JP2009239287A - Method and apparatus for manufacturing radially oriented annular magnet - Google Patents

Method and apparatus for manufacturing radially oriented annular magnet Download PDF

Info

Publication number
JP2009239287A
JP2009239287A JP2009079619A JP2009079619A JP2009239287A JP 2009239287 A JP2009239287 A JP 2009239287A JP 2009079619 A JP2009079619 A JP 2009079619A JP 2009079619 A JP2009079619 A JP 2009079619A JP 2009239287 A JP2009239287 A JP 2009239287A
Authority
JP
Japan
Prior art keywords
magnetic field
annular
magnetic
outer pole
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009079619A
Other languages
Japanese (ja)
Inventor
Xijun Wu
ウー チジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Radimag Tech Co Ltd
Original Assignee
Shenzhen Radimag Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Radimag Tech Co Ltd filed Critical Shenzhen Radimag Tech Co Ltd
Publication of JP2009239287A publication Critical patent/JP2009239287A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/087Compacting only using high energy impulses, e.g. magnetic field impulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly orient magnetic powder in the process of manufacturing, and to provide relatively-large intensity of an oriented magnetic field for improving performance and uniformity of a radial ring. <P>SOLUTION: This invention provides a method and an apparatus for producing radially oriented annular magnet. In the method of producing a radially oriented ring magnet, magnetic powder is positioned into an annular mold, and the oriented magnetic field is used to orient the magnetic powder in the annular mold in the radial or diameter direction. During the producing process, the oriented magnetic field is distributed discretely 360° around the annular mold and is rotated relatively to the magnetic powder. The apparatus includes an annular mold cavity positioned in the oriented magnetic field, and an element for relatively rotating the oriented magnetic field and the annular cavity, wherein the oriented magnetic field is distributed discretely 360° around the annular cavity. Since magnitude of the magnetic field is same in 360°, the orientation of the magnetic powder becomes further complete, the orientation in various directions is further uniformized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ラジアル方向に配向された環状磁石を製造する方法及び装置に関し、特に環状磁石の半径又は直径に沿って配向された環状磁石を製造する方法及び装置に関する。   The present invention relates to a method and apparatus for manufacturing a radially oriented annular magnet, and more particularly to a method and apparatus for producing an annular magnet oriented along the radius or diameter of the annular magnet.

ラジアル方向に配向された環状磁石(ラジアル環又はラジアル方向に配向された環とも呼ばれる)は、電界に広く用いられている。ラジアル環の製造では、製造段階中に粉体をラジアル方向に配向することが技術的に最も困難である。   An annular magnet oriented in the radial direction (also called a radial ring or a ring oriented in the radial direction) is widely used for electric fields. In the production of radial rings, it is technically most difficult to orient the powder in the radial direction during the production stage.

現在、この業界では配向する方法が主に2つある。   Currently, there are two main methods of orientation in this industry.

第1の方法は、環を数個の部分に分けて、各部分を個別に磁界に導入することにより部分毎に配向する方法である。この方法の不利点は、配向が均一ではなく、ある部分はより高く、ある部分はより低いことである。均一ではない配向は、環状磁石の磁気特性全体に深刻な影響を及ぼすだけではなく、異なる配向レベルにより、焼結処理及び/又は加熱処理における異なる収縮量をももたらす。そのためラジアル環のクラッキング又は変形が引き起こされ、ラジアル環の性能が低下し、生産歩留まりが低下し、コストが増加することになる。   The first method is a method in which the ring is divided into several parts, and each part is individually introduced into a magnetic field to orient each part. The disadvantage of this method is that the orientation is not uniform, some parts are higher and some parts are lower. Non-uniform orientation not only seriously affects the overall magnetic properties of the ring magnet, but also results in different amounts of shrinkage in the sintering and / or heat treatment due to different orientation levels. As a result, cracking or deformation of the radial ring is caused, the performance of the radial ring is lowered, the production yield is lowered, and the cost is increased.

第2の方法は、スクイーズされた(squeezed)磁界を配向する方法である。この方法は、2個のコイルのターミナル間に同一極(N 極又はS 極)の磁界を生成するために2個のコイルの流向を調節し、次に、ラジアル環の型の内部キャビティに同一極の磁界をスクイーズし(squeeze )、磁気伝導性装置を通してラジアル磁界を形成する。不利点は、内径が小さいとき、配向された磁界強度は大部分が低減し、磁性粉の不十分な配向を引き起こす(第1の方法は同一の問題を有する)。加えて、ラジアル環の高さが高いとき、配向された磁界強度は低減し、均一性に同様の影響を及ぼす。このためラジアル環の性能及び均一性の要求に応えることができない。   The second method is to orient a squeezed magnetic field. This method adjusts the flow direction of the two coils to generate a magnetic field of the same pole (N or S pole) between the terminals of the two coils, and then is identical to the inner cavity of the radial ring mold The magnetic field of the pole is squeeze and a radial magnetic field is created through the magnetically conductive device. The disadvantage is that when the inner diameter is small, the oriented magnetic field strength is largely reduced, causing poor orientation of the magnetic powder (the first method has the same problem). In addition, when the radial ring height is high, the oriented magnetic field strength is reduced, which has a similar effect on uniformity. For this reason, the performance and uniformity requirements of the radial ring cannot be met.

米国特許出願公開第2004/194286号明細書US Patent Application Publication No. 2004/194286

本発明は、ラジアル方向に配向された環状磁石を製造する方法及び装置を提供する。本発明が解決した課題は、ラジアル環の性能及び均一性を向上させるために、製造処理中に磁性粉を均一に配向することであり、更に、環状磁石の内径が小さ過ぎる、又は環状磁石の高さが高過ぎる場合であっても、比較的大きな配向磁界強度を得ることである。   The present invention provides a method and apparatus for manufacturing a radially oriented annular magnet. The problem solved by the present invention is to uniformly orient the magnetic powder during the manufacturing process in order to improve the performance and uniformity of the radial ring, and the inner diameter of the annular magnet is too small, or Even when the height is too high, a relatively large orientation magnetic field strength is obtained.

本発明は、ラジアル方向に配向された環状磁石を製造する方法を提供する。該方法では、磁性粉を環状型に入れ、製造処理の間、配向磁界を用いて、配向磁界及び環状型内の磁性粉を相対的に回転することによって、磁性粉を半径又は直径方向に配向する。配向磁界は、環状型の周りの360 °に個別に分配される。   The present invention provides a method of manufacturing a radial magnet oriented in the radial direction. In this method, magnetic powder is placed in an annular mold, and the magnetic powder is oriented in a radial or diametric direction by relatively rotating the orientation magnetic field and the magnetic powder in the annular mold using an orientation magnetic field during the manufacturing process. To do. The orientation magnetic field is individually distributed 360 ° around the annular mold.

ラジアル方向に配向された環状磁石を製造する方法は、以下を有する。
(a) 磁性粉の体積を5 %乃至40%に減らすために、型キャビティ内の磁性粉に相対的に小さな圧力を印加するステップ
(b) 配向磁界を形成して、磁性粉が完全に磁化されるまで、型キャビティ内の磁性粉を配向磁界に対して回転するステップ
(c) 回転の間に、配向磁界の磁界強度を0 まで低減するステップ
(d) 磁性粉に、所定のレベルに達するまで更に大きな圧力を印加するステップ
(e) 消磁のために逆磁界を加えて、環状磁石を得るステップ
A method of manufacturing a radial magnet oriented in the radial direction includes:
(a) Applying a relatively small pressure to the magnetic powder in the mold cavity to reduce the volume of the magnetic powder to 5% to 40%.
(b) Rotating the magnetic powder in the mold cavity with respect to the orientation magnetic field until the orientation magnetic field is formed and the magnetic powder is completely magnetized
(c) reducing the magnetic field strength of the orientation magnetic field to zero during rotation
(d) A step of applying a larger pressure to the magnetic powder until a predetermined level is reached.
(e) Applying a reverse magnetic field for demagnetization to obtain an annular magnet

ラジアル方向に配向された環状磁石を製造するための装置は、配向磁界内に配置された環状型キャビティと、配向磁界及び環状型キャビティが相対的に回転するための要素とを備え、配向磁界は、環状型キャビティの周りの360 °に個別に分配される。   An apparatus for manufacturing a radially oriented annular magnet includes an annular cavity disposed within an orientation magnetic field, and an element for relative rotation of the orientation magnetic field and the annular cavity, wherein the orientation magnetic field is Distributed individually, 360 ° around the annular mold cavity.

本発明の配向磁界は、フレーク状の平行磁界又は平行磁界に近い磁界である。   The orientation magnetic field of the present invention is a flaky parallel magnetic field or a magnetic field close to a parallel magnetic field.

環状型キャビティの直径に沿った本発明の配向磁界の幅が、環状型キャビティの内径より狭い。   The width of the orientation magnetic field of the present invention along the diameter of the annular mold cavity is narrower than the inner diameter of the annular mold cavity.

環状型キャビティの直径に沿った本発明の配向磁界の幅が、環状型キャビティの内径の5分の1より狭い。   The width of the orientation magnetic field of the present invention along the diameter of the annular mold cavity is less than one fifth of the inner diameter of the annular mold cavity.

環状型キャビティの内側に、配向磁界を形成するための内側極が配置され、環状型キャビティの外側に、配向磁界を形成するための外側極が配置されている。磁気伝導性板が、内側極と磁気伝導性板との間に強磁界を形成するために外側極の内側に設けられている。   An inner pole for forming an orientation magnetic field is disposed inside the annular mold cavity, and an outer pole for forming an orientation magnetic field is disposed outside the annular mold cavity. A magnetic conductive plate is provided inside the outer pole to form a strong magnetic field between the inner pole and the magnetic conductive plate.

本発明は、2組以上の内側極及び磁気伝導性板を備える。   The present invention comprises two or more sets of inner poles and magnetic conductive plates.

本発明では、環状型キャビティ及び内側極は固定されており、外側極及び磁気伝導性板は回転駆動部と接続されているか、又は、外側極及び磁気伝導性板は固定されており、環状型キャビティ及び内側極は回転駆動部と接続されている。   In the present invention, the annular mold cavity and the inner pole are fixed, and the outer pole and the magnetic conductive plate are connected to the rotary drive unit, or the outer pole and the magnetic conductive plate are fixed, and the annular mold The cavity and the inner pole are connected to the rotation drive unit.

環状型キャビティの外側に、本発明の配向磁界を形成するための第1外側極及び第2外側極が互いに対向して配置されている。磁心が環状型キャビティの中心に設けられている。磁心は、磁心及び第1外側極間と、磁心及び第2外側極間とに夫々2つの強磁界を形成する。   A first outer pole and a second outer pole for forming the orientation magnetic field of the present invention are arranged opposite to each other outside the annular cavity. A magnetic core is provided at the center of the annular cavity. The magnetic core forms two strong magnetic fields between the magnetic core and the first outer pole and between the magnetic core and the second outer pole.

環状型キャビティ及び磁心は固定されており、第1外側極及び第2外側極は回転駆動部と接続されているか、又は、第1外側極及び第2外側極は固定されており、環状型キャビティ及び磁心は回転駆動部と接続されている。   The annular mold cavity and the magnetic core are fixed, and the first outer pole and the second outer pole are connected to the rotary drive unit, or the first outer pole and the second outer pole are fixed, and the annular mold cavity The magnetic core is connected to the rotation drive unit.

本発明では、第1外側極及び第2外側極は2対以上である。   In the present invention, the first outer pole and the second outer pole are two or more pairs.

本発明では、第1外側極及び第2外側極の数が奇数である。   In the present invention, the number of first outer poles and second outer poles is an odd number.

本発明では、従来の技術と比べて、製造処理の間、配向磁界と環状型キャビティ及び磁性粉とは相対的に回転し、配向磁界は環状磁石の周りの360 °に個別に分配される。磁界が360 °で同一磁界であるので、磁性粉の配向はより完全であり、様々な方向での配向は更に均一化される。本発明は、焼結ラジアル環状磁石、接着ラジアル環状磁石及び注入ラジアル環状磁石を製造する際に用いられ得る。   In the present invention, compared to the prior art, during the manufacturing process, the orientation magnetic field and the annular mold cavity and the magnetic powder rotate relatively, and the orientation magnetic field is distributed individually at 360 ° around the annular magnet. Since the magnetic field is 360 ° and the same magnetic field, the orientation of the magnetic powder is more complete and the orientation in various directions is made more uniform. The present invention can be used in manufacturing sintered radial annular magnets, bonded radial annular magnets and injection radial annular magnets.

本発明のこれら及び他の目的、特徴及び利点は、以下の詳述、添付図面及び添付されている特許請求の範囲から明らかになる。   These and other objects, features and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings and the appended claims.

内側極−外側極(1) の配向方法を示す本発明の一実施形態の斜視図である。It is a perspective view of one Embodiment of this invention which shows the orientation method of an inner side pole-outer side pole (1). 内側極−外側極(2) の配向方法を示す本発明の一実施形態の斜視図である。It is a perspective view of one Embodiment of this invention which shows the orientation method of an inner side pole-outer side pole (2). 外側極−外側極の配向方法を示す本発明の一実施形態の斜視図である。FIG. 3 is a perspective view of an embodiment of the present invention showing an outer pole-outer pole orientation method.

本発明のラジアル方向に配向された環状磁石を製造する方法では、選択された配向磁界が、円環状型キャビティの周りの360 °全てに分配されておらず、円環状型キャビティの一部に限定されている。円環状型キャビティの直径方向の幅は、円環状型キャビティの内径より狭く、最適な幅は、円環状型キャビティの内径の5分の1である。   In the method of manufacturing a radially oriented annular magnet of the present invention, the selected orientation magnetic field is not distributed all 360 ° around the annular cavity and is limited to a portion of the annular cavity. Has been. The diametric width of the annular cavity is narrower than the inner diameter of the annular cavity, and the optimum width is one fifth of the inner diameter of the annular cavity.

磁性粉の360 °の配向は、従来の方法である360 °又は略360 °のラジアル方向に配向された磁界を適用する代わりに、配向磁界に対して円環状型キャビティ及び円環状型キャビティ内の磁性粉を複数回連続して円環状型キャビティの中心回りを回転することにより実現される。配向磁界は、環状ラジアル磁界の代わりにフレーク状の平行磁界を用いるか、又はフレーク状の平行磁界に近い磁界を用いている。平行磁界は、よく開発された技術であり、実現し易く、強磁界を与えることが可能である。これに対して、環状磁界は強磁界を与えるのが困難である。本発明は、成熟した技術を用いて、成熟していない技術が達成すべき効果を達成している。   The 360 ° orientation of the magnetic powder can be achieved in the toroidal cavity and the toroidal cavity with respect to the orienting field, instead of applying a traditionally oriented magnetic field of 360 ° or approximately 360 ° in the radial direction. This is realized by rotating the magnetic powder around the center of the annular cavity continuously several times. As the orientation magnetic field, a flaky parallel magnetic field is used instead of the annular radial magnetic field, or a magnetic field close to the flaky parallel magnetic field is used. The parallel magnetic field is a well-developed technique, is easy to realize, and can provide a strong magnetic field. On the other hand, it is difficult to apply a strong magnetic field to the annular magnetic field. The present invention uses mature technology to achieve the effect that a non-mature technology should achieve.

本発明は、(1) 内側極−外側極の方法及び(2) 外側極−外側極の方法を実現するために2つの好ましい実施形態を有する。   The present invention has two preferred embodiments to implement (1) the inner pole-outer pole method and (2) the outer pole-outer pole method.

図1を参照すると、電磁石又は永久磁石によって生成された磁界の2つの極(N 及びS )を、磁気伝導性要素を通して内側極1 及び外側極5 に夫々導入した後に、強磁界6 が、内側極1 と外側極5 の内側の磁気伝導性板4 との間に形成される。円環状型キャビティ2 が磁性粉で満たされると、強磁界6 内の磁性粉は十分に磁化され配向される。   Referring to FIG. 1, after introducing two poles (N 1 and S 2) of a magnetic field generated by an electromagnet or permanent magnet into the inner pole 1 and the outer pole 5 respectively through the magnetic conductive element, the strong magnetic field 6 It is formed between the pole 1 and the magnetic conductive plate 4 inside the outer pole 5. When the annular cavity 2 is filled with magnetic powder, the magnetic powder in the strong magnetic field 6 is sufficiently magnetized and oriented.

第1の方法が用いられる場合、円環状非磁性型3 、円環状型キャビティ2 及び内側極1 は装置の台に固定され、相対的に静止状態である。外側極5 及び磁気伝導性板4 は、円環状非磁性型3 、円環状型キャビティ2 及び内側極1 の周りを回転するために回転駆動部と接続されている。   When the first method is used, the annular nonmagnetic mold 3, the annular cavity 2 and the inner pole 1 are fixed to the base of the apparatus and are relatively stationary. The outer pole 5 and the magnetic conductive plate 4 are connected to a rotary drive unit for rotating around the annular nonmagnetic mold 3, the annular cavity 2, and the inner pole 1.

第2の方法が用いられる場合、外側極5 及び磁気伝導性板4 は装置の台に固定され、相対的に静止状態である。円環状非磁性型3 、円環状型キャビティ2 及び内側極1 は、円環状型キャビティ2 内の磁性粉を全て磁化しラジアル方向に配向すべく円環状非磁性型3 の中心回りを回転するために回転駆動部と接続されている。   When the second method is used, the outer pole 5 and the magnetic conductive plate 4 are fixed to the apparatus base and are relatively stationary. The annular nonmagnetic mold 3, the annular cavity 2 and the inner pole 1 rotate around the center of the annular nonmagnetic mold 3 so as to magnetize and orient all the magnetic powder in the annular cavity 2 in the radial direction. Is connected to the rotation drive unit.

磁化及び配向と同時に、加圧成形の既存の方法を用いて徐々に増加する圧力を印加して、ラジアル環の本体の加圧成形を実現する。成形後、配向磁界6 に対して反対方向を有する逆磁界及び適切な磁界強度が、本体を消磁すべく内側極1 と外側極5 との間に導入される必要がある。その後、広く用いられている焼結処理及び/又は加熱処理を用いてラジアル環の本体が処理されて、半完成のラジアル環が得られる。仕上げ加工の後、ラジアル環が作製される。   Simultaneously with the magnetization and orientation, a gradually increasing pressure is applied using existing methods of pressure molding to achieve pressure molding of the body of the radial ring. After molding, a reverse magnetic field having a direction opposite to the orientation magnetic field 6 and an appropriate magnetic field strength need to be introduced between the inner pole 1 and the outer pole 5 to demagnetize the body. Thereafter, the main body of the radial ring is processed using a widely used sintering process and / or heat treatment to obtain a semi-finished radial ring. After finishing, a radial ring is created.

本実施形態では、本発明は、1組の外側極5 及び磁気伝導性板4 のみを用いている。2組以上を用いることは任意である。尚、内側極1 と外側極5 との間に導入された磁界は、永久磁界であってもよく、又は規則的に変更される(パルス磁界のような)磁界であってもよく、更に不規則的に変更される磁界であってもよい。   In the present embodiment, the present invention uses only one set of outer pole 5 and magnetic conductive plate 4. It is arbitrary to use two or more sets. The magnetic field introduced between the inner pole 1 and the outer pole 5 may be a permanent magnetic field or a magnetic field that is regularly changed (such as a pulsed magnetic field). The magnetic field may be changed regularly.

図2を参照すると、電磁石又は永久磁石によって生成された磁界の2つの極(N 及びS )を、磁気伝導性要素を通して内側極1 及び外側極5 に夫々導入した後、強磁界6 が、内側極1 と外側極5 の内側の磁気伝導性板4 との間に形成される。円環状型キャビティ2 が磁性粉で満たされると、磁界6 内の磁性粉は十分に磁化され配向される。   Referring to FIG. 2, after introducing two poles (N 1 and S 2) of a magnetic field generated by an electromagnet or permanent magnet into the inner pole 1 and the outer pole 5 respectively through the magnetic conductive element, the strong magnetic field 6 It is formed between the pole 1 and the magnetic conductive plate 4 inside the outer pole 5. When the annular cavity 2 is filled with magnetic powder, the magnetic powder in the magnetic field 6 is sufficiently magnetized and oriented.

第1の方法が用いられる場合、円環状非磁性型3 、円環状型キャビティ2 及び内側極1 は、装置の台に固定され、相対的に静止状態である。磁気伝導性板4 は外側極5 に固定され、外側極5 は、円環状非磁性型3 の中心回りを高速で回転すべくモータによって駆動される。   When the first method is used, the annular nonmagnetic mold 3, the annular cavity 2 and the inner pole 1 are fixed to the base of the apparatus and are relatively stationary. The magnetic conductive plate 4 is fixed to the outer pole 5, and the outer pole 5 is driven by a motor to rotate around the center of the annular nonmagnetic mold 3 at high speed.

第2の方法が用いられる場合、外側極5 及び磁気伝導性板4 は装置の台に固定され、相対的に静止状態である。円環状非磁性型3 、円環状型キャビティ2 及び内側極1 は、円環状型キャビティ2 内の磁性粉を全て磁化してラジアル方向に配向すべく円環状非磁性型3 の中心回りを回転するために回転駆動部と接続されている。   When the second method is used, the outer pole 5 and the magnetic conductive plate 4 are fixed to the apparatus base and are relatively stationary. The annular nonmagnetic mold 3, the annular cavity 2 and the inner pole 1 rotate around the center of the annular nonmagnetic mold 3 so as to magnetize and orient all the magnetic powder in the annular cavity 2 in the radial direction. For this purpose, it is connected to a rotation drive unit.

磁化及び配向と同時に、加圧成形の既存の方法を用いて徐々に増加する圧力を印加して、ラジアル環の本体の加圧成形を実現する。成形後、配向磁界6 に対して反対方向を有する逆磁界及び適切な磁界強度が、本体を消磁すべく内側極1 と外側極5 との間に導入される必要がある。その後、広く用いられている焼結処理及び/又は加熱処理を用いてラジアル環の本体が処理されて、半完成のラジアル環が得られる。仕上げ加工の後、ラジアル環が作製される。   Simultaneously with the magnetization and orientation, a gradually increasing pressure is applied using existing methods of pressure molding to achieve pressure molding of the body of the radial ring. After molding, a reverse magnetic field having a direction opposite to the orientation magnetic field 6 and an appropriate magnetic field strength need to be introduced between the inner pole 1 and the outer pole 5 to demagnetize the body. Thereafter, the main body of the radial ring is processed using a widely used sintering process and / or heat treatment to obtain a semi-finished radial ring. After finishing, a radial ring is created.

本実施形態では、本発明は1つの磁気伝導性板4 のみを用いている。2つ以上の磁気伝導性板4 を用いることは任意である。加えて、内側極1 と外側極5 との間に導入される磁界は、永久磁界であってもよく、又は規則的に変更される(パルス磁界のような)磁界であってもよく、更に不規則的に変更される磁界であってもよい。   In the present embodiment, the present invention uses only one magnetic conductive plate 4. The use of two or more magnetic conductive plates 4 is optional. In addition, the magnetic field introduced between the inner pole 1 and the outer pole 5 may be a permanent magnetic field or a magnetic field that is regularly changed (such as a pulsed magnetic field), and The magnetic field may be changed irregularly.

図3を参照すると、電磁石又は永久磁石によって生成された磁界の2つの極(N 及びS )を、磁気伝導性要素を通して第1外側極7 及び第2外側極8 に夫々導入した後に、2つの強磁界6 が、磁気伝導性磁心9 及び第1外側極7 間と、磁気伝導性磁心9 及び第2外側極8 間とに形成される。円環状型キャビティ2 が磁性粉で満たされると、強磁界6 内の磁性粉は十分に磁化され配向される。   Referring to FIG. 3, two poles (N 1 and S 2) of a magnetic field generated by an electromagnet or permanent magnet are introduced into a first outer pole 7 and a second outer pole 8 respectively through a magnetic conductive element, and then two A strong magnetic field 6 is formed between the magnetic conductive core 9 and the first outer pole 7 and between the magnetic conductive core 9 and the second outer pole 8. When the annular cavity 2 is filled with magnetic powder, the magnetic powder in the strong magnetic field 6 is sufficiently magnetized and oriented.

第1の方法が用いられる場合、円環状非磁性型3 、円環状型キャビティ2 及び磁気伝導性磁心9 は、装置の台に固定され、相対的に静止状態である。第1外側極7 及び第2外側極8 は、円環状非磁性型3 、円環状型キャビティ2 及び磁気伝導性磁心9 の周りで回転するために回転駆動部と接続されている。   When the first method is used, the annular nonmagnetic mold 3, the annular cavity 2 and the magnetic conductive core 9 are fixed to the base of the apparatus and are relatively stationary. The first outer pole 7 and the second outer pole 8 are connected to a rotary drive unit for rotating around the annular nonmagnetic mold 3, the annular cavity 2, and the magnetic conductive core 9.

第2の方法が用いられる場合、第1外側極7 及び第2外側極8 は、装置の台に固定され、相対的に静止状態である。円環状非磁性型3 、円環状型キャビティ2 及び磁気伝導性磁心9 は、円環状型キャビティ2 内の磁性粉を全て磁化してラジアル方向に配向すべく円環状非磁性型3 の中心回りを回転するために回転駆動部と接続されている。   When the second method is used, the first outer pole 7 and the second outer pole 8 are fixed to the apparatus base and are relatively stationary. The annular nonmagnetic mold 3, the annular cavity 2, and the magnetic conductive core 9 are arranged around the center of the annular nonmagnetic mold 3 so as to magnetize all the magnetic powder in the annular cavity 2 and to orient it in the radial direction. In order to rotate, it is connected to a rotation drive unit.

磁化及び配向と同時に、加圧成形の既存の方法を用いて徐々に増加する圧力を印加して、ラジアル環の本体の加圧成形を実現する。その後、広く用いられている焼結処理及び/又は加熱処理を用いてラジアル環の本体が処理されて、半完成のラジアル環が得られる。仕上げ加工の後、ラジアル環が作製される。   Simultaneously with the magnetization and orientation, a gradually increasing pressure is applied using existing methods of pressure molding to achieve pressure molding of the body of the radial ring. Thereafter, the main body of the radial ring is processed using a widely used sintering process and / or heat treatment to obtain a semi-finished radial ring. After finishing, a radial ring is created.

本実施形態では、本発明は1対の外側極(第1外側極7 及び第2外側極8 )のみを用いている。2対以上の外側極、又は奇数の外側極、例えば1つのN 極及び2つのS 極の3つの外側極を用いることは任意である。第1外側極7 と第2外側極8 との間に導入された磁界は、永久磁界であってもよく、又は規則的に変更される(パルス磁界のような)磁界であってもよく、更に不規則的に変更される磁界であってもよい。   In this embodiment, the present invention uses only a pair of outer poles (first outer pole 7 and second outer pole 8). It is optional to use two or more pairs of outer poles, or an odd number of outer poles, for example three outer poles, one N pole and two S poles. The magnetic field introduced between the first outer pole 7 and the second outer pole 8 may be a permanent magnetic field or a magnetic field (such as a pulsed magnetic field) that is regularly changed, Further, the magnetic field may be changed irregularly.

実施形態1乃至3では、本発明は、圧力によってラジアル環の本体を製造するために、回転と同時に圧力を印加する方法を用いている。代わりに、ラジアル環の本体は以下を用いても製造され得る。
(a) 磁性粉の体積を5 %乃至40%に減らすために、円環状型のキャビティ内の磁性粉に相対的に小さな圧力を印加するステップ、磁性粉が円環状型のキャビティ内で明らかに滑動はしないが、それでも磁界内で回転することができるとき、磁性粉の密度は適切である
(b) 配向磁界を形成して、磁性粉が完全に磁化されるまで、円環状型キャビティ内の磁性粉を複数回配向磁界に対して回転するステップ
(c) 回転の間に、配向磁界の磁界強度を0 まで低減するステップ
(d) 磁性粉に、所定のレベルに達するまで更に大きな圧力を印加するステップ
(e) 消磁のために逆磁界をラジアル環の本体に加えて、ラジアル環の本体を得るステップ
In the first to third embodiments, the present invention uses a method of applying pressure simultaneously with rotation in order to produce a main body of a radial ring by pressure. Alternatively, the body of the radial ring can also be made using:
(a) A step of applying a relatively small pressure to the magnetic powder in the annular cavity to reduce the volume of the magnetic powder to 5% to 40%, the magnetic powder is clearly in the annular cavity. The density of the magnetic powder is adequate when it does not slide but can still rotate in a magnetic field
(b) Rotating the magnetic powder in the annular cavity with respect to the orientation magnetic field a plurality of times until the orientation magnetic field is formed and the magnetic powder is completely magnetized
(c) reducing the magnetic field strength of the orientation magnetic field to zero during rotation
(d) A step of applying a larger pressure to the magnetic powder until a predetermined level is reached.
(e) Applying a reverse magnetic field to the radial ring body for demagnetization to obtain a radial ring body

本発明の方法及び装置は、焼結ラジアル環状磁石、接着ラジアル環状磁石及び注入ラジアル環状磁石を製造する際に用いられ得る。   The method and apparatus of the present invention can be used in making sintered radial annular magnets, bonded radial annular magnets, and injected radial annular magnets.

当業者は、図面に示されて上述された本発明の実施形態が単なる典型例に過ぎず、本発明を制限することを意図していないと理解する。   Those skilled in the art will appreciate that the embodiments of the invention shown in the drawings and described above are merely exemplary and are not intended to limit the invention.

従って、本発明の目的が完全且つ有効に達成されたことが理解される。本実施形態は、本発明の機能的原理及び構造的原理を示す目的のために示され、記述されており、このような原理から逸脱することなく変更される。従って、本発明は、以下の特許請求の範囲の意図及び範囲内に包含される全ての修正を含んでいる。   Accordingly, it can be seen that the objects of the invention have been fully and effectively achieved. This embodiment has been shown and described for the purpose of illustrating the functional and structural principles of the invention and can be modified without departing from such principles. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the following claims.

1 内側極(磁気伝導性材料の硬度が大きい場合、型のコアとしても機能可能である)
2 円環状型キャビティ
3 円環状非磁性型
4 磁気伝導性板
5 外側極
6 磁界
7 第1外側極
8 第2外側極
9 磁気伝導性磁心(磁気伝導性材料の硬度が大きい場合、型のコアとしても機能可能である)
1 Inner pole (when the magnetically conductive material has high hardness, it can function as a mold core)
2 annular cavity 3 annular nonmagnetic mold 4 magnetic conductive plate 5 outer pole 6 magnetic field 7 first outer pole 8 second outer pole 9 magnetic conductive core (when the hardness of the magnetic conductive material is large, the core of the mold Can also function as)

Claims (13)

ラジアル方向に配向された環状磁石を製造する方法において、
(a) 磁性粉を環状型キャビティ内に入れるステップ
(b) 前記環状型キャビティの直径方向に配向された磁界及び前記環状型キャビティ内の前記磁性粉を相対的に回転することによって、前記磁性粉をラジアル方向に配向するステップ
を有することを特徴とする方法。
In a method of manufacturing a circular magnet oriented in a radial direction,
(a) Step of putting magnetic powder into the annular cavity
(b) having a step of orienting the magnetic powder in a radial direction by relatively rotating the magnetic powder oriented in the diameter direction of the annular mold cavity and the magnetic powder in the annular mold cavity; how to.
ラジアル方向に配向された環状磁石を製造する方法において、
(a) 磁性粉の体積を5 %乃至40%に減らすために、型キャビティ内の前記磁性粉に相対的に小さな圧力を印加するステップ
(b) 配向磁界を形成して、前記磁性粉が磁化されるまで、前記型キャビティ内の前記磁性粉を前記配向磁界に対して回転するステップ
(c) 回転の間に、前記配向磁界の磁界強度を0 まで低減するステップ
(d) 前記磁性粉に、所定のレベルに達するまで更に大きな圧力を印加するステップ
(e) 消磁のために逆磁界を加えて、前記環状磁石を得るステップ
を有していることを特徴とする方法。
In a method of manufacturing a circular magnet oriented in a radial direction,
(a) applying a relatively small pressure to the magnetic powder in the mold cavity to reduce the volume of the magnetic powder to 5% to 40%;
(b) Rotating the magnetic powder in the mold cavity with respect to the orientation magnetic field until an orientation magnetic field is formed and the magnetic powder is magnetized
(c) reducing the magnetic field strength of the orientation magnetic field to 0 during rotation;
(d) applying a larger pressure to the magnetic powder until a predetermined level is reached.
(e) Applying a reverse magnetic field for demagnetization to obtain the annular magnet.
ラジアル方向に配向された環状磁石を製造するための装置において、
配向磁界内に配置された環状型キャビティを備え、
前記配向磁界及び前記環状型キャビティが相対的に回転するように構成されていることを特徴とする装置。
In an apparatus for producing an annular magnet oriented in the radial direction,
Comprising an annular cavity disposed in an orienting magnetic field,
An apparatus wherein the orientation magnetic field and the annular cavity are configured to rotate relative to each other.
前記配向磁界は、フレーク状の平行磁界又は平行磁界に近い磁界であることを特徴とする請求項3に記載の装置。   The apparatus according to claim 3, wherein the orientation magnetic field is a flaky parallel magnetic field or a magnetic field close to a parallel magnetic field. 前記配向磁界の直径方向の幅が、前記環状型キャビティの内径より狭いことを特徴とする請求項4に記載の装置。   The apparatus according to claim 4, wherein a width of the orientation magnetic field in a diameter direction is narrower than an inner diameter of the annular mold cavity. 前記配向磁界の直径方向の幅は、前記環状型キャビティの内径の5分の1より狭いことを特徴とする請求項5に記載の装置。   6. The apparatus of claim 5, wherein the diametric width of the orientation magnetic field is less than one fifth of the inner diameter of the annular cavity. 前記環状型キャビティの内側に、前記配向磁界を形成するための内側極が配置され、前記環状型キャビティの外側に、前記配向磁界を形成するための外側極が配置されており、
前記装置は、前記外側極の内側に設けられた磁気伝導性板を更に備え、
前記内側極及び前記磁気伝導性板間に磁界が形成されていることを特徴とする請求項6に記載の装置。
An inner pole for forming the orientation magnetic field is disposed inside the annular mold cavity, and an outer pole for forming the orientation magnetic field is disposed outside the annular mold cavity,
The apparatus further comprises a magnetic conductive plate provided inside the outer pole,
The apparatus of claim 6, wherein a magnetic field is formed between the inner pole and the magnetic conductive plate.
2組以上の内側極及び磁気伝導性板を備えることを特徴とする請求項7に記載の装置。   8. The apparatus of claim 7, comprising two or more sets of inner poles and a magnetic conductive plate. 前記環状型キャビティ及び前記内側極は固定されており、前記外側極及び前記磁気伝導性板は回転駆動部と接続されているか、又は、前記外側極及び前記磁気伝導性板は固定されており、前記環状型キャビティ及び前記内側極は前記回転駆動部と接続されていることを特徴とする請求項8に記載の装置。   The annular mold cavity and the inner pole are fixed, and the outer pole and the magnetic conductive plate are connected to a rotation driving unit, or the outer pole and the magnetic conductive plate are fixed, 9. The apparatus of claim 8, wherein the annular mold cavity and the inner pole are connected to the rotational drive. 前記環状型キャビティの外側に、前記配向磁界を形成するための第1外側極及び第2外側極が互いに対向して配置されており、
前記環状型キャビティは、該環状型キャビティの中心に設けられた磁心を更に含み、
前記磁心及び前記第1外側極間と、前記磁心及び前記第2外側極間とに夫々2つの磁界が形成されていることを特徴とする請求項6に記載の装置。
A first outer pole and a second outer pole for forming the orientation magnetic field are disposed opposite to each other outside the annular mold cavity,
The annular mold cavity further includes a magnetic core provided at the center of the annular mold cavity,
The apparatus according to claim 6, wherein two magnetic fields are formed between the magnetic core and the first outer pole and between the magnetic core and the second outer pole, respectively.
前記環状型キャビティ及び前記磁心は固定されており、前記第1外側極及び前記第2外側極は回転駆動部と接続されているか、又は、前記第1外側極及び前記第2外側極は固定されており、前記環状型キャビティ及び前記磁心は前記回転駆動部と接続されていることを特徴とする請求項10に記載の装置。   The annular cavity and the magnetic core are fixed, and the first outer pole and the second outer pole are connected to a rotation driving unit, or the first outer pole and the second outer pole are fixed. The apparatus according to claim 10, wherein the annular mold cavity and the magnetic core are connected to the rotary drive unit. 前記第1外側極及び前記第2外側極は2対以上であることを特徴とする請求項11に記載の装置。   The apparatus of claim 11, wherein the first outer pole and the second outer pole are two or more pairs. 前記第1外側極及び前記第2外側極の数が奇数であることを特徴とする請求項11に記載の装置。   The apparatus of claim 11, wherein the number of the first outer pole and the second outer pole is an odd number.
JP2009079619A 2008-03-27 2009-03-27 Method and apparatus for manufacturing radially oriented annular magnet Pending JP2009239287A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100662694A CN101256898B (en) 2008-03-27 2008-03-27 Method and apparatus for forming of radiation orientating round ring-shaped magnetic body

Publications (1)

Publication Number Publication Date
JP2009239287A true JP2009239287A (en) 2009-10-15

Family

ID=39891593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079619A Pending JP2009239287A (en) 2008-03-27 2009-03-27 Method and apparatus for manufacturing radially oriented annular magnet

Country Status (3)

Country Link
US (1) US20090246063A1 (en)
JP (1) JP2009239287A (en)
CN (1) CN101256898B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719417B (en) * 2009-10-19 2012-10-03 金浦威恩磁业(上海)有限公司 Radial orienting method and device of ring-shaped anisotropic magnet
CN102456463B (en) * 2010-10-20 2016-08-10 北京中科三环高技术股份有限公司 A kind of method preparing multipole orientation annular magnetic and the device of enforcement the method
CN102360914B (en) * 2011-08-10 2013-06-05 周大鹏 Method for manufacturing annular magnet with radial magnetic orientation
CN102360697B (en) * 2011-08-10 2013-05-29 周大鹏 Annular magnet with radial magnetic orientation
CN102360915B (en) * 2011-08-10 2013-03-13 周大鹏 Equipment for manufacturing magnet with radialized magnetic aligning
CN103310970B (en) * 2012-03-09 2016-01-06 江苏东瑞磁材科技有限公司 The preparation method of permanent-magnetic ring of radial orientation and radial orientation device thereof
CN102543353A (en) * 2012-03-09 2012-07-04 上海平野磁气有限公司 Method and device for manufacturing magnetic radiation ring
CN103123863B (en) * 2013-02-26 2016-06-01 江苏东瑞磁材科技有限公司 The preparation facilities of a kind of permanent-magnetic ring of radial orientation
CN103123864B (en) * 2013-02-26 2016-01-06 江苏东瑞磁材科技有限公司 A kind of method and manufacturing installation thereof preparing radial permanent magnetic ring
CN104715916B (en) * 2013-12-11 2018-01-12 北京中科三环高技术股份有限公司 A kind of radially oriented magnetic ring former and method
CN104347261A (en) * 2014-10-10 2015-02-11 宁波金鸡强磁股份有限公司 Orientation device and orientation method for radiation ring magnet
CN104505205B (en) * 2014-11-21 2017-02-22 宁波金鸡强磁股份有限公司 Rare earth permanent magnetic material molding equipment and molding method
CN106373693A (en) * 2016-11-15 2017-02-01 彭晓领 Method for preparing complete orientation soft magnetic composite material
CN106971838A (en) * 2017-04-28 2017-07-21 董永安 A kind of method and device of radially oriented annulus
CN108922763B (en) * 2018-06-08 2021-01-05 深圳市瑞达美磁业有限公司 Method for improving magnetic property of sintered magnet and magnet prepared by method
CN108962524B (en) * 2018-06-08 2020-11-17 深圳市瑞达美磁业有限公司 Composition for sintering oriented magnet permeation treatment, application and method
CN108922764B (en) * 2018-06-08 2021-06-04 深圳市瑞达美磁业有限公司 Processing method of radiation orientation sintering magnetic ring
CN108962578B (en) * 2018-06-08 2020-10-09 深圳市瑞达美磁业有限公司 Method for repairing internal defects of sintered oriented magnet and repaired magnet
CN109435017A (en) * 2018-11-27 2019-03-08 闫溪 A kind of permanent-magnet ferrite hydraulic press magnetic field optimization structure
CN113579230B (en) * 2021-06-29 2023-12-22 台州市铭冠机械有限公司 Double-layer magnetic powder uniform filling and pre-pressing integrated device
CN113977856B (en) * 2021-10-22 2024-01-05 杭州千石科技有限公司 Electromagnetic field radiation orientation device of annular injection molding magnet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147819A (en) * 1987-12-03 1989-06-09 Hitachi Metals Ltd Method and device for molding anisotropic ring-shaped permanent magnet
JPH0339415A (en) * 1989-07-06 1991-02-20 Mitsubishi Materials Corp Heat treatment method in magnetic field giving ring-like magnet alloy radial magnetic anisotropy
JPH07211567A (en) * 1994-01-11 1995-08-11 Mitsubishi Materials Corp Method of molding cylindrical radial anisotropic bonded magnet
JP2002030304A (en) * 2000-07-11 2002-01-31 Yoshihiro Okuda Method and apparatus for forming radial magnetic field
JP2004111944A (en) * 2002-08-29 2004-04-08 Shin Etsu Chem Co Ltd Radial anisotropic ring magnet and manufacturing method of the same
WO2005124800A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
WO2005124796A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2006019386A (en) * 2004-06-30 2006-01-19 Tdk Corp Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
JP2006019385A (en) * 2004-06-30 2006-01-19 Tdk Corp Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, compacting apparatus in magnetic field, and radial anisotropic ring magnet
WO2007069454A1 (en) * 2005-12-13 2007-06-21 Shin-Etsu Chemical Co., Ltd. Process for producing radially anisotropic magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI298892B (en) * 2002-08-29 2008-07-11 Shinetsu Chemical Co Radial anisotropic ring magnet and method of manufacturing the ring magnet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147819A (en) * 1987-12-03 1989-06-09 Hitachi Metals Ltd Method and device for molding anisotropic ring-shaped permanent magnet
JPH0339415A (en) * 1989-07-06 1991-02-20 Mitsubishi Materials Corp Heat treatment method in magnetic field giving ring-like magnet alloy radial magnetic anisotropy
JPH07211567A (en) * 1994-01-11 1995-08-11 Mitsubishi Materials Corp Method of molding cylindrical radial anisotropic bonded magnet
JP2002030304A (en) * 2000-07-11 2002-01-31 Yoshihiro Okuda Method and apparatus for forming radial magnetic field
JP2004111944A (en) * 2002-08-29 2004-04-08 Shin Etsu Chem Co Ltd Radial anisotropic ring magnet and manufacturing method of the same
WO2005124800A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
WO2005124796A1 (en) * 2004-06-22 2005-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2006019386A (en) * 2004-06-30 2006-01-19 Tdk Corp Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
JP2006019385A (en) * 2004-06-30 2006-01-19 Tdk Corp Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, compacting apparatus in magnetic field, and radial anisotropic ring magnet
WO2007069454A1 (en) * 2005-12-13 2007-06-21 Shin-Etsu Chemical Co., Ltd. Process for producing radially anisotropic magnet

Also Published As

Publication number Publication date
US20090246063A1 (en) 2009-10-01
CN101256898B (en) 2011-06-29
CN101256898A (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP2009239287A (en) Method and apparatus for manufacturing radially oriented annular magnet
CN101162646B (en) Forming method of annular magnetic body orientating along the direction of radius or diameter radiation
JPS61112310A (en) Manufacture of permanent magnet
CN106252023B (en) A kind of multi-pole magnet-ring orientation and the fixture and method that magnetize
CN1784819A (en) Thin hybrid magnetization type ring magnet,yoke-equipped thin hybrid magnetization type ring magnet,and brush-less motor
WO2005124800A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
CN103310970A (en) Preparation method of radial orienting permanent magnetic ring and radial orienting device used by same
EP2312728A2 (en) Rotor for electromotor using permanent magnets
CN102909643A (en) Small-diameter permanent-magnetic spherical polishing head with uniform distribution of magnetic field and design method for optimizing structural parameters of same
JPWO2012090841A1 (en) Arc-shaped magnet having polar anisotropic orientation, method for manufacturing the same, and mold for manufacturing the same
JP4735716B2 (en) Permanent magnet rotor and motor using the same
JP4029679B2 (en) Bond magnet for motor and motor
JP2009111418A (en) Die, molding machine and method used for manufacturing anisotropic magnet, and magnet manufactured thereby
JP2017507046A (en) Injection mold for manufacturing permanent magnets
US20200395829A1 (en) Method for producing radially anisotropic multipolar solid magnet adapted to different waveform widths
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JP2007035786A (en) Radial orientation magnetic field forming apparatus
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
US11251686B2 (en) Radially oriented solid cylindrical magnet and production method and device thereof
CN1771650A (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
CN205609346U (en) Magnetism base manufacture equipment
JP2008172977A (en) Cylindrical-magnet manufacturing method and cylindrical-magnet manufacturing device
JPS58219705A (en) Anisotropic ring polymer magnet and apparatus for manufacturing the same
JP2013123318A (en) Ring magnet, method of manufacturing ring magnet, and motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120427