 100 and the voltage of the inverter 102, and the battery pack 100 and the inverter 102 are connected via relays 1 to 3. In the control part 101, variation correction in the detection is eliminated since a voltage sensor 103 for detecting the voltage on the battery pack 100 side and the inverter 102 side is used in common, and the voltage at different positions can be detected by the voltage sensor having the same characteristics. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は制御装置に係り、特に、電流を遮断、導通するスイッチを介して負荷ないし充放電機器に接続される組電池の制御装置に関する。   The present invention relates to a control device, and more particularly to a control device for a battery pack connected to a load or a charge / discharge device via a switch that cuts off and conducts current.

例えば、ハイブリッド自動車、電気自動車のインバータ等の負荷の駆動用電源として使用される組電池(二次電池)では、充放電動作の際に、組電池および負荷の電圧を検出する機能は不可欠である。このような組電池は高電圧であることから、組電池は、電流を遮断、導通するスイッチ(例えば、リレー)を介して負荷に接続される。   For example, in an assembled battery (secondary battery) used as a power source for driving a load such as an inverter of a hybrid vehicle or an electric vehicle, a function of detecting the voltage of the assembled battery and the load during charge / discharge operation is indispensable. . Since such an assembled battery has a high voltage, the assembled battery is connected to a load via a switch (for example, a relay) that cuts off and conducts current.

この種の制御装置では、組電池、負荷(または充放電機器)側のそれぞれに電圧を検出するための電圧センサが設けられている(例えば、特許文献1参照)。また、組電池と負荷との間で充放電動作が行われる場合には、組電池の電圧と負荷の電圧を比較参照しながらの制御は不可欠であり、そのためには精度のよい電圧センサが求められ、なおかつ、組電池、負荷それぞれの電圧センサの特性の差異を補正するという方式が適用されている(例えば、特許文献2参照)。   In this type of control device, a voltage sensor for detecting a voltage is provided on each of the assembled battery and the load (or charge / discharge device) side (see, for example, Patent Document 1). In addition, when charge / discharge operation is performed between an assembled battery and a load, it is indispensable to perform control while comparing and referring to the voltage of the assembled battery and the voltage of the load. For this purpose, an accurate voltage sensor is required. In addition, a method of correcting the difference in the characteristics of the voltage sensors of the assembled battery and the load is applied (for example, see Patent Document 2).

特開2006−333693号公報JP 2006-333893 A 特開2006−115643号公報JP 2006-115643 A

ところが、従来の方式では、組電池側の電圧と、負荷側の電圧とを検出するために、組電池、負荷側それぞれに専用の電圧センサを設けていることから、電圧センサ自体および電圧センサが取り付けられる環境に依存して検出特性にバラツキが生じ、検出した電圧値を補正しながらの制御をしなければならなかった。また、組電池、負荷側の電圧センサが別々であるため、コストも高くなり、構造の面においても電圧センサの数に伴い、占有する領域も大きくなっていた。   However, in the conventional system, in order to detect the voltage on the assembled battery side and the voltage on the load side, a dedicated voltage sensor is provided on each of the assembled battery and the load side. The detection characteristics vary depending on the installation environment, and control must be performed while correcting the detected voltage value. In addition, since the assembled battery and the voltage sensor on the load side are separate, the cost increases, and the area occupied by the number of voltage sensors also increases in terms of structure.

本発明は上記事案に鑑み、バラツキの補正を行うことなく組電池側の電圧と負荷ないし充放電機器側の電圧を検出可能な制御装置を提供することを課題とする。   An object of the present invention is to provide a control device capable of detecting a voltage on an assembled battery side and a load or a voltage on a charge / discharge device side without correcting variations.

上記課題を解決するために、本発明は、電流を遮断、導通するスイッチを介して負荷ないし充放電機器に接続される組電池の制御装置において、前記組電池側の電圧と前記負荷ないし充放電機器側の電圧とを検出するための電圧センサを共通化したことを特徴とする。   In order to solve the above-described problems, the present invention provides a control device for an assembled battery connected to a load or a charge / discharge device via a switch that cuts off and conducts current, and the voltage on the assembled battery side and the load or charge / discharge A voltage sensor for detecting the voltage on the device side is shared.

本発明において、電圧センサの入力を組電池側と負荷ないし充放電機器側とに切り換える切換回路を備えることが好ましく、切換回路は、組電池側の電圧と負荷ないし充放電機器側の電圧とが同時に電圧センサに入力されることを防止することがより好ましい。また、切換回路は、スイッチがオン状態またはオフ状態に遷移する前後の所定時間、電圧センサの入力を組電池側あるいは負荷ないし充放電機器側に接続しないように制御することがさらに好ましい。   In the present invention, it is preferable to include a switching circuit for switching the input of the voltage sensor between the assembled battery side and the load or charging / discharging device side, and the switching circuit includes a voltage on the assembled battery side and a voltage on the load or charging / discharging device side. It is more preferable to prevent simultaneous input to the voltage sensor. Further, it is further preferable that the switching circuit controls so that the input of the voltage sensor is not connected to the assembled battery side or the load or charge / discharge device side for a predetermined time before and after the switch transits to the on state or the off state.

本発明によれば、組電池側の電圧と負荷ないし充放電機器側の電圧とを検出するための電圧センサを共通化したので、異なる箇所の電圧を同じ特性の電圧センサで検出できるため、バラツキの補正を行うことなく組電池側の電圧と負荷ないし充放電機器側の電圧を検出することができる、という効果を得ることができる。   According to the present invention, since the voltage sensor for detecting the voltage on the assembled battery side and the voltage on the load or charging / discharging device side is shared, the voltage at different locations can be detected by the voltage sensor having the same characteristics. It is possible to obtain an effect that the voltage on the assembled battery side and the voltage on the load or charge / discharge device side can be detected without correcting the above.

以下、図面を参照して、本発明を、ハイブリッド自動車の電源部の制御装置に適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a control device for a power source unit of a hybrid vehicle will be described with reference to the drawings.

(構成)
図1に示すように、ハイブリッド自動車の電源部は、大別して、組電池100と、充放電機器としてのインバータ102と、組電池100の電圧とインバータ102の電圧とを検出する制御装置101とを備えており、組電池100とインバータ102とはスイッチとしてのリレーを介して接続されている。
(Constitution)
As shown in FIG. 1, the power supply unit of the hybrid vehicle is roughly divided into an assembled battery 100, an inverter 102 as a charge / discharge device, and a control device 101 that detects the voltage of the assembled battery 100 and the voltage of the inverter 102. The assembled battery 100 and the inverter 102 are connected via a relay as a switch.

組電池100は、本実施形態では、定格電圧3.6Vの単電池106(本実施形態ではリチウムイオン電池)が96個直列接続されて構成されており、組電池100の定格総電圧は345.6Vとされている。具体的には、単電池106を複数本(例えば、4本)単位でグループ化して集合電池とし、複数個の集合電池を電池箱内に固定して直列接続ことで、車載された場合の耐振構造を確保するとともに、製造上の取り扱いや組み立て上での利便性を確保している。   In the present embodiment, the assembled battery 100 is configured by connecting 96 unit cells 106 (lithium ion batteries in this embodiment) having a rated voltage of 3.6 V in series, and the rated total voltage of the assembled battery 100 is 345. 6V. Specifically, the unit cells 106 are grouped in units of a plurality (for example, four) to form an assembled battery, and the plurality of assembled batteries are fixed in a battery box and connected in series, so that vibration resistance when mounted on a vehicle is obtained. In addition to securing the structure, it ensures convenience in manufacturing and assembly.

インバータ102は、組電池100の直流電力から3相交流で駆動するハイブリッド自動車のモータの交流電力を生成するもので、組電池100の両端子間に接続される大容量(約2000μF程度)の平滑キャパシタ5を内蔵している。平滑キャパシタ5には、例えば、電解キャパシタまたはフィルムキャパシタを用いることができる。インバータ102は導通および遮断動作を高速で行い直流電力と交流電力間の電力変換を行う。このとき、大電流を高速で遮断するので、直流回路の有するインダクタンスにより大きな電圧変動が発生する。平滑キャパシタ5は、この電圧変動を抑制するために設けられている。   The inverter 102 generates AC power of a motor of a hybrid vehicle driven by three-phase AC from DC power of the assembled battery 100, and has a large capacity (about 2000 μF) smoothing connected between both terminals of the assembled battery 100. A capacitor 5 is incorporated. As the smoothing capacitor 5, for example, an electrolytic capacitor or a film capacitor can be used. The inverter 102 conducts conduction and interruption at high speed, and performs power conversion between DC power and AC power. At this time, since a large current is interrupted at a high speed, a large voltage fluctuation occurs due to the inductance of the DC circuit. The smoothing capacitor 5 is provided to suppress this voltage fluctuation.

組電池100とインバータ102との間にはリレーが介在している。換言すれば、リレーにより、組電池100側とインバータ102側(充放電機器側)とが画定される。すなわち、組電池100の−端子はリレー3を介してインバータ102の−端子に接続されおり、組電池100の+端子はリレー2を介してインバータ102の+端子に接続されている。また、リレー2には、組電池100からインバータ102への初期電源供給時(プリチャージ動作時)に発生する大電流のインラッシュを抑制するための抵抗4と、組電池100からインバータ102への初期電源供給時に平滑キャパシタ5を充電するためのプリチャージ用のリレー1との直列回路が、並列に接続されている。   A relay is interposed between the assembled battery 100 and the inverter 102. In other words, the assembled battery 100 side and the inverter 102 side (charge / discharge device side) are defined by the relay. That is, the minus terminal of the assembled battery 100 is connected to the minus terminal of the inverter 102 via the relay 3, and the plus terminal of the assembled battery 100 is connected to the plus terminal of the inverter 102 via the relay 2. In addition, the relay 2 includes a resistor 4 for suppressing a large current inrush that occurs when the initial power is supplied from the assembled battery 100 to the inverter 102 (during precharge operation), and a connection from the assembled battery 100 to the inverter 102. A series circuit with a precharging relay 1 for charging the smoothing capacitor 5 at the time of initial power supply is connected in parallel.

制御装置101は、組電池100側の電圧とインバータ102側の電圧の検出箇所を切り換える切換回路105と、切換回路105で切り換えられた組電池100側ないしインバータ102側の電圧を検出する電圧センサ103と、リレー1〜3のオン、オフを制御する制御回路104とを有している。なお、制御装置101には、組電池100を構成する各単電池106の電圧を検出するための電圧センサ、組電池100の温度を検出するための温度センサ、組電池100とインバータ102の間の電流を検出するための電流センサ、これらのセンサからの出力を取り込むA/Dコンバータ等の機能を有するI/O装置も有しているが、図1ではこれらについて捨象している。   The control device 101 includes a switching circuit 105 that switches a detection position of the voltage on the assembled battery 100 side and the voltage on the inverter 102 side, and a voltage sensor 103 that detects the voltage on the assembled battery 100 side or the inverter 102 side switched by the switching circuit 105. And a control circuit 104 that controls ON / OFF of the relays 1 to 3. The control device 101 includes a voltage sensor for detecting the voltage of each unit cell 106 constituting the assembled battery 100, a temperature sensor for detecting the temperature of the assembled battery 100, and a voltage between the assembled battery 100 and the inverter 102. An I / O device having functions such as a current sensor for detecting current and an A / D converter for taking in an output from these sensors is also provided, but these are omitted in FIG.

図2は切換回路105の詳細を示したものである。図2に示すように、切換回路105は、組電池100側の電圧を電圧センサ103に取り込むための光絶縁素子8、9と、インバータ102側の電圧を電圧センサ103に取り込むための光絶縁素子10、11と、組電池100側ないしインバータ102側の電圧を取り込むために組電池100側の光絶縁素子8、9とインバータ102側の光絶縁素子10、11を交互にオン/オフの切り替えを制御するためのNPNトランジスタで構成される切り替えスイッチ12、13と、切り替えスイッチ12、13のNPNトランジスタのコレクタ(各光絶縁素子の1次側)に接続された抵抗6と、切り替えスイッチ12、13を制御するためのI/O装置108と、切り替えスイッチ12、13のNPNトランジスタのベースに接続され、組電池100側とインバータ102側の電圧を同時に取り込まないように制御するための、すなわち、光絶縁素子8、9と光絶縁素子10、11が同時にオン状態とならないように制御するための、AND回路14とPNPトランジスタ15で構成された保護回路107と、I/O装置108が起動直後(I/O装置108の電源投入直後)にソフトウェアでの制御が無効で不定な状態やI/O装置108が暴走した場合に、光絶縁素子8、9の切り替えスイッチ12と光絶縁素子10、11の切り替えスイッチ13が同時にオン状態となることを防ぐための、切り替えスイッチ8、9のNPNトランジスタのベース端子とグランドに接続されたプルダウン抵抗7とを有して構成されている。なお、グランドはハイブリッド自動車のシャーシと同電位である。   FIG. 2 shows details of the switching circuit 105. As shown in FIG. 2, the switching circuit 105 includes optical insulating elements 8 and 9 for taking in the voltage on the assembled battery 100 side into the voltage sensor 103, and an optical insulating element for taking in the voltage on the inverter 102 side into the voltage sensor 103. 10 and 11 and the photoinsulating elements 8 and 9 on the assembled battery 100 side and the photoinsulating elements 10 and 11 on the inverter 102 side are alternately switched on / off in order to take in the voltage on the assembled battery 100 side or the inverter 102 side. The change-over switches 12 and 13 composed of NPN transistors for control, the resistor 6 connected to the collector of the NPN transistor of the change-over switches 12 and 13 (the primary side of each optical insulating element), and the change-over switches 12 and 13 An I / O device 108 for controlling the NPN transistor and the bases of the NPN transistors of the changeover switches 12 and 13 and AND circuit 14 for controlling not to take in the voltages on the 00 side and the inverter 102 side at the same time, that is, for controlling so that the optical insulating elements 8 and 9 and the optical insulating elements 10 and 11 are not simultaneously turned on. And the protection circuit 107 composed of the PNP transistor 15 and the I / O device 108 immediately after startup (immediately after the I / O device 108 is turned on), the control by the software becomes invalid and the I / O device 108 In order to prevent the changeover switch 12 of the optical isolation elements 8 and 9 and the changeover switch 13 of the optical isolation elements 10 and 11 from being simultaneously turned on in the case of runaway, And a pull-down resistor 7 connected to the ground. The ground is at the same potential as the chassis of the hybrid vehicle.

この回路構成により、光絶縁素子8〜11が組電池100とインバータ102との間において大電流経路とならずに、光絶縁素子8〜11の破損に至らないように保護され、かつ、組電池100側とインバータ102側の電圧を一つの電圧センサ103で検出する回路構成となる。なお、リレー1〜3の制御回路についても、電界効果トランジスタ等のインターフェース素子を用いてI/O装置108により制御される。   With this circuit configuration, the photoinsulating elements 8 to 11 are protected from being damaged by the photoinsulating elements 8 to 11 without being a large current path between the assembled battery 100 and the inverter 102. The circuit configuration is such that one voltage sensor 103 detects the voltage on the 100 side and the inverter 102 side. Note that the control circuits of the relays 1 to 3 are also controlled by the I / O device 108 using an interface element such as a field effect transistor.

(動作)
次に、本実施形態の制御装置101の動作について説明する。
(Operation)
Next, the operation of the control device 101 of this embodiment will be described.

<初期電源供給時の動作>
図3に示すように、光絶縁素子8〜11が全てOFFであるハイ・インピーダンス状態(208)において、リレー3をオン状態として組電池100とインバータ102の負極側を接続し(201)、光絶縁素子8、9をオン状態として(202)、組電池100側の電圧を取り込んで検出し、組電池100側について処理が終わった後に光絶縁素子8、9をオフ状態としてハイ・インピーダンス状態(209)に戻す。
<Operation during initial power supply>
As shown in FIG. 3, in the high impedance state (208) in which the optical insulating elements 8 to 11 are all OFF, the relay 3 is turned on to connect the assembled battery 100 and the negative side of the inverter 102 (201). The insulating elements 8 and 9 are turned on (202), the voltage on the assembled battery 100 side is captured and detected, and after the processing on the assembled battery 100 side is finished, the optical insulating elements 8 and 9 are turned off and the high impedance state ( 209).

次に、インバータ102への初期電源投入(プリチャージ動作)のためにリレー1をオン状態として接続し(203)、その後に光絶縁素子10、11をオン状態として(204)、インバータ102側の電圧を取り込んで検出し、インバータ102側の電圧が組電池100側電圧値の約90%以上に達したことが確認された後に、光絶縁素子10、11をオフ状態としてハイ・インピーダンス状態に戻す(211)。次いで、リレー2をオン状態として(205)、正極側を接続して、その後にリレー1をオフ状態として接続を解除し(206)、初期電源投入が完了となる。初期電源供給時に、このような制御を行うことで、リレー2、3を大電流による破損に対して保護することができるとともに、インバータ102の安全性を維持することができる。なお、リレー1をオン状態に制御するのは、初期電源供給時に限られる。   Next, in order to turn on the initial power to the inverter 102 (precharge operation), the relay 1 is turned on and connected (203), and then the optical insulating elements 10 and 11 are turned on (204). After the voltage is captured and detected, and it is confirmed that the voltage on the inverter 102 side has reached about 90% or more of the voltage value on the assembled battery 100 side, the opto-insulating elements 10 and 11 are turned off to return to the high impedance state. (211). Next, the relay 2 is turned on (205), the positive electrode side is connected, and then the relay 1 is turned off to release the connection (206), and the initial power-on is completed. By performing such control during the initial power supply, the relays 2 and 3 can be protected against damage due to a large current, and the safety of the inverter 102 can be maintained. Note that the relay 1 is controlled to be turned on only when the initial power is supplied.

<定常動作>
その後、光絶縁素子8、9をオン状態として(207)、組電池100側の電圧を取り込んで組電池100の状態を監視する定常動作に移行する。
<Normal operation>
Thereafter, the photoinsulating elements 8 and 9 are turned on (207), and the routine proceeds to a steady operation for taking in the voltage on the assembled battery 100 side and monitoring the state of the assembled battery 100.

図3に示す白矢印の期間(リレー1〜3がオン状態またはオフ状態に遷移する前後の所定時間)がリレー1〜3のオン、オフに伴うサージ電圧や光絶縁素子8〜11へのチャタリングによる負担が発生する可能性のある期間で、これらの期間では、電圧センサ103の入力は、組電池100側およびインバータ102側のいずれにも接続されない。   The period of the white arrow shown in FIG. 3 (predetermined time before and after the relays 1 to 3 are switched to the on state or the off state) is the surge voltage accompanying the on and off of the relays 1 to 3 and chattering to the optical insulating elements 8 to 11. In these periods, the input of the voltage sensor 103 is not connected to either the assembled battery 100 side or the inverter 102 side.

(効果等)
次に、本実施形態の制御装置101の作用、効果等について説明する。
(Effects etc.)
Next, functions, effects, and the like of the control device 101 of this embodiment will be described.

本実施形態の制御装置101では、組電池100側の電圧とインバータ102側の電圧とを検出するための電圧センサ103を共通化したので、異なる箇所の電圧を同じ特性の電圧センサで検出できるため、バラツキの補正を行うことなく組電池100側の電圧とインバータ102側を検出することができる。また、従来技術と比較して、電圧センサを共通化(削減)したので、コスト低減を図ることができるとともに、電圧センサの占める領域も低減させること、すなわち、小型化を図ることができる。   In the control device 101 of the present embodiment, the voltage sensor 103 for detecting the voltage on the assembled battery 100 side and the voltage on the inverter 102 side is shared, so that voltages at different locations can be detected by voltage sensors having the same characteristics. The voltage on the assembled battery 100 side and the inverter 102 side can be detected without correcting the variation. In addition, since the voltage sensors are shared (reduced) as compared with the prior art, the cost can be reduced and the area occupied by the voltage sensors can be reduced, that is, the size can be reduced.

また、本実施形態の制御装置101では、上述したように、図3に示す白矢印の期間、電圧センサ103の入力は、組電池100側およびインバータ102側のいずれにも接続されないので、リレー1〜3のオン、オフに伴うサージ電圧や光絶縁素子8〜11へのチャタリングによる負担を排除して、電圧センサ103と切換回路105とを保護することができる。   In the control device 101 of the present embodiment, as described above, the input of the voltage sensor 103 is not connected to either the assembled battery 100 side or the inverter 102 side during the period of the white arrow shown in FIG. It is possible to protect the voltage sensor 103 and the switching circuit 105 by eliminating a surge voltage caused by turning on and off of 3 and a burden caused by chattering on the optical insulating elements 8 to 11.

さらに、本実施形態の制御装置101では、光絶縁素子8〜11で組電池100の電圧を絶縁しているので、ハイブリッド自動車のシャーシ(グランドと同電位)に乗員が触れても感電するおそれはない。   Furthermore, in the control apparatus 101 of this embodiment, since the voltage of the assembled battery 100 is insulated by the photoinsulating elements 8 to 11, there is a possibility that an electric shock may occur even if a passenger touches the chassis (the same potential as the ground) of the hybrid vehicle. Absent.

なお、本実施形態では、負荷ないし充放電機器としてインバータ102を例示したが、インバータ102はハイブリッド自動車の制動の際に、回生電力(モータの3相交流)を直流に変換して組電池100を充電する。このため、インバータ102は充放電機器として機能するが、このような充電機能を有さず、単に組電池100の負荷のみとして機能する機器にも本発明は適用可能である。また、本実施形態にはスイッチとしてリレーを例示したが、本発明はこれに限らず、例えば、パワーFET等のスイッチ素子を用いるようにしてもよい。   In the present embodiment, the inverter 102 is exemplified as a load or a charge / discharge device. However, the inverter 102 converts the regenerative power (three-phase AC of the motor) into a direct current when the hybrid vehicle is braked. Charge. For this reason, the inverter 102 functions as a charge / discharge device, but the present invention can also be applied to a device that does not have such a charging function and functions only as a load of the assembled battery 100. In this embodiment, a relay is exemplified as a switch. However, the present invention is not limited to this, and for example, a switch element such as a power FET may be used.

さらに、本実施形態では、I/O装置108を例示したが、本発明はこれに制限されることなく、例えば、マイクロコンピュータで構成するようにしてもよい。その際、マイクロコンピュータにはA/Dコンバータ等を内蔵するようにしてもよい。   Furthermore, in the present embodiment, the I / O device 108 is illustrated, but the present invention is not limited to this, and may be configured by, for example, a microcomputer. At that time, the microcomputer may incorporate an A / D converter or the like.

また、本実施形態では、ハイブリッド自動車の電源部の制御装置に適用した例を示したが、本発明はこれに限られないことは論を待たない。例えば、据え置き用の蓄電システムにも適用可能である。さらに、そのような蓄電システムは、例えば、太陽熱発電や風力発電で発電された電力を蓄電するようにしてもよい。また、本実施形態では組電池を構成する単電池にリチウムイオン電池を例示したが、本発明はこれに制限されるものではない。例えば、ニッケル水素電池等を用いるようにしてもよい。   In the present embodiment, an example in which the present invention is applied to a control device for a power supply unit of a hybrid vehicle has been described. For example, the present invention can be applied to a stationary power storage system. Furthermore, such a power storage system may store, for example, power generated by solar thermal power generation or wind power generation. Moreover, although the lithium ion battery was illustrated as the single battery which comprises an assembled battery in this embodiment, this invention is not restrict | limited to this. For example, a nickel metal hydride battery or the like may be used.

本発明はバラツキの補正を行うことなく組電池側の電圧と負荷ないし充放電機器側の電圧を検出可能な制御装置を提供するものであるため、制御装置の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a control device that can detect the voltage on the assembled battery side and the voltage on the load or charge / discharge equipment side without correcting variations, it contributes to the manufacture and sale of the control device. With the above applicability.

本発明が適用可能な実施形態の制御装置の回路図である。It is a circuit diagram of a control device of an embodiment to which the present invention is applicable. 実施形態の制御装置の切換回路の詳細を示す回路図である。It is a circuit diagram which shows the detail of the switching circuit of the control apparatus of embodiment. リレーおよび光絶縁素子のオン、オフ状態を示すタイミングチャートである。It is a timing chart which shows the ON / OFF state of a relay and an optical insulation element.

符号の説明Explanation of symbols

1、2、3 リレー(スイッチ)
100 組電池
101 制御装置
102 インバータ(負荷ないし充放電機器)
103 電圧センサ
105 切換回路
1, 2, 3 Relay (switch)
100 assembled battery 101 control device 102 inverter (load or charge / discharge equipment)
103 Voltage sensor 105 switching circuit

Claims (4)

電流を遮断、導通するスイッチを介して負荷ないし充放電機器に接続される組電池の制御装置において、前記組電池側の電圧と前記負荷ないし充放電機器側の電圧とを検出するための電圧センサを共通化したことを特徴とする制御装置。   A voltage sensor for detecting a voltage on the assembled battery side and a voltage on the load or charge / discharge equipment side in a control apparatus for the assembled battery connected to the load or charge / discharge equipment via a switch that cuts off and conducts current A control device characterized by the common use. 前記電圧センサの入力を前記組電池側と前記負荷ないし充放電機器側とに切り換える切換回路を備えたことを特徴とする請求項1に記載の制御装置。   The control device according to claim 1, further comprising a switching circuit that switches an input of the voltage sensor between the assembled battery side and the load or charge / discharge device side. 前記切換回路は、前記組電池側の電圧と前記負荷ないし充放電機器側の電圧とが同時に前記電圧センサに入力されることを防止することを特徴とする請求項2に記載の制御装置。   The control device according to claim 2, wherein the switching circuit prevents the voltage on the assembled battery side and the voltage on the load or charge / discharge device side from being simultaneously input to the voltage sensor. 前記切換回路は、前記スイッチがオン状態またはオフ状態に遷移する前後の所定時間、前記電圧センサの入力を前記組電池側あるいは前記負荷ないし充放電機器側に接続しないように制御することを特徴とする請求項2または請求項3に記載の制御装置。   The switching circuit controls the input of the voltage sensor not to be connected to the assembled battery side or the load or charge / discharge device side for a predetermined time before and after the switch transitions to an on state or an off state. The control device according to claim 2 or 3.
JP2008083811A 2008-03-27 2008-03-27 Controller Withdrawn JP2009240081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083811A JP2009240081A (en) 2008-03-27 2008-03-27 Controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083811A JP2009240081A (en) 2008-03-27 2008-03-27 Controller

Publications (1)

Publication Number Publication Date
JP2009240081A true JP2009240081A (en) 2009-10-15

Family

ID=41253361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083811A Withdrawn JP2009240081A (en) 2008-03-27 2008-03-27 Controller

Country Status (1)

Country Link
JP (1) JP2009240081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426806A2 (en) 2010-09-03 2012-03-07 Sony Corporation Electric circuit, charge control device, charge system, and control method
WO2013187178A1 (en) * 2012-06-14 2013-12-19 ソニー株式会社 Electric moving body, power transmission and reception system, and power reception method for electric moving body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426806A2 (en) 2010-09-03 2012-03-07 Sony Corporation Electric circuit, charge control device, charge system, and control method
JP2012054900A (en) * 2010-09-03 2012-03-15 Sony Corp Electric circuit, charge controller, charge control system, and control method
US9018911B2 (en) 2010-09-03 2015-04-28 Sony Corporation Electric circuit, charge control device, charge system, and control method
WO2013187178A1 (en) * 2012-06-14 2013-12-19 ソニー株式会社 Electric moving body, power transmission and reception system, and power reception method for electric moving body
US9878626B2 (en) 2012-06-14 2018-01-30 Sony Corporation Electric mobile body, power supply/reception system, and power receiving method for electric mobile body

Similar Documents

Publication Publication Date Title
EP2760096B1 (en) Electrical storage system and method for controlling electrical storage system
US9211800B2 (en) Battery system and control method of battery system
EP2717415A1 (en) Electricity storage system
JP5618359B2 (en) Secondary battery pack connection control method and power storage system
EP2773011B1 (en) Electricity-storage system
JP6088840B2 (en) Charge / discharge system
JP5567040B2 (en) Secondary battery control device
JP5187406B2 (en) Auxiliary battery charger
JP6080812B2 (en) Voltage leveling device for connecting unit racks for power storage and power storage system including the same
JP2013085336A (en) Power storage system, and control method for power storage system
US9252608B2 (en) Electrical storage system, and control method for electrical storage system
JP2013145175A (en) Battery system and short circuit detection method
US20160118922A1 (en) Drive battery for in-phase operation of an electric motor, drive system and a method for operating the drive system
TW201108541A (en) System for protection of battery pack and method for charging and discharging thereof
CN111746278B (en) Battery controller and battery control method
JP2010182579A (en) Electric power source device for vehicle
JP2013013245A (en) Power storage system
JP2009240081A (en) Controller
JP6668210B2 (en) Power supply control device and power supply system
CN113479065B (en) Motor active short circuit control circuit and driving method thereof
JP6645380B2 (en) Vehicle system
JP2015061504A (en) Power storage system
JP6481593B2 (en) Terminal connection structure of switching element
KR20130033620A (en) A battery device
WO2024089800A1 (en) Power-supply control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607