JP2009239224A - Multilayer wiring board - Google Patents

Multilayer wiring board Download PDF

Info

Publication number
JP2009239224A
JP2009239224A JP2008086886A JP2008086886A JP2009239224A JP 2009239224 A JP2009239224 A JP 2009239224A JP 2008086886 A JP2008086886 A JP 2008086886A JP 2008086886 A JP2008086886 A JP 2008086886A JP 2009239224 A JP2009239224 A JP 2009239224A
Authority
JP
Japan
Prior art keywords
reinforcing plate
wiring board
diameter
multilayer wiring
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086886A
Other languages
Japanese (ja)
Other versions
JP5179920B2 (en
Inventor
Toshiya Asano
俊哉 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008086886A priority Critical patent/JP5179920B2/en
Publication of JP2009239224A publication Critical patent/JP2009239224A/en
Application granted granted Critical
Publication of JP5179920B2 publication Critical patent/JP5179920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board that is sufficiently enhanced in substrate strength and reduces a region where mismatching of a coefficient of thermal expansion is caused. <P>SOLUTION: A plurality of terminal pads 27 for mounting an IC chip 31 are provided on a principal surface 12 of a coreless wiring board 10, and a plurality of pads 41 for a BGA for electric connection with an external substrate are provided on the reverse surface 13. The coreless wiring board 10 has solder resist 42 formed covering the reverse surface 13, and a resin-made reinforcing plate 50 is fixed to the solder resist 42 in surface contact across an adhesive layer 51. The reinforcing plate 50 has an openings 52 formed at positions corresponding to the pads 41 for the BGA. The openings 52 decrease in diameter from the non-adhesion surface side to the adhesion surface side of the reinforcing plate 50. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コア基板を有さず、導体層及び絶縁層を交互に積層して多層化した構造を有する多層配線基板に関するものである。   The present invention relates to a multilayer wiring board having a structure in which a core board is not provided and conductor layers and insulating layers are alternately laminated to form a multilayer structure.

コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。一般的にICチップの底面には多数の端子が密集してアレイ状に配置されており、このような端子群はマザーボード側の端子群に対してフリップチップの形態で接続される。ただし、ICチップ側の端子群とマザーボード側の端子群とでは端子間ピッチに大きな差があることから、ICチップをマザーボード上に直接的に接続することは困難である。そのため、通常はICチップをICチップ搭載用配線基板上に搭載してなるパッケージを作製し、そのパッケージをマザーボード上に搭載するという手法が採用される。   In recent years, semiconductor integrated circuit elements (IC chips) used as computer microprocessors and the like have become increasingly faster and more functional, with an accompanying increase in the number of terminals and a tendency to narrow the pitch between terminals. . In general, a large number of terminals are densely arranged on the bottom surface of an IC chip, and such a terminal group is connected to a terminal group on the motherboard side in the form of a flip chip. However, it is difficult to connect the IC chip directly on the mother board because there is a large difference in the pitch between the terminals on the IC chip side terminal group and the mother board side terminal group. For this reason, a method is generally employed in which a package is prepared by mounting an IC chip on an IC chip mounting wiring board, and the package is mounted on a motherboard.

この種のパッケージを構成するICチップ搭載用配線基板としては、コア基板の表面及び裏面にビルドアップ層を形成した多層配線基板が実用化されている。この多層配線基板において、コア基板は、例えば、補強繊維に樹脂を含浸させた樹脂基板(ガラスエポキシ基板など)が用いられている。そして、そのコア基板の剛性を利用して、コア基板の表面及び裏面に層間絶縁層と導体層とを交互に積層することにより、ビルドアップ層が形成されている。つまり、この多層配線基板において、コア基板は、補強の役割を果たしており、ビルドアップ層と比べて非常に厚く形成されている。また、コア基板には、表面及び裏面に形成されたビルドアップ層間の導通を図るための配線(具体的には、スルーホール導体など)が貫通形成されている。   As an IC chip mounting wiring board constituting this type of package, a multilayer wiring board in which build-up layers are formed on the front surface and the back surface of a core substrate has been put into practical use. In this multilayer wiring board, for example, a resin substrate (a glass epoxy substrate or the like) in which a reinforcing fiber is impregnated with a resin is used as the core substrate. Then, by utilizing the rigidity of the core substrate, an interlayer insulating layer and a conductor layer are alternately stacked on the front surface and the back surface of the core substrate to form a buildup layer. That is, in this multilayer wiring board, the core board plays a role of reinforcement and is formed much thicker than the build-up layer. In addition, wiring (specifically, a through-hole conductor or the like) is formed through the core substrate for conduction between buildup layers formed on the front surface and the back surface.

ところで、近年では、半導体集積回路素子の高速化に伴い、使用される信号周波数が高周波帯域となってきている。この場合、コア基板を貫通する配線が大きなインダクタンスとして寄与し、高周波信号の伝送ロスや回路誤動作の発生につながり、高速化の妨げとなってしまう。この問題を解決するため、ICチップ搭載用配線基板として、コア基板を有さないコアレス配線基板が提案されている(例えば、特許文献1参照)。このコアレス配線基板は、比較的に厚いコア基板を省略することにより全体の配線長が短くなるため、高周波信号の伝送ロスが低減され、半導体集積回路素子を高速で動作させることが可能となる。   By the way, in recent years, with the increase in the speed of semiconductor integrated circuit elements, the signal frequency used has become a high frequency band. In this case, the wiring penetrating the core substrate contributes as a large inductance, leading to transmission loss of high-frequency signals and circuit malfunction, which hinders speeding up. In order to solve this problem, a coreless wiring board having no core board has been proposed as an IC chip mounting wiring board (see, for example, Patent Document 1). In this coreless wiring board, since the entire wiring length is shortened by omitting a relatively thick core board, the transmission loss of high-frequency signals is reduced, and the semiconductor integrated circuit element can be operated at high speed.

上記コアレス配線基板は、コア基板を省略して製造されているため、その強度を十分に確保することができない。このため、ICチップを搭載する素子搭載面に枠体を接合して補強することにより、コアレス配線基板の強度が確保されている。この枠体は、ICチップを囲むように基板の外縁部に設けられている。また、特許文献1では、素子搭載面の反対側となる裏面側に、絶縁処理を施した金属板を接着固定し、前記枠体と金属板とでコアレス配線基板を挟み込むことにより、配線基板の強度を確保して配線基板の反りを防止するための技術が開示されている。このコアレス配線基板において、裏面側に設けられる補強用の金属板には、外部接続端子用パッドを露出させるための貫通孔が複数形成されている。
特許第3664720号公報
Since the coreless wiring substrate is manufactured by omitting the core substrate, the strength cannot be sufficiently ensured. For this reason, the strength of the coreless wiring board is secured by joining and reinforcing the frame on the element mounting surface on which the IC chip is mounted. The frame is provided on the outer edge of the substrate so as to surround the IC chip. Moreover, in patent document 1, the metal plate which performed the insulation process is adhere | attached and fixed to the back surface side opposite to the element mounting surface, and the coreless wiring substrate is sandwiched between the frame and the metal plate, thereby A technique for ensuring strength and preventing warping of a wiring board is disclosed. In this coreless wiring substrate, a plurality of through holes for exposing the external connection terminal pads are formed in the reinforcing metal plate provided on the back side.
Japanese Patent No. 3664720

上記コアレス配線基板のパッケージ形態が、例えば、ボールグリッドアレイ(BGA)である場合、図16に示されるように、コアレス配線基板80の裏面にBGA用パッド81が設けられ、そのBGA用パッド81上にはんだバンプ82が設けられる。そして、コアレス配線基板80の裏面には、接着剤層84を介して面接触状態で金属製の補強板85が固定される。この場合、補強板85には、はんだバンプ82よりも大きな直径を有する貫通孔86を形成する必要がある。このコアレス配線基板80において、補強板85には径が大きな貫通孔87が複数形成されるため、補強板85の接着面積を十分に確保することができず、配線基板80の剛性が不足してしまう。また、コアレス配線基板80の裏面において、補強板85の貫通孔87が形成される箇所は、熱膨張係数(CTE)のミスマッチが生じるため、その配線基板80の信頼性が低下するといった問題が生じてしまう。   When the package form of the coreless wiring board is, for example, a ball grid array (BGA), a BGA pad 81 is provided on the back surface of the coreless wiring board 80 as shown in FIG. Solder bumps 82 are provided. Then, a metal reinforcing plate 85 is fixed to the back surface of the coreless wiring substrate 80 in a surface contact state via an adhesive layer 84. In this case, it is necessary to form a through hole 86 having a larger diameter than the solder bump 82 in the reinforcing plate 85. In the coreless wiring substrate 80, since a plurality of through holes 87 having a large diameter are formed in the reinforcing plate 85, a sufficient bonding area of the reinforcing plate 85 cannot be secured, and the rigidity of the wiring substrate 80 is insufficient. End up. Further, in the back surface of the coreless wiring board 80, the location where the through hole 87 of the reinforcing plate 85 is formed has a problem that the reliability of the wiring board 80 is lowered because of a mismatch in coefficient of thermal expansion (CTE). End up.

本発明は上記の課題に鑑みてなされたものであり、その目的は、補強板の接着面積を増加させることができ、熱膨張係数のミスマッチが生じる領域を減少させることができるコアレス配線基板を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a coreless wiring board capable of increasing the bonding area of the reinforcing plate and reducing the region where the thermal expansion coefficient mismatch occurs. There is to do.

そして上記課題を解決するための手段(手段1)としては、コア基板を有さず、導体層及び層間絶縁層を交互に積層して多層化した積層構造体であり、その主面上に半導体集積回路素子を搭載するための複数の表面側接続端子が設けられるとともに、前記主面の反対側にある裏面上に外部基板との電気的接続を図るための複数の裏面側接続端子が設けられた多層配線基板であって、前記複数の裏面側接続端子に対応する位置に複数の補強板開口部を有し、前記裏面に対して面接触状態で固定された補強板を備え、前記補強板における非接着面側から接着面側に行くほど前記補強板開口部の径が小さくなっていることを特徴とする多層配線基板がある。   A means (means 1) for solving the above problems is a laminated structure in which a conductor layer and an interlayer insulating layer are alternately laminated to form a multilayer structure without having a core substrate, and a semiconductor is formed on the main surface. A plurality of front surface side connection terminals for mounting integrated circuit elements are provided, and a plurality of back surface side connection terminals for electrical connection with an external substrate are provided on the back surface opposite to the main surface. A multilayer wiring board comprising a plurality of reinforcing plate openings at positions corresponding to the plurality of back surface side connection terminals, the reinforcing plate being fixed in surface contact with the back surface, and the reinforcing plate There is a multilayer wiring board characterized in that the diameter of the opening of the reinforcing plate becomes smaller from the non-adhesive surface side to the adhesive surface side.

従って、手段1の多層配線基板によると、その裏面には、外部基板との電気的接続を図るための複数の裏面側接続端子が設けられており、各裏面側接続端子に対応する位置に補強板開口部が形成された補強板が面接触状態で固定されている。補強板における補強板開口部は、非接着面側から接着面側に行くほど径が小さくなっている。このようにすれば、基板裏面に対する補強板の接着面積を十分に確保することができ、多層配線基板の剛性が向上する。また、多層配線基板の裏面において、補強板による補強面積を増やすことにより、熱膨張係数(CTE)のミスマッチが生じる領域を減少させることができ、多層配線基板の信頼性を高めることができる。   Therefore, according to the multilayer wiring board of the means 1, a plurality of back surface side connection terminals for electrical connection with the external substrate are provided on the back surface, and reinforcement is provided at positions corresponding to the respective back surface side connection terminals. A reinforcing plate having a plate opening is fixed in a surface contact state. The diameter of the reinforcing plate opening in the reinforcing plate decreases as it goes from the non-adhesive surface side to the adhesive surface side. In this way, it is possible to secure a sufficient adhesion area of the reinforcing plate to the back surface of the substrate, and the rigidity of the multilayer wiring board is improved. Further, by increasing the reinforcement area by the reinforcing plate on the back surface of the multilayer wiring board, it is possible to reduce the region where the thermal expansion coefficient (CTE) mismatch occurs, and to improve the reliability of the multilayer wiring board.

前記補強板開口部の最小径が前記裏面側接続端子の径よりも小さくなるように設定されていることが好ましい。この場合、例えば、外部基板側の接続ピンと裏面側接続端子を接続させる際に、補強板開口部の側壁がガイドとなって接続ピンを裏面側接続端子に確実に案内することができる。また例えば、裏面側接続端子上にはんだボールを接合させる際には、補強板開口部の側壁がガイドとなってはんだボールを裏面側接続端子に確実に搭載することができる。   It is preferable that the minimum diameter of the reinforcing plate opening is set to be smaller than the diameter of the back-side connection terminal. In this case, for example, when connecting the connection pin on the external substrate side and the back surface side connection terminal, the side wall of the reinforcing plate opening serves as a guide, and the connection pin can be reliably guided to the back surface side connection terminal. Further, for example, when the solder ball is joined onto the back surface side connection terminal, the side wall of the reinforcing plate opening serves as a guide so that the solder ball can be reliably mounted on the back surface side connection terminal.

前記裏面側接続端子上にははんだボールが接合されるとともに、前記補強板開口部の最大径が前記はんだボールの直径よりも大きく、かつ、前記補強板開口部の最小径が前記はんだボールの直径よりも小さくなるように設定されていることが好ましい。このようにすると、補強板の補強板開口部を介して裏面側接続端子上にははんだボールを確実に接合できるとともに、補強板の接着面積を十分に確保することができる。   A solder ball is bonded onto the back side connection terminal, the maximum diameter of the reinforcing plate opening is larger than the diameter of the solder ball, and the minimum diameter of the reinforcing plate opening is the diameter of the solder ball. It is preferable that it is set to be smaller. If it does in this way, while being able to join a solder ball reliably on a back surface side connection terminal via a reinforcement board opening part of a reinforcement board, the adhesion area of a reinforcement board can fully be secured.

前記補強板の材質は限定されないが、例えば非金属材料からなることが好ましい。非金属材料製の補強板は、金属材料製のものに比べて加工性に優れるため、補強板開口部を容易に形成することができ、さらに材料コストも低減することができる。   Although the material of the said reinforcement board is not limited, For example, it is preferable to consist of nonmetallic materials. Since the reinforcing plate made of a non-metallic material is excellent in workability compared to that made of a metallic material, the reinforcing plate opening can be easily formed, and the material cost can be reduced.

前記非金属材料製の補強板としては、合成樹脂を主体材料とするものであることが好ましい。具体的には、前記多層配線基板の裏面において、裏面側接続端子にはんだバンプが設けられる場合、その裏面を覆うようにソルダーレジストが形成される。また、このソルダーレジストは耐熱性に優れた樹脂材料で形成される。従って、合成樹脂製の補強板を使用すれば、樹脂材料であるソルダーレジストに対して確実に接着固定することができる。   The reinforcing plate made of non-metallic material is preferably made of synthetic resin as a main material. Specifically, when a solder bump is provided on the back surface side connection terminal on the back surface of the multilayer wiring board, a solder resist is formed so as to cover the back surface. The solder resist is formed of a resin material having excellent heat resistance. Therefore, if a synthetic resin reinforcing plate is used, it can be securely bonded and fixed to a solder resist that is a resin material.

なお、本発明のコアを有さない多層配線基板とは、「主に同一の層間絶縁層を主体として構成されている多層配線基板」や「同一方向に拡径したビアのみにより各導体層を接続している多層配線基板」を挙げることができる。   In addition, the multilayer wiring board having no core of the present invention refers to “a multilayer wiring board mainly composed mainly of the same interlayer insulating layer” or “each conductor layer only by vias whose diameter is expanded in the same direction”. The connected multilayer wiring board can be mentioned.

前記層間絶縁層は、絶縁性、耐熱性、耐湿性等を考慮して適宜選択することができる。前記層間絶縁層の形成材料の好適例としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリアセタール樹脂、ポリプロピレン樹脂などの熱可塑性樹脂等が挙げられる。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料、あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた樹脂−樹脂複合材料等を使用してもよい。   The interlayer insulating layer can be appropriately selected in consideration of insulation, heat resistance, moisture resistance, and the like. Preferred examples of the material for forming the interlayer insulating layer include thermosetting resins such as epoxy resins, phenol resins, urethane resins, silicone resins, and polyimide resins, and thermoplastic resins such as polycarbonate resins, acrylic resins, polyacetal resins, and polypropylene resins. Etc. In addition, composite materials of these resins and organic fibers such as glass fibers (glass woven fabrics and glass nonwoven fabrics) and polyamide fibers, or three-dimensional network fluorine-based resin base materials such as continuous porous PTFE, epoxy resins, etc. A resin-resin composite material impregnated with a thermosetting resin may be used.

前記導体層は、サブトラクティブ法、セミアディティブ法、フルアディティブ法などといった公知の手法によって、層間絶縁層上にパターン形成される。前記導体層の形成に用いられる金属材料の例としては、銅、銅合金、ニッケル、ニッケル合金、スズ、スズ合金などが挙げられる。   The conductor layer is patterned on the interlayer insulating layer by a known method such as a subtractive method, a semi-additive method, or a full additive method. Examples of the metal material used for forming the conductor layer include copper, copper alloy, nickel, nickel alloy, tin, tin alloy and the like.

前記はんだボールをなす金属としては、搭載される電子部品の接続端子等の材質等に応じて適宜選択すればよいが、90Pb−10Sn、95Pb−5Sn、40Pb−60SnなどのPb−Sn系ハンダ、Sn−Sb系ハンダ、Sn−Ag系ハンダ、Sn−Ag−Cu系ハンダ、Au−Ge系ハンダ、Au−Sn系ハンダなどのハンダが挙げられる。   The metal forming the solder ball may be appropriately selected according to the material of the connection terminal of the electronic component to be mounted, etc., but Pb-Sn solder such as 90Pb-10Sn, 95Pb-5Sn, 40Pb-60Sn Examples of the solder include Sn—Sb solder, Sn—Ag solder, Sn—Ag—Cu solder, Au—Ge solder, Au—Sn solder.

以下、本発明を具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態のコアレス配線基板(多層配線基板)の概略構成を示す断面図である。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a coreless wiring board (multilayer wiring board) according to the present embodiment.

図1に示されるように、本実施の形態のコアレス配線基板10は、コア基板を有さず、エポキシ樹脂からなる4層の樹脂絶縁層(層間絶縁層)21,22,23,24と銅からなる導体層26とを交互に積層して多層化した積層構造体である。樹脂絶縁層21〜24は、同一の厚さ及び材料からなる層間絶縁層であり、エポキシ樹脂からなるシート状のビルドアップ材を用いて形成されている。   As shown in FIG. 1, the coreless wiring substrate 10 of the present embodiment does not have a core substrate, and includes four resin insulating layers (interlayer insulating layers) 21, 22, 23, 24 made of epoxy resin and copper The laminated structure is formed by alternately laminating the conductor layers 26 made of. The resin insulation layers 21 to 24 are interlayer insulation layers made of the same thickness and material, and are formed using a sheet-like buildup material made of an epoxy resin.

コアレス配線基板10の主面12上(第4層の樹脂絶縁層24の表面上)には、端子パッド27(表面側接続端子)がアレイ状に配置されている。さらに、樹脂絶縁層24の表面はソルダーレジスト28によってほぼ全体的に覆われている。このソルダーレジスト28には、各端子パッド27を露出させる開口部29が形成されている。端子パッド27の表面上には、複数のはんだバンプ30が配設されている。各はんだバンプ30は、矩形平板状をなすICチップ31(半導体集積回路素子)の面接続端子32に電気的に接続されている。なお、各端子パッド27及び各はんだバンプ30が形成されている領域は、ICチップ31を搭載可能なICチップ搭載領域33である。   On the main surface 12 of the coreless wiring substrate 10 (on the surface of the fourth resin insulating layer 24), terminal pads 27 (surface side connection terminals) are arranged in an array. Further, the surface of the resin insulating layer 24 is almost entirely covered with the solder resist 28. The solder resist 28 has openings 29 through which the terminal pads 27 are exposed. A plurality of solder bumps 30 are disposed on the surface of the terminal pad 27. Each solder bump 30 is electrically connected to a surface connection terminal 32 of an IC chip 31 (semiconductor integrated circuit element) having a rectangular flat plate shape. The area where each terminal pad 27 and each solder bump 30 is formed is an IC chip mounting area 33 in which an IC chip 31 can be mounted.

コアレス配線基板10の裏面13上(第1層の樹脂絶縁層21の下面上)には、裏面側接続端子としてのBGA(ボールグリッドアレイ)用パッド41がアレイ状に配設されている。また、樹脂絶縁層21の下面は、ソルダーレジスト42によってほぼ全体的に覆われている。ソルダーレジスト42において、BGA用パッド41に対応する位置には、BGA用パッド41を露出させる開口部45(ソルダーレジスト開口部)が形成されている。さらに、樹脂絶縁層21,22,23,24には、それぞれビア穴46及びビア導体47が設けられている。各ビア穴46は、逆円錐台形状をなし、各樹脂絶縁層21〜24に対してYAGレーザまたは炭酸ガスレーザを用いた穴あけ加工を施すことで形成される。各ビア導体47は、同一方向(図では上方向)に拡径した導体であって、各導体層26、端子パッド27、及びBGA用パッド41を相互に電気的に接続している。   On the back surface 13 of the coreless wiring substrate 10 (on the lower surface of the first resin insulating layer 21), BGA (ball grid array) pads 41 as back surface side connection terminals are arranged in an array. Further, the lower surface of the resin insulating layer 21 is almost entirely covered with a solder resist 42. In the solder resist 42, an opening 45 (solder resist opening) for exposing the BGA pad 41 is formed at a position corresponding to the BGA pad 41. Furthermore, via holes 46 and via conductors 47 are provided in the resin insulating layers 21, 22, 23, and 24, respectively. Each via hole 46 has an inverted frustoconical shape, and is formed by drilling each resin insulating layer 21 to 24 using a YAG laser or a carbon dioxide gas laser. Each via conductor 47 is a conductor whose diameter is expanded in the same direction (upward in the drawing), and electrically connects each conductor layer 26, terminal pad 27, and BGA pad 41.

本実施の形態のコアレス配線基板10において、ソルダーレジスト42には、補強板50が接着剤層51を介して面接触状態で接着固定されている。接着剤層51は、耐熱性に優れた熱硬化性樹脂の硬化物であり、例えば、エポキシ樹脂からなるフィルム状の接着シートを硬化させることで形成される。接着剤層51において、複数のBGA用パッド41に対応する位置に複数の開口部53が形成されている。   In the coreless wiring substrate 10 of the present embodiment, the reinforcing plate 50 is bonded and fixed to the solder resist 42 in a surface contact state via the adhesive layer 51. The adhesive layer 51 is a cured product of a thermosetting resin excellent in heat resistance, and is formed, for example, by curing a film-like adhesive sheet made of an epoxy resin. In the adhesive layer 51, a plurality of openings 53 are formed at positions corresponding to the plurality of BGA pads 41.

補強板50としては、厚さが0.5mm程度の非金属材料製の板材、例えば、エポキシ樹脂とガラス繊維とからなるガラスエポキシ基板が用いられる。この補強板50において、複数のBGA用パッド41に対応する位置に複数の開口部52(補強板開口部)が形成されている。   As the reinforcing plate 50, a non-metallic plate material having a thickness of about 0.5 mm, for example, a glass epoxy substrate made of epoxy resin and glass fiber is used. In the reinforcing plate 50, a plurality of openings 52 (reinforcing plate openings) are formed at positions corresponding to the plurality of BGA pads 41.

本実施の形態において、複数のBGA用パッド41は、平面視形状が円形となるよう形成され、ソルダーレジスト42、補強板50、及び接着剤層51に形成される開口部45,52,53も平面視形状が円形となるよう形成されている。また、各BGA用パッド41上には、各開口部45,52,53を介してはんだバンプ55(はんだボール)が接合されている。各BGA用パッド41は、はんだバンプ55を介して図示しないマザーボード(外部基板)と電気的に接続される。   In the present embodiment, the plurality of BGA pads 41 are formed so as to have a circular shape in plan view, and the openings 45, 52, 53 formed in the solder resist 42, the reinforcing plate 50, and the adhesive layer 51 are also included. The shape in plan view is circular. Further, solder bumps 55 (solder balls) are joined to the respective BGA pads 41 through the openings 45, 52 and 53. Each BGA pad 41 is electrically connected to a mother board (external board) (not shown) via solder bumps 55.

図2に示されるように、本実施の形態のコアレス配線基板10において、補強板50の開口部52は、円錐台形状をなし、補強板50における非接着面側(図2では下面側)から接着面側(図2では上面側)に行くほど開口部52の径が小さくなっている。この開口部52の最小径D1(上側の直径)は、BGA用パッド41の径D2よりも小さくなるよう設定されている。さらに、開口部52の最大径D3がはんだバンプ55の直径D4よりも大きく、かつ、開口部52の最小径D1がはんだバンプ55の直径D4よりも小さくなるよう設定されている。また、接着剤層51の開口部53の径D5は、開口部52の最小径D1やソルダーレジスト42の開口部45の径よりも大きくなっており、接着剤層51が補強板50やソルダーレジスト42の開口部45,52の内側にはみ出さないようになっている。   As shown in FIG. 2, in the coreless wiring substrate 10 of the present embodiment, the opening 52 of the reinforcing plate 50 has a truncated cone shape, from the non-adhesive surface side (the lower surface side in FIG. 2) of the reinforcing plate 50. The diameter of the opening 52 becomes smaller toward the bonding surface side (upper surface side in FIG. 2). The minimum diameter D1 (upper diameter) of the opening 52 is set to be smaller than the diameter D2 of the BGA pad 41. Further, the maximum diameter D3 of the opening 52 is set to be larger than the diameter D4 of the solder bump 55, and the minimum diameter D1 of the opening 52 is set to be smaller than the diameter D4 of the solder bump 55. Further, the diameter D5 of the opening 53 of the adhesive layer 51 is larger than the minimum diameter D1 of the opening 52 and the diameter of the opening 45 of the solder resist 42, and the adhesive layer 51 is made of the reinforcing plate 50 or the solder resist. 42 so that it does not protrude inside the openings 45 and 52 of 42.

上記構成のコアレス配線基板10は例えば以下の手順で作製される。   The coreless wiring substrate 10 having the above configuration is manufactured, for example, by the following procedure.

本実施の形態では、十分な強度を有する支持基板(ガラスエポキシ基板など)を準備し、その支持基板上に、コアレス配線基板10の樹脂絶縁層21〜24及び導体層26をビルドアップしていく方法を採用している。図3〜図13は、その製造方法を示す説明図であり、支持基板の上面側に形成される樹脂絶縁層21〜24及び導体層26等を示している。なお、図示を省略しているが支持基板の下面側にも樹脂絶縁層21〜24及び導体層26が同様に形成される。   In the present embodiment, a support substrate (such as a glass epoxy substrate) having sufficient strength is prepared, and the resin insulating layers 21 to 24 and the conductor layer 26 of the coreless wiring substrate 10 are built up on the support substrate. The method is adopted. 3-13 is explanatory drawing which shows the manufacturing method, and has shown the resin insulation layers 21-24, the conductor layer 26, etc. which are formed in the upper surface side of a support substrate. Although not shown, the resin insulating layers 21 to 24 and the conductor layer 26 are similarly formed on the lower surface side of the support substrate.

詳述すると、図3に示されるように、支持基板60上に、エポキシ樹脂からなるシート状の絶縁樹脂基材を半硬化の状態で貼り付けることにより下地樹脂絶縁層61を形成する。そして、図4に示されるように、その下地樹脂絶縁層61の上面に、積層金属シート体62を配置する。ここで、半硬化の状態の下地樹脂絶縁層61上に積層金属シート体62を配置することにより、以降の製造工程で積層金属シート体62が下地樹脂絶縁層61から剥がれない程度の密着性が確保される。積層金属シート体62は、2枚の銅箔62a,62bを剥離可能な状態で密着させてなる。具体的には、金属めっき(例えば、クロムめっき)を介して各銅箔62a,62bを積層することで積層金属シート体62が形成されている。   More specifically, as shown in FIG. 3, a base resin insulating layer 61 is formed on a support substrate 60 by pasting a sheet-like insulating resin base material made of epoxy resin in a semi-cured state. Then, as shown in FIG. 4, a laminated metal sheet body 62 is disposed on the upper surface of the base resin insulating layer 61. Here, by arranging the laminated metal sheet body 62 on the base resin insulating layer 61 in a semi-cured state, the adhesiveness is such that the laminated metal sheet body 62 is not peeled off from the base resin insulating layer 61 in the subsequent manufacturing process. Secured. The laminated metal sheet body 62 is formed by closely attaching two copper foils 62a and 62b in a peelable state. Specifically, the laminated metal sheet body 62 is formed by laminating the copper foils 62a and 62b through metal plating (for example, chromium plating).

その後、図5に示されるように、積層金属シート体62を包むようにシート状の絶縁樹脂基材63を配置し、真空圧着熱プレス機(図示しない)を用いて真空下にて加圧加熱することにより、絶縁樹脂基材63を硬化させて第1層の樹脂絶縁層21を形成する。ここで、樹脂絶縁層21は、積層金属シート体62と密着するとともに、その積層金属シート体62の周囲領域において下地樹脂絶縁層61と密着することで、積層金属シート体62を封止する。   After that, as shown in FIG. 5, the sheet-like insulating resin base material 63 is disposed so as to wrap the laminated metal sheet body 62, and is heated under pressure using a vacuum pressure hot press machine (not shown). As a result, the insulating resin base material 63 is cured to form the first resin insulating layer 21. Here, the resin insulating layer 21 is in close contact with the laminated metal sheet body 62, and in close contact with the base resin insulating layer 61 in the peripheral region of the laminated metal sheet body 62, thereby sealing the laminated metal sheet body 62.

そして、図6に示されるように、レーザ加工を施すことによって樹脂絶縁層21の所定の位置にビア穴46を形成し、次いで各ビア穴46内のスミアを除去するデスミア処理を行う。その後、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことで、各ビア穴46内にビア導体47を形成するとともに、樹脂絶縁層21上に導体層26を形成する。さらに、従来公知の手法(例えばセミアディティブ法)によってエッチングを行うことで、樹脂絶縁層21上に導体層26をパターン形成する(図7参照)。   Then, as shown in FIG. 6, laser processing is performed to form via holes 46 at predetermined positions of the resin insulating layer 21, and then desmear processing for removing smears in the via holes 46 is performed. Thereafter, electroless copper plating and electrolytic copper plating are performed according to a conventionally known method, thereby forming the via conductor 47 in each via hole 46 and the conductor layer 26 on the resin insulating layer 21. Further, the conductor layer 26 is patterned on the resin insulating layer 21 by performing etching by a conventionally known method (for example, a semi-additive method) (see FIG. 7).

第2層〜第4層の樹脂絶縁層22〜23及び導体層26についても、上述した第1層の樹脂絶縁層21及び導体層26と同様の手法によって形成し、樹脂絶縁層21上にビルドアップしていく。そして、端子パッド27が形成された樹脂絶縁層24上に感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト28を形成する。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト28に開口部29をパターニングする。以上の製造工程によって、支持基板60上に積層金属シート体62、樹脂絶縁層21〜24、及び導体層26を積層した積層体70を形成する(図8参照)。この積層体70において、積層金属シート体62上に位置する領域がコアレス配線基板10となるべき配線積層部20(積層構造体)である。   The second to fourth resin insulation layers 22 to 23 and the conductor layer 26 are also formed by the same method as the first resin insulation layer 21 and the conductor layer 26 described above, and build on the resin insulation layer 21. I will go up. Then, a solder resist 28 is formed by applying and curing a photosensitive epoxy resin on the resin insulating layer 24 on which the terminal pads 27 are formed. Next, exposure and development are performed with a predetermined mask placed, and the opening 29 is patterned in the solder resist 28. Through the above manufacturing process, a laminated body 70 in which the laminated metal sheet body 62, the resin insulating layers 21 to 24, and the conductor layer 26 are laminated on the support substrate 60 is formed (see FIG. 8). In this laminated body 70, the region located on the laminated metal sheet body 62 is the wiring laminated portion 20 (laminated structure) that should become the coreless wiring substrate 10.

この積層体70をダイシング装置(図示略)により切断し、積層体70における配線積層部20の周囲領域を除去する。この際、図8に示すように、配線積層部20とその周囲部71との境界において、配線積層部20の下方にある下地樹脂絶縁層61及び支持基板60ごと切断する。この切断によって、樹脂絶縁層21にて封止されていた積層金属シート体62の外縁部が露出した状態となる。つまり、周囲部71の除去によって、下地樹脂絶縁層61と樹脂絶縁層21との密着部分が失われる。この結果、配線積層部20と支持基板60とは積層金属シート体62のみを介して連結した状態となる。   The laminated body 70 is cut by a dicing apparatus (not shown), and the peripheral area of the wiring laminated portion 20 in the laminated body 70 is removed. At this time, as shown in FIG. 8, the base resin insulating layer 61 and the support substrate 60 below the wiring laminated portion 20 are cut at the boundary between the wiring laminated portion 20 and the peripheral portion 71. By this cutting, the outer edge portion of the laminated metal sheet body 62 sealed with the resin insulating layer 21 is exposed. That is, due to the removal of the peripheral portion 71, the adhesion portion between the base resin insulating layer 61 and the resin insulating layer 21 is lost. As a result, the wiring laminated portion 20 and the support substrate 60 are connected via the laminated metal sheet body 62 only.

ここで、図9に示されるように、積層金属シート体62における2枚の銅箔62a,62bの界面にて剥離して、配線積層部20を支持基板60から分離する。そして、図10に示されるように、配線積層部20(樹脂絶縁層21)の裏面13(下面)上にある銅箔62aをエッチングによりパターンニングして、BGA用パッド41を形成する。その後、図11に示されるように、BGA用パッド41が形成された樹脂絶縁層21上に感光性エポキシ樹脂を塗布して硬化させることにより、配線積層部20の裏面13を覆うようにソルダーレジスト42を形成する。次に、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト42に開口部45をパターニングする。   Here, as shown in FIG. 9, the wiring laminated portion 20 is separated from the support substrate 60 by peeling at the interface between the two copper foils 62 a and 62 b in the laminated metal sheet body 62. Then, as shown in FIG. 10, the copper foil 62 a on the back surface 13 (lower surface) of the wiring laminated portion 20 (resin insulating layer 21) is patterned by etching to form a BGA pad 41. After that, as shown in FIG. 11, by applying and curing a photosensitive epoxy resin on the resin insulating layer 21 on which the BGA pads 41 are formed, a solder resist is formed so as to cover the back surface 13 of the wiring laminated portion 20. 42 is formed. Next, exposure and development are performed with a predetermined mask disposed, and the opening 45 is patterned in the solder resist 42.

このようにして、導体層26及び樹脂絶縁層21〜24を交互に積層した配線積層部20を準備した後、図12に示されるように、複数の開口部52を有し、片面側に未硬化状態の接着剤層51を有する補強板50を準備する。ここで、補強板50の開口部52は、例えば、従来周知のドリル加工装置を用いたドリル加工により形成される。また、接着剤層51の開口部53は、例えば、フィルム状の接着シートに対して従来周知の打ち抜き金型を用いた打ち抜き加工により形成される。なお、接着剤層51の開口部53は補強板50の開口部52の径よりも大きくなるよう形成されている。   Thus, after preparing the wiring laminated part 20 which laminated | stacked the conductor layer 26 and the resin insulating layers 21-24 alternately, as shown in FIG. 12, it has the some opening part 52 and is not in the one side. A reinforcing plate 50 having a cured adhesive layer 51 is prepared. Here, the opening 52 of the reinforcing plate 50 is formed by, for example, drilling using a conventionally known drilling device. Moreover, the opening part 53 of the adhesive bond layer 51 is formed by punching using the conventionally well-known punching die with respect to a film-like adhesive sheet, for example. The opening 53 of the adhesive layer 51 is formed to be larger than the diameter of the opening 52 of the reinforcing plate 50.

そして、図13に示されるように、接着剤層51を介して補強板50をソルダーレジスト42に対して面接着状態で固定し、所定の温度(例えば、150℃)で加熱して未硬化状態の接着剤層51を硬化させる。   Then, as shown in FIG. 13, the reinforcing plate 50 is fixed to the solder resist 42 in a surface-bonded state via the adhesive layer 51, and heated at a predetermined temperature (for example, 150 ° C.) to be in an uncured state. The adhesive layer 51 is cured.

そして、配線積層部20の主面12側に形成されている複数の端子パッド27上にはんだバンプ30を形成する。具体的には、図示しないはんだボール搭載装置を用いて各端子パッド27上にはんだボールを配置した後、はんだボールを所定の温度に加熱してリフローすることにより、各端子パッド27上にはんだバンプ30を形成する。同様に、配線積層部20の裏面13側に形成されている複数のBGA用パッド41上にもはんだバンプ55を形成する。これにより、図1に示すコアレス配線基板10が得られる。   Then, solder bumps 30 are formed on the plurality of terminal pads 27 formed on the main surface 12 side of the wiring laminated portion 20. Specifically, after solder balls are arranged on each terminal pad 27 using a solder ball mounting device (not shown), the solder balls are heated to a predetermined temperature and reflowed, whereby solder bumps are formed on each terminal pad 27. 30 is formed. Similarly, solder bumps 55 are also formed on the plurality of BGA pads 41 formed on the back surface 13 side of the wiring laminated portion 20. Thereby, the coreless wiring substrate 10 shown in FIG. 1 is obtained.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態のコアレス配線基板10では、複数のBGA用パッド41に対応する位置に開口部52を有する補強板50が面接触状態で固定されている。この補強板50における開口部52は、非接着面側から接着面側に行くほど径が小さくなっている。このようにすれば、基板裏面に対する補強板50の接着面積を増加させることができ、コアレス配線基板10の剛性が向上する。また、コアレス配線基板10の裏面13において、補強板50の接着面積を増やすことにより、熱膨張係数(CTE)のミスマッチが生じる領域を減少させることができ、コアレス配線基板10の信頼性を高めることができる。   (1) In the coreless wiring substrate 10 of the present embodiment, the reinforcing plate 50 having the openings 52 at positions corresponding to the plurality of BGA pads 41 is fixed in a surface contact state. The opening 52 in the reinforcing plate 50 has a diameter that decreases from the non-bonding surface side to the bonding surface side. In this way, the adhesion area of the reinforcing plate 50 to the back surface of the substrate can be increased, and the rigidity of the coreless wiring substrate 10 is improved. In addition, by increasing the bonding area of the reinforcing plate 50 on the back surface 13 of the coreless wiring substrate 10, it is possible to reduce the region where the thermal expansion coefficient (CTE) mismatch occurs, and to improve the reliability of the coreless wiring substrate 10. Can do.

(2)本実施の形態のコアレス配線基板10の場合、補強板50の開口部52の最小径D1がBGA用パッド41の径D2よりも小さくなるように設定されている。このようにすると、BGA用パッド41にはんだバンプ55を設ける工程において、開口部52の側壁がガイドとなることにより、BGA用パッド41上にはんだボールを確実に搭載することができ、はんだバンプ55を迅速に設けることができる。   (2) In the case of the coreless wiring substrate 10 of the present embodiment, the minimum diameter D1 of the opening 52 of the reinforcing plate 50 is set to be smaller than the diameter D2 of the BGA pad 41. In this way, in the step of providing the solder bump 55 on the BGA pad 41, the side wall of the opening 52 serves as a guide, whereby the solder ball can be reliably mounted on the BGA pad 41, and the solder bump 55 Can be provided quickly.

(3)本実施の形態のコアレス配線基板10では、補強板50における開口部52の最大径D3がはんだバンプ55の直径D4よりも大きく、かつ、開口部52の最小径D1がはんだバンプ55の直径D4よりも小さくなるように設定されている。このようにすると、補強板50の開口部52を介してBGA用パッド41上にははんだバンプ55をより確実に接合できるとともに、補強板50の接着面積を十分に確保することができる。   (3) In the coreless wiring substrate 10 of the present embodiment, the maximum diameter D3 of the opening 52 in the reinforcing plate 50 is larger than the diameter D4 of the solder bump 55, and the minimum diameter D1 of the opening 52 is the solder bump 55. It is set to be smaller than the diameter D4. In this way, the solder bump 55 can be more reliably bonded onto the BGA pad 41 through the opening 52 of the reinforcing plate 50, and a sufficient bonding area of the reinforcing plate 50 can be secured.

(4)本実施の形態のコアレス配線基板10の場合、ガラスエポキシ基板からなる樹脂製の補強板50がソルダーレジスト42に対して面接触状態で接着固定されるので、従来技術のように金属製の補強板85を固定する場合と比較して、十分な接着強度を得ることができる。また、補強板50は、樹脂材料からなり加工性に優れるため、BGA用パッド41に対応する位置に円錐台形状の開口部52を容易に形成することができ、材料コストも低減することができる。   (4) In the case of the coreless wiring substrate 10 of the present embodiment, the resin reinforcing plate 50 made of a glass epoxy substrate is bonded and fixed to the solder resist 42 in a surface contact state. Compared to the case where the reinforcing plate 85 is fixed, sufficient adhesive strength can be obtained. Further, since the reinforcing plate 50 is made of a resin material and has excellent workability, the frustoconical opening 52 can be easily formed at a position corresponding to the BGA pad 41, and the material cost can be reduced. .

(5)本実施の形態のコアレス配線基板10では、接着剤層51の開口部53の径D5は、開口部52の最小径D1やソルダーレジスト42の開口部45の径よりも大きくなっており、接着剤層51が補強板50やソルダーレジスト42の開口部45,52の内側にはみ出さないようになっている。このようにすれば、BGA用パッド41上にはんだバンプ55を形成する際、はんだバンプ55が接着剤層51に接触することがなく、溶融したはんだバンプ55に接着剤成分が混入するといった問題を回避することができる。   (5) In the coreless wiring substrate 10 of the present embodiment, the diameter D5 of the opening 53 of the adhesive layer 51 is larger than the minimum diameter D1 of the opening 52 and the diameter of the opening 45 of the solder resist 42. The adhesive layer 51 does not protrude inside the openings 45 and 52 of the reinforcing plate 50 and the solder resist 42. In this way, when the solder bump 55 is formed on the BGA pad 41, the solder bump 55 does not come into contact with the adhesive layer 51, and the adhesive component is mixed into the molten solder bump 55. It can be avoided.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態では、コアレス配線基板10のパッケージ形態はBGA(ボールグリッドアレイ)であるが、LGA(ランドグリッドアレイ)のパッケージ形態を採用してもよい。図14には、そのコアレス配線基板10Aを示している。コアレス配線基板10Aにおいては、裏面13上(第1層の樹脂絶縁層21の下面上)には、裏面側接続端子としてのLGA用パッド41Aがアレイ状に配設されており、接着剤層51を介して補強板50Aが固定されている。つまり、このコアレス配線基板10Aの裏面13には、ソルダーレジストは形成されておらず、樹脂絶縁層21上に補強板50Aが直接固定されている。   In the above embodiment, the package form of the coreless wiring substrate 10 is BGA (ball grid array), but an LGA (land grid array) package form may be adopted. FIG. 14 shows the coreless wiring substrate 10A. In the coreless wiring substrate 10A, on the back surface 13 (on the bottom surface of the first resin insulating layer 21), LGA pads 41A as back surface side connection terminals are arranged in an array, and an adhesive layer 51 is provided. The reinforcing plate 50A is fixed via the. That is, no solder resist is formed on the back surface 13 of the coreless wiring substrate 10 </ b> A, and the reinforcing plate 50 </ b> A is directly fixed on the resin insulating layer 21.

図14及び図15に示されるように、補強板50Aにおいて、樹脂絶縁層21に対向して配置された面側(図では上面側)に、LGA用パッド41Aの大きさ及び形状に合致した凹部57が形成されており、この凹部57内にLGA用パッド41Aが配置されている。また、凹部57の底面58には、LGA用パッド41Aを露出させる開口部52A(補強板開口部)が開口形成されている。補強板50Aにおいて、開口部52Aは、非接着面側(図15では下面側)から接着面側(図15では上面側)に行くほど径が小さくなっている。さらに、開口部52Aの最小径D1(上側の直径)は、LGA用パッド41Aの径D2よりも小さくなるよう設定されている。   As shown in FIGS. 14 and 15, in the reinforcing plate 50 </ b> A, a concave portion that matches the size and shape of the LGA pad 41 </ b> A is provided on the surface side (upper surface side in the drawing) arranged to face the resin insulating layer 21. 57 is formed, and the LGA pad 41 </ b> A is disposed in the recess 57. An opening 52A (reinforcing plate opening) that exposes the LGA pad 41A is formed in the bottom surface 58 of the recess 57. In the reinforcing plate 50A, the diameter of the opening 52A decreases from the non-bonding surface side (lower surface side in FIG. 15) to the bonding surface side (upper surface side in FIG. 15). Furthermore, the minimum diameter D1 (upper diameter) of the opening 52A is set to be smaller than the diameter D2 of the LGA pad 41A.

このようにコアレス配線基板10Aを構成しても、基板裏面に対する補強板50Aの接着面積を十分に確保することができ、コアレス配線基板10Aの剛性が向上する。また、コアレス配線基板10Aの裏面13において、補強板50Aの接着面積を増やすことにより、熱膨張係数のミスマッチが生じる領域を減少させることができ、コアレス配線基板10Aの信頼性を高めることができる。また、コアレス配線基板10Aにおいて、例えば、図示しないマザーボード側に設けられたソケットの端子ピンをLGA用パッド41Aに接続する場合、補強板50Aの開口部52Aの側壁がガイドとなって端子ピンをLGA用パッド41Aに確実に案内することができる。   Even if the coreless wiring substrate 10A is configured in this way, a sufficient bonding area of the reinforcing plate 50A to the back surface of the substrate can be secured, and the rigidity of the coreless wiring substrate 10A is improved. Further, by increasing the adhesion area of the reinforcing plate 50A on the back surface 13 of the coreless wiring substrate 10A, it is possible to reduce the region where the thermal expansion coefficient mismatch occurs, and to improve the reliability of the coreless wiring substrate 10A. Further, in the coreless wiring substrate 10A, for example, when connecting a terminal pin of a socket (not shown) on the motherboard side to the LGA pad 41A, the side wall of the opening 52A of the reinforcing plate 50A serves as a guide to connect the terminal pin to the LGA. It can be reliably guided to the pad 41A.

・上記実施の形態のコアレス配線基板10,10Aにおいて、補強板50,50Aは、ガラスエポキシ基板を用いて形成されていたが、これに限定されるものではない。具体的には、例えば、絶縁性を維持できる程度の少量の金属粉(例えば、銅フィラー)を合成樹脂材料に混入して補強板50,50Aを形成することで、補強板50,50Aの放熱性を高めるように構成してもよい。   In the coreless wiring substrates 10 and 10A of the above embodiment, the reinforcing plates 50 and 50A are formed using a glass epoxy substrate, but the present invention is not limited to this. Specifically, for example, a small amount of metal powder (for example, copper filler) that can maintain insulation is mixed into the synthetic resin material to form the reinforcing plates 50 and 50A, thereby radiating heat from the reinforcing plates 50 and 50A. You may comprise so that property may be improved.

次に、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, the technical ideas grasped by the embodiment described above are listed below.

(1)コア基板を有さず、導体層及び層間絶縁層を交互に積層して多層化した積層構造体であり、その主面上に半導体集積回路素子を搭載するための複数の表面側接続端子が設けられるとともに、前記主面の反対側にある裏面上に外部基板との電気的接続を図るための複数の裏面側接続端子が設けられた多層配線基板であって、前記複数の裏面側接続端子に対応する位置に複数のソルダーレジスト開口部を有し、前記裏面を覆うように形成されたソルダーレジストと、前記複数の裏面側接続端子に対応する位置に複数の補強板開口部を有する補強板と、前記複数の裏面側接続端子に対応する位置に複数の接着剤層開口部を有し、前記補強板を前記ソルダーレジストに対して面接触状態で固定させている接着剤層とを備え、前記補強板における非接着面側から接着面側に行くほど前記補強板開口部の径が小さくなっていることを特徴とする多層配線基板。   (1) A multi-layer structure in which conductor layers and interlayer insulation layers are alternately stacked without having a core substrate, and a plurality of surface side connections for mounting semiconductor integrated circuit elements on the main surface A multilayer wiring board provided with a plurality of back side connection terminals for providing electrical connection with an external board on the back side opposite to the main surface, the terminal being provided on the back side A plurality of solder resist openings at positions corresponding to the connection terminals, a solder resist formed so as to cover the back surface, and a plurality of reinforcing plate openings at positions corresponding to the plurality of back surface side connection terminals A reinforcing plate, and an adhesive layer having a plurality of adhesive layer openings at positions corresponding to the plurality of back surface side connection terminals, and fixing the reinforcing plate to the solder resist in a surface contact state. In the reinforcing plate Multilayered wiring board, characterized in that the diameter of the reinforcing plate opening toward the bonding surface side is smaller from the adhesive surface.

(2)上記1において、前記ソルダーレジスト開口部の径及び前記補強板開口部の径が、前記接着剤層開口部の径よりも小さくなるように設定されていることを特徴とする多層配線基板。   (2) The multilayer wiring board according to the above 1, wherein the diameter of the solder resist opening and the diameter of the reinforcing plate opening are set to be smaller than the diameter of the adhesive layer opening. .

(3)コア基板を有さず、導体層及び層間絶縁層を交互に積層して多層化した積層構造体であり、その主面上に半導体集積回路素子を搭載するための複数の表面側接続端子が設けられるとともに、前記主面の反対側にある裏面上に外部基板との電気的接続を図るための複数の裏面側接続端子が設けられた多層配線基板であって、前記裏面に対向して配置された面側に、前記複数の裏面側接続端子の大きさ及び形状に合致した凹部が形成されるとともに、前記裏面側接続端子の一部を露出させるために前記凹部の底面に補強板開口部が開口形成される補強板と、前記補強板を前記裏面に対して面接触状態で固定させている接着剤層とを備え、前記補強板における非接着面側から接着面側に行くほど前記補強板開口部の径が小さくなっていることを特徴とする多層配線基板。   (3) A multi-layered structure that does not have a core substrate and is formed by alternately laminating conductor layers and interlayer insulating layers, and a plurality of surface side connections for mounting semiconductor integrated circuit elements on the main surface A multilayer wiring board provided with terminals and provided with a plurality of back side connection terminals for electrical connection with an external board on the back side opposite to the main surface, facing the back side On the surface side arranged in this manner, a recess that matches the size and shape of the plurality of back surface side connection terminals is formed, and a reinforcing plate is provided on the bottom surface of the recess to expose a part of the back surface side connection terminals. A reinforcing plate having an opening formed therein and an adhesive layer that fixes the reinforcing plate in a surface contact state with respect to the back surface, the closer to the bonding surface side from the non-bonding surface side of the reinforcing plate The diameter of the opening of the reinforcing plate is small Multilayer wiring substrate which is characterized.

本実施の形態のコアレス配線基板の概略構成を示す断面図。Sectional drawing which shows schematic structure of the coreless wiring board of this Embodiment. コアレス配線基板の要部を示す拡大断面図。The expanded sectional view which shows the principal part of a coreless wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. コア配線基板の製造方法の説明図。Explanatory drawing of the manufacturing method of a core wiring board. 別の実施の形態のコアレス配線基板の概略構成を示す断面図。Sectional drawing which shows schematic structure of the coreless wiring board of another embodiment. 別の実施の形態のコア配線基板の要部を示す拡大断面図。The expanded sectional view which shows the principal part of the core wiring board of another embodiment. 従来のコア配線基板の要部を示す拡大断面図。The expanded sectional view which shows the principal part of the conventional core wiring board.

符号の説明Explanation of symbols

10,10A…多層配線基板としてのコアレス配線基板
12…主面
13…裏面
20…積層構造体としての配線積層部
21〜24…層間絶縁層としての樹脂絶縁層
26…導体層
27…表面側接続端子としての端子パッド
31…半導体集積回路素子としてのICチップ
41…裏面側接続端子としてのBGA用パッド
41A…裏面側接続端子としてのLGA用パッド
42…ソルダーレジスト
45…ソルダーレジスト開口部
50,50A…補強板
52,52A…補強板開口部
55…はんだボールとしてのはんだバンプ
D1…補強板開口部の最小径
D2…裏面側接続端子の径
D3…補強板開口部の最大径
D4…はんだバンプの直径
DESCRIPTION OF SYMBOLS 10, 10A ... Coreless wiring board as a multilayer wiring board 12 ... Main surface 13 ... Back surface 20 ... Wiring laminated part as a laminated structure 21-24 ... Resin insulating layer as an interlayer insulation layer 26 ... Conductive layer 27 ... Surface side connection Terminal pad 31 as a terminal IC chip as a semiconductor integrated circuit element 41 BPA pad as a back side connection terminal 41A ... LGA pad as a back side connection terminal 42 ... Solder resist 45 ... Solder resist opening 50, 50A ... Reinforcing plate 52, 52A ... Reinforcing plate opening 55 ... Solder bump as solder ball D1 ... Minimum diameter of reinforcing plate opening D2 ... Diameter of back side connection terminal D3 ... Maximum diameter of reinforcing plate opening D4 ... Solder bump diameter

Claims (5)

コア基板を有さず、導体層及び層間絶縁層を交互に積層して多層化した積層構造体であり、その主面上に半導体集積回路素子を搭載するための複数の表面側接続端子が設けられるとともに、前記主面の反対側にある裏面上に外部基板との電気的接続を図るための複数の裏面側接続端子が設けられた多層配線基板であって、
前記複数の裏面側接続端子に対応する位置に複数の補強板開口部を有し、前記裏面に対して面接触状態で固定された補強板を備え、
前記補強板における非接着面側から接着面側に行くほど前記補強板開口部の径が小さくなっている
ことを特徴とする多層配線基板。
A multi-layered structure that does not have a core substrate and is formed by alternately laminating conductor layers and interlayer insulating layers, and a plurality of surface side connection terminals for mounting semiconductor integrated circuit elements are provided on the main surface. A multilayer wiring board provided with a plurality of back side connection terminals for electrical connection with an external board on the back side opposite to the main surface,
A plurality of reinforcing plate openings at positions corresponding to the plurality of back surface side connection terminals, comprising a reinforcing plate fixed in a surface contact state with respect to the back surface;
The multilayer wiring board according to claim 1, wherein the diameter of the opening portion of the reinforcing plate is reduced from the non-bonding surface side to the bonding surface side of the reinforcing plate.
前記補強板開口部の最小径が前記裏面側接続端子の径よりも小さくなるように設定されていることを特徴とする請求項1に記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein a minimum diameter of the reinforcing plate opening is set to be smaller than a diameter of the back-side connection terminal. 前記裏面側接続端子上にははんだボールが接合されるとともに、前記補強板開口部の最大径が前記はんだボールの直径よりも大きく、かつ、前記補強板開口部の最小径が前記はんだボールの直径よりも小さくなるように設定されていることを特徴とする請求項1または2に記載の多層配線基板。   A solder ball is bonded onto the back side connection terminal, the maximum diameter of the reinforcing plate opening is larger than the diameter of the solder ball, and the minimum diameter of the reinforcing plate opening is the diameter of the solder ball. The multilayer wiring board according to claim 1, wherein the multilayer wiring board is set to be smaller than that of the multilayer wiring board. 前記補強板は、非金属材料からなることを特徴とする請求項1乃至3のいずれか1項に記載の多層配線基板。   The multilayer wiring board according to any one of claims 1 to 3, wherein the reinforcing plate is made of a non-metallic material. 前記補強板は、合成樹脂を主体材料とするものであることを特徴とする請求項1乃至4のいずれか1項に記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein the reinforcing plate is made of synthetic resin as a main material.
JP2008086886A 2008-03-28 2008-03-28 Multilayer wiring board Expired - Fee Related JP5179920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086886A JP5179920B2 (en) 2008-03-28 2008-03-28 Multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086886A JP5179920B2 (en) 2008-03-28 2008-03-28 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2009239224A true JP2009239224A (en) 2009-10-15
JP5179920B2 JP5179920B2 (en) 2013-04-10

Family

ID=41252781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086886A Expired - Fee Related JP5179920B2 (en) 2008-03-28 2008-03-28 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5179920B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111951A (en) * 2009-12-28 2011-06-29 日本特殊陶业株式会社 Multilayered wiring substrate
CN102164451A (en) * 2010-02-16 2011-08-24 日本特殊陶业株式会社 Multilayer wiring substrate and method of manufacturing the same
CN102347287A (en) * 2010-08-02 2012-02-08 日本特殊陶业株式会社 Multilayer wiring substrate
JP2013520011A (en) * 2010-02-16 2013-05-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Direct IMS (injection molding solder) without using a mask to form solder bumps on the substrate
KR101290471B1 (en) 2010-02-26 2013-07-26 니혼도꾸슈도교 가부시키가이샤 Multilayered wiring board and method of manufacturing the same
JP2014187399A (en) * 2010-05-20 2014-10-02 Qualcomm Inc Process for improving package warpage and connection reliability through use of backside mold configuration (bsmc)
JP2014528166A (en) * 2011-09-09 2014-10-23 クアルコム,インコーポレイテッド Soldering relaxation method and semiconductor device using the same
KR20160087176A (en) 2015-01-13 2016-07-21 삼성전기주식회사 Printed circuit board and method of manufacturing the same
US20180090426A1 (en) * 2016-09-29 2018-03-29 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
JP2019087717A (en) * 2017-11-09 2019-06-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Support adhesion printed circuit board and manufacturing method of support adhesion printed circuit board
KR20190068421A (en) * 2017-12-08 2019-06-18 신꼬오덴기 고교 가부시키가이샤 Wiring board and manufacturing method thereof
JP2021086897A (en) * 2019-11-27 2021-06-03 株式会社ソシオネクスト Semiconductor device
WO2023080097A1 (en) * 2021-11-05 2023-05-11 日東電工株式会社 Re-wiring circuit board and method for manufacturing same
WO2023248658A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Circuit module and method for manufacturing circuit module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222655A (en) * 1995-02-13 1996-08-30 Hitachi Ltd Electrode structure for electronic device and production thereof
JPH0945844A (en) * 1995-07-31 1997-02-14 Sumitomo Kinzoku Electro Device:Kk Jointed structure of low-temperature firing ceramic board with external i/o pin and manufacture thereof
JP2001177010A (en) * 1999-10-05 2001-06-29 Nec Corp Wiring board, semiconductor device having wiring board and manufacturing method thereof and packaging method
JP2006339412A (en) * 2005-06-02 2006-12-14 Toppan Printing Co Ltd Base material for forming semiconductor device substrate and method for manufacturing semiconductor device substrate using it, and semiconductor device substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222655A (en) * 1995-02-13 1996-08-30 Hitachi Ltd Electrode structure for electronic device and production thereof
JPH0945844A (en) * 1995-07-31 1997-02-14 Sumitomo Kinzoku Electro Device:Kk Jointed structure of low-temperature firing ceramic board with external i/o pin and manufacture thereof
JP2001177010A (en) * 1999-10-05 2001-06-29 Nec Corp Wiring board, semiconductor device having wiring board and manufacturing method thereof and packaging method
JP2006339412A (en) * 2005-06-02 2006-12-14 Toppan Printing Co Ltd Base material for forming semiconductor device substrate and method for manufacturing semiconductor device substrate using it, and semiconductor device substrate

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111951A (en) * 2009-12-28 2011-06-29 日本特殊陶业株式会社 Multilayered wiring substrate
KR101323541B1 (en) 2009-12-28 2013-10-29 니혼도꾸슈도교 가부시키가이샤 Multilayered wiring substrate
CN102164451A (en) * 2010-02-16 2011-08-24 日本特殊陶业株式会社 Multilayer wiring substrate and method of manufacturing the same
JP2013520011A (en) * 2010-02-16 2013-05-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Direct IMS (injection molding solder) without using a mask to form solder bumps on the substrate
KR101329896B1 (en) 2010-02-16 2013-11-15 니혼도꾸슈도교 가부시키가이샤 Multilayer Wiring Substrate, and Method of Manufacturing the Same
US8772643B2 (en) 2010-02-16 2014-07-08 Ngk Spark Plug Co., Ltd. Multilayer wiring substrate, and method of manufacturing the same
KR101290471B1 (en) 2010-02-26 2013-07-26 니혼도꾸슈도교 가부시키가이샤 Multilayered wiring board and method of manufacturing the same
JP2014187399A (en) * 2010-05-20 2014-10-02 Qualcomm Inc Process for improving package warpage and connection reliability through use of backside mold configuration (bsmc)
EP2572372B1 (en) * 2010-05-20 2020-09-02 Qualcomm Incorporated(1/3) Process for improving package warpage and connection reliability through use of a backside mold configuration (bsmc)
JP2015144317A (en) * 2010-05-20 2015-08-06 クアルコム,インコーポレイテッド Process for improving package warpage and connection reliability through use of backside mold configuration (bsmc)
JP2012033790A (en) * 2010-08-02 2012-02-16 Ngk Spark Plug Co Ltd Multilayer wiring board
US8530751B2 (en) 2010-08-02 2013-09-10 Ngk Spark Plug Co., Ltd. Multilayer wiring substrate
CN102347287A (en) * 2010-08-02 2012-02-08 日本特殊陶业株式会社 Multilayer wiring substrate
JP2014528166A (en) * 2011-09-09 2014-10-23 クアルコム,インコーポレイテッド Soldering relaxation method and semiconductor device using the same
KR20160087176A (en) 2015-01-13 2016-07-21 삼성전기주식회사 Printed circuit board and method of manufacturing the same
US20180090426A1 (en) * 2016-09-29 2018-03-29 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
TWI767939B (en) * 2016-09-29 2022-06-21 日商新光電氣工業股份有限公司 Carrier base material-added wiring substrate and method for manufacturing carrier base material-added wiring substrate
US10340214B2 (en) * 2016-09-29 2019-07-02 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
JP2018056361A (en) * 2016-09-29 2018-04-05 新光電気工業株式会社 Wiring board with carrier substrate, and method for manufacturing wiring board with carrier substrate
JP2019087717A (en) * 2017-11-09 2019-06-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Support adhesion printed circuit board and manufacturing method of support adhesion printed circuit board
JP7088531B2 (en) 2017-11-09 2022-06-21 サムソン エレクトロ-メカニックス カンパニーリミテッド. Support-attached printed circuit board and support-attached printed circuit board manufacturing method
JP7007882B2 (en) 2017-12-08 2022-01-25 新光電気工業株式会社 Wiring board and its manufacturing method
JP2019102774A (en) * 2017-12-08 2019-06-24 新光電気工業株式会社 Wiring board and manufacturing method thereof
KR20190068421A (en) * 2017-12-08 2019-06-18 신꼬오덴기 고교 가부시키가이샤 Wiring board and manufacturing method thereof
KR102531075B1 (en) 2017-12-08 2023-05-09 신꼬오덴기 고교 가부시키가이샤 Wiring board and manufacturing method thereof
JP2021086897A (en) * 2019-11-27 2021-06-03 株式会社ソシオネクスト Semiconductor device
JP7279624B2 (en) 2019-11-27 2023-05-23 株式会社ソシオネクスト semiconductor equipment
US11694985B2 (en) 2019-11-27 2023-07-04 Socionext Inc. Semiconductor device
WO2023080097A1 (en) * 2021-11-05 2023-05-11 日東電工株式会社 Re-wiring circuit board and method for manufacturing same
WO2023248658A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Circuit module and method for manufacturing circuit module

Also Published As

Publication number Publication date
JP5179920B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5290017B2 (en) Multilayer wiring board and manufacturing method thereof
JP5356876B2 (en) Multilayer wiring board and manufacturing method thereof
JP5179920B2 (en) Multilayer wiring board
JP5284235B2 (en) Semiconductor package
JP5284147B2 (en) Multilayer wiring board
TWI423754B (en) Multilayer wiring substrate and method for manufacturing the same
JP5339928B2 (en) Wiring board and manufacturing method thereof
JP4334005B2 (en) Wiring board manufacturing method and electronic component mounting structure manufacturing method
JP5289996B2 (en) Reinforced wiring board
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
JP4635033B2 (en) Wiring board manufacturing method and electronic component mounting structure manufacturing method
KR101580343B1 (en) Method of Manufacturing Multilayer Wiring Substrate
JP5172404B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board intermediate product
JP5284146B2 (en) Multilayer wiring board and manufacturing method thereof
JP5260215B2 (en) Manufacturing method of wiring board with reinforcing material
JP5340622B2 (en) Multilayer wiring board
JP5129783B2 (en) Wiring board with reinforcing material and method for manufacturing the same
JP5350829B2 (en) Manufacturing method of wiring board with reinforcing material, wiring board for wiring board with reinforcing material
JP2012174870A (en) Multilayer wiring board
JP5449413B2 (en) Multilayer wiring board
JP2013102096A (en) Wiring board and method of manufacturing the same
JP2014154794A (en) Support substrate for manufacturing multilayer wiring board, method of manufacturing multilayer wiring board
JP2013105972A (en) Wiring board and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees