JP2009238671A - Short arc type discharge lamp - Google Patents

Short arc type discharge lamp Download PDF

Info

Publication number
JP2009238671A
JP2009238671A JP2008085579A JP2008085579A JP2009238671A JP 2009238671 A JP2009238671 A JP 2009238671A JP 2008085579 A JP2008085579 A JP 2008085579A JP 2008085579 A JP2008085579 A JP 2008085579A JP 2009238671 A JP2009238671 A JP 2009238671A
Authority
JP
Japan
Prior art keywords
tube
sealing
annular member
thickness
sealing tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085579A
Other languages
Japanese (ja)
Inventor
Hiroshi Kodaira
宏 小平
Takehiro Hayashi
武弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2008085579A priority Critical patent/JP2009238671A/en
Priority to TW98104136A priority patent/TW200941538A/en
Publication of JP2009238671A publication Critical patent/JP2009238671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable discharge lamp having a sealing structure for preventing bursting of a sealing tube in lighting. <P>SOLUTION: This discharge lamp can be lighted by large electric power. An inside metallic ring 26 facing an electrode side glass tube is arranged in the sealing tube 20, and a plurality of metallic foils 36 are welded to the inside metallic ring 26. When lighting in a light emitting tube, assuming pressure as P(MPa), the thickness T mm of the sealing tube 20 and a diameter D mm of the inside metallic ring 26 are determined so as to satisfy (P-2.2)/200<(T/D<SP>2</SP>). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ショートアーク型放電ランプに関し、特に、放電ランプの封止構造に関する。   The present invention relates to a short arc type discharge lamp, and more particularly to a discharge lamp sealing structure.

ショートアーク型放電ランプでは、電極を封じた発光管の両端にガラス製の封止管が一体的に形成されており、封止管内では、電極を支持する電極支持棒が筒状ガラス管によって保持される。金属箔による封止構造では、封止管を熱によって縮径させ、封止管をガラス管と溶着させる。これにより、金属箔が封着され、発光管内が気密状態になる。   In a short arc type discharge lamp, a glass sealing tube is integrally formed at both ends of an arc tube sealed with an electrode, and an electrode support rod for supporting the electrode is held by a cylindrical glass tube in the sealing tube. Is done. In the sealing structure with metal foil, the diameter of the sealing tube is reduced by heat, and the sealing tube is welded to the glass tube. Thereby, metal foil is sealed and the inside of an arc_tube | light_emitting_tube becomes an airtight state.

半導体、液晶製造分野では、生産効率を向上させるため、ショートアーク型放電ランプの大電力化が進んでいる。そのため、定格電力の大きな放電ランプでは、電極支持棒に金属リングを固定させ、複数の金属箔を金属リングに溶着させる。これにより、金属箔、金属リング、および電極支持棒を介して、電極に電力が供給される(例えば、特許文献1参照)。   In the semiconductor and liquid crystal manufacturing fields, in order to improve production efficiency, the power of short arc type discharge lamps is increasing. Therefore, in a discharge lamp having a large rated power, a metal ring is fixed to the electrode support rod, and a plurality of metal foils are welded to the metal ring. Thereby, electric power is supplied to an electrode via metal foil, a metal ring, and an electrode support rod (for example, refer patent document 1).

封止管の強度を上げるため、例えば、電極支持棒の径(d)と封止管の外径(D)との比を所定値より大きく設定する方法が知られている(特許文献2参照)。そこでは、一枚の金属箔を電極支持棒に接続させるランプの封止構造に対し、電極支持棒の径と封止管の外径との比(D/d)を調整し、点灯時における封止管の破損を防ぐ。
特開2007−115414号公報 実開平1−106063号公報
In order to increase the strength of the sealing tube, for example, a method is known in which the ratio of the diameter (d) of the electrode support rod and the outer diameter (D) of the sealing tube is set to be larger than a predetermined value (see Patent Document 2). ). There, the ratio (D / d) between the diameter of the electrode support bar and the outer diameter of the sealing tube is adjusted for the lamp sealing structure in which a single metal foil is connected to the electrode support bar, and the lamp is turned on. Prevent damage to the sealing tube.
JP 2007-115414 A Japanese Utility Model Publication No. 1-106063

金属リングを設けたランプの封止構造では、封止工程のとき、金属リングとガラス管の接触面付近に微小な隙間が生じる。微小な隙間は、電極支持棒とガラス管との隙間を通じて放電空間と連通している。そのため、ランプ点灯時には放電空間内の高い圧力と大気との圧力差により、金属リングとガラス管を引き離そうとする応力が生じる。この応力によって、クラックが接触面に沿って径方向外側に進行し、封止管外面まで到達する。   In the sealing structure of a lamp provided with a metal ring, a minute gap is generated near the contact surface between the metal ring and the glass tube during the sealing process. The minute gap communicates with the discharge space through the gap between the electrode support rod and the glass tube. For this reason, when the lamp is turned on, a stress is generated that causes the metal ring and the glass tube to be separated due to a pressure difference between the high pressure in the discharge space and the atmosphere. Due to this stress, the crack progresses radially outward along the contact surface and reaches the outer surface of the sealed tube.

また、金属リングは、ランプ点灯時に電極からの熱によって高温化し、熱膨張する。この熱膨張の影響によって、金属リング周囲の封止管にかかる応力は増大する。ランプの大電力化に伴って、金属箔の枚数増加、金属リングの大型化が進むと、封止管の受ける応力がより一層増加し、封止管が破裂する恐れがある。   Further, the metal ring is heated by the heat from the electrode when the lamp is turned on, and is thermally expanded. Due to the effect of this thermal expansion, the stress applied to the sealing tube around the metal ring increases. As the number of metal foils increases and the size of the metal ring increases along with the increase in power of the lamp, the stress received by the sealing tube further increases and the sealing tube may burst.

しかしながら、特許文献1のように封止管の径を相対的に厚くするだけでは、金属リングを用いた封止構造の強度を適切なものとすることはできない。金属リング周囲の封止管の肉厚を必要以上に厚くすると、クラックの進行方向が拡散し、接触面付近に生じたクラックがガラス管内部、あるいは封止管壁面を伝って発光管まで進行してしまう。これによって発光管自身が破裂し、ランプだけでなく光源装置全体の破損を招き、被害が増大する。   However, the strength of the sealing structure using the metal ring cannot be made appropriate only by relatively increasing the diameter of the sealing tube as in Patent Document 1. If the thickness of the sealing tube around the metal ring is increased more than necessary, the direction of crack propagation spreads, and the crack generated near the contact surface travels inside the glass tube or the wall of the sealing tube to the arc tube. End up. As a result, the arc tube itself ruptures, causing not only the lamp but also the entire light source device to be damaged, increasing the damage.

このように、ランプの大電力化に伴って金属リングのサイズが大型化する場合、従来ランプとは異なる封止管内の応力に対応しなければならず、十分な耐圧性をもち、ランプ破損を招くことのない信頼性ある強度を封止構造に持たせる必要がある。   As described above, when the size of the metal ring increases with the increase in power of the lamp, it is necessary to cope with the stress in the sealed tube that is different from that of the conventional lamp. It is necessary to provide the sealing structure with a reliable strength that does not incur.

本発明の放電ランプは、金属リングなどの導電性環状部材を用いた封止構造の放電ランプであり、発光管内の電極を支持する電極支持棒を保持し、封止管と溶着したガラス管と、ガラス管に面し、軸方向に沿って配設された金属箔と電極支持棒とを電気的に接続させる導電性環状部材とを備える。   The discharge lamp of the present invention is a discharge lamp having a sealing structure using a conductive annular member such as a metal ring, holds an electrode support rod for supporting an electrode in the arc tube, and is a glass tube welded to the seal tube; And a conductive annular member facing the glass tube and electrically connecting the metal foil and the electrode support rod disposed along the axial direction.

本発明では、以下の式を満たすように、環状部材の外径D(mm)、および環状部材とガラス管との接触面付近における封止管の肉厚T(mm)が定められる。ただし、発光管内の点灯時圧力をP(MPa)とする。

(P−2.2)/200<(T/D
In the present invention, the outer diameter D (mm) of the annular member and the thickness T (mm) of the sealing tube in the vicinity of the contact surface between the annular member and the glass tube are determined so as to satisfy the following expression. However, the lighting pressure in the arc tube is P (MPa).

(P-2.2) / 200 <(T / D 2 )

環状部材を用いた封止構造においては、環状部材とガラス管との接触面にかかる応力は、その環状部材の軸方向を向く表面の面積、すなわち内側ガラス管24との接触面の大きさに比例するとみなせる。よって、封止管内に生じる応力は、環状部材の径Dの二乗に比例すると考えられる。逆に言えば、環状部材の径Dを小さくすると、その二乗効果で応力は小さくなる。一方、応力に対する封止管の耐圧性は、肉厚Tに比例して増加するものと考えられる。   In the sealing structure using the annular member, the stress applied to the contact surface between the annular member and the glass tube is the surface area facing the axial direction of the annular member, that is, the size of the contact surface with the inner glass tube 24. It can be regarded as proportional. Therefore, the stress generated in the sealing tube is considered to be proportional to the square of the diameter D of the annular member. In other words, when the diameter D of the annular member is reduced, the stress is reduced by the square effect. On the other hand, it is considered that the pressure resistance of the sealed tube against stress increases in proportion to the wall thickness T.

したがって、封止管の肉厚Tと環状部材の面積D2との比T/Dは、金属リングを用いた封止構造、特に大電力の放電ランプの封止構造に関し、点灯中封止管内で生じる応力に対する耐圧性能を表す有効な指標となり得る。実際、封止管にクラックが生じた時(破壊時)の放電空間内の圧力とT/Dとの関係を調べると、比例関係にあることが明らかになった。 Therefore, the ratio T / D 2 between the thickness T of the sealing tube and the area D2 of the annular member is related to the sealing structure using a metal ring, particularly the sealing structure of a high-power discharge lamp. It can be an effective index representing the pressure resistance performance against the stress generated in Actually, when the relationship between the pressure in the discharge space when a crack occurred in the sealed tube (at the time of breakage) and T / D 2 was found, it was found that there was a proportional relationship.

点灯時の放電空間内圧力は破壊圧力より小さく設定する必要があるため、その比例式から放電空間内の許容圧力範囲を示す不等式が導かれる。よって、点灯時の発光管内の圧力をPとすることで、T/Dの値の範囲を規定する上記式が導かれる。 Since the discharge space pressure during lighting needs to be set smaller than the breakdown pressure, an inequality indicating the allowable pressure range in the discharge space is derived from the proportional expression. Therefore, when the pressure in the arc tube at the time of lighting is set to P, the above formula that defines the range of T / D 2 values is derived.

上述したように、環状部材の径を小さくすると、その二乗に比例して封止管内の応力も減少する。よって、環状部材の径の大きさをわずかに抑えることによって、肉厚Tをそれほど変えずに封止構造の強度を維持することができる。すなわち、環状部材のサイズの大型化に伴って必要以上に封止管の肉厚を大きくしなくて済む。   As described above, when the diameter of the annular member is reduced, the stress in the sealed tube is also reduced in proportion to the square thereof. Therefore, the strength of the sealing structure can be maintained without significantly changing the wall thickness T by slightly suppressing the diameter of the annular member. That is, it is not necessary to increase the thickness of the sealing tube more than necessary as the size of the annular member increases.

特に、大電力の放電ランプの場合、環状部材の径Dが20mm以上になる。一方、封止管の厚さTには上限があり、また、必要以上に肉厚Tを大きくすることによって発光管の破損を招く恐れがある。本発明では、封止管の肉厚Tと環状部材の径Dとのバランスを上記式に基づいて調整することが可能であり、適切な強度をもつ封止構造を実現することが可能となる。   In particular, in the case of a high-power discharge lamp, the diameter D of the annular member is 20 mm or more. On the other hand, the thickness T of the sealing tube has an upper limit, and the arc tube may be damaged by increasing the thickness T more than necessary. In the present invention, the balance between the thickness T of the sealing tube and the diameter D of the annular member can be adjusted based on the above formula, and a sealing structure having appropriate strength can be realized. .

封止管の肉厚Tは、様々な事情により制限を受ける。封止管の肉厚が薄すぎると、封止管を均一に収縮させることが難しく、封止加工が煩雑となる。したがって、その肉厚の下限を1.5mmとするのがよい。一方、封止管が厚すぎると、クラックが発光管まで進行する恐れがある。例えば、肉厚の上限を11mmとするのが望ましい。   The thickness T of the sealing tube is limited by various circumstances. If the thickness of the sealing tube is too thin, it is difficult to uniformly contract the sealing tube, and the sealing process becomes complicated. Therefore, the lower limit of the thickness is preferably 1.5 mm. On the other hand, if the sealing tube is too thick, cracks may progress to the arc tube. For example, the upper limit of the wall thickness is desirably 11 mm.

一方、環状部材の径Dについては、大電力の放電ランプを考慮してその範囲を定めるのがよい。例えば、環状部材の径Dの下限を、大電力放電ランプ実現のために20mmと定める。一方、封止管の厚さTを11mm以下にするため、上記式から環状部材の径Dの上限を41mmに定める。ただし、発光管内の耐圧(破壊圧力)Pを、3.5MPaとする。   On the other hand, the range of the diameter D of the annular member is preferably determined in consideration of a high-power discharge lamp. For example, the lower limit of the diameter D of the annular member is set to 20 mm in order to realize a high power discharge lamp. On the other hand, in order to make the thickness T of the sealing tube 11 mm or less, the upper limit of the diameter D of the annular member is set to 41 mm from the above formula. However, the pressure resistance (breaking pressure) P in the arc tube is 3.5 MPa.

本発明の他の特徴であるショートアーク型放電ランプは、大電力化を図るため、安定点灯時の電力が8kW以上に定められる。そして、環状部材の外径をD(mm)、環状部材とガラス管との接触面付近における封止管の肉厚をT(mm)としたとき、以下の式が満たされることを特徴とする。ただし、点灯時の放電空間圧力が2.5MPaになることを考慮し、高い安全性を確保するため、放電空間、すなわち発光管内の耐圧(破壊圧力)Pを3.5MPaとして上記式に代入することによって得られる。

0.0065≦T/D
In the short arc type discharge lamp which is another feature of the present invention, the power during stable lighting is set to 8 kW or more in order to increase the power. And when the outer diameter of the annular member is D (mm) and the thickness of the sealing tube in the vicinity of the contact surface between the annular member and the glass tube is T (mm), the following equation is satisfied. . However, considering that the discharge space pressure at the time of lighting is 2.5 MPa, in order to ensure high safety, the pressure resistance (breakdown pressure) P in the discharge space, that is, the arc tube is set to 3.5 MPa and is substituted into the above formula. Can be obtained.

0.0065 ≦ T / D 2

本発明の他の特徴であるショートアーク型放電ランプは、発光管内の電極を支持する電極支持棒を保持し、封止管と溶着したガラス管と、ガラス管に面し、軸方向に沿って配設された金属箔と電極支持棒とを電気的に接続させる導電性環状部材とを備え、発光管内の点灯時圧力をP(MPa)、環状部材の外径をD(mm)、環状部材とガラス管との接触面付近における封止管の肉厚をT(mm)としたとき、以下の式が満たされるように、環状部材の外径D、封止管の肉厚Tが定められることを特徴とする。

k×(P−Pc)<T/D
A short arc type discharge lamp, which is another feature of the present invention, includes an electrode support rod that supports an electrode in an arc tube, a glass tube that is welded to a sealing tube, a glass tube, and an axial direction. A conductive annular member that electrically connects the disposed metal foil and the electrode support rod, the lighting pressure in the arc tube is P (MPa), the outer diameter of the annular member is D (mm), and the annular member The outer diameter D of the annular member and the thickness T of the sealing tube are determined so that the following formula is satisfied, where T (mm) is the thickness of the sealing tube in the vicinity of the contact surface between the tube and the glass tube. It is characterized by that.

k × (P−Pc) <T / D 2

ただし、kは、封止管の破壊圧力とT/Dとの比例関係から求められる係数を表す。また、Pcは、放電ランプの安定点灯時における電力に基づいた発光管内の限度圧力を表す。 Here, k denotes a coefficient determined from the proportional relationship between the fracture pressure of the sealing tube and T / D 2. Pc represents a limit pressure in the arc tube based on electric power when the discharge lamp is stably lit.

本発明によれば、点灯中、封止管の破裂を防ぐ信頼性の高い封止構造をもった放電ランプを得ることができる。   According to the present invention, it is possible to obtain a discharge lamp having a highly reliable sealing structure that prevents the sealing tube from bursting during lighting.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態であるショートアーク型放電ランプの概略的断面図である。図2は、陽極側封止管の概略的断面図である。   FIG. 1 is a schematic cross-sectional view of a short arc type discharge lamp according to this embodiment. FIG. 2 is a schematic cross-sectional view of the anode side sealing tube.

ショートアーク型放電ランプ10は、石英ガラスの発光管12内に陽極14、陰極16を備える。発光管12の両側には、石英ガラスの封止管20、60が対向するように連設されている。封止管20、60の両端は、口金80A、80Bで塞がれている。   The short arc type discharge lamp 10 includes an anode 14 and a cathode 16 in an arc tube 12 made of quartz glass. Quartz glass sealing tubes 20 and 60 are connected to both sides of the arc tube 12 so as to face each other. Both ends of the sealing tubes 20 and 60 are closed with caps 80A and 80B.

封止管20、60の内部には、陽極14、陰極16を支持するとともに、発光管12内の放電空間11を封止するパーツ(以下、マウント部品という)18A、18Bがそれぞれ封入されている。また、放電空間11には、水銀および希ガスが封入されている。   Inside the sealing tubes 20 and 60, parts (hereinafter referred to as mounting parts) 18A and 18B for supporting the anode 14 and the cathode 16 and sealing the discharge space 11 in the arc tube 12 are encapsulated, respectively. . Further, mercury and a rare gas are sealed in the discharge space 11.

図2に示すように、封止管20内部には、陽極14を支持する電極支持棒22が設けられ、軸方向に沿って配設されている。電極支持棒22は、円筒状の肉厚ガラス管(以下、電極側ガラス管という)24に設けられた軸穴24Aを通り、電極側ガラス管24によって保持される。電極側ガラス管24の発光管側端部には、封止管20との溶着を確実にするため、円筒状の凹部24Bが形成されている。   As shown in FIG. 2, an electrode support rod 22 that supports the anode 14 is provided inside the sealing tube 20 and is disposed along the axial direction. The electrode support rod 22 passes through a shaft hole 24A provided in a cylindrical thick glass tube (hereinafter referred to as an electrode side glass tube) 24 and is held by the electrode side glass tube 24. A cylindrical recess 24 </ b> B is formed at the arc tube side end of the electrode side glass tube 24 to ensure welding with the sealing tube 20.

電極支持棒22は、封止管20の端部まで延びておらず、所定間隔を置いて金属製のリード棒28が同軸的に対向配置されている。電極支持棒22、リード棒28は、円柱状のガラス部材34の両端に設けた挿入穴に軸挿され、ガラス部材34は電極支持棒22、リード棒28を保持する。リード棒28は、電源部(図示せず)と繋がった外部のリード線(図示せず)に接続されている。   The electrode support bar 22 does not extend to the end of the sealing tube 20, and a metal lead bar 28 is coaxially disposed opposite to the electrode support bar 22 at a predetermined interval. The electrode support rod 22 and the lead rod 28 are inserted into insertion holes provided at both ends of the cylindrical glass member 34, and the glass member 34 holds the electrode support rod 22 and the lead rod 28. The lead bar 28 is connected to an external lead wire (not shown) connected to a power supply unit (not shown).

ガラス部材34の両端には、金属リング26、32がそれぞれ密着配置され、電極支持棒22、リード棒28は軸穴26A、32Aに溶接されている。発光管12に近い金属リング(以下、内側金属リングという)26は、電極側ガラス管24と当接し、他方の金属リング(以下、外側金属リングという)32は、リード棒28を軸通させて保持する環状固定ガラス管29と当接する。   Metal rings 26 and 32 are disposed in close contact with both ends of the glass member 34, and the electrode support bar 22 and the lead bar 28 are welded to the shaft holes 26A and 32A. A metal ring (hereinafter referred to as an inner metal ring) 26 close to the arc tube 12 abuts on the electrode side glass tube 24, and the other metal ring (hereinafter referred to as an outer metal ring) 32 allows a lead rod 28 to pass through. It contacts the annular fixed glass tube 29 to be held.

内側金属リング26、外側金属リング32の間には、軸方向に沿って複数の帯状金属箔36がガラス部材34の外表面に沿って軸方向に延び、その両端は、内側金属リング26、外側金属リング32の円周面に溶接されている。外側金属リング32は、リード棒28と金属箔36とを電気的に接続させ、内側金属リング26は、金属箔36と電極支持棒22とを電気的に接続させることにより、電源部と接続するリード棒28から陽極14へ電力が供給される。   Between the inner metal ring 26 and the outer metal ring 32, a plurality of strip-shaped metal foils 36 extend in the axial direction along the outer surface of the glass member 34 along the axial direction. It is welded to the circumferential surface of the metal ring 32. The outer metal ring 32 electrically connects the lead bar 28 and the metal foil 36, and the inner metal ring 26 connects the metal foil 36 and the electrode support bar 22, thereby connecting to the power supply unit. Electric power is supplied from the lead rod 28 to the anode 14.

封止管20は、封止工程時にガスバーナーなどで熱せられることによって縮径し、電極側ガラス管24,ガラス部材34、固定ガラス管29と溶着している。これにより、封止管20内部が封止され、電極側ガラス管24、内側金属リング26、外側金属リング32、ガラス部材34、そして固定ガラス管29を含むマウント部品18Aが、軸方向に動かないように固定される。   The sealing tube 20 is reduced in diameter by being heated by a gas burner or the like during the sealing process, and is welded to the electrode side glass tube 24, the glass member 34, and the fixed glass tube 29. Thereby, the inside of the sealing tube 20 is sealed, and the mounting component 18A including the electrode side glass tube 24, the inner metal ring 26, the outer metal ring 32, the glass member 34, and the fixed glass tube 29 does not move in the axial direction. To be fixed.

図3は、図2における内側金属リング26と電極側ガラス管24との接触面24Nの断面図である。   3 is a cross-sectional view of the contact surface 24N between the inner metal ring 26 and the electrode side glass tube 24 in FIG.

放電ランプ10は、大電力(例えば8kW)によって点灯可能であり、内側金属リング26、外側金属リング32は、大電力化に伴い、その径が20mm以上のサイズに定められている。   The discharge lamp 10 can be lit with large electric power (for example, 8 kW), and the inner metal ring 26 and the outer metal ring 32 are set to have a diameter of 20 mm or more as the electric power increases.

内側金属リング26の外径をDとし、封止管20の外径をD0と表すと、封止管20の肉厚(厚さ)Tは、DとD0との差に基づいて算出される(=(D0−D)/2)。そして、金属リング26の外径Dと封止管20の肉厚Tとの比(T/D)が以下の式を満たすように、内側金属リング26の外径D(mm)および封止管20の肉厚T(mm)が定められる。

(P−2.2)/200<T/D ・・・・・(1)

ただし、Pは、安定点灯時における発光管12内の圧力を示す。また、金属箔36の厚さは金属リング26、封止管20に比べて薄厚であり、ここでは無視する。
When the outer diameter of the inner metal ring 26 is D and the outer diameter of the sealing tube 20 is expressed as D0, the thickness (thickness) T of the sealing tube 20 is calculated based on the difference between D and D0. (= (D0−D) / 2). Then, the outer diameter D (mm) of the inner metal ring 26 and the sealing so that the ratio (T / D 2 ) between the outer diameter D of the metal ring 26 and the wall thickness T of the sealing tube 20 satisfies the following expression: The wall thickness T (mm) of the tube 20 is determined.

(P-2.2) / 200 <T / D 2 (1)

However, P shows the pressure in the arc_tube | light_emitting_tube 12 at the time of stable lighting. Further, the thickness of the metal foil 36 is thinner than that of the metal ring 26 and the sealing tube 20, and is ignored here.

電力8kWの場合、発光管12内の圧力は約2.5MPaになる。しかし、より十分な耐圧性を持たせるため、発光管12内の耐圧を3.5MPaと定める。この場合、次式を満たすように、内側金属リング26の外径Dおよび封止管20の肉厚Tが定められる。

0.0065≦T/D ・・・・・(2)
When the power is 8 kW, the pressure in the arc tube 12 is about 2.5 MPa. However, in order to give more sufficient pressure resistance, the pressure resistance in the arc tube 12 is set to 3.5 MPa. In this case, the outer diameter D of the inner metal ring 26 and the wall thickness T of the sealing tube 20 are determined so as to satisfy the following expression.

0.0065 ≦ T / D 2 (2)

以下、図4、図5を用いて、内側金属リング26の外径Dおよび封止管20の肉厚Tが上記(1)式に基づいて定められる理由を説明する。   Hereinafter, the reason why the outer diameter D of the inner metal ring 26 and the thickness T of the sealing tube 20 are determined based on the above equation (1) will be described with reference to FIGS. 4 and 5.

まず、肉厚の異なる封止管を用意し、上述した封止構造をもつ放電ランプを上述した封止方法によって作製する。ここでは、定格ランプ電力12kW、ランプ電流103A、内側金属リングの径20mmおよび25mm、幅10mmの金属箔を5枚使用するタイプの放電ランプと、定格ランプ電力7.5kW、ランプ電流183A、金属リングの径27mm、幅12mmの金属箔を6枚使用するタイプの放電ランプをそれぞれ用意する。   First, sealing tubes having different thicknesses are prepared, and a discharge lamp having the above-described sealing structure is manufactured by the above-described sealing method. Here, a discharge lamp of a type using five metal foils having a rated lamp power of 12 kW, a lamp current of 103 A, inner metal ring diameters of 20 mm and 25 mm, and a width of 10 mm, a rated lamp power of 7.5 kW, a lamp current of 183 A, a metal ring Each type of discharge lamp is prepared using six metal foils having a diameter of 27 mm and a width of 12 mm.

次に、各放電ランプに対して静水圧実験を行う。静水圧実験は、発光管12内に水を満たし、加圧ポンプによって水圧を加えながら封止管の破壊を観察する。水圧の昇圧速度は、6MPa/5minとする。水圧を徐々に上げ、内側金属リングとガラス管との接触面を基点としてクラックが生じたときの圧力を、破壊圧力Pとする。 Next, a hydrostatic pressure experiment is performed on each discharge lamp. In the hydrostatic pressure experiment, the arc tube 12 is filled with water, and the destruction of the sealed tube is observed while applying water pressure with a pressure pump. The pressure increase rate of the water pressure is 6 MPa / 5 min. Gradually increasing the pressure, the pressure at which cracking occurs the contact surface between the inner metal ring and the glass tube as a base point, the burst pressure P 0.

図4は、破壊圧力PとT/Dとの関係を示したグラフである。金属リングの外径Dが20mmであって封止管の肉厚Tがそれぞれ異なる8個の放電ランプと、金属リングの外径Dが25mmであって封止管の肉厚Tがそれぞれ異なる16個の放電ランプと、金属リングの外径Dが27mmであって封止管の肉厚Tがそれぞれ異なる3個の放電ランプに対し、静水圧実験を行い、計測された破壊圧力Pが図4にプロットされている。 Figure 4 is a graph showing the relationship between the fracture pressure P 0 and T / D 2. Eight discharge lamps having a metal ring outer diameter D of 20 mm and different sealing tube thicknesses T, and metal ring outer diameter D of 25 mm and sealing tube thicknesses T being different 16 Hydrostatic pressure experiments were performed on three discharge lamps and three discharge lamps having an outer diameter D of the metal ring of 27 mm and different sealing tube thicknesses T, and the measured breakdown pressure P 0 is shown in FIG. 4 is plotted.

図4から明らかなように、破壊圧力PとT/Dとの間には、ある範囲において比例関係が成り立つ。すなわち、図4に示すように、破壊圧力PとT/Dとの関係を直線によって示すことができる。 As is clear from FIG. 4, a proportional relationship is established between the burst pressure P 0 and T / D 2 within a certain range. That is, as shown in FIG. 4, may be indicated by a straight line relationship between the fracture pressure P 0 and T / D 2.

図4の直線を式で表すと、比例係数は200、直線を延ばしたときの切片の値が2.2となり、以下の式が求められる。

=200×(T/D)+2.2 ・・・・・(3)

ただし、(3)式は、T/Dの値が所定範囲(ここでは0.004〜0.016)において成り立ち、発光管内の限度圧力(ここでは2.2MPa)以上において成り立つ。
When the straight line in FIG. 4 is expressed by an equation, the proportionality coefficient is 200, and the intercept value when the straight line is extended is 2.2, and the following equation is obtained.

P 0 = 200 × (T / D 2 ) +2.2 (3)

However, the expression (3) is established when the value of T / D 2 is within a predetermined range (here, 0.004 to 0.016) and is more than the limit pressure (2.2 MPa here) within the arc tube.

式(3)は、T/Dの値が大きくなるにつれて破壊圧力Pが大きくなっていくことを表している。すなわち、Tを厚くするとともに金属リング26の面積を小さくすることによって、破壊圧力Pが上がる。ところで、破壊圧力Pは、封止管の内側金属リング周辺でクラックが生じるときの発光管内圧力であり、この圧力は封止構造の耐え得る限界応力に相当する。よって、T/Dは、放電ランプの封止管破壊に対する耐性、すなわち接触面付近で発生する応力に対する耐性を表す変数とみなすことができる。以下、T/Dを破壊耐性変数Aとする。 Expression (3) represents that the burst pressure P 0 increases as the value of T / D 2 increases. That is, by reducing the area of the metal ring 26 with a thick T, increases breaking pressure P 0. Incidentally, burst pressure P 0 is a light emitting pipe pressure when the cracks around the inner metal ring sealing tube, this pressure corresponds to the critical stress to withstand the sealing structure. Therefore, T / D 2 can be regarded as a variable representing the resistance against breakdown of the sealed tube of the discharge lamp, that is, the resistance against stress generated in the vicinity of the contact surface. Hereinafter, the T / D 2 and breakdown resistance variable A.

放電ランプ点灯時の圧力Pは、封止管の破壊を防止するため、破壊圧力Pより小さくなければならない。したがって、以下の式を満たす必要がある。

P<200×(T/D)+2.2 ・・・・・(4)

よって、(4)式に基づいて(1)式を得ることができる。
The pressure P at the time of the discharge lamp lit, to prevent destruction of the sealing tube, must be less than the breakdown pressure P 0. Therefore, it is necessary to satisfy the following formula.

P <200 × (T / D 2 ) +2.2 (4)

Therefore, Formula (1) can be obtained based on Formula (4).

例えば、電力8kWの放電ランプ点灯中、発光管内の圧力はおよそ約2.5MPaになる。しかしながら十分耐久性をもたせるため、破壊圧力Pは3.5MPa(=P)に設定される。よって、(4)式から、破壊耐性変数A(=T/D)は以下の式を満たす必要がある。

0.0065≦A ・・・・・(5)

すなわち、破壊耐性変数Aは0.0065(=A1)より大きな値にならなければならない。
For example, the pressure in the arc tube is about 2.5 MPa during operation of the discharge lamp with power of 8 kW. However, in order to provide sufficient durability, the breaking pressure P 0 is set to 3.5 MPa (= P 1 ). Therefore, from the equation (4), the fracture resistance variable A (= T / D 2 ) needs to satisfy the following equation.

0.0065 ≦ A (5)

That is, the fracture resistance variable A must be greater than 0.0065 (= A1).

図5は、破壊圧力に対する内側金属リングの外径Dと封止管の厚さTとの関係を示したグラフである。破壊圧力Pを2.5、3.0、3.5、4.0(MPa)とした時のDとTの関係を表す。図5から、最も効果的なD,Tの範囲が求められる。 FIG. 5 is a graph showing the relationship between the outer diameter D of the inner metal ring and the thickness T of the sealing tube with respect to the breaking pressure. The relationship between D and T when the burst pressure P0 is 2.5, 3.0 , 3.5, 4.0 (MPa) is shown. From FIG. 5, the most effective ranges of D and T are obtained.

封止管の肉厚が薄すぎると、封止管を均一に収縮させることが難しく、封止加工が煩雑となる。その肉厚の下限を、ここでは1.5mmとする。一方、封止管が厚すぎると、封止管が破断するときにクラックが発光管まで進行し、ランプ自身が破損する恐れがある。そのため、肉厚の上限をここでは11mmとする。   If the thickness of the sealing tube is too thin, it is difficult to uniformly contract the sealing tube, and the sealing process becomes complicated. Here, the lower limit of the thickness is 1.5 mm. On the other hand, if the sealing tube is too thick, when the sealing tube breaks, the crack proceeds to the arc tube, and the lamp itself may be damaged. Therefore, the upper limit of the wall thickness is 11 mm here.

肉厚Tが1.5≦T≦11の範囲にあるとき、上記式を満たすように環状部材の径Dを定めればよいが、大電力の放電ランプを実現するため、内側金属リングの最小径は20mmに定められる。一方、封止管の厚さTの上限が11mmであることから、(4)式を満たすDの上限は、41mmに定められる。   When the wall thickness T is in the range of 1.5 ≦ T ≦ 11, the diameter D of the annular member may be determined so as to satisfy the above formula. However, in order to realize a high-power discharge lamp, The small diameter is set to 20 mm. On the other hand, since the upper limit of the thickness T of the sealing tube is 11 mm, the upper limit of D that satisfies Equation (4) is set to 41 mm.

このように本実施形態によれば、大電力によって点灯可能な放電ランプ10において、電極側ガラス管24に面する内側金属リング26が封止管20内に配設され、複数の金属箔36が内側金属リング26に溶着される。そして、封止管20の肉厚T(mm)と、内側金属リング26の径D(mm)とが、(1)式を満たすように定められる。   Thus, according to the present embodiment, in the discharge lamp 10 that can be lit with high power, the inner metal ring 26 facing the electrode side glass tube 24 is disposed in the sealing tube 20, and a plurality of metal foils 36 are formed. It is welded to the inner metal ring 26. Then, the thickness T (mm) of the sealing tube 20 and the diameter D (mm) of the inner metal ring 26 are determined so as to satisfy the expression (1).

封止管の肉厚Tと内側金属リングの径Dとの比ではなく、肉厚Tと径Dの二乗、すなわち面積との比を調整することによって、十分耐圧性のある封止構造を実現することができる。封止管の肉厚だけでなく、内側金属リングの面積に応じて封止構造の耐圧性が変化することを見出したことにより、大電力の放電ランプにおいても、適切な封止管の厚さ、内側金属リングを定めることができる。   By adjusting the ratio of the thickness T to the square of the diameter D, that is, the area, rather than the ratio of the thickness T of the sealing tube and the diameter D of the inner metal ring, a sufficiently pressure-resistant sealing structure is realized. can do. By finding that the pressure resistance of the sealing structure changes not only according to the wall thickness of the sealing tube but also according to the area of the inner metal ring, the appropriate sealing tube thickness can be obtained even in a high-power discharge lamp. The inner metal ring can be defined.

特に、内側金属リングのサイズが大型化する一方で封止管の肉厚が制限される場合、内側金属リングの径Dをわずかに抑えるだけで耐圧性が向上し、封止管の肉厚Tを必要以上に大きくしなくて済む。   In particular, when the inner metal ring size is increased while the thickness of the sealing tube is limited, the pressure resistance is improved by slightly suppressing the diameter D of the inner metal ring, and the thickness T of the sealing tube is increased. Does not have to be larger than necessary.

なお、(3)式については、放電ランプのサイズ(封止管サイズ)などによって比例係数等が変化する場合、そのランプ構造に合わせて比例係数等kを定めればよい。また、(1)、(4)式においても、発光管内の限度圧力を2.2MPa以外に設定してもよい。   As for the expression (3), when the proportionality coefficient or the like changes depending on the size of the discharge lamp (sealing tube size) or the like, the proportionality coefficient or the like k may be determined according to the lamp structure. Also in the formulas (1) and (4), the limit pressure in the arc tube may be set to other than 2.2 MPa.

本実施形態であるショートアーク型放電ランプの概略的断面図である。It is a schematic sectional drawing of the short arc type discharge lamp which is this embodiment. 陽極側封止管の概略的断面図である。It is a schematic sectional drawing of an anode side sealing tube. 図2における内側金属リングと電極側ガラス管との接触面の断面図である。It is sectional drawing of the contact surface of the inner side metal ring and electrode side glass tube in FIG. 破壊圧力とT/Dとの関係を示したグラフである。Is a graph showing the relationship between the fracture pressure and the T / D 2. 破壊圧力に対する内側金属リングの外径Dと封止管の厚さTとの関係を示したグラフである。It is the graph which showed the relationship between the outer diameter D of the inner side metal ring with respect to a burst pressure, and the thickness T of a sealing tube.

符号の説明Explanation of symbols

10 放電ランプ
11 放電空間
12 発光管
20 封止管
22 電極支持棒
24 電極側ガラス管(ガラス管)
24N 接触面
26 内側金属リング(環状部材)
28 リード棒
32 外側金属リング
34 ガラス部材
36 金属箔
T 封止管の肉厚
D 内側金属リングの径
破壊圧力
DESCRIPTION OF SYMBOLS 10 Discharge lamp 11 Discharge space 12 Light emission tube 20 Sealing tube 22 Electrode support rod 24 Electrode side glass tube (glass tube)
24N Contact surface 26 Inner metal ring (annular member)
28 Lead rod 32 Outer metal ring 34 Glass member 36 Metal foil T Thickness of sealing tube D Diameter of inner metal ring P 0 Breakdown pressure

Claims (4)

発光管内の電極を支持する電極支持棒を保持し、封止管と溶着したガラス管と、
前記ガラス管に面し、軸方向に沿って配設された金属箔と前記電極支持棒とを電気的に接続させる導電性環状部材とを備え、
前記発光管内の点灯時圧力をP(MPa)、前記環状部材の外径をD(mm)、前記環状部材と前記ガラス管との接触面付近における前記封止管の肉厚をT(mm)としたとき、以下の式が満たされるように、前記環状部材の外径Dと、前記封止管の肉厚Tが定められることを特徴とするショートアーク型放電ランプ。

(P−2.2)/200<T/D
Holding an electrode support rod for supporting the electrode in the arc tube, and a glass tube welded to the sealing tube;
A conductive annular member facing the glass tube and electrically connecting the metal foil disposed along the axial direction and the electrode support rod;
The lighting pressure in the arc tube is P (MPa), the outer diameter of the annular member is D (mm), and the thickness of the sealing tube in the vicinity of the contact surface between the annular member and the glass tube is T (mm). The short arc type discharge lamp is characterized in that an outer diameter D of the annular member and a thickness T of the sealing tube are determined so that the following expression is satisfied.

(P-2.2) / 200 <T / D 2
前記環状部材の径D、および前記封止管の肉厚Tが、それぞれ以下の範囲にあることを特徴とする請求項1に記載のショートアーク型放電ランプ。

1.5≦T≦11、20≦D≦41
2. The short arc type discharge lamp according to claim 1, wherein a diameter D of the annular member and a thickness T of the sealing tube are in the following ranges, respectively.

1.5 ≦ T ≦ 11, 20 ≦ D ≦ 41
発光管内の電極を支持する電極支持棒を保持し、封止管と溶着したガラス管と、
前記ガラス管に面し、軸方向に沿って配設された金属箔と前記電極支持棒とを電気的に接続させる導電性環状部材とを備え、
安定点灯時の電力が8kW以上であって、
前記環状部材の外径をD(mm)、前記環状部材と前記ガラス管との接触面付近における前記封止管の肉厚をT(mm)としたとき、以下の式が満たされるように、前記環状部材の外径Dと、前記封止管の肉厚Tが定められることを特徴とするショートアーク型放電ランプ。

0.0065≦T/D
A glass tube that holds an electrode support rod that supports the electrode in the arc tube and is welded to the sealing tube;
A conductive annular member facing the glass tube and electrically connecting the metal foil disposed along the axial direction and the electrode support rod;
The power at the time of stable lighting is 8 kW or more,
When the outer diameter of the annular member is D (mm) and the thickness of the sealing tube in the vicinity of the contact surface between the annular member and the glass tube is T (mm), the following formula is satisfied: A short arc type discharge lamp characterized in that an outer diameter D of the annular member and a thickness T of the sealing tube are determined.

0.0065 ≦ T / D 2
発光管内の電極を支持する電極支持棒を保持し、封止管と溶着したガラス管と、
前記ガラス管に面し、軸方向に沿って配設された金属箔と前記電極支持棒とを電気的に接続させる導電性環状部材とを備え、
前記発光管内の点灯時圧力をP(MPa)、前記環状部材の外径をD(mm)、前記環状部材と前記ガラス管との接触面付近における前記封止管の肉厚をT(mm)としたとき、以下の式が満たされるように、前記環状部材の外径Dと、前記封止管の肉厚Tが定められることを特徴とするショートアーク型放電ランプ。

k×(P−Pc)<T/D

ただし、kは、前記封止管の破壊圧力とT/Dとの比例関係から求められる係数を表す。また、Pcは、発光管内の限度圧力を示す。
Holding an electrode support rod for supporting the electrode in the arc tube, and a glass tube welded to the sealing tube;
A conductive annular member facing the glass tube and electrically connecting the metal foil disposed along the axial direction and the electrode support rod;
The lighting pressure in the arc tube is P (MPa), the outer diameter of the annular member is D (mm), and the thickness of the sealing tube in the vicinity of the contact surface between the annular member and the glass tube is T (mm). The short arc type discharge lamp is characterized in that an outer diameter D of the annular member and a thickness T of the sealing tube are determined so that the following expression is satisfied.

k × (P−Pc) <T / D 2

Here, k represents a coefficient obtained from the proportional relation between the fracture pressure and the T / D 2 of the sealing tube. Pc represents a limit pressure in the arc tube.
JP2008085579A 2008-03-28 2008-03-28 Short arc type discharge lamp Pending JP2009238671A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008085579A JP2009238671A (en) 2008-03-28 2008-03-28 Short arc type discharge lamp
TW98104136A TW200941538A (en) 2008-03-28 2009-02-10 Short arc type discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085579A JP2009238671A (en) 2008-03-28 2008-03-28 Short arc type discharge lamp

Publications (1)

Publication Number Publication Date
JP2009238671A true JP2009238671A (en) 2009-10-15

Family

ID=41252354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085579A Pending JP2009238671A (en) 2008-03-28 2008-03-28 Short arc type discharge lamp

Country Status (2)

Country Link
JP (1) JP2009238671A (en)
TW (1) TW200941538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198947A (en) * 2009-02-26 2010-09-09 Orc Mfg Co Ltd Discharge lamp
WO2014170734A1 (en) * 2013-04-15 2014-10-23 株式会社オーク製作所 Discharge lamp
JP2019102180A (en) * 2017-11-29 2019-06-24 株式会社オーク製作所 Discharge lamp and method of manufacturing the same
CN110473766A (en) * 2018-05-10 2019-11-19 株式会社Orc制作所 The manufacturing method of discharge lamp and discharge lamp

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247052U (en) * 1985-09-10 1987-03-23
JPH10284001A (en) * 1997-04-02 1998-10-23 Ushio Inc High pressure discharge lamp
JP2002151003A (en) * 2000-11-15 2002-05-24 Harison Toshiba Lighting Corp High pressure discharge lamp and semiconductor aligner
JP2003229090A (en) * 2002-02-06 2003-08-15 Ushio Inc Short-arc type mercury lamp
JP2004071499A (en) * 2002-08-09 2004-03-04 Ushio Inc High-pressure mercury lamp
JP2005302392A (en) * 2004-04-08 2005-10-27 Ushio Inc Discharge lamp
JP2007095328A (en) * 2005-09-27 2007-04-12 Orc Mfg Co Ltd Seal structure of short arc discharge lamp
JP2007280824A (en) * 2006-04-10 2007-10-25 Ushio Inc Discharge lamp

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247052U (en) * 1985-09-10 1987-03-23
JPH10284001A (en) * 1997-04-02 1998-10-23 Ushio Inc High pressure discharge lamp
JP2002151003A (en) * 2000-11-15 2002-05-24 Harison Toshiba Lighting Corp High pressure discharge lamp and semiconductor aligner
JP2003229090A (en) * 2002-02-06 2003-08-15 Ushio Inc Short-arc type mercury lamp
JP2004071499A (en) * 2002-08-09 2004-03-04 Ushio Inc High-pressure mercury lamp
JP2005302392A (en) * 2004-04-08 2005-10-27 Ushio Inc Discharge lamp
JP2007095328A (en) * 2005-09-27 2007-04-12 Orc Mfg Co Ltd Seal structure of short arc discharge lamp
JP2007280824A (en) * 2006-04-10 2007-10-25 Ushio Inc Discharge lamp

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198947A (en) * 2009-02-26 2010-09-09 Orc Mfg Co Ltd Discharge lamp
WO2014170734A1 (en) * 2013-04-15 2014-10-23 株式会社オーク製作所 Discharge lamp
KR20150140665A (en) * 2013-04-15 2015-12-16 가부시키가이샤 오크세이사쿠쇼 Discharge lamp
JPWO2014170734A1 (en) * 2013-04-15 2017-02-16 株式会社オーク製作所 Discharge lamp
KR102190649B1 (en) * 2013-04-15 2020-12-14 가부시키가이샤 오크세이사쿠쇼 Discharge lamp
JP2019102180A (en) * 2017-11-29 2019-06-24 株式会社オーク製作所 Discharge lamp and method of manufacturing the same
CN110473766A (en) * 2018-05-10 2019-11-19 株式会社Orc制作所 The manufacturing method of discharge lamp and discharge lamp
KR20190129705A (en) 2018-05-10 2019-11-20 가부시키가이샤 오크세이사쿠쇼 Discharge lamp, and method for producing discharge lamp
KR20230136893A (en) 2018-05-10 2023-09-27 가부시키가이샤 오크세이사쿠쇼 Discharge lamp, and method for producing discharge lamp

Also Published As

Publication number Publication date
TW200941538A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP2007095328A (en) Seal structure of short arc discharge lamp
US20070103081A1 (en) High intensity discharge lamp with improved crack control and method of manufacture
KR20050087731A (en) High pressure discharge lamp
JP5379516B2 (en) Discharge lamp
JP2009238671A (en) Short arc type discharge lamp
JP5080327B2 (en) Discharge lamp with sealing structure
CN103021791B (en) Discharge lamp
KR102190649B1 (en) Discharge lamp
JP4826613B2 (en) Discharge lamp
TWI451470B (en) Sealing structure of short-arc discharge lamp
JP2002100321A (en) Short arc discharge lamp
JP2007157513A (en) Structure of sealed part of short arc type discharge lamp, and manufacturing method of the same
JP2006179259A (en) Short-arc type discharge lamp
TWI805896B (en) Discharge lamp and its manufacturing method and its metal components
JP2019046562A (en) Discharge lamp
JP5541244B2 (en) Discharge lamp and discharge lamp unit
JP5773252B2 (en) Short arc type discharge lamp
JP2019102180A (en) Discharge lamp and method of manufacturing the same
JP5898849B2 (en) Discharge lamp
JP5516458B2 (en) Short arc type discharge lamp
JP4510844B2 (en) Metal halide lamp
JP2019149286A (en) Discharge lamp
JP2018085227A (en) Discharge lamp
JP2011008917A (en) High-pressure discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611