JP2009240028A - Lightning protection device and distribution switchboard with lightning protection function - Google Patents

Lightning protection device and distribution switchboard with lightning protection function Download PDF

Info

Publication number
JP2009240028A
JP2009240028A JP2008081059A JP2008081059A JP2009240028A JP 2009240028 A JP2009240028 A JP 2009240028A JP 2008081059 A JP2008081059 A JP 2008081059A JP 2008081059 A JP2008081059 A JP 2008081059A JP 2009240028 A JP2009240028 A JP 2009240028A
Authority
JP
Japan
Prior art keywords
lightning protection
protection function
lightning
protection device
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081059A
Other languages
Japanese (ja)
Other versions
JP5215702B2 (en
Inventor
Hitoshi Kijima
均 木嶋
Kenji Yashiro
健司 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakusan Seisakusho Co Ltd
Original Assignee
Hakusan Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakusan Seisakusho Co Ltd filed Critical Hakusan Seisakusho Co Ltd
Priority to JP2008081059A priority Critical patent/JP5215702B2/en
Publication of JP2009240028A publication Critical patent/JP2009240028A/en
Application granted granted Critical
Publication of JP5215702B2 publication Critical patent/JP5215702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightning protection device and a distribution switchboard with a lightning protection function, wherein a ground fault interrupter can be operated with respect to electrical leaks due to insulation failure in an overvoltage protector. <P>SOLUTION: The lightning protection device is placed between a ground fault interrupter having an overcurrent protection function and a load. Overvoltage protectors of semiconductor elements independent from match poles are provided between the ground fault interrupter and ground and a gap type lightning arresting element common to the match poles is not placed. The distribution switchboard with: a lightning protection function includes a ground fault interrupter having an overcurrent protection function; and a lightning protection device placed between the ground fault interrupter and a load. The lightning protection device is provided with an overvoltage protectors of semiconductor elements, to each match pole independently arranged in between the ground under the condition that two or more gap type lightning arresting elements common to the match poles are not inserted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、分電盤用の雷保護装置、および雷保護機能付分電盤に関する。   The present invention relates to a lightning protection device for a distribution board and a distribution board with a lightning protection function.

従来の分電盤用の雷保護装置は、非特許文献1に規格が定められている。具体的には、以下のような内容である。
(1)雷保護装置の設置箇所は、引込口装置の負荷側とすること(非特許文献1の103ページ参照)。
(2)引込口装置は、過電流保護機能を有する漏電遮断器であること(非特許文献1の103ページ参照)。
(3)各相極と接地極との間にギャップ式避雷素子が挿入されていること(非特許文献1の804ページ参照)。
(4)中性極には、半導体素子を設けないこと(非特許文献1の804ページ参照)。
A standard of a lightning protection device for a conventional distribution board is defined in Non-Patent Document 1. Specifically, the contents are as follows.
(1) The installation location of the lightning protection device shall be on the load side of the service entrance device (see page 103 of Non-Patent Document 1).
(2) The service port device is an earth leakage circuit breaker having an overcurrent protection function (see page 103 of Non-Patent Document 1).
(3) A gap type lightning arrester is inserted between each phase electrode and the ground electrode (see page 804 of Non-Patent Document 1).
(4) No semiconductor element is provided on the neutral electrode (see page 804 of Non-Patent Document 1).

これらの条件を満足する1つの構成例を図示すると、図1となる。図1は、最も一般的な単相三線式の雷保護機能付分電盤の例を示している。雷保護機能付分電盤2000は、漏電遮断器(過電流保護機能付)900と雷保護装置910とを有する。漏電遮断器(過電流保護機能付)900は、トランスの二次側コイル950に接続されており、負荷側に過電流が流れた場合と漏電があった場合に動作し、電源側と負荷側とを切断する。雷保護装置910は、半導体素子の過電圧防護器(図中には「半導体過電圧防護器」と記載)801、803とギャップ式避雷素子820を備えている。半導体素子の過電圧防護器801、803は、それぞれ導線981、983に一端が接続されている。また、半導体素子の過電圧防護器801、803の他端と中性極である導線982は、ギャップ式避雷素子820の一端に接続されている。そして、ギャップ式避雷素子820の他端が接地されている。つまり、ギャップ式避雷素子820は、複数の相極に共通したギャップ式避雷素子である。   One configuration example that satisfies these conditions is shown in FIG. FIG. 1 shows an example of the most common single-phase three-wire distribution board with a lightning protection function. The distribution board 2000 with a lightning protection function includes an earth leakage breaker (with an overcurrent protection function) 900 and a lightning protection device 910. The earth leakage breaker (with overcurrent protection function) 900 is connected to the secondary coil 950 of the transformer, and operates when an overcurrent flows on the load side and when an earth leakage occurs. And disconnect. The lightning protection device 910 includes semiconductor element overvoltage protectors (described as “semiconductor overvoltage protector” in the figure) 801 and 803 and a gap-type lightning arrester 820. One end of each of the overvoltage protectors 801 and 803 of the semiconductor element is connected to the conductors 981 and 983, respectively. Further, the other ends of the semiconductor device overvoltage protectors 801 and 803 and the conductive wire 982 which is a neutral electrode are connected to one end of the gap type lightning arrester 820. The other end of the gap type lightning arrester 820 is grounded. That is, the gap type lightning protection element 820 is a gap type lightning protection element common to a plurality of phase electrodes.

雷によるサージ電流が流れると、導線981、982、983に同時に高電圧が印加される。そして、ギャップ式避雷素子820が短絡されるとすぐに、半導体素子の過電圧防護器801、803がほぼ同時に短絡状態となり、雷サージ電流は接地(G)に流れる。したがって、負荷側に接続された機器の損傷などを防ぐことができる。なお、半導体素子の過電圧防護器は個体差が小さいので、ほぼ同時に動作するように設計できる。したがって、導線間に過電圧が生じない。
“内線規程(電気技術規程使用設備編),1361節 雷保護装置”,需要設備専門部会,日本電気協会発行,pp.103-104,pp.804-805,平成17年9月.
When a surge current due to lightning flows, a high voltage is simultaneously applied to the conductors 981, 982, and 983. As soon as the gap type lightning arrester 820 is short-circuited, the overvoltage protectors 801 and 803 of the semiconductor element are short-circuited almost simultaneously, and a lightning surge current flows to the ground (G 2 ). Therefore, damage to equipment connected to the load side can be prevented. In addition, since the overvoltage protector of a semiconductor element has a small individual difference, it can be designed to operate almost simultaneously. Therefore, no overvoltage occurs between the conductors.
“Extension Rules (Electrical Technical Rules Use Equipment), Section 1361 Lightning Protection Equipment”, Demand Equipment Special Committee, published by the NEC Association, pp. 103-104, pp. 804-805, September 2005.

図1に示した非特許文献1の規程に従った従来の分電盤用の雷保護装置(もしくは雷保護機能付分電盤)では、例えば、過電圧防護器801が絶縁不良となり漏電が生じても漏電遮断器900が動作しない場合があるという問題があった。
本発明は、このような問題に鑑みてなされたものであり、過電圧防護器の絶縁不良による漏電に対して、漏電遮断器が動作できるような雷保護装置(もしくは雷保護機能付分電盤)を提供することを目的とする。
In a conventional lightning protection device for a distribution board (or a distribution board with a lightning protection function) according to the regulations of Non-Patent Document 1 shown in FIG. 1, for example, the overvoltage protector 801 is poorly insulated and causes a leakage. However, there is a problem that the earth leakage breaker 900 may not operate.
The present invention has been made in view of such problems, and is a lightning protection device (or a distribution board with a lightning protection function) that can operate an earth leakage breaker against leakage due to insulation failure of an overvoltage protective device. The purpose is to provide.

本発明の雷保護装置は、過電流保護機能を有する漏電遮断器よりも負荷側に配置される。そして、相極ごとに接地との間に独立な半導体素子の過電圧防護器を備えており、かつ、複数の相極に共通したギャップ式避雷素子がないことを特徴とする。なお、本明細書でのギャップ式避雷素子は、ガス入り放電管、エアギャップなどを含んでいる。
本発明の雷保護機能付分電盤は、過電流保護機能を有する漏電遮断器と、漏電遮断器よりも負荷側に配置される雷保護装置とを備えている。そして、雷保護装置には、相極ごとに接地との間に独立な半導体素子の過電圧防護器を備えており、かつ、複数の相極に共通したギャップ式避雷素子がないことを特徴とする。
The lightning protection apparatus of this invention is arrange | positioned rather than the earth-leakage circuit breaker which has an overcurrent protection function at the load side. Each phase electrode is provided with an independent overvoltage protector of a semiconductor element between the ground and the ground electrode, and there is no gap type lightning arrester common to a plurality of phase electrodes. Note that the gap type lightning protection element in the present specification includes a gas-filled discharge tube, an air gap, and the like.
The distribution board with a lightning protection function of the present invention includes a leakage breaker having an overcurrent protection function, and a lightning protection device disposed on the load side of the leakage breaker. The lightning protection device is provided with an overvoltage protector of an independent semiconductor element between each phase electrode and the ground, and there is no gap type lightning arrester common to a plurality of phase electrodes. .

本発明の雷保護装置および雷保護機能付分電盤によれば、半導体素子の過電圧防護器の絶縁不良が発生した場合にも漏洩遮断器を動作させることができるので、安全である。また、雷サージ電流が流れた場合にも、半導体素子の過電圧防護器によって雷サージ電流を接地に流すことができる。そして、半導体素子の過電圧防護器は個体差が小さいので、ほぼ同時に動作するように設計できる。したがって、導線間に過電圧が生じる危険がない。つまり、本来の雷防護の機能も十分に保有している。   According to the lightning protection device and the distribution board with a lightning protection function of the present invention, it is safe because the leakage breaker can be operated even when an insulation failure of the overvoltage protector of the semiconductor element occurs. Even when a lightning surge current flows, the lightning surge current can be caused to flow to the ground by the overvoltage protector of the semiconductor element. And since the overvoltage protector of a semiconductor element has a small individual difference, it can be designed to operate almost simultaneously. Therefore, there is no danger of overvoltage between the conductors. In other words, it also has sufficient functions of original lightning protection.

以下の説明では、まず、非特許文献1の規程に従った従来の分電盤用の雷保護装置(もしくは雷保護機能付分電盤)の問題点を分析する。そして、その分析結果から問題点を解決した雷保護装置および雷保護機能付分電盤の構成を示す。   In the following description, first, problems of a conventional lightning protection device for a distribution board (or a distribution board with a lightning protection function) according to the rules of Non-Patent Document 1 are analyzed. And the structure of the lightning protection apparatus and the distribution board with a lightning protection function which solved the problem from the analysis result is shown.

[分析]
図1に示した最も一般的な単相三線式の雷保護機能付分電盤の例を用いて分析する。まず、漏電遮断器(過電流保護機能付)900の動作条件について説明する。図2は、漏電遮断器(過電流保護機能付)900の動作条件を説明するための図である。例えば、導線981と導線982に負荷を接続し、交流100Vを利用する場合を考える。このとき、導線981と導線982にはそれぞれ、電流Iと電流Iが流れる。正常な状態であれば、I+I=0(表現をかえると|I|=|I|)、かつIは定格電流(例えば30A)以下である。
[analysis]
The analysis is performed using the example of the most common single-phase three-wire type distribution board with lightning protection function shown in FIG. First, the operating conditions of the earth leakage breaker (with an overcurrent protection function) 900 will be described. FIG. 2 is a diagram for explaining the operating conditions of the leakage breaker (with an overcurrent protection function) 900. For example, consider a case where a load is connected to the conductors 981 and 982 and AC 100V is used. At this time, each of the conductor 981 and conductor 982, flows through current I A and the current I B. In a normal state, I A + I B = 0 (in other words, | I A | = | I B |), and I A is a rated current (for example, 30 A) or less.

どこかで電流の漏れ(漏電)が生じ場合、Iは定格電流以下であるが、I+I≠0(表現をかえると|I|≠|I|)となる。漏電遮断器はI+Iが閾値を越えると(表現をかえると|I|-|I|が閾値を越えると)動作し、電源側と負荷側とを切断する。そして、この漏電検知用の閾値は数10mAである。
電力の使いすぎなどによる過電流が生じた場合、I+I=0(表現をかえると|I|=|I|)であるが、Iは定格電流より大きい。過電流保護機能は、Iが一定時間以上閾値を越えると動作し、電源側と負荷側とを切断する。例えば、定格電流の2倍(例えば60A)流れた場合、数分で切断する。
If current leakage (leakage) occurs somewhere, I A is less than the rated current, but I A + I B ≠ 0 (in other words, | I A | ≠ | I B |). The earth leakage breaker operates when I A + I B exceeds the threshold value (in other words, when | I A | − | I B | exceeds the threshold value), and disconnects the power supply side and the load side. The threshold value for detecting leakage is several tens of mA.
When an overcurrent occurs due to excessive use of electric power or the like, I A + I B = 0 (in other words, | I A | = | I B |), but I A is larger than the rated current. Overcurrent protection function operates with I A exceeds a threshold value over a certain time, disconnecting the power supply side and load side. For example, when the current flows twice as much as the rated current (for example, 60 A), it is cut in several minutes.

図3は、半導体素子の過電圧防護器801が絶縁不良となった場合の現象を説明する図である。例えば、通常(過電圧が加わっていないとき)は1MΩあるはずの半導体素子の過電圧防護器801の抵抗が、10Ωまで低下したとする。A点と導線982との間の抵抗が0Ωとすると、導線981と導線982との間の抵抗は10Ωとなる。導線981と導線982との間の電位差は100Vなので、半導体素子の過電圧防護器801に流れる電流は10Aとなる。また、ギャップ式避雷素子820があるため、接地側には電流は流れない。したがって、導線981から半導体素子の過電圧防護器801に流れ込んだ電流は、導線982側に流れる。よって、半導体素子の過電圧防護器801の絶縁不良によって起きる現象は、I+I=0、I=10Aである。半導体素子の過電圧防護器801の絶縁不良であるから、本来、漏電として検知できなければならないが、I+I=0なので漏電遮断器(過電流保護機能付)900は漏電としては検知できない。また、定格電流が30Aの場合、Iは定格電流以下なので過電圧防護機能も動作しない。 FIG. 3 is a diagram for explaining the phenomenon when the overvoltage protector 801 of the semiconductor element has an insulation failure. For example, it is assumed that the resistance of the overvoltage protector 801 of the semiconductor element, which should normally be 1 MΩ (when no overvoltage is applied), has decreased to 10Ω. If the resistance between the point A and the conductive wire 982 is 0Ω, the resistance between the conductive wire 981 and the conductive wire 982 is 10Ω. Since the potential difference between the conductor 981 and the conductor 982 is 100V, the current flowing through the overvoltage protector 801 of the semiconductor element is 10A. Further, since there is a gap type lightning protection element 820, no current flows on the ground side. Therefore, the current that flows from the conductor 981 into the overvoltage protector 801 of the semiconductor element flows to the conductor 982 side. Therefore, the phenomenon caused by the insulation failure of the overvoltage protector 801 of the semiconductor element is I A + I B = 0 and I A = 10 A. Since it is a poor insulation of the overvoltage protector 801 of the semiconductor element, it should originally be detected as a leakage, but since I A + I B = 0, the leakage breaker (with an overcurrent protection function) 900 cannot be detected as a leakage. When the rated current is 30 A , IA is less than the rated current, so the overvoltage protection function does not operate.

図4に、非特許文献1の規格を満足する別の構成例を示す。雷保護機能付分電盤2100は、漏電遮断器(過電流保護機能付)900と雷保護装置920とを有する。漏電遮断器(過電流保護機能付)900は、トランスの二次側コイル950に接続されており、負荷側に過電流が流れた場合と漏電があった場合に動作し、電源側と負荷側とを切断する。雷保護装置920は、ギャップ式避雷素子831、832、833を備えている。ギャップ式避雷素子831、832、833は、それぞれ導線981、982、983に一端が接続されている。また、ギャップ式避雷素子831、832、833の他端は、接地(G)されている。 FIG. 4 shows another configuration example that satisfies the standard of Non-Patent Document 1. The distribution board 2100 with a lightning protection function includes an earth leakage breaker (with an overcurrent protection function) 900 and a lightning protection device 920. The earth leakage breaker (with overcurrent protection function) 900 is connected to the secondary coil 950 of the transformer, and operates when an overcurrent flows on the load side and when an earth leakage occurs. And disconnect. The lightning protection device 920 includes gap type lightning arresters 831, 832, and 833. One end of each of the gap type lightning arresters 831, 832, and 833 is connected to the conductive wires 981, 982, and 983. The other ends of the gap type lightning arresters 831, 832, and 833 are grounded (G 2 ).

図5は、ギャップ式避雷素子831が絶縁不良となった場合の現象を説明する図である。例えば、通常(過電圧が加わっていないとき)は1MΩあるはずのギャップ式避雷素子831の抵抗が、10Ωまで低下したとする。A点と接地(G)との抵抗は100Ω程度、接地(G)とトランスの二次側コイル950との間の抵抗は60Ω程度である。したがって、導線981と導線982との間の抵抗は170Ω程度(およそ200Ω)となる。導線981と導線982との間との間の電位差は100Vなので、ギャップ式避雷素子831から接地を介してトランスの二次側コイル950に流れる電流は0.5A(500mA)となる。よって、ギャップ式避雷素子831の絶縁不良によって起きる現象は、I+I=0.5A、I=0.5Aである。I+I=0.5Aは、漏電検知用の閾値である数10mAを大きく超えているので、漏電遮断器(過電流保護機能付)900が動作し、電源側と負荷側とは切断される。 FIG. 5 is a diagram for explaining a phenomenon when the gap type lightning arrester 831 has an insulation failure. For example, it is assumed that the resistance of the gap type lightning protection element 831 that should be 1 MΩ normally (when no overvoltage is applied) is reduced to 10 Ω. The resistance between the point A and the ground (G 2 ) is about 100Ω, and the resistance between the ground (G 1 ) and the secondary coil 950 of the transformer is about 60Ω. Therefore, the resistance between the conductive wire 981 and the conductive wire 982 is about 170Ω (approximately 200Ω). Since the potential difference between the conductive wire 981 and the conductive wire 982 is 100 V, the current flowing from the gap type lightning arrester 831 to the secondary coil 950 of the transformer via the ground is 0.5 A (500 mA). Therefore, the phenomenon caused by the insulation failure of the gap type lightning arrester 831 is I A + I B = 0.5 A and I A = 0.5 A. Since I A + I B = 0.5 A greatly exceeds the threshold of several tens of mA for detecting leakage, the leakage breaker (with an overcurrent protection function) 900 operates and the power supply side and the load side are disconnected. The

図6は、雷サージ電流が流れた場合の様子を示す図である。ギャップ式避雷素子は、特性の個体差が大きいという欠点がある。したがって、雷サージによって過電圧が印加された場合、半導体素子の過電圧防護器のようにほぼ同時に動作することは難しい。したがって、非常に短い時間(数マイクロ秒程度)ではあるが、図6に示すように、先にギャップ式避雷素子831、832が短絡し、まだギャップ式避雷素子833は短絡していない状態になることがある。このとき、導線981、982の電位はほぼ0Vである。一方、導線983の電位は数kVである。導線983と導線981および導線983と導線982の間にも数kVの電圧が残るので、負荷側の機器には数kVの電圧が印加されることになる。つまり、図4の構成は雷保護の機能が十分ではない。したがって、図4の構成は一般的には採用されておらず、図1に示した構成が最も一般的な雷保護機能付分電盤となっている。   FIG. 6 is a diagram illustrating a state where a lightning surge current flows. The gap type lightning arrester has a drawback that individual differences in characteristics are large. Therefore, when an overvoltage is applied by a lightning surge, it is difficult to operate almost at the same time as an overvoltage protector of a semiconductor element. Therefore, although it is a very short time (about several microseconds), as shown in FIG. 6, the gap type lightning arrester 831 and 832 are short-circuited first, and the gap type lightning arrester 833 is not yet short-circuited. Sometimes. At this time, the potentials of the conductive wires 981 and 982 are approximately 0V. On the other hand, the potential of the conductive wire 983 is several kV. Since a voltage of several kV remains between the conductive wire 983 and the conductive wire 981 and between the conductive wire 983 and the conductive wire 982, a voltage of several kV is applied to the load side device. That is, the configuration of FIG. 4 does not have a sufficient lightning protection function. Therefore, the configuration of FIG. 4 is not generally adopted, and the configuration shown in FIG. 1 is the most general distribution board with a lightning protection function.

図7に実施例の雷保護機能付分電盤の機能構成例(単相三線式)を示す。雷保護機能付分電盤100は、過電流保護機能を有する漏電遮断器900と、漏電遮断器よりも負荷側に配置される雷保護装置150とを備えている。漏電遮断器(過電流保護機能付)900は、トランスの二次側コイル950に接続されており、負荷側に過電流が流れた場合と漏電があった場合に動作し、電源側と負荷側とを切断する。雷保護装置150は、半導体素子の過電圧防護器101、102、103を備えている(図中には「半導体過電圧防護器」と記載)。そして、半導体素子の過電圧防護器101、102、103は、それぞれ導線981、982、983に一端が接続されている。また、半導体素子の過電圧防護器101、102、103の他端は、接地されている。つまり、雷保護装置150は、相極ごとに接地との間に独立な半導体素子の過電圧防護器101、102、103を備えており、かつ、複数の相極に共通したギャップ式避雷素子がない。   FIG. 7 shows a functional configuration example (single-phase three-wire system) of the distribution board with a lightning protection function of the embodiment. The distribution board 100 with a lightning protection function includes a leakage breaker 900 having an overcurrent protection function, and a lightning protection device 150 disposed on the load side of the leakage breaker. The earth leakage breaker (with overcurrent protection function) 900 is connected to the secondary coil 950 of the transformer, and operates when an overcurrent flows on the load side and when an earth leakage occurs. And disconnect. The lightning protection device 150 includes semiconductor element overvoltage protectors 101, 102, and 103 (described as “semiconductor overvoltage protector” in the drawing). One end of each of the semiconductor element overvoltage protectors 101, 102, 103 is connected to the conductors 981, 982, 983, respectively. The other ends of the semiconductor element overvoltage protectors 101, 102, 103 are grounded. That is, the lightning protection device 150 includes overvoltage protectors 101, 102, and 103 of independent semiconductor elements between each phase electrode and the ground, and there is no gap type lightning arrester common to a plurality of phase electrodes. .

図8は、半導体素子の過電圧防護器101が絶縁不良となった場合の現象を説明する図である。半導体素子の過電圧防護器101の抵抗が、10Ωまで低下したとする。導線981と接地(G)との間の抵抗は、100Ω程度である。また、接地(G)とトランスの二次側コイル950との間の抵抗は60Ω程度である。したがって、導線981と導線982との間の抵抗は170Ω程度(およそ200Ω)となる。導線981と導線982との間との間の電位差は100Vなので、半導体素子の過電圧防護器101から接地を介してトランスの二次側コイル950に流れる電流は0.5A(500mA)となる。よって、半導体素子の過電圧防護器101の絶縁不良によって起きる現象は、I+I=0.5A、I=0.5Aである。I+I=0.5Aは、漏電検知用の閾値である数10mAを大きく超えているので、漏電遮断器(過電流保護機能付)900が動作し、電源側と負荷側とは切断される。 FIG. 8 is a diagram for explaining the phenomenon when the overvoltage protector 101 of the semiconductor element has an insulation failure. It is assumed that the resistance of the overvoltage protector 101 of the semiconductor element has decreased to 10Ω. The resistance between the conductive wire 981 and the ground (G 2 ) is about 100Ω. The resistance between the ground (G 1 ) and the secondary coil 950 of the transformer is about 60Ω. Therefore, the resistance between the conductive wire 981 and the conductive wire 982 is about 170Ω (approximately 200Ω). Since the potential difference between the conductor 981 and the conductor 982 is 100 V, the current flowing from the overvoltage protector 101 of the semiconductor element to the secondary coil 950 of the transformer through the ground is 0.5 A (500 mA). Therefore, the phenomenon caused by the insulation failure of the overvoltage protector 101 of the semiconductor element is I A + I B = 0.5 A and I A = 0.5 A. Since I A + I B = 0.5 A greatly exceeds the threshold of several tens of mA for detecting leakage, the leakage breaker (with an overcurrent protection function) 900 operates and the power supply side and the load side are disconnected. The

次に、雷サージ電流が導線981、982、983に流れた場合を考える。上述したように、半導体素子の過電圧防護器は個体差が小さいので、ほぼ同時に短絡するように設計しやすい。したがって、図9に示しように、過電圧が印加されると、半導体素子の過電圧防護器101、102、103はほぼ同時に短絡し、雷サージ電流は接地(G)に流れる。したがって、導線間に数kVの電圧が加わることがない。つまり、雷保護装置150は、雷保護装置に必要な性能も有している。
したがって、雷保護装置150および雷保護機能付分電盤100によれば、雷からの負荷側の保護を図りながら、過電圧防護器の絶縁不良が発生した場合には漏洩遮断器を動作させることができる。
Next, consider a case where a lightning surge current flows through the conductors 981, 982, 983. As described above, since the overvoltage protector of the semiconductor element has a small individual difference, it can be easily designed to be short-circuited almost simultaneously. Therefore, as shown in FIG. 9, when an overvoltage is applied, the overvoltage protectors 101, 102, 103 of the semiconductor elements are short-circuited almost simultaneously, and a lightning surge current flows to the ground (G 2 ). Therefore, a voltage of several kV is not applied between the conductors. That is, the lightning protection device 150 also has performance required for the lightning protection device.
Therefore, according to the lightning protection device 150 and the distribution board 100 with the lightning protection function, the leakage breaker can be operated when the insulation failure of the overvoltage protector occurs while protecting the load side from lightning. it can.

[変形例1]
図10に変形例1の雷保護機能付分電盤の機能構成例(単相二線式)を示す。雷保護機能付分電盤200は、過電流保護機能を有する漏電遮断器901と、漏電遮断器よりも負荷側に配置される雷保護装置250とを備えている。漏電遮断器(過電流保護機能付)901は、トランスの二次側コイル951に接続されており、負荷側に過電流が流れた場合と漏電があった場合に動作し、電源側と負荷側とを切断する。雷保護装置250は、半導体素子の過電圧防護器204、205を備えている。そして、半導体素子の過電圧防護器204、205は、それぞれ導線984、985に一端が接続されている。また、半導体素子の過電圧防護器204、205の他端は、接地されている。つまり、雷保護装置250は、相極ごとに接地との間に独立な半導体素子の過電圧防護器204、205を備えており、かつ、複数の相極に共通したギャップ式避雷素子がない。
[Modification 1]
FIG. 10 shows a functional configuration example (single-phase two-wire system) of the distribution board with a lightning protection function according to the first modification. The distribution board 200 with a lightning protection function includes a leakage breaker 901 having an overcurrent protection function, and a lightning protection device 250 disposed on the load side of the leakage breaker. The earth leakage breaker (with overcurrent protection function) 901 is connected to the secondary coil 951 of the transformer and operates when an overcurrent flows on the load side and when an earth leakage occurs. And disconnect. The lightning protection device 250 includes semiconductor device overvoltage protectors 204 and 205. The semiconductor device overvoltage protectors 204 and 205 are connected at one end to the conductors 984 and 985, respectively. The other ends of the semiconductor element overvoltage protectors 204 and 205 are grounded. That is, the lightning protection device 250 includes the overvoltage protectors 204 and 205 of independent semiconductor elements between each phase electrode and the ground, and there is no gap type lightning protection element common to the plurality of phase electrodes.

雷保護機能付分電盤200は、このような構成なので、雷保護機能付分電盤200でも、雷保護機能付分電盤100と同じ効果が得られる。   Since the distribution board 200 with the lightning protection function has such a configuration, the same effect as the distribution board 100 with the lightning protection function can be obtained even with the distribution board 200 with the lightning protection function.

[変形例2]
図11に変形例2の雷保護機能付分電盤の機能構成例(三相式)を示す。雷保護機能付分電盤300は、過電流保護機能を有する漏電遮断器902と、漏電遮断器よりも負荷側に配置される雷保護装置350とを備えている。漏電遮断器(過電流保護機能付)902は、トランスの二次側コイル952に接続されており、負荷側に過電流が流れた場合と漏電があった場合に動作し、電源側と負荷側とを切断する。雷保護装置350は、半導体素子の過電圧防護器306、307、308、309を備えている。そして、半導体素子の過電圧防護器306、307、308、309は、それぞれ導線986、987、988、989に一端が接続されている。また、半導体素子の過電圧防護器306、307、308、309の他端は、接地されている。つまり、雷保護装置350は、相極ごとに接地との間に独立な半導体素子の過電圧防護器306、307、308、309を備えており、かつ、複数の相極に共通したギャップ式避雷素子がない。
[Modification 2]
FIG. 11 shows a functional configuration example (three-phase type) of a distribution board with a lightning protection function according to the second modification. The distribution board 300 with a lightning protection function includes a leakage breaker 902 having an overcurrent protection function, and a lightning protection device 350 disposed on the load side of the leakage breaker. The earth leakage breaker (with overcurrent protection function) 902 is connected to the secondary coil 952 of the transformer, and operates when an overcurrent flows on the load side and when an earth leakage occurs. And disconnect. The lightning protection device 350 includes semiconductor device overvoltage protectors 306, 307, 308, and 309. One end of each of the overvoltage protectors 306, 307, 308, and 309 of the semiconductor element is connected to the conductive wires 986, 987, 988, and 989, respectively. The other ends of the semiconductor device overvoltage protectors 306, 307, 308, and 309 are grounded. That is, the lightning protection device 350 includes the overvoltage protectors 306, 307, 308, and 309 of independent semiconductor elements between each phase electrode and the ground, and is a gap type lightning protection device common to a plurality of phase electrodes. There is no.

また、図11に示した三相式の雷保護機能付分電盤の場合、導線988がない場合もある。その場合は、半導体素子の過電圧防護器308がない。この場合も、雷保護装置350は、相極ごとに接地との間に独立な半導体素子の過電圧防護器306、307、309を備えており、かつ、複数の相極に共通したギャップ式避雷素子がない。
雷保護機能付分電盤300は、このような構成なので、雷保護機能付分電盤300でも、雷保護機能付分電盤100と同じ効果が得られる。
Further, in the case of the three-phase distribution board with a lightning protection function shown in FIG. In that case, there is no overvoltage protector 308 for the semiconductor element. In this case as well, the lightning protection device 350 includes the overvoltage protectors 306, 307, and 309 of independent semiconductor elements between each phase electrode and the ground, and a gap type lightning protection device common to a plurality of phase electrodes. There is no.
Since the distribution board 300 with the lightning protection function has such a configuration, the same effect as the distribution board 100 with the lightning protection function can be obtained even with the distribution board 300 with the lightning protection function.

[変形例3]
図12に変形例3の雷保護機能付分電盤の機能構成例(三相式の別の例)を示す。雷保護機能付分電盤400は、過電流保護機能を有する漏電遮断器903と、漏電遮断器よりも負荷側に配置される雷保護装置450とを備えている。漏電遮断器(過電流保護機能付)903は、トランスの二次側コイル953に接続されており、負荷側に過電流が流れた場合と漏電があった場合に動作し、電源側と負荷側とを切断する。雷保護装置450は、半導体素子の過電圧防護器401、402、403を備えている。そして、半導体素子の過電圧防護器401、402、403は、それぞれ導線991、992、993に一端が接続されている。また、半導体素子の過電圧防護器401、402、403の他端は、接地されている。つまり、雷保護装置450は、相極ごとに接地との間に独立な半導体素子の過電圧防護器401、402、403を備えており、かつ、複数の相極に共通したギャップ式避雷素子がない。
[Modification 3]
FIG. 12 shows a functional configuration example (another example of a three-phase system) of a distribution board with a lightning protection function of Modification 3. The distribution board 400 with a lightning protection function includes a leakage breaker 903 having an overcurrent protection function, and a lightning protection device 450 disposed on the load side of the leakage breaker. The earth leakage breaker (with overcurrent protection function) 903 is connected to the secondary coil 953 of the transformer, and operates when an overcurrent flows on the load side and when an earth leakage occurs. And disconnect. The lightning protection device 450 includes semiconductor element overvoltage protectors 401, 402, and 403. One end of each of the overvoltage protectors 401, 402, and 403 of the semiconductor element is connected to the conducting wires 991, 992, and 993, respectively. The other ends of the semiconductor element overvoltage protectors 401, 402, and 403 are grounded. That is, the lightning protection device 450 includes overvoltage protectors 401, 402, and 403 of independent semiconductor elements between each phase electrode and the ground, and there is no gap type lightning arrester common to a plurality of phase electrodes. .

雷保護機能付分電盤400は、このような構成なので、雷保護機能付分電盤400でも、雷保護機能付分電盤100と同じ効果が得られる。   Since the distribution board 400 with the lightning protection function has such a configuration, the same effect as the distribution board 100 with the lightning protection function can be obtained even with the distribution board 400 with the lightning protection function.

一般的な単相三線式の雷保護機能付分電盤の例を示す図。The figure which shows the example of the general distribution board with a lightning protection function of a single-phase three-wire system. 漏電遮断器(過電流保護機能付)900の動作条件を説明するための図。The figure for demonstrating the operating condition of the earth-leakage circuit breaker (with an overcurrent protection function) 900. FIG. 図1の雷保護機能付分電盤の過電圧防護器の1つが絶縁不良となった場合の現象を説明する図。The figure explaining the phenomenon when one of the overvoltage protectors of the distribution board with a lightning protection function of FIG. 非特許文献1の規程を満たす他の単相三線式の雷保護機能付分電盤の例を示す図。The figure which shows the example of the other distribution board with a lightning protection function of the other single phase three-wire system which satisfy | fills the rule of nonpatent literature 1. 図4の雷保護機能付分電盤の過電圧防護器の1つが絶縁不良となった場合の現象を説明する図。The figure explaining the phenomenon when one of the overvoltage protectors of the distribution board with a lightning protection function of FIG. 図4の雷保護機能付分電盤に雷サージ電流が流れた場合の現象を説明する図。The figure explaining the phenomenon when the lightning surge current flows into the distribution board with a lightning protection function of FIG. 本発明の雷保護機能付分電盤の機能構成例(単相三線式)を示す図。The figure which shows the function structural example (single-phase three-wire system) of the distribution board with a lightning protection function of this invention. 本発明の雷保護機能付分電盤の過電圧防護器が絶縁不良となった場合の現象を説明する図。The figure explaining the phenomenon when the overvoltage protector of the distribution board with a lightning protection function of this invention becomes insulation failure. 本発明の雷保護機能付分電盤に雷サージ電流が流れた場合の現象を説明する図。The figure explaining the phenomenon when the lightning surge current flows into the distribution board with a lightning protection function of the present invention. 本発明の雷保護機能付分電盤の機能構成例(単相二線式)を示す図。The figure which shows the function structural example (single-phase two-wire system) of the distribution board with a lightning protection function of this invention. 本発明の雷保護機能付分電盤の機能構成例(三相式)を示す図。The figure which shows the function structural example (three-phase type) of the distribution board with a lightning protection function of this invention. 本発明の雷保護機能付分電盤の機能構成例(三相式の別の例)を示す図。The figure which shows the function structural example (another example of a three-phase type) of the distribution board with a lightning protection function of this invention.

符号の説明Explanation of symbols

100、200、300、400 雷保護機能付分電盤
101〜103、204、205、306〜309 半導体素子の過電圧防護器
401〜403、801、803 半導体素子の過電圧防護器
150、250、350、450、910 雷保護装置
820、831、832、833 ギャップ式避雷素子
900〜903 漏電遮断器 950〜953 二次側コイル
981〜989、991〜993 導線
100, 200, 300, 400 Lightning protection distribution board 101-103, 204, 205, 306-309 Semiconductor element overvoltage protector 401-403, 801, 803 Semiconductor element overvoltage protector 150, 250, 350, 450, 910 Lightning protection device 820, 831, 832, 833 Gap type lightning arrester 900 to 903 Leakage breaker 950 to 953 Secondary coil 981 to 989, 991 to 993 Conductor

Claims (5)

過電流保護機能を有する漏電遮断器よりも負荷側に配置される雷保護装置であって、
相極ごとに接地との間に独立な半導体素子の過電圧防護器を備えており、かつ、
複数の相極に共通したギャップ式避雷素子がない
ことを特徴とする雷保護装置。
A lightning protection device arranged on the load side of the earth leakage breaker having an overcurrent protection function,
Each phase electrode has an independent overvoltage protector for semiconductor elements between the ground and
A lightning protection device characterized in that there is no gap type lightning protection element common to a plurality of phase electrodes.
過電流保護機能を有する漏電遮断器と、
前記漏電遮断器よりも負荷側に配置される雷保護装置と
を備え、
前記雷保護装置は、
相極ごとに接地との間に独立な半導体素子の過電圧防護器を備えており、かつ、
複数の相極に共通したギャップ式避雷素子がない
ことを特徴とする雷保護機能付分電盤。
An earth leakage circuit breaker having an overcurrent protection function;
A lightning protection device disposed on the load side of the earth leakage breaker,
The lightning protection device
Each phase electrode has an independent overvoltage protector for semiconductor elements between the ground and
A distribution board with a lightning protection function, characterized in that there is no gap-type lightning arrester common to multiple phase electrodes.
過電流保護機能を有する漏電遮断器よりも負荷側に配置される単相三線式用の雷保護装置であって、
3つの半導体素子の過電圧防護器を備え、
前記過電圧防護器は一端が、それぞれ別個の導線に接続され、他端が接地されている
ことを特徴とする雷保護装置。
A lightning protection device for a single-phase three-wire system that is disposed on the load side of the earth leakage breaker having an overcurrent protection function,
With overvoltage protector of three semiconductor elements,
One end of each of the overvoltage protectors is connected to a separate conductor, and the other end is grounded.
過電流保護機能を有する漏電遮断器よりも負荷側に配置される単相二線式用の雷保護装置であって、
2つの半導体素子の過電圧防護器を備え、
前記過電圧防護器は一端が、それぞれ別個の導線に接続され、他端が接地されている
ことを特徴とする雷保護装置。
A lightning protection device for a single-phase two-wire system that is arranged on the load side of an earth leakage breaker having an overcurrent protection function,
With overvoltage protector of two semiconductor elements,
One end of each of the overvoltage protectors is connected to a separate conductor, and the other end is grounded.
過電流保護機能を有する漏電遮断器よりも負荷側に配置される三相式用の雷保護装置であって、
3つまたは4つの半導体素子の過電圧防護器を備え、
前記過電圧防護器は一端が、それぞれ別個の導線に接続され、他端が接地されている
ことを特徴とする雷保護装置。
A lightning protection device for a three-phase type that is arranged on the load side of the earth leakage breaker having an overcurrent protection function,
With overvoltage protector of 3 or 4 semiconductor elements,
One end of each of the overvoltage protectors is connected to a separate conductor, and the other end is grounded.
JP2008081059A 2008-03-26 2008-03-26 Lightning protection device, distribution board with lightning protection function Active JP5215702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081059A JP5215702B2 (en) 2008-03-26 2008-03-26 Lightning protection device, distribution board with lightning protection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081059A JP5215702B2 (en) 2008-03-26 2008-03-26 Lightning protection device, distribution board with lightning protection function

Publications (2)

Publication Number Publication Date
JP2009240028A true JP2009240028A (en) 2009-10-15
JP5215702B2 JP5215702B2 (en) 2013-06-19

Family

ID=41253317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081059A Active JP5215702B2 (en) 2008-03-26 2008-03-26 Lightning protection device, distribution board with lightning protection function

Country Status (1)

Country Link
JP (1) JP5215702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473942A (en) * 2018-12-26 2019-03-15 南京紫峰电力设备有限公司 Belt discharge counts the fixed interval (FI) over-voltage protector uploaded with fault alarm function

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102126U (en) * 1990-01-31 1991-10-24
JPH05101285A (en) * 1991-10-08 1993-04-23 Nohmi Bosai Ltd Abnormal voltage protection circuit for fire alarm equipment
JPH09182286A (en) * 1995-12-28 1997-07-11 Matsushita Electric Works Ltd Noise absorber for power supply duct
JPH09233622A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Distribution panel with built-in lightening guard
JP2002027654A (en) * 2000-07-06 2002-01-25 Otowa Denki Kogyo Kk Automatic closing and interrupt device for breaker, and breaker operating mechanism
JP2002034109A (en) * 2000-07-12 2002-01-31 Yukio Ota Branch circuit system from single-phase three-wire main line
WO2002017458A1 (en) * 2000-08-22 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Ground fault interrupter
JP2002223523A (en) * 2000-11-27 2002-08-09 Otowa Denki Kogyo Kk Thunder-resistant element and thunder-resistant protective device
JP2004265645A (en) * 2003-02-28 2004-09-24 Kawamura Electric Inc Three-phase circuit breaker
JP2005216829A (en) * 2004-02-02 2005-08-11 Kawamura Electric Inc Earth leakage breaker of three-phase four-wire system
JP2006216270A (en) * 2005-02-01 2006-08-17 Kawamura Electric Inc Three-phase earth leakage breaker
JP2007116879A (en) * 2005-10-24 2007-05-10 Nitto Electric Works Ltd Surge protection device equipped with automatic making mechanism
WO2008010495A1 (en) * 2006-07-19 2008-01-24 Nikko Electric Mfg. Co., Ltd. Separator and overvoltage protection device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102126U (en) * 1990-01-31 1991-10-24
JPH05101285A (en) * 1991-10-08 1993-04-23 Nohmi Bosai Ltd Abnormal voltage protection circuit for fire alarm equipment
JPH09182286A (en) * 1995-12-28 1997-07-11 Matsushita Electric Works Ltd Noise absorber for power supply duct
JPH09233622A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Distribution panel with built-in lightening guard
JP2002027654A (en) * 2000-07-06 2002-01-25 Otowa Denki Kogyo Kk Automatic closing and interrupt device for breaker, and breaker operating mechanism
JP2002034109A (en) * 2000-07-12 2002-01-31 Yukio Ota Branch circuit system from single-phase three-wire main line
WO2002017458A1 (en) * 2000-08-22 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Ground fault interrupter
JP2002223523A (en) * 2000-11-27 2002-08-09 Otowa Denki Kogyo Kk Thunder-resistant element and thunder-resistant protective device
JP2004265645A (en) * 2003-02-28 2004-09-24 Kawamura Electric Inc Three-phase circuit breaker
JP2005216829A (en) * 2004-02-02 2005-08-11 Kawamura Electric Inc Earth leakage breaker of three-phase four-wire system
JP2006216270A (en) * 2005-02-01 2006-08-17 Kawamura Electric Inc Three-phase earth leakage breaker
JP2007116879A (en) * 2005-10-24 2007-05-10 Nitto Electric Works Ltd Surge protection device equipped with automatic making mechanism
WO2008010495A1 (en) * 2006-07-19 2008-01-24 Nikko Electric Mfg. Co., Ltd. Separator and overvoltage protection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473942A (en) * 2018-12-26 2019-03-15 南京紫峰电力设备有限公司 Belt discharge counts the fixed interval (FI) over-voltage protector uploaded with fault alarm function

Also Published As

Publication number Publication date
JP5215702B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US9054557B2 (en) Voltage balancing of symmetric HVDC monopole transmission lines after earth faults
US8018705B2 (en) Spark gap protection device
US20070086141A1 (en) Surge receptacle apparatus and power system including the same
RU2379202C2 (en) Dual service electric locomotive power circuit
US11217412B2 (en) Low-voltage circuit breaker device
US20160329686A1 (en) Design of a triggering circuit of overvoltage protection with an asymmetric element
US20160336749A1 (en) Power transmission network
KR101142280B1 (en) Lightning protection apparatus using tn-c type earthing
JP2009240029A (en) Lightning protection device and housing box
JP2007312466A (en) Thunder protection communication system
JP5215702B2 (en) Lightning protection device, distribution board with lightning protection function
KR101074663B1 (en) Two-way surge protective device
Woodworth Externally gapped line arresters a critical design review
Josephine et al. Performance of Surge Arrester Installation to Enhance Protection
CN112039031B (en) Differentiation processing and fault area isolation method for single-phase earth fault of power distribution network
JP2011078247A (en) Surge protection device
RU2523690C2 (en) Discharger for overvoltage protection and electric device with gas isolation
US10672581B2 (en) Type-II overvoltage protection device
KR100767620B1 (en) Surge protective device for power supply line
KR200422625Y1 (en) Surge Protector for Signal Railroad
JP2022501783A (en) Lightning arrester with external gap
JP2013178998A (en) Two-pole lightning protection tube for operation trigger and varistor for operation trigger
NO319911B1 (en) Transformer with protective device
JP3835940B2 (en) Lightning intrusion protection device in low voltage distribution system.
CN213151649U (en) Explosion-proof surge protector lightning protection unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Ref document number: 5215702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250