JP2009236831A - Monitoring method and device for dissolved pollutant - Google Patents

Monitoring method and device for dissolved pollutant Download PDF

Info

Publication number
JP2009236831A
JP2009236831A JP2008085929A JP2008085929A JP2009236831A JP 2009236831 A JP2009236831 A JP 2009236831A JP 2008085929 A JP2008085929 A JP 2008085929A JP 2008085929 A JP2008085929 A JP 2008085929A JP 2009236831 A JP2009236831 A JP 2009236831A
Authority
JP
Japan
Prior art keywords
light
water
fluorescence
wavelength
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085929A
Other languages
Japanese (ja)
Inventor
Jun Miyata
純 宮田
Toyoji Yamaguchi
東洋司 山口
Takeshi Okada
猛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2008085929A priority Critical patent/JP2009236831A/en
Publication of JP2009236831A publication Critical patent/JP2009236831A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for measuring the quality of water containing a suspended substance, such as turbidity, without removing the suspended substance. <P>SOLUTION: In a measuring method of dissolved pollutants in water containing the suspended substance, light having a wavelength that excites the dissolved pollutant is irradiated into sample water, and fluorescence intensity generated from the sample water is measured, and the Rayleigh scattering light of the irradiated light is measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば下水、工場廃水、環境水(河川水、湖沼水、海水など)の水質として水中に溶存する汚濁物質濃度を、オンサイトにて、無薬注かつ連続的にモニタリングする方法に関するものである。   The present invention relates to a method for on-site non-chemical injection and continuous monitoring of the concentration of pollutants dissolved in water as sewage, factory waste water, environmental water (river water, lake water, sea water, etc.). Is.

従来、公共水域においては、水質保全のために環境水の水質測定が行われており、下水処理場や工場、事業所などでは、水質汚濁防止法にもとづいた種々の規制値を遵守するために、処理水や排水の水質測定が行われている。
これらの水質は、時間的な変動が大きいため、連続的にモニタリングすることが望ましい。また、下水は工場廃水の汚濁物質を除去する処理施設などにおいては、施設に流入する原水の水質変動を捉えることができれば、水質に応じた運転条件の設定が可能となり、適正な運転管理、消費電力や消費薬剤の削減などが可能になる。
Conventionally, in public water areas, the quality of environmental water has been measured in order to preserve water quality, and sewage treatment plants, factories, offices, etc. have to comply with various regulatory values based on the Water Pollution Control Law. The quality of treated water and wastewater is measured.
Since these water qualities vary greatly over time, it is desirable to monitor them continuously. In addition, in sewage treatment facilities that remove pollutants from factory wastewater, if fluctuations in the quality of raw water flowing into the facility can be captured, it is possible to set operating conditions according to the water quality, and to ensure proper operation management and consumption. It will be possible to reduce power consumption and chemical consumption.

しかしながら、これらの水質分析は、手順が複雑である上に専門的な技術が必要とされることから、連続的な水質の監視は難しいという問題があった。
そこで近年、試料水に励起光を照射したときに試料水から出てくる蛍光の強度を測定することで、水中の汚濁物質濃度を求める方法が注目されている。
However, these water quality analyzes have a problem that it is difficult to continuously monitor the water quality because the procedure is complicated and specialized techniques are required.
Therefore, in recent years, attention has been focused on a method for determining the concentration of pollutants in water by measuring the intensity of fluorescence emitted from the sample water when the sample water is irradiated with excitation light.

この蛍光強度を測定する方法としては、特許文献1には、励起波長270nm乃至370nmの光を被検査対象となる水に照射し、その分光スペクトル中の380nm乃至480nmの蛍光波長を測定することにより、前記水中のトリハロメタン生成能あるいはフミン質濃度を測定することを特徴とする水質検査方法が開示されている。   As a method for measuring the fluorescence intensity, Patent Document 1 discloses that light having an excitation wavelength of 270 nm to 370 nm is irradiated on water to be inspected, and the fluorescence wavelength of 380 nm to 480 nm in the spectrum is measured. A water quality test method is disclosed, wherein the trihalomethane production ability or humic substance concentration in the water is measured.

特許文献2には、予め設定されている波長の励起光を発生する励起光発生装置と、特定波長範囲内の各波長光を抽出する波長光抽出器を有し、前記励起光発生装置から照射された励起光によって有機物測定対象となる被検水から発せられる蛍光に含まれる特定波長範囲内の各波長光を順次、または一括して抽出して光強度を測定し、この測定結果に基づき、前記被検水中の有機物濃度を測定する濃度測定装置と、体測定装置を備えたことを特徴とする蛍光分析水質測定システムが開示されている。   Patent Document 2 includes a pumping light generator that generates pumping light having a preset wavelength, and a wavelength light extractor that extracts each wavelength of light within a specific wavelength range, and is irradiated from the pumping light generator. Measure the light intensity by extracting each wavelength light within a specific wavelength range included in the fluorescence emitted from the test water that is the organic matter measurement target by the excited light, or collectively and based on the measurement result, A fluorescence analysis water quality measurement system comprising a concentration measurement device for measuring the concentration of organic substances in the test water and a body measurement device is disclosed.

特許文献3には、被測定水の濁質を除去するための孔径5μm以下のフィルタと、前記フィルタによるフィルタリング後の被測定水に光を照射する照射手段と、前記照射手段によって光の照射された被測定水から発生する蛍光の強度を測定する蛍光測定手段と、前記蛍光測定手段によって測定された蛍光の強度に基づいて、被測定水中の有機ハロゲン化合物の前駆物質に関するデータを測定するデータ測定手段とを具備したことを特徴とする水質測定装置が開示されている。   In Patent Document 3, a filter having a pore diameter of 5 μm or less for removing turbidity of water to be measured, irradiation means for irradiating light to the water to be measured after filtering by the filter, and light irradiation by the irradiation means. Fluorescence measuring means for measuring the intensity of fluorescence generated from the measured water, and data measurement for measuring data on the precursor of the organic halogen compound in the measured water based on the fluorescence intensity measured by the fluorescence measuring means And a water quality measuring device characterized by comprising the means.

また、特許文献4には、試料水に波長の異なる第1、第2の励起光を照射し、試料水が発する波長の異なる第1、第2の蛍光の強度を測定することに基づいて、試料水の第1、第2の水質指標を測定することを特徴とする水質測定方法が開示されている。   Further, Patent Document 4 is based on irradiating sample water with first and second excitation lights having different wavelengths, and measuring the intensity of first and second fluorescence having different wavelengths emitted from the sample water. There is disclosed a water quality measuring method characterized by measuring first and second water quality indexes of sample water.

特開平7−294434号公報JP 7-294434 A 特開2001−83095号公報JP 2001-83095 A 特開2003−90797号公報JP 2003-90797 A 特開2005−30839号公報JP 2005-30839 A

上記の従来の蛍光測定法は、オンサイトにおける連続的な水質のモニタリングに適していると考えられるが、試料水中の懸濁物質濃度が増加すると、励起のための照射光が懸濁物質により散乱し、同じ溶存汚濁物質濃度の試料水であっても、出てくる蛍光強度が変化する。このために、別途、濁度などを測定して補正を行うなどの必要が生じる。しかし、蛍光測定法で用いる照射光と濁度などの測定に用いる光は波長帯が異なる。2つの異なる波長帯の光は、散乱特性あるいは吸収特性が異なり、混在する懸濁物質が換わると測定値が大きく変化してしまうことが知られている。   The above conventional fluorescence measurement method is considered to be suitable for continuous on-site water quality monitoring. However, as the suspended solid concentration in the sample water increases, the irradiation light for excitation is scattered by the suspended solid. However, even if the sample water has the same dissolved pollutant concentration, the intensity of the emitted fluorescence changes. For this reason, it is necessary to separately perform correction by measuring turbidity and the like. However, the wavelength band is different between the irradiation light used in the fluorescence measurement method and the light used for measurement of turbidity. It is known that the light of two different wavelength bands has different scattering characteristics or absorption characteristics, and the measured value changes greatly when the mixed suspended matter is changed.

このため、特許文献2には、フィルターなどを用いて懸濁物質を事前に除去する方法などが開示されている。この方法の場合、懸濁物質濃度が高いとフィルターがすぐに閉塞するなどの問題が生じ、メンテナンス性が著しく低下する。   For this reason, Patent Document 2 discloses a method of removing suspended substances in advance using a filter or the like. In the case of this method, when the suspended substance concentration is high, problems such as the filter being clogged immediately occur, and the maintainability is significantly lowered.

本発明では、以上の問題を解決するため、試料水に励起光を照射して出てくる蛍光強度を測定すると同時に、懸濁性物質によりこの照射光が散乱するレイリー散乱光(照射光と同一波長の光)の強度も併せて測定を行い、レイリー散乱光強度が大きい場合は、同じ溶存汚濁濃度でも発する蛍光強度が小さくなる関係から、補正を行うこととした。   In the present invention, in order to solve the above problems, the intensity of the fluorescence emitted by irradiating the sample water with excitation light is measured, and at the same time, the Rayleigh scattered light (same as the irradiated light) is scattered by the suspended substance. The intensity of the light (wavelength) was also measured, and when the Rayleigh scattered light intensity was high, correction was performed because the fluorescence intensity emitted was small even at the same dissolved pollution concentration.

試料水の懸濁性物質濃度が高くなると、照射した光が懸濁性物質により散乱し、溶存性の汚濁物質に対する有効照射量が減少するため、発生する蛍光が減少する。また、発生した蛍光も懸濁性物質により散乱してしまい、検出量が減少することとなる。
この散乱度合いを、他の波長帯の光を用いて測定した濁度などで推定すると、散乱特性あるいは吸収特性が異なるため、正しい推定が行えないことがわかった。
When the concentration of the suspending substance in the sample water is increased, the irradiated light is scattered by the suspending substance, and the effective irradiation amount with respect to the dissolved pollutant is reduced, so that the generated fluorescence is reduced. Also, the generated fluorescence is scattered by the suspended substance, and the detection amount is reduced.
When this degree of scattering was estimated by turbidity measured using light in other wavelength bands, it was found that correct estimation could not be performed because of different scattering characteristics or absorption characteristics.

そこで、励起のための照射光の散乱量を直接的に評価するために、レイリー散乱光強度を検出して補正に用いることとし、溶存汚濁物質濃度を精度良くモニタリングすることが可能となる。
モニタリング対象とする汚濁物質濃度が1000mg/L以下の場合は、溶存汚濁物質濃度とそれから出る蛍光強度は1次の相関関係があり、
C=a+b×Sf・・・(式1)
C:溶存汚濁物質濃度
a、b:定数
Sf:蛍光強度
で表すことができる。そして、下記の式2の様にレイリー散乱光強度(Sl)の補正項を加えることで、精度良くモニタリングすることが可能となる。
C=a+b×Sf+c×Sl+d×Sf×Sl・・・(式2)
ここで補正項(c×Sl+d×Sf×Sl)は、Sf<<Slの場合、c‘×Slで近似が可能となる。
Therefore, in order to directly evaluate the scattering amount of the irradiation light for excitation, it is possible to detect the Rayleigh scattered light intensity and use it for correction, and to accurately monitor the dissolved pollutant concentration.
When the pollutant concentration to be monitored is 1000 mg / L or less, the dissolved pollutant concentration and the fluorescence intensity emitted from it have a primary correlation,
C = a + b × Sf (Formula 1)
C: dissolved pollutant concentration a, b: constant Sf: fluorescence intensity. Then, by adding a correction term for Rayleigh scattered light intensity (Sl) as shown in the following formula 2, it becomes possible to monitor with high accuracy.
C = a + b * Sf + c * Sl + d * Sf * Sl (Formula 2)
Here, the correction term (c × Sl + d × Sf × Sl) can be approximated by c ′ × Sl when Sf << Sl.

本法では、懸濁性物質が数百mg/Lのオーダーで存在する試料水も、フィルタなどによるろ過は必要が無く、メンテナンス性が良い。また、光源が励起光用の1つであるため、別途濁度測定用の光源を有する方法より、光源強度補正のためのキャリブレーションの手間も必要なく、補正の精度も高くなる。励起用の光と別の波長(たとえば濁度計は600nm周辺波長を使用)の光を照射して、励起光や蛍光の減衰を補正する方法に比べ、高い精度の水質モニタリングが可能となる。   In this method, sample water in which suspended substances are present on the order of several hundred mg / L does not need to be filtered with a filter or the like, and is easy to maintain. In addition, since the light source is one for excitation light, calibration is not required for light source intensity correction and the correction accuracy is higher than that of a method having a separate turbidity measurement light source. Compared with a method of correcting the attenuation of excitation light or fluorescence by irradiating light of a wavelength different from that of excitation light (for example, a turbidimeter uses a wavelength around 600 nm), water quality monitoring with higher accuracy is possible.

本発明により、懸濁性物質が多く含まれる試料水を対象としても、溶存性の汚濁物質濃度正確にモニタリングすることができるようになる。特に下水や工場廃水の汚濁物質を除去する処理施設などにおいては、施設に流入する原水の水質変動を捉えることができれば、水質に応じた運転条件の設定が可能となり、適正な運転管理、消費電力や消費薬剤の削減などが可能になる。   The present invention makes it possible to accurately monitor the concentration of dissolved pollutants even for sample water containing a large amount of suspended substances. In particular, in treatment facilities that remove pollutants from sewage and factory wastewater, if changes in the quality of the raw water flowing into the facility can be captured, operating conditions can be set according to the water quality, and appropriate operation management and power consumption can be achieved. And consumption chemicals can be reduced.

本発明は、懸濁性物質が存在する水の水質を測定するものであり、対象となる水は、例えば、下水、工場廃水、環境水(河川水、湖沼水、海水等)などである。測定対象となる溶存汚濁物質は、COD(化学的酸素要求量)、フミン質、NO イオン等である。濃度としては、CODの場合は、10〜1000程度、通常100〜500程度、懸濁性物質の濃度は50〜1000mg/l程度、通常100〜500mg/l程度である。この濃度はJISあるいは下水試験法に準拠した方法で測定したものである。 The present invention measures the quality of water in which suspended substances exist, and the target water is, for example, sewage, factory wastewater, environmental water (river water, lake water, seawater, etc.), and the like. Dissolved pollutants to be measured, COD (chemical oxygen demand), humic, NO 3 - is an ion or the like. In the case of COD, the concentration is about 10 to 1000, usually about 100 to 500, and the concentration of the suspended substance is about 50 to 1000 mg / l, usually about 100 to 500 mg / l. This density | concentration is measured by the method based on JIS or a sewage test method.

上記の水から採取した試料水に照射する光は、測定対象の溶存汚濁物質を励起して蛍光を発光させる波長のものであり、CODの場合は、220〜350nm程度、好ましくは260〜290nm程度の波長の光である。
懸濁性物質を含まない対象溶存汚濁物質溶液で試験を行い最も強い蛍光が観測された。励起光波長と蛍光検出波長の組合せを用いる。
光源に含まれる上記の波長の光は、測定に影響を与えない波長については除去しなくてもよいが、少なくとも測定対象の蛍光と同じ波長の領域は除去しておくことが好ましい。除去手段は常法によればよく、例えば、フィルターやプリズムが用いられる。
The light applied to the sample water collected from the water is of a wavelength that excites the dissolved pollutant to be measured and emits fluorescence. In the case of COD, the light is about 220 to 350 nm, preferably about 260 to 290 nm. It is light of the wavelength.
The strongest fluorescence was observed when the test was conducted with the target dissolved pollutant solution containing no suspended substances. A combination of excitation light wavelength and fluorescence detection wavelength is used.
The light having the above wavelength contained in the light source may not be removed for wavelengths that do not affect the measurement, but it is preferable to remove at least a region having the same wavelength as the fluorescence to be measured. The removing means may be a conventional method, for example, a filter or a prism is used.

測定する蛍光およびレイリー散乱光はそれらの全波長を対象としてもよいが、通常は、その一部であり、強度が高く、他の影響を受けない波長が選択される。
本発明の方法は、溶存汚濁物質の濃度を蛍光強度で測定し、その際の懸濁性物質による影響をレイリー散乱光の強度で補正する方法である。
そこで、あらかじめ、溶存汚濁物質濃度および懸濁性物質濃度および懸濁性物質濃度の異なる5検体以上、好ましくは10検体以上の試料水を準備し、溶存汚濁物質濃度(C)と蛍光強度(Sf)およびレイリー散乱光強度(Sl)を測定する。

Figure 2009236831
が最小となるように定数a、b、c、およびdを決定する。 The fluorescence and Rayleigh scattered light to be measured may be targeted for all their wavelengths, but are usually a part of them and a wavelength that is high in intensity and unaffected by other is selected.
The method of the present invention is a method in which the concentration of dissolved pollutant is measured by fluorescence intensity, and the influence of the suspended substance at that time is corrected by the intensity of Rayleigh scattered light.
Therefore, sample water of 5 samples or more, preferably 10 samples or more having different dissolved pollutant concentration, suspended substance concentration and suspended substance concentration is prepared in advance, and dissolved pollutant concentration (C k ) and fluorescence intensity ( Sf k ) and Rayleigh scattered light intensity (S 1 k ) are measured.
Figure 2009236831
The constants a, b, c, and d are determined so that is minimized.

これら4つの定数が定まったら、試料水の蛍光とレイリー散乱光の強度測定を行い、それらの測定値から溶存汚濁物質の濃度を求めることができる。
図1に、本発明法で使用される装置の一例の概略構成を示す。溶存汚濁物質濃度をモニタリングすべき試料水1に、励起光3を照射する光源2、試料水より出てくる蛍光およびレイリー散乱光4を観測する受光器5、観測された蛍光強度およびレイリー散乱光強度を用いて、換算式(式2)により溶存汚濁物質濃度を算出する演算部6、および表示部7からなる。
When these four constants are determined, the intensity of the fluorescence of the sample water and the Rayleigh scattered light can be measured, and the concentration of the dissolved pollutant can be obtained from the measured values.
FIG. 1 shows a schematic configuration of an example of an apparatus used in the method of the present invention. Sample water 1 to be monitored for the concentration of dissolved pollutants, a light source 2 that irradiates excitation light 3, a light receiver 5 that observes fluorescence and Rayleigh scattered light 4 emitted from the sample water, observed fluorescence intensity and Rayleigh scattered light Using the intensity, the calculation unit 6 and the display unit 7 calculate the dissolved pollutant concentration by the conversion formula (Formula 2).

また、受光器5は、蛍光とレイリー散乱光が同時に入射するため、ハーフミラーや光学フィルタなどを用いて、光学的に分光し、各々の強度を観測できる機構とする。   The light receiver 5 has a mechanism capable of observing the intensity of each optically by using a half mirror or an optical filter because fluorescence and Rayleigh scattered light are incident simultaneously.

図1に示す装置を用いた。受光器は図2に示す構図とした。入光部51より蛍光とレイリー散乱光が入射する。入射した光をハーフミラー52により50%ずつに分け、片方の光は蛍光の波長に併せたバンドパスフィルタ55を通り、フォトマルにて蛍光強度が観測される。もう一方の光はレイリー散乱光波長用バンドパスフィルタ56を通り、フォトマル57にて強度が測定される。   The apparatus shown in FIG. 1 was used. The light receiver has the composition shown in FIG. Fluorescence and Rayleigh scattered light are incident from the light incident portion 51. The incident light is divided into 50% by the half mirror 52, and one of the light passes through a band-pass filter 55 matched to the fluorescence wavelength, and the fluorescence intensity is observed by a photomultiplier. The other light passes through the bandpass filter 56 for Rayleigh scattered light wavelength, and its intensity is measured by a photomultiplier 57.

都市下水処理場の曝気槽流入水を試料水として、溶存性の化学的酸素要求量(COD)をモニタリングした。試料水は処理前の下水であるため懸濁性物質が多く含まれ、懸濁性物質質濃度(SS)として100〜200mg/Lであった。CODは下水試験法に準拠した方法にて測定した。
紫外線(波長275〜285nm)を照射したときに出てくる蛍光と溶存性のCODに相関があることを次のように確認した。
蛍光は355〜365nmの波長を測定した。
Dissolved chemical oxygen demand (COD) was monitored using the inflow water from an aeration tank of a municipal sewage treatment plant as sample water. Since the sample water was sewage before treatment, it contained a lot of suspended substances, and the suspended substance concentration (SS) was 100 to 200 mg / L. COD was measured by a method based on the sewage test method.
It was confirmed as follows that there was a correlation between fluorescence emitted when irradiated with ultraviolet rays (wavelength 275 to 285 nm) and dissolved COD.
The fluorescence was measured at a wavelength of 355 to 365 nm.

COD濃度に対して観測した蛍光強度をプロットした結果を図3に示す。この時SS濃度は100〜200mg/Lと大きな変化があったため、COD濃度と、観測された蛍光強度との相関は弱くなっていた。これに対して、あらかじめ、対象下水処理場の曝気槽流入水を1時間おきに1日間、計24回サンプリングし、COD濃度(C)と蛍光濃度(Sf)およびレイリー散乱光強度(Sl)を測定した。この結果をもとに、

Figure 2009236831
が最小になるように定数a、b、c、およびdを決定した。本事例ではdがcと比べて十分小さかったため、d×Sf×Slの項を省略し、
C=a+b×Sf×c×Slで補正を行った。
観測されたレイリー散乱光強度を用いて補正を行った結果をプロットしたものを図4に示す。
図4に示すように、本発明で得られた値はCODの実測値とよい相関を示した。 The result of plotting the observed fluorescence intensity against the COD concentration is shown in FIG. At this time, since the SS concentration varied greatly from 100 to 200 mg / L, the correlation between the COD concentration and the observed fluorescence intensity was weak. In contrast, the inflow water from the aeration tank of the target sewage treatment plant was sampled 24 times in total every other day for one day, and COD concentration (C k ), fluorescence concentration (Sf k ), and Rayleigh scattered light intensity (Sl k ) was measured. Based on this result,
Figure 2009236831
The constants a, b, c, and d were determined so that is minimized. Since d was sufficiently small compared with c in this case, omitting the term of d × Sf k × Sl k,
Correction was performed with C = a + b × Sf × c × S1.
A plot of the results of correction using the observed Rayleigh scattered light intensity is shown in FIG.
As shown in FIG. 4, the value obtained by the present invention showed a good correlation with the measured value of COD.

本発明の方法は、懸濁性物質が存在する水の水質をそのまま高い信頼性で測定できるので、下水、工場廃水、河川水などの水質測定に利用できる。   Since the method of the present invention can measure the quality of water containing suspended substances with high reliability as it is, it can be used for measuring the quality of sewage, factory wastewater, river water and the like.

本発明の方法で使用される装置の一例の模擬構成を示す図である。It is a figure which shows the simulation structure of an example of the apparatus used with the method of this invention. その受光部の構造を示す断面図である。It is sectional drawing which shows the structure of the light-receiving part. 本発明法による補正を行わなかった場合のCOD実測値と蛍光強度の関係を示すグラフである。It is a graph which shows the relationship between COD measured value and fluorescence intensity when correction | amendment by this invention method is not performed. 図3のデータを本発明法による補正を行って得られた値とCOD実測値との相関関係を示すグラフである。4 is a graph showing a correlation between values obtained by correcting the data of FIG. 3 according to the method of the present invention and measured COD values.

符号の説明Explanation of symbols

1 試料水
2 励起光光源
3 励起光
4 蛍光およびレイリー散乱光
5 受光器
6 演算部
7 演算結果表示装置
51 入光部
52 ハーフミラー
54 ミラー
55 蛍光の波長用バンドパスフィルタ
56 レイリー散乱光波長用バンドパスフィルタ
57 フォトマル
DESCRIPTION OF SYMBOLS 1 Sample water 2 Excitation light source 3 Excitation light 4 Fluorescence and Rayleigh scattered light 5 Light receiver 6 Calculation part 7 Calculation result display apparatus 51 Light incident part 52 Half mirror 54 Mirror 55 Band pass filter for wavelength of fluorescent light 56 For Rayleigh scattered light wavelength Bandpass filter 57 Photomaru

Claims (2)

溶存汚濁物質を励起する波長の光を試料水に照射し、試料水から発生する蛍光強度を測定するとともに、照射した光のレイリー散乱光強度を測定することを特徴とする、懸濁性物質を含有する水の溶存汚濁物質の測定方法   A suspending substance characterized by irradiating sample water with light of a wavelength that excites dissolved pollutant, measuring fluorescence intensity generated from the sample water, and measuring Rayleigh scattered light intensity of the irradiated light. Method for measuring dissolved pollutants in water 溶存汚濁物質を励起する波長の光を出す光源と試料水より出てくる蛍光およびレイリー散乱光を受光する受光器と、受光器で測定された蛍光強度およびレイリー散乱光強度を用いて溶存汚濁物質濃度を算出する演算部よりなる、懸濁性物質を含有する水の溶存汚濁物質の測定装置   A light source that emits light of a wavelength that excites the dissolved pollutant, a receiver that receives fluorescence and Rayleigh scattered light emitted from the sample water, and a dissolved pollutant using the fluorescence intensity and Rayleigh scattered light intensity measured by the receiver A device for measuring dissolved pollutants in water containing suspending substances, consisting of a calculation unit that calculates the concentration
JP2008085929A 2008-03-28 2008-03-28 Monitoring method and device for dissolved pollutant Pending JP2009236831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085929A JP2009236831A (en) 2008-03-28 2008-03-28 Monitoring method and device for dissolved pollutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085929A JP2009236831A (en) 2008-03-28 2008-03-28 Monitoring method and device for dissolved pollutant

Publications (1)

Publication Number Publication Date
JP2009236831A true JP2009236831A (en) 2009-10-15

Family

ID=41250945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085929A Pending JP2009236831A (en) 2008-03-28 2008-03-28 Monitoring method and device for dissolved pollutant

Country Status (1)

Country Link
JP (1) JP2009236831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526709A (en) * 2011-09-23 2014-10-06 ナルコ カンパニー Method for monitoring and controlling wastewater treatment streams
CN104246478A (en) * 2012-03-22 2014-12-24 光谱创新公司 Method and apparatus for characterising samples by measuring light scattering and fluorescence
US9759668B2 (en) 2013-08-09 2017-09-12 University Of Calcutta Systems and methods for liquid quality assessment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088882A (en) * 2001-09-17 2003-03-25 Toshiba Corp Method for water treatment
JP2003210193A (en) * 2002-01-22 2003-07-29 Microbiosystems Lp Method and apparatus for detecting presence of microbe and determining physiological status thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088882A (en) * 2001-09-17 2003-03-25 Toshiba Corp Method for water treatment
JP2003210193A (en) * 2002-01-22 2003-07-29 Microbiosystems Lp Method and apparatus for detecting presence of microbe and determining physiological status thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526709A (en) * 2011-09-23 2014-10-06 ナルコ カンパニー Method for monitoring and controlling wastewater treatment streams
CN104246478A (en) * 2012-03-22 2014-12-24 光谱创新公司 Method and apparatus for characterising samples by measuring light scattering and fluorescence
JP2015511024A (en) * 2012-03-22 2015-04-13 スペクトラリス イノベーション Method and apparatus for characterizing a sample by measuring light scattering and fluorescence
US9759668B2 (en) 2013-08-09 2017-09-12 University Of Calcutta Systems and methods for liquid quality assessment

Similar Documents

Publication Publication Date Title
Carstea et al. In situ fluorescence measurements of dissolved organic matter: a review
Guo et al. Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis
Ahmad et al. Monitoring of water quality using fluorescence technique: prospect of on-line process control
JP6643333B2 (en) Determination of water treatment parameters based on absorbance and fluorescence
CA2619753C (en) Ultraviolet irradiation system and water quality monitoring instrument
JP2017538112A (en) Determination of water treatment parameters based on absorbance and fluorescence
EP2719667B1 (en) Method for treating water in order to reduce its endocrine disrupting effect by means of a living organism
US20120001094A1 (en) Deep-uv led and laser induced fluorescence detection and monitoring of trace organics in potable liquids
Pype et al. Monitoring reverse osmosis performance: Conductivity versus fluorescence excitation–emission matrix (EEM)
JP5631015B2 (en) Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water
Song et al. Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse
JP2013148391A (en) Viable particle counter for purified water, viable particle counting method for purified water, and purified water monitoring system
CN106053421B (en) Content of organic matter on-line checking and filter core/film breakdown early warning method and apparatus in water
JP2009236831A (en) Monitoring method and device for dissolved pollutant
KR20190040278A (en) Water quality detection
JP2009236832A (en) Monitoring method and device for dissolved pollutant
KR102231001B1 (en) Device for measuring organic materials using UV LED
KR20050095371A (en) Method and system for measurement of water qualities by using optical sensor
JP2011012983A (en) Method of detecting leakage of specific chemical substance to drainage basin outside system
JP2010091309A (en) Method and apparatus for measuring water-quality in non-contact manner
JP2008064612A (en) Water quality measuring method and apparatus
KR101617822B1 (en) Apparatus for realtime measuring hydroxyl radical scavenging index in advanced oxidation process, and method for the same
JP2003090797A (en) Water quality measuring system by fluorescence analysis
JP2003075341A (en) Method for measuring dissolved/suspensible substance concentration by near infrared spectroscopy
Ghervase et al. Fluorescence evaluation of anthropogenic influence on rivers crossing Sofia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120613