JP2009238842A - Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device - Google Patents

Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device Download PDF

Info

Publication number
JP2009238842A
JP2009238842A JP2008080258A JP2008080258A JP2009238842A JP 2009238842 A JP2009238842 A JP 2009238842A JP 2008080258 A JP2008080258 A JP 2008080258A JP 2008080258 A JP2008080258 A JP 2008080258A JP 2009238842 A JP2009238842 A JP 2009238842A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
substrate
paraelectric
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080258A
Other languages
Japanese (ja)
Inventor
Takashi Ito
隆司 伊藤
Shinichiro Kuroki
伸一郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008080258A priority Critical patent/JP2009238842A/en
Publication of JP2009238842A publication Critical patent/JP2009238842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a ferroelectric thin film and a paraelectric thin film on an insulating material substrate of a plastic substrate or glass substrate, and to provide a manufacturing method of a ferroelectric memory using the same. <P>SOLUTION: An amorphous PZT thin film 2 is deposited on an insulating material substrate 1 by a spin coating method. A continuous oscillation laser beam 4 which is shaped linear and has a wavelength of 532 nm is scan-radiated on a surface 3 of oxide 2 for crystallization, thereby excellent ferroelectric characteristics is provided. Since an optimum heat can be applied to a target oxide 2 concentrically for a short period, rising of temperature of the substrate 1 and other layer is suppressed. Since laser beam radiation is executed in a short period, even if the temperature of oxide film abruptly rises, dislocation in composition due to evaporation is minimum. In particular, the insulating material substrate 1 of plastic substrate or glass substrate is used to ensure less thermal loss to the substrate, resulting in effective crystallization. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガラス基板あるいはプラスチック基板の絶縁素材基板上への強誘電体薄膜及び常誘電体薄膜の形成方法およびそれを利用した強誘電体メモリの製造方法に関わる。   The present invention relates to a method for forming a ferroelectric thin film and a paraelectric thin film on an insulating material substrate such as a glass substrate or a plastic substrate, and a method for manufacturing a ferroelectric memory using the same.

強誘電体メモリは、マトリクス上に配置したセルに自発分極を有する強誘電体薄膜を用い、セルの分極状態を検出する不揮発性メモリである。このメモリは強誘電体薄膜の高速な分極反転と残留分極を利用するため、高速書き込みや低消費電力といった特徴を持っている。強誘電体は電場をかけることにより自発分極の方向が反転する。かける電圧の正負を切りかえることにより正または負の電荷を表面に誘起する。この誘起された正または負の電荷は不揮発に保持されるため、不揮発性メモリとなる。従来、強誘電体メモリはシリコン基板上での製造が主であった。   A ferroelectric memory is a non-volatile memory that uses a ferroelectric thin film having spontaneous polarization for cells arranged on a matrix and detects the polarization state of the cells. Since this memory uses high-speed polarization reversal and remanent polarization of a ferroelectric thin film, it has features such as high-speed writing and low power consumption. The direction of spontaneous polarization of a ferroelectric is reversed by applying an electric field. A positive or negative charge is induced on the surface by switching the applied voltage between positive and negative. Since the induced positive or negative charge is held in a nonvolatile manner, a nonvolatile memory is obtained. Conventionally, the ferroelectric memory has been mainly manufactured on a silicon substrate.

強誘電体材料としては、ペロブスカイト型強誘電体であるPb(Zr,Ti)O3(以下、PZT)や、Bi層状構造強誘電体であるSrBi2Ta2O9(以下、SBT)などの複合酸化物がよく知られている。強誘電体薄膜の製造方法としてはスピン塗布法、化学気相成長(CVD)法、スパッタ法、有機金属気相成長(MOCVD)法などがある。またミスト化した強誘電体材料溶液を基板上に塗布成膜する方法も知られている。これら方法にて成膜した後、PZT膜やSBT膜などによる強誘電体薄膜を得るためには、通常500℃以上の高い温度で熱処理を施し結晶化させる必要があり、一般に、PZT膜では600℃〜700℃、SBT膜では700℃〜800℃の熱処理が必要である。従来は石英加熱炉やRTA(Rapid Thermal Anneal)などにより基板全体を加熱し、強誘電体薄膜を結晶化していた。 Ferroelectric materials include Pb (Zr, Ti) O3 (hereinafter referred to as PZT), a perovskite ferroelectric, and SrBi 2 Ta 2 O 9 (hereinafter referred to as SBT), a Bi-layered ferroelectric. Oxides are well known. Ferroelectric thin film manufacturing methods include spin coating, chemical vapor deposition (CVD), sputtering, and metal organic chemical vapor deposition (MOCVD). There is also known a method of coating a film of a misted ferroelectric material on a substrate. In order to obtain a ferroelectric thin film such as a PZT film or an SBT film after film formation by these methods, it is usually necessary to perform heat treatment at a high temperature of 500 ° C. or higher to crystallize. Heat treatment at 700 ° C. to 700 ° C. and 700 ° C. to 800 ° C. are necessary for SBT films. Conventionally, a ferroelectric thin film is crystallized by heating the entire substrate with a quartz heating furnace or RTA (Rapid Thermal Anneal).

薄膜トランジスタ(Thin Film Transistor, TFT)は、液晶ディスプレイ(LCD)や有機ELディスプレイなどのフラットパネルディスプレイ(FPD)において、アクティブマトリクス動作の画素スイッチとして広く使われている。ディスプレイの厚み薄型化と低コスト化の要求から、画素スイッチだけでなく、制御ドライバ回路やCPU、そしてメモリを同じガラス基板上につくりこむシステム・オン・パネル(System On Panel, SOP)が求められている。SOPに作製するメモリとして、低消費電力の観点から強誘電体メモリが最適である。他方、ガラス基板においては500℃以上の温度では基板が損傷もしくは湾曲してしまうため、これら基板を用いる場合はこれら温度以下の低温もしくは室温に保ちつつ結晶化を行う必要がある。このためガラス基板上に強誘電体メモリを作製するためには、強誘電体薄膜も500℃以下の温度で成膜する必要があるが、従来の石英加熱炉やRTAでは基板全体を加熱するため、これら製造方法を用いることはできない。   Thin film transistors (TFTs) are widely used as pixel switches for active matrix operation in flat panel displays (FPDs) such as liquid crystal displays (LCDs) and organic EL displays. Due to demands for thinner and thinner displays and lower costs, a system-on-panel (SOP) is required, in which not only the pixel switch but also the control driver circuit, CPU, and memory are built on the same glass substrate. ing. As a memory to be manufactured in the SOP, a ferroelectric memory is optimal from the viewpoint of low power consumption. On the other hand, glass substrates are damaged or curved at temperatures of 500 ° C. or higher. Therefore, when these substrates are used, it is necessary to perform crystallization while maintaining a low temperature or room temperature below these temperatures. For this reason, in order to fabricate a ferroelectric memory on a glass substrate, it is necessary to form a ferroelectric thin film at a temperature of 500 ° C. or lower. However, a conventional quartz heating furnace or RTA heats the entire substrate. These manufacturing methods cannot be used.

ガラス基板やプラスチック基板などの絶縁素材基板の上に強誘電体メモリや強誘電体薄膜を作製するためには、ガラス基板においては500℃以上、プラスチック基板では200℃以上では基板が損傷もしくは湾曲してしまうため、これら基板を用いる場合はこれら温度以下の低温もしくは室温に保ちつつ結晶化を行う必要がある。   In order to fabricate a ferroelectric memory or a ferroelectric thin film on an insulating material substrate such as a glass substrate or a plastic substrate, the substrate is damaged or bent at a temperature of 500 ° C or higher for a glass substrate and 200 ° C or higher for a plastic substrate. Therefore, when these substrates are used, it is necessary to perform crystallization while maintaining the temperature below these temperatures or at room temperature.

PZT膜やSBT膜などによる強誘電体薄膜の低温結晶化として、レーザアニールがあるが、シリコン基板上ではシリコン基板の熱伝導率が高いため熱損失が大きく、レーザアニールによって強誘電体薄膜が十分には加熱されず、結晶化が進まない。従来のレーザアニールとしては、特許公開2002-314045に述べられているようなシリコン基板上へ成膜した強誘電体薄膜のパルス発振エキシマーレーザアニール法がある。このようなパルス発振では平均的には必要な熱量を対象とする酸化膜薄膜に供給できても、ピーク時には非常に高いエネルギービームを照射することになる。また、シリコン基板は熱伝導率が高いため、一旦はレーザ照射により酸化膜薄膜の温度が上昇しても、レーザパルス照射後は酸化膜薄膜の熱がシリコン基板に伝わり急激に冷却される。このため、酸化物中の原子に所定のエネルギーを連続して与え、活性な原子の拡散を容易にし、結晶化を促進させることを目的とする強誘電体薄膜の結晶成長には、シリコン基板上へ成膜した強誘電体薄膜へのパルス発振エキシマーレーザアニール法は適当でない。これに対してガラス基板上では熱伝導率が低くシリコン基板の1/100程度であり、レーザアニールにより十分に加熱され、その結果結晶化が促進される。   Laser annealing is a low-temperature crystallization of ferroelectric thin films such as PZT and SBT films. However, on silicon substrates, the thermal conductivity of the silicon substrate is high, so heat loss is large. Is not heated and crystallization does not proceed. As conventional laser annealing, there is a pulse oscillation excimer laser annealing method of a ferroelectric thin film formed on a silicon substrate as described in Japanese Patent Publication No. 2002-314045. In such a pulse oscillation, even if the required amount of heat can be supplied to the target oxide film thin film on average, a very high energy beam is irradiated at the peak. Further, since the silicon substrate has a high thermal conductivity, even if the temperature of the oxide film thin film is once increased by laser irradiation, the heat of the oxide film thin film is transmitted to the silicon substrate and rapidly cooled after the laser pulse irradiation. For this reason, the crystal growth of a ferroelectric thin film intended to give predetermined energy continuously to the atoms in the oxide, facilitate the diffusion of active atoms, and promote crystallization is not possible on the silicon substrate. The pulsed excimer laser annealing method is not suitable for the ferroelectric thin film deposited on the substrate. On the other hand, the thermal conductivity is low on the glass substrate, which is about 1/100 of that of the silicon substrate, and is sufficiently heated by laser annealing. As a result, crystallization is promoted.

しかしガラス基板などの絶縁素材基板にPZT膜やSBT膜などによる強誘電体薄膜を成膜し、レーザビームを用いて結晶化した場合、強誘電体薄膜の温度上昇により絶縁素材基板が損傷を受ける。また逆に絶縁素材基板の不純物が、レーザアニール時に強誘電体薄膜まで拡散し、強誘電体薄膜特性が劣化する。   However, when a ferroelectric thin film such as a PZT film or SBT film is formed on an insulating material substrate such as a glass substrate and crystallized using a laser beam, the insulating material substrate is damaged by the temperature rise of the ferroelectric thin film. . Conversely, the impurities in the insulating material substrate diffuse to the ferroelectric thin film during laser annealing, and the ferroelectric thin film characteristics deteriorate.

ガラス基板などの絶縁素材基板上に薄膜トランジスタが形成されている場合、この上に成膜したPZT膜やSBT膜などによる強誘電体薄膜を、レーザビームを用いて結晶化した場合、強誘電体薄膜の温度上昇により薄膜トランジスタが損傷を受ける。   When a thin film transistor is formed on an insulating material substrate such as a glass substrate, a ferroelectric thin film formed on the PZT film or SBT film formed on the thin film is crystallized using a laser beam. As the temperature rises, the thin film transistor is damaged.

本発明の強誘電体薄膜及び常誘電体薄膜の形成方法では、基板として特にガラス基板あるいはプラスチック基板の絶縁基板を用い、酸化物薄膜を基板上に直接あるいは他の層を介して堆積し形成し、その後レーザビームを照射して結晶化を促進させる。   In the method for forming a ferroelectric thin film and a paraelectric thin film according to the present invention, an insulating substrate such as a glass substrate or a plastic substrate is used as a substrate, and an oxide thin film is deposited on the substrate directly or via another layer. Thereafter, the laser beam is irradiated to promote crystallization.

また、前記方法において、レーザビームを照射して、強誘電体となる酸化物薄膜の下地レーザ光吸収層を介し、酸化物薄膜を加熱し結晶化を促進させる。   Further, in the above method, the laser beam is irradiated and the oxide thin film is heated through the underlying laser light absorption layer of the oxide thin film that becomes a ferroelectric to promote crystallization.

また、前記方法において、酸化物薄膜の上にさらに他のレーザ光吸収層を形成し、その後レーザビームを照射して結晶化を促進させる。   In the above method, another laser light absorption layer is formed on the oxide thin film, and then laser irradiation is performed to promote crystallization.

また、前記方法において、ガラス基板あるいはプラスチック基板の絶縁素材基板上にシリコン酸化膜などの絶縁薄膜をバッファ層として堆積し、この上に結晶化することによって強誘電体もしくは常誘電体となる酸化物薄膜を堆積することにより、レーザビーム照射時の絶縁素材基板の損傷を防止する。また同時にこの絶縁薄膜バッファ層により強誘電体薄膜もしくは常誘電体への不純物拡散を抑制する。   In the above method, an oxide that becomes a ferroelectric or paraelectric by depositing an insulating thin film such as a silicon oxide film as a buffer layer on an insulating material substrate such as a glass substrate or a plastic substrate and crystallizing on the insulating thin film. By depositing a thin film, damage to the insulating material substrate during laser beam irradiation is prevented. At the same time, this insulating thin film buffer layer suppresses impurity diffusion into the ferroelectric thin film or paraelectric.

また、前記方法において、ガラス基板あるいはプラスチック基板の絶縁素材基板上に薄膜トランジスタが形成されている場合、この上にシリコン酸化膜などの絶縁薄膜をバッファ層として堆積し、更に結晶化することによって強誘電体となる酸化物薄膜を堆積することにより、レーザビーム照射時の薄膜トランジスタの損傷を防止する。   In the above method, when a thin film transistor is formed on an insulating material substrate such as a glass substrate or a plastic substrate, an insulating thin film such as a silicon oxide film is deposited on the thin film transistor as a buffer layer, and further crystallized to produce a ferroelectric. By depositing an oxide thin film serving as a body, damage to the thin film transistor during laser beam irradiation is prevented.

また、前記方法において、酸化物薄膜の上にさらに他の層を形成し、その後レーザビームを照射して結晶化を促進させる。   In the above method, another layer is formed on the oxide thin film, and then laser irradiation is performed to promote crystallization.

また、前記方法において、酸化物薄膜の少なくとも一部がペロブスカイト相結晶構造を有する酸化物である。   In the above method, at least a part of the oxide thin film is an oxide having a perovskite phase crystal structure.

また、前記方法において、酸化物薄膜の少なくとも一部がパイロクロア相結晶構造を有する酸化物である。   In the above method, at least a part of the oxide thin film is an oxide having a pyrochlore phase crystal structure.

また、前記方法において、レーザビームをレーザ出力制御とスキャン制御して照射し、強誘電体薄膜もしくは常誘電体薄膜の結晶化を促進させる。   In the above method, the laser beam is irradiated with laser output control and scan control to promote crystallization of the ferroelectric thin film or the paraelectric thin film.

本発明による、ガラス基板あるいはプラスチック基板の絶縁素材基板上に成膜した強誘電体となる酸化膜へのレーザビームを用いれば、絶縁素材基板の熱伝導率が低いため、十分な時間、結晶化温度を保つことができ、このためペロブスカイト結晶化を促進し、特に強誘電性発現に必要なc軸配向をもつ優れた強誘電体薄膜の作製が可能になる。   If a laser beam is applied to an oxide film that becomes a ferroelectric film formed on an insulating material substrate such as a glass substrate or a plastic substrate according to the present invention, the thermal conductivity of the insulating material substrate is low. The temperature can be maintained, and therefore, crystallization of perovskite is promoted, and an excellent ferroelectric thin film having a c-axis orientation particularly necessary for ferroelectricity can be produced.

本発明によれば、ガラス基板あるいはプラスチック基板の絶縁素材基板上にシリコン酸化膜などの絶縁薄膜を堆積し、この上に結晶化することによって強誘電体となる酸化物薄膜を基板上に直接あるいは他の層を介して堆積することにより、レーザビーム照射時の絶縁素材基板の損傷を防止し、また同時にこの絶縁薄膜により強誘電体薄膜への不純物拡散を抑制可能となる。ガラス基板あるいはプラスチック基板の絶縁素材基板上に薄膜トランジスタが形成されている場合も、本発明により薄膜トランジスタへの損傷を防止できる。本発明を用いることにより、ガラス基板あるいはプラスチック基板の絶縁素材基板上にTFTを用いた強誘電体メモリを作製可能となる。   According to the present invention, an insulating thin film such as a silicon oxide film is deposited on an insulating material substrate such as a glass substrate or a plastic substrate, and an oxide thin film that becomes a ferroelectric substance is crystallized on the insulating thin film directly or on the substrate. By depositing through another layer, damage to the insulating material substrate at the time of laser beam irradiation can be prevented, and at the same time, diffusion of impurities into the ferroelectric thin film can be suppressed by this insulating thin film. Even when a thin film transistor is formed on an insulating material substrate such as a glass substrate or a plastic substrate, the present invention can prevent damage to the thin film transistor. By using the present invention, a ferroelectric memory using a TFT can be fabricated on an insulating material substrate such as a glass substrate or a plastic substrate.

以下に実施例を示すが、これは本発明を例示するものであり、本発明はこれらに限定されるものではなく、他の強誘電体膜の形成に適用可能である。   Examples will be shown below, but these are examples of the present invention, and the present invention is not limited to these, and can be applied to the formation of other ferroelectric films.

本発明の実施例(1)の模式図を図1に示す。ガラス基板1上にスピンコート法により250 nmの膜厚のPZT薄膜2を堆積する。X解回折法によると、この酸化物は結晶化しておらず非晶質(アモルファス状態)である。その後、ライン状に整形された532 nmの波長をもつ連続発振レーザビーム4を酸化物の表面3にスキャン照射して結晶化させる。図1の5は、スキャン方向を示す。レーザ出力は1.0−4.0 Wである。X-Yステージに載せられた酸化物膜を堆積させたSi基板を移動することにより酸化物のレーザ分にレーザをスキャン照射する。本発明の強誘電体薄膜の形成方法では、レーザビーム照射によりガラス基板上の強誘電体薄膜の結晶化を促進せしめ、優れた強誘電特性が得られる特長がある。対象となる酸化物に集中的 にしかも短時間で最適な熱を与えることができるため、基板や他の層の温度上昇を押さえることが可能である。また、レーザービー ム照射により酸化膜の温度が急激に上昇しても短時間での処理となり、蒸発などによる組成のずれを最小限にすることが可能である。特にガラス基板あるいはプラスチック基板の絶縁素材基板を用いるため、基板への熱損失が少なく、有効に結晶化を行うことができる。   A schematic diagram of Example (1) of the present invention is shown in FIG. A PZT thin film 2 having a thickness of 250 nm is deposited on the glass substrate 1 by spin coating. According to the X-diffraction method, this oxide is not crystallized and is amorphous (amorphous state). Thereafter, a continuous wave laser beam 4 having a wavelength of 532 nm shaped into a line is scanned and irradiated on the oxide surface 3 to be crystallized. 1 in FIG. 1 indicates the scanning direction. The laser power is 1.0-4.0 W. By moving the Si substrate on which the oxide film deposited on the X-Y stage is moved, the laser is irradiated to the oxide laser. The method for forming a ferroelectric thin film of the present invention has an advantage that excellent ferroelectric properties can be obtained by accelerating crystallization of the ferroelectric thin film on the glass substrate by laser beam irradiation. Since optimum heat can be applied to the target oxide in a concentrated manner in a short time, the temperature rise of the substrate and other layers can be suppressed. In addition, even if the temperature of the oxide film is rapidly increased by laser beam irradiation, the treatment can be performed in a short time, and compositional deviation due to evaporation or the like can be minimized. In particular, since an insulating material substrate such as a glass substrate or a plastic substrate is used, the heat loss to the substrate is small and crystallization can be performed effectively.

本発明の実施例(2)の模式図を図2に示す。ガラス基板1上に、スパッタ法でTi薄膜を50 nm成膜6し、Pt薄膜を200 nm成膜7し、その後スピンコート法により250 nmの膜厚のPZT薄膜2を堆積する。このTi薄膜6はPt薄膜7とガラス基板1との密着性を向上するために成膜している。またPt薄膜7は、PZT薄膜2の下地電極として成膜しているが、同時にレーザ照射時のレーザ光吸収層としても使用する。その後、ライン状に整形された532 nmの波長をもつ連続発振レーザビーム4を酸化物の表面3にスキャン照射して結晶化させる。図2の5は、スキャン方向を示す。レーザ出力は1.0−4.0 Wである。X-Yステージに載せられた酸化物膜を堆積させたSi基板を移動することにより酸化物のレーザ分にレーザをスキャン照射する。   A schematic diagram of Example (2) of the present invention is shown in FIG. On the glass substrate 1, a Ti thin film 50 nm is formed 6 by sputtering, a Pt thin film 200 nm is formed 7, and then a PZT thin film 2 having a thickness of 250 nm is deposited by spin coating. The Ti thin film 6 is formed in order to improve the adhesion between the Pt thin film 7 and the glass substrate 1. The Pt thin film 7 is formed as a base electrode of the PZT thin film 2, but is also used as a laser light absorption layer at the time of laser irradiation. Thereafter, a continuous wave laser beam 4 having a wavelength of 532 nm shaped into a line is scanned and irradiated on the oxide surface 3 to be crystallized. 2 in FIG. 2 indicates the scanning direction. The laser power is 1.0-4.0 W. By moving the Si substrate on which the oxide film deposited on the X-Y stage is moved, the laser is irradiated to the oxide laser.

本発明の実施例(3)の模式図を図3に示す。ガラス基板1上にAPCVD法によりシリコン酸化膜を400 nm成膜8し、スパッタ法でTi薄膜を50 nm成膜6し、Pt薄膜を200 nm成膜7し、その後スピンコート法により250 nmの膜厚のPZT薄膜2を堆積する。シリコン酸化膜8はバッファ層として堆積し、このバッファ層によりレーザビーム照射時のガラス基板の損傷を防止するとともに、このバッファ層によりガラス基板から強誘電体薄膜への不純物拡散を抑制する。X解回折法によると、この酸化物は結晶化しておらず非晶質(アモルファス状態)である。その後、ライン状に整形された532 nmの波長をもつ連続発振レーザビーム4を酸化物の表面3にスキャン照射して結晶化させる。図3の5は、スキャン方向を示す。レーザ出力は1.0−4.0 Wである。X-Yステージに載せられた酸化物膜を堆積させたSi基板を移動することにより酸化物のレーザ分にレーザをスキャン照射する。得られた強誘電体薄膜表面の光学顕微鏡写真を図4に示す。この図に示したように強誘電体薄膜の状態はレーザスキャンの速度に依存する。図5に強誘電体薄膜の結晶化状態のレーザ出力とスキャン速度依存性を示す。図6にX線回折(XRD)による測定結果を示す。微結晶領域(スキャン速度9、11cm/s)では常誘電相であるパイロクロア相Py(222)がみられ、強誘電特性を示すペロブスカイト相のピークは観察されないが、さらにスキャン速度を遅くすると、パイロクロア相Py(222)は発現せず、ペロブスカイト相のピークが観察された。特に島状グレイン結晶化領域のスキャン速度5.0 cm/sでは、特に強誘電特性を示すc軸Per(001)が特に顕著になることが明らかになった。この島状グレイン結晶条件での分極特性を、図7に示す。レーザ出力1.0 W時での島状グレイン結晶条件にて測定を行ったものである。スキャン速度3.0 cm/sでは極めて低い残留分極であるが、スキャン速度を遅くするにつれて残留分極が大きくなり、スキャン速度0.9 cm/sでは13 μC/cm2の高い残留分極特性を示した。 A schematic diagram of Example (3) of the present invention is shown in FIG. A 400 nm silicon oxide film is deposited 8 on the glass substrate 1 by APCVD, a 50 nm Ti film is deposited 6 by sputtering, a 200 nm Pt film 7 is deposited, and then 250 nm is deposited by spin coating. A PZT thin film 2 having a thickness is deposited. The silicon oxide film 8 is deposited as a buffer layer. This buffer layer prevents damage to the glass substrate during laser beam irradiation, and suppresses impurity diffusion from the glass substrate to the ferroelectric thin film. According to the X-diffraction method, this oxide is not crystallized and is amorphous (amorphous state). Thereafter, a continuous wave laser beam 4 having a wavelength of 532 nm shaped into a line is scanned and irradiated on the oxide surface 3 to be crystallized. 3 in FIG. 3 indicates the scanning direction. The laser power is 1.0-4.0 W. By moving the Si substrate on which the oxide film deposited on the XY stage is moved, laser irradiation is performed on the oxide laser component. An optical micrograph of the surface of the obtained ferroelectric thin film is shown in FIG. As shown in this figure, the state of the ferroelectric thin film depends on the speed of laser scanning. FIG. 5 shows the laser output and scan speed dependence of the crystallization state of the ferroelectric thin film. FIG. 6 shows the measurement results by X-ray diffraction (XRD). In the microcrystalline region (scanning speed 9, 11 cm / s), a pyrochlore phase Py (222), which is a paraelectric phase, is observed, and no peak of the perovskite phase showing ferroelectric properties is observed. The phase Py (222) was not expressed and the peak of the perovskite phase was observed. In particular, it became clear that c-axis Per (001), which exhibits ferroelectric properties, becomes particularly prominent at an island grain crystallization region scan speed of 5.0 cm / s. The polarization characteristics under this island-shaped grain crystal condition are shown in FIG. The measurement was performed under the condition of island-shaped grain crystals at a laser output of 1.0 W. Although the remanent polarization was very low at a scan speed of 3.0 cm / s, the remanent polarization increased as the scan speed was slowed down, and a high remanent polarization characteristic of 13 μC / cm 2 was exhibited at a scan speed of 0.9 cm / s.

図8に、本発明による実施例(4)の強誘電体メモリセルの断面模式図を示す。図8(1)に示すように、ガラス基板9に形成した薄膜トランジスタ11のドレイン電極に接続して強誘電体キャパシタ14を設ける。一方の電極は配線13に接続する。1T1C型強誘電体メモリの場合、配線13がビット線であり、配線15がプレート線である。シリコン酸化膜バッファ層として、ガラス基板上バッファ層10と薄膜トランジスタ上のバッファ層12が成膜してある。本発明の強誘電体メモリの製造方法においては、強誘電体キャパシタの形成部に選択的にレーザビーム照射をするために、基板や他の層への熱の影響が少ない。そのため従来のように熱処理炉で処理する場合よりも必要ならば高い温度まで該酸化膜の温度を上げることができる。これにより理想的な条件で強誘電体薄膜メモリセルの形成が可能になる。図8(2)は、メモリ回路モデルである。ワード線とビット線に電圧をかけ、薄膜トランジスタ16を介して、プレート電圧との差分電圧が強誘電体キャパシタ17に印加され、その極性によってメモリ動作する。本発明の実施により、ガラス基板あるいはプラスチック基板の絶縁素材基板上に強誘電体薄膜メモリセルを製造可能となる。   FIG. 8 shows a schematic cross-sectional view of a ferroelectric memory cell of Example (4) according to the present invention. As shown in FIG. 8A, a ferroelectric capacitor 14 is provided in connection with the drain electrode of the thin film transistor 11 formed on the glass substrate 9. One electrode is connected to the wiring 13. In the case of the 1T1C type ferroelectric memory, the wiring 13 is a bit line and the wiring 15 is a plate line. As a silicon oxide film buffer layer, a buffer layer 10 on a glass substrate and a buffer layer 12 on a thin film transistor are formed. In the method for manufacturing a ferroelectric memory according to the present invention, the laser capacitor is selectively irradiated to the formation portion of the ferroelectric capacitor, so that the influence of heat on the substrate and other layers is small. Therefore, if necessary, the temperature of the oxide film can be raised to a higher temperature than when processing in a heat treatment furnace as in the prior art. This makes it possible to form a ferroelectric thin film memory cell under ideal conditions. FIG. 8B is a memory circuit model. A voltage is applied to the word line and the bit line, and a differential voltage from the plate voltage is applied to the ferroelectric capacitor 17 through the thin film transistor 16, and the memory operation is performed according to the polarity. By implementing the present invention, a ferroelectric thin film memory cell can be manufactured on an insulating material substrate such as a glass substrate or a plastic substrate.

本発明の実施により、ガラス基板あるいはプラスチック基板の絶縁素材基板上に強誘電体キャパシタを形成可能となり、これにより薄膜トランジスタと組み合わせた強誘電体メモリが絶縁素材基板上でも製造可能となる。工業生産における実用的な価値は高く、幅広く電子機器産業に貢献することが見込める。   By implementing the present invention, a ferroelectric capacitor can be formed on an insulating material substrate such as a glass substrate or a plastic substrate, and thus a ferroelectric memory combined with a thin film transistor can be manufactured on the insulating material substrate. Practical value in industrial production is high, and it can be expected to contribute widely to the electronics industry.

本発明を実施する連続発振レーザビーム照射の模式図である。ガラス基板に堆積したPZT薄膜の上をビームがスキャンする様子を示す。It is a schematic diagram of continuous wave laser beam irradiation implementing the present invention. The beam is scanned over the PZT thin film deposited on the glass substrate. 本発明を実施する連続発振レーザビーム照射の模式図である。PZT薄膜の下部電極としてPt薄膜を成膜し、このPt薄膜はレーザ照射時のレーザ光吸収層としても使用する。It is a schematic diagram of continuous wave laser beam irradiation implementing the present invention. A Pt thin film is formed as a lower electrode of the PZT thin film, and this Pt thin film is also used as a laser light absorption layer during laser irradiation. 本発明を実施する連続発振レーザビーム照射の模式図である。ガラス基板上にシリコン酸化膜をバッファ層として堆積し、このバッファ層によりレーザビーム照射時のガラス基板の損傷を防止するとともに、このバッファ層によりガラス基板から強誘電体薄膜への不純物拡散を抑制する。It is a schematic diagram of continuous wave laser beam irradiation implementing the present invention. A silicon oxide film is deposited on the glass substrate as a buffer layer, and this buffer layer prevents damage to the glass substrate during laser beam irradiation, and this buffer layer suppresses impurity diffusion from the glass substrate to the ferroelectric thin film. . 本発明の実施による強誘電体膜の光学顕微鏡写真である。連続発振レーザビーム照射により、結晶化し、レーザ照射条件によりラテラル結晶成長、島状グレイン成長、微結晶化の3パターンの結晶化を行うことができる。2 is an optical micrograph of a ferroelectric film according to an embodiment of the present invention. Crystallization can be performed by continuous wave laser beam irradiation, and three patterns of crystallization can be performed: lateral crystal growth, island grain growth, and microcrystallization, depending on the laser irradiation conditions. 本発明の実施によるレーザ結晶化条件を示す。The laser crystallization conditions according to the practice of the present invention are shown. 本発明の実施による強誘電体膜のX回折パターンである。連続発振レーザビーム照射により、強誘電特性を示すペロブスカイト相(図では、Perで示す)の強度が増加している。3 is an X diffraction pattern of a ferroelectric film according to an embodiment of the present invention. By the continuous wave laser beam irradiation, the intensity of the perovskite phase (indicated by “Per” in the figure) showing the ferroelectric characteristics is increased. 本発明の実施による強誘電体膜の分極特性を示す。3 shows polarization characteristics of a ferroelectric film according to an embodiment of the present invention. 本発明による強誘電体メモリセルの断面模式図と回路モデルを示す。The cross-sectional schematic diagram and circuit model of the ferroelectric memory cell by this invention are shown.

符号の説明Explanation of symbols

1 ガラス基板
2 PZT薄膜
3 表面
4 レーザビーム
5 スキャン方向
6 Ti薄膜
7 Pt薄膜
8 シリコン酸化膜
9 ガラス基板
10 ガラス基板上のバッファ層
11 薄膜トランジスタ
12 薄膜トランジスタ上のバッファ層
13 配線(ビット線)
14 強誘電体キャパシタ
15 配線(プレート線)
16 薄膜トランジスタの回路記号
17 強誘電体キャパシタの回路記号
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 PZT thin film 3 Surface 4 Laser beam 5 Scanning direction 6 Ti thin film 7 Pt thin film 8 Silicon oxide film 9 Glass substrate 10 Buffer layer 11 on glass substrate Thin film transistor 12 Buffer layer 13 on thin film transistor Wiring (bit line)
14 Ferroelectric capacitor 15 Wiring (plate line)
16 Circuit symbol of thin film transistor 17 Circuit symbol of ferroelectric capacitor

Claims (9)

基板としてガラス基板あるいはプラスチック基板の絶縁素材基板を用い、結晶化することによって強誘電体もしくは常誘電体となる酸化物薄膜を基板上に直接あるいは他の層を介して堆積し形成し、その後レーザビームを照射して結晶化を促進させることを特徴とする強誘電体薄膜及び常誘電体薄膜の形成方法。   An insulating material substrate such as a glass substrate or a plastic substrate is used as a substrate, and an oxide thin film that becomes a ferroelectric or paraelectric material is deposited on the substrate directly or through another layer by crystallization, and then a laser is formed. A method for forming a ferroelectric thin film and a paraelectric thin film, which comprises irradiating a beam to promote crystallization. ガラス基板あるいはプラスチック基板の絶縁素材基板に直接あるいは他の層を介してレーザ光吸収層を形成し、その上に強誘電体もしくは常誘電体となる酸化物薄膜を形成し、その後レーザビームを照射して、レーザ光吸収層を介して酸化物薄膜を加熱し結晶化を促進させることを特徴とする請求項1に記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   A laser light absorption layer is formed directly or through another layer on an insulating material substrate such as a glass substrate or a plastic substrate, and an oxide thin film that becomes a ferroelectric or paraelectric material is formed thereon, and then a laser beam is irradiated. The method for forming a ferroelectric thin film and a paraelectric thin film according to claim 1, wherein the oxide thin film is heated through the laser light absorption layer to promote crystallization. 酸化物薄膜の上にさらに他のレーザ光吸収層を形成し、その後レーザビームを照射して結晶化を促進させることを特徴とする請求項1に記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   2. The ferroelectric thin film and the paraelectric thin film according to claim 1, wherein another laser light absorbing layer is further formed on the oxide thin film, and thereafter laser irradiation is performed to promote crystallization. Forming method. ガラス基板あるいはプラスチック基板の絶縁素材基板上にシリコン酸化膜などの絶縁薄膜をバッファ層として堆積し、この上に強誘電体もしくは常誘電体となる酸化物薄膜を堆積することを特徴とする請求項1に記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   An insulating thin film such as a silicon oxide film is deposited as a buffer layer on an insulating material substrate such as a glass substrate or a plastic substrate, and an oxide thin film serving as a ferroelectric or paraelectric is deposited thereon. 2. The method for forming a ferroelectric thin film and a paraelectric thin film according to 1. ガラス基板あるいはプラスチック基板の絶縁素材基板上に薄膜トランジスタを形成し、この上にシリコン酸化膜などの絶縁薄膜をバッファ層として堆積し、更に強誘電体もしくは常誘電体となる酸化物薄膜を基板上に直接あるいは他の層を介して堆積することを特徴とする請求項1に記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   A thin film transistor is formed on an insulating material substrate such as a glass substrate or a plastic substrate, an insulating thin film such as a silicon oxide film is deposited thereon as a buffer layer, and an oxide thin film serving as a ferroelectric or paraelectric is further formed on the substrate. 2. The method for forming a ferroelectric thin film and a paraelectric thin film according to claim 1, wherein the thin film is deposited directly or via another layer. 酸化物薄膜の少なくとも一部がペロブスカイト相結晶構造を有する酸化物であることを特徴とする請求項1ないし5のいずれかに記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   6. The method for forming a ferroelectric thin film and a paraelectric thin film according to claim 1, wherein at least a part of the oxide thin film is an oxide having a perovskite phase crystal structure. 酸化物薄膜の少なくとも一部がパイロクロア相結晶構造を有する酸化物であることを特徴とする請求1ないし3のいずれかに記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   4. The method of forming a ferroelectric thin film and a paraelectric thin film according to claim 1, wherein at least a part of the oxide thin film is an oxide having a pyrochlore phase crystal structure. レーザビームをレーザ出力制御とスキャン制御して照射し、強誘電体薄膜もしくは常誘電体薄膜の結晶化を促進させることを特徴とする請求項1ないし4のいずれかに記載の強誘電体薄膜及び常誘電体薄膜の形成方法。   5. The ferroelectric thin film according to claim 1, wherein the laser thin film is irradiated with a laser output control and a scan control to promote crystallization of the ferroelectric thin film or the paraelectric thin film. Method for forming a paraelectric thin film. 前記請求項1ないし8のいずれかに記載の強誘電体薄膜及び常誘電体薄膜の形成方法を用いて製造されたことを特徴とする半導体デバイス。   A semiconductor device manufactured using the method for forming a ferroelectric thin film and a paraelectric thin film according to any one of claims 1 to 8.
JP2008080258A 2008-03-26 2008-03-26 Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device Pending JP2009238842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080258A JP2009238842A (en) 2008-03-26 2008-03-26 Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080258A JP2009238842A (en) 2008-03-26 2008-03-26 Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2009238842A true JP2009238842A (en) 2009-10-15

Family

ID=41252478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080258A Pending JP2009238842A (en) 2008-03-26 2008-03-26 Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2009238842A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124441A (en) * 2009-12-11 2011-06-23 Utec:Kk Method for manufacturing crystallized film and crystallization apparatus
JP2013235902A (en) * 2012-05-07 2013-11-21 Ricoh Co Ltd Thin film manufacturing device, method for manufacturing thin film, droplet discharge head, and ink jet recording device
US20140216643A1 (en) * 2013-02-05 2014-08-07 Ricoh Company, Ltd. Method of heating, method of producing piezoelectric film, and light irradiation device
US9512521B2 (en) 2011-04-28 2016-12-06 Ricoh Company, Ltd. Manufacturing method of and manufacturing apparatus for metal oxide film
KR20180050971A (en) * 2016-11-07 2018-05-16 인하대학교 산학협력단 Method of manufacturing oxide semiconductor by a solution-based deposition method and oxide semiconductor
WO2020218617A1 (en) * 2019-04-26 2020-10-29 国立大学法人東京工業大学 Method for producing ferroelectric film, ferroelectric film, and usage thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124441A (en) * 2009-12-11 2011-06-23 Utec:Kk Method for manufacturing crystallized film and crystallization apparatus
US9512521B2 (en) 2011-04-28 2016-12-06 Ricoh Company, Ltd. Manufacturing method of and manufacturing apparatus for metal oxide film
JP2013235902A (en) * 2012-05-07 2013-11-21 Ricoh Co Ltd Thin film manufacturing device, method for manufacturing thin film, droplet discharge head, and ink jet recording device
US20140216643A1 (en) * 2013-02-05 2014-08-07 Ricoh Company, Ltd. Method of heating, method of producing piezoelectric film, and light irradiation device
JP2014154581A (en) * 2013-02-05 2014-08-25 Ricoh Co Ltd Heating method, piezoelectric film and method of manufacturing piezoelectric element, droplet discharge head, droplet discharge device, light irradiation device
US9461239B2 (en) * 2013-02-05 2016-10-04 Ricoh Company, Ltd. Method of heating, method of producing piezoelectric film, and light irradiation device
KR20180050971A (en) * 2016-11-07 2018-05-16 인하대학교 산학협력단 Method of manufacturing oxide semiconductor by a solution-based deposition method and oxide semiconductor
KR101992480B1 (en) * 2016-11-07 2019-06-24 인하대학교 산학협력단 Method of manufacturing oxide semiconductor by a solution-based deposition method and oxide semiconductor
WO2020218617A1 (en) * 2019-04-26 2020-10-29 国立大学法人東京工業大学 Method for producing ferroelectric film, ferroelectric film, and usage thereof

Similar Documents

Publication Publication Date Title
TWI362704B (en) Method for annealing silicon thin films using conductive layer and polycrystalline silicon thin films prepared therefrom
JP2007005508A (en) Method for manufacturing thin film transistor and for display device
JP2009238842A (en) Forming method of ferroelectric thin film and paraelectric thin film, and semiconductor device
US20090042342A1 (en) Method for crystallization of amorphous silicon by joule heating
US7303981B2 (en) Polysilicon structure, thin film transistor panel using the same, and manufacturing method of the same
US10770483B2 (en) Thin film transistor, display device and method for manufacturing thin film transistor
CN1131342A (en) Method of making crystal silicon semiconductor and thin film transistor
Minh et al. Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates
US20070155067A1 (en) Method of fabricating polycrystalline silicon film and method of fabricating thin film transistor using the same
KR100577795B1 (en) Method for forming polycrystalline silicon film
JP2007220918A (en) Laser annealing method, thin-film semiconductor device, manufacturing method thereof, display, and manufacturing method thereof
CN106128940B (en) A kind of preparation method of low-temperature polysilicon film
KR20100079310A (en) Crystallization method of oxide semiconductor film using liquid-phase fabricating foundation
TWI364613B (en) Display
KR100782769B1 (en) Align key, method of forming align key and laser crystalization method using the same
US11682680B2 (en) Crystalline oxide semiconductor thin film, and method of forming the same and thin film transistor and method of manufacturing the same and display panel and electronic device
JP2009147256A (en) Manufacturing method of semiconductor device for display device
CN100573886C (en) Display unit
US20040106244A1 (en) Method of crystallizing amorphous silicon and device fabricated using the same
KR100634541B1 (en) Fabrication method of poly crystalline si
JP7438506B2 (en) Manufacturing method of flexible display panel
JP2007115786A (en) Semiconductor substrate and its manufacturing method
CN100388423C (en) Manufacturing method of poly-silicon film
Wang et al. High-performance excimer-laser-crystallized polycrystalline silicon thin-film transistors with the pre-patterned recessed channel
KR100542990B1 (en) Method for crystalizing armophous silicon, mask pattern and flat panel display device using polysilicon thin film fabricated by the same method