JP5631015B2 - Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water - Google Patents

Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water Download PDF

Info

Publication number
JP5631015B2
JP5631015B2 JP2010019616A JP2010019616A JP5631015B2 JP 5631015 B2 JP5631015 B2 JP 5631015B2 JP 2010019616 A JP2010019616 A JP 2010019616A JP 2010019616 A JP2010019616 A JP 2010019616A JP 5631015 B2 JP5631015 B2 JP 5631015B2
Authority
JP
Japan
Prior art keywords
concentration
oil
specific
specific oil
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010019616A
Other languages
Japanese (ja)
Other versions
JP2011158340A (en
Inventor
文隆 加藤
文隆 加藤
三木 理
理 三木
加藤 敏朗
敏朗 加藤
美由貴 浦田
美由貴 浦田
真一 赤澤
真一 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
DKK TOA Corp
Original Assignee
Nippon Steel Corp
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, DKK TOA Corp filed Critical Nippon Steel Corp
Priority to JP2010019616A priority Critical patent/JP5631015B2/en
Publication of JP2011158340A publication Critical patent/JP2011158340A/en
Application granted granted Critical
Publication of JP5631015B2 publication Critical patent/JP5631015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特定化学物質又は特定排水に特有の蛍光及び/又は紫外・可視吸光を用いて、工場排水や循環水等の排水に含まれる特定化学物質又は特定排水を検知する技術に関する。   The present invention relates to a technique for detecting a specific chemical substance or specific wastewater contained in wastewater such as factory wastewater or circulating water using fluorescence and / or ultraviolet / visible light absorption specific to a specific chemical substance or specific wastewater.

産業上において多くの化学成分(界面活性剤、切削油等)が使用されるが、この化学成分の一部は工場排水系に混合され、処理されている。しかし、設備トラブル等により排水系への混合割合が大幅に増加し、その結果COD(化学的酸素要求量)が増加するため、処理が追いつかず排水基準値の超過や環境汚染を引き起こすリスクを有している。そのため、上記の排水系への化学成分の濃度の増加を迅速に検知する必要がある。   Many chemical components (surfactant, cutting oil, etc.) are used in the industry, and some of these chemical components are mixed and treated in the factory drainage system. However, due to equipment troubles, etc., the mixing ratio into the drainage system will increase significantly, resulting in an increase in COD (chemical oxygen demand). doing. Therefore, it is necessary to quickly detect an increase in the concentration of chemical components in the drainage system.

化学成分の濃度の増加を検知する方法としては、非特許文献1や非特許文献2に記載されたCOD、TOC(全有機炭素)、色度等の試験分析法があり、COD自動分析装置やTOC自動分析装置が上市されている。   Methods for detecting the increase in the concentration of chemical components include test analysis methods such as COD, TOC (total organic carbon) and chromaticity described in Non-Patent Document 1 and Non-Patent Document 2, TOC automatic analyzer is on the market.

その他、光学的な計測法である蛍光光度法や紫外・可視吸光光度法を用いた測定法がある。これらは、特定化学物質又は特定排水に励起光を当てることにより、前者は特有の蛍光を発する現象を応用したもの、後者は特有の励起波長で光の吸収が起こる現象を応用した方法である。紫外・可視吸光光度法は工場排水等に適用されており、蛍光光度法は検出の感度が高く、主に河川水・湖沼のようなCOD濃度が比較的低濃度の液体試料を対象に研究が進められている(非特許文献3)。   In addition, there are measurement methods using a fluorescence photometry method and an ultraviolet / visible absorption photometry method which are optical measurement methods. These are methods in which the former applies a phenomenon of emitting specific fluorescence by applying excitation light to a specific chemical substance or specific waste water, and the latter is a method in which light absorption occurs at a specific excitation wavelength. Ultraviolet / visible absorptiometry has been applied to industrial wastewater, etc., and fluorometry has high detection sensitivity, and research has been conducted mainly on liquid samples with relatively low COD concentrations such as river water and lakes. (Non-Patent Document 3).

工業用水試験方法 JIS−K0101Industrial water test method JIS-K0101 工場排水試験方法 JIS−K0102Factory drainage test method JIS-K0102 小松一弘、今井章雄、松重一夫、奈良郁子、川崎伸之、三次元励起蛍光スペクトル法による湖水及び流域水中DOMの特性評価、水環境学会誌、Vol.31、No.5,2007Kazuhiro Komatsu, Akio Imai, Kazuo Matsushige, Kyoko Nara, Nobuyuki Kawasaki, Characterization of Lake and Basin Water DOM by Three-dimensional Excitation Fluorescence Spectroscopy, Journal of Water Environment Society, Vol. 31, no. 5,2007

既存の検知装置は、以下のような課題を有している。
まず、COD自動分析装置は、1時間毎しか連続測定できないためリアルタイムな濃度の増加の検知が困難であり、また、薬品を使用するためによる廃液処分の問題やランニングコストが高い課題がある。TOC自動分析装置は、5〜10分間隔でしか連続測定できないため濃度の増加の検知に時間遅れが生じる。
Existing detection devices have the following problems.
First, since the COD automatic analyzer can continuously measure only every hour, it is difficult to detect an increase in concentration in real time, and there are problems of waste liquid disposal due to the use of chemicals and high running costs. Since the TOC automatic analyzer can perform continuous measurement only at intervals of 5 to 10 minutes, there is a time delay in detecting an increase in concentration.

次に、光学的な計測法である蛍光光度法や紫外・可視吸光光度法を用いた測定法は、蛍光光度法では検出の感度は高いが、高濃度域で蛍光が消光(濃度消光)したり、紫外・可視吸光光度法では吸光度が検出上限を超過したりするため、高濃度域での検知、及び、濃度推定ができない課題がある。さらに、これらの光学的な計測法では浮遊性固形物(SS:Suspended Solid)の影響を強く受ける。即ち、河川水・湖沼とは異なり、工場排水のように化学成分を高濃度に含む排水においては、SSを高濃度に含む場合が多く、含まれるSSにより光遮断・吸収等されることや、SS自体から蛍光が発せられるおそれがあり、検知の精度に影響を与えるという課題がある。また、排水におけるpHの影響、バックグラウンドの影響、共存塩(鉄成分等)の影響により蛍光が消光するという課題がある。また、紫外・可視吸光光度法ではSSが検出部に汚れとして付着し、測定自体が困難になるという課題がある。   Next, the measurement method using the fluorometric method and ultraviolet / visible absorption photometric method, which are optical measurement methods, has high detection sensitivity in the fluorophotometric method, but the fluorescence is quenched (concentration quenching) in a high concentration range. In the ultraviolet / visible absorptiometric method, the absorbance exceeds the upper limit of detection, so that there is a problem that detection in a high concentration region and concentration estimation cannot be performed. Furthermore, these optical measurement methods are strongly influenced by suspended solids (SS). In other words, unlike river water and lakes, wastewater containing chemical components at high concentrations, such as factory wastewater, often contains SS at high concentrations, and light is blocked or absorbed by the contained SS, There is a possibility that fluorescence may be emitted from the SS itself, which has a problem of affecting the detection accuracy. In addition, there is a problem that fluorescence is quenched by the influence of pH, background, and coexisting salts (iron components, etc.) in the wastewater. Further, in the ultraviolet / visible absorptiometric method, there is a problem that SS adheres to the detection portion as dirt, making measurement difficult.

以上のことから、化学成分を含む排水に対して光学的な計測法である蛍光光度法や紫外・可視吸光光度法の適用は困難であった。   From the above, it has been difficult to apply the fluorescence measurement method and the ultraviolet / visible absorption photometry method, which are optical measurement methods, to wastewater containing chemical components.

そこで、本発明は、上記従来技術の問題点を解決して、簡便で、迅速に適用できる排水中の特定化学物質又は特定排水の濃度測定方法及び検知方法並びに装置を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a method for measuring and detecting the concentration of a specific chemical substance or specific wastewater in wastewater that can be applied easily and quickly. .

本発明者らは、上記の課題を解決すべく、特定化学物質又は特定排水を含む排水を、原水性状に応じて算出した適切な希釈倍率で希釈することで、蛍光光度法や紫外・可視吸光光度法を用いてより効果的に特定化学物質又は特定排水の濃度測定及び検知する方法並びに装置を提供するに至った。   In order to solve the above-mentioned problems, the present inventors have diluted a wastewater containing a specific chemical substance or a specific wastewater at an appropriate dilution ratio calculated according to the raw water state, thereby obtaining a fluorometric method or an ultraviolet / visible light absorption. It came to provide the method and apparatus which measure and detect the density | concentration of a specific chemical substance or a specific waste water more effectively using a photometric method.

本発明の要旨とするところは、次の(1)〜(14)である。
(1) 特定の油又は特定の含油排水に特有の蛍光を用いて、原水中に混入している前記特定の油又は特定の含油排水の濃度測定を行う方法において
前記特定の油が難燃性作動油又は水溶性切削油であり、前記特定の含油排水が難燃性作動油又は水溶性切削油を含む排水であって、
200〜800nmの励起波長全域における前記特定の油又は特定の含油排水を含む液体試料について蛍光スペクトルを測定し、前記特定の油又は特定の含油排水の蛍光スペクトル強度のピーク位置における励起波長と蛍光波長を記録したデータベースを作成し、かつ、当該ピーク位置における蛍光スペクトル強度と、前記特定の油又は特定の含油排水における溶解性化学的酸素要求量の濃度との相関関係を求めて検量線を作成するデータベース化工程と
前記原水を連続的にサンプリングして得られた液体試料について、前記データベース化工程における、前記蛍光スペクトル強度と、前記溶解性化学的酸素要求量の濃度との相関関係が得られるように、原水性状に応じて前記液体試料の希釈倍率を算出する希釈倍率設定工程と、
前記希釈倍率設定工程で算出された希釈倍率で、前記原水を連続的にサンプリングして得られた液体試料に希釈用水を混合することで希釈済原水を得る希釈工程と、
前記希釈済原水において、前記ピーク位置の励起波長における蛍光スペクトル強度を測定する測定工程と、
前記データベース化工程における前記相関関係を用いて、前記測定工程での測定結果から、前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出し、さらに、前記希釈倍率を用いて前記原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する濃度計算工程と、
を備えることを特徴とする、排水中の特定の油又は特定の含油排水の濃度測定方法。
(2) 前記検量線の作成は、下記の式(1)に表される近似式を用いることを特徴とする、(1)に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
蛍光スペクトル強度=a{1−exp(−bC)}+d ・・・式(1)
(ここで、上記式(1)において、a、b、dは定数であり、Cは油又は含油排水の溶解性化学的酸素要求量である。)
(3) 前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する方法において、予め溶解性化学的酸素要求量の濃度と全化学的酸素要求量の濃度との相関関係を求めておくことで、算出して得られた溶解性化学的酸素要求量の濃度から全化学的酸素要求量の濃度算出することを特徴とする、(1)又は(2)に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
(4) 前記原水又は希釈済原水に対して、固形物除去処理としてフィルターを設置するSS除去工程を備えることで、蛍光分析における固形物の影響、液体試料のバックグラウンドの影響の内、一つ又は二つの影響を軽減することを特徴とする、(1)〜(3)のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
(5) 前記SS除去工程について、定期的な逆洗浄を行うことでフィルターの閉塞を防ぐことを特徴とする、(1)〜(4)のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
) 前記原水性状に応じて算出した適切な希釈倍率が、流量データを基に計算した実際の希釈倍率を用いることを特徴とする、(1)〜()のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
) 前記(1)〜()のいずれか1項に記載の濃度測定方法を用いて、事前に設定した基準値を超えた場合に警報を出す検知工程と、排水の供給の制限及び/又は排水の濃度調整を行う対処を行う対処工程と、を備えることを特徴とする排水中の特定の油又は特定の含油排水の検知方法。
) 特定の油又は特定の含油排水に特有の蛍光を用いて、原水中に混入している前記特定の油又は特定の含油排水の濃度測定を行う装置において
前記特定の油が難燃性作動油又は水溶性切削油であり、前記特定の含油排水が難燃性作動油又は水溶性切削油を含む排水であって、
200〜800nmの励起波長全域における前記特定の油又は特定の含油排水を含む液体試料について蛍光スペクトルを測定し、前記特定の油又は特定の含油排水の蛍光スペクトル強度のピーク位置における励起波長と蛍光波長を記録したデータベースを作成し、かつ、当該ピーク位置における蛍光スペクトル強度と、前記特定の油又は特定の含油排水における溶解性化学的酸素要求量の濃度との相関関係を求めて検量線を作成するデータベース化手段と、
前記原水を連続的にサンプリングして得られた液体試料について、前記データベース化
手段における、前記蛍光スペクトル強度と、前記溶解性化学的酸素要求量の濃度との相関関係が
得られるように、原水性状に応じて前記液体試料の希釈倍率を算出する希釈倍率設定手段
と、
前記希釈倍率設定手段で算出された希釈倍率で、前記原水を連続的にサンプリングして得られた液体試料に希釈用水を混合することで希釈済原水を得る希釈手段と、
前記希釈済原水において、前記ピーク位置の励起波長における蛍光スペクトル強度を測定する測定手段と、
前記データベース化手段における前記相関関係を用いて、前記測定手段での測定結果から、前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出し、さらに、前記希釈倍率を用いて前記原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する濃度計算手段と、
を備えることを特徴とする、排水中の特定の油又は特定の含油排水の濃度測定装置。
) 前記検量線の作成は、下記の式(1)に表される近似式を用いることを特徴とする、()に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
蛍光スペクトル強度=a{1−exp(−bC)}+d ・・・式(1)
(ここで、上記式(1)において、a、b、dは定数であり、Cは油又は含油排水の溶解性化学的酸素要求量である。)
10) 前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する装置において、予め溶解性化学的酸素要求量の濃度と全化学的酸素要求量の濃度との相関関係を求めておくことで、算出して得られた溶解性化学的酸素要求量の濃度から全化学的酸素要求量の濃度算出することを特徴とする、()又は()に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
11) 前記原水又は希釈済原水に対して、固形物除去処理としてフィルターを設置するSS除去手段を備えることで、蛍光分析における固形物の影響、液体試料のバックグラウンドの影響の内、一つ又は二つの影響を軽減することを特徴とする、()〜(10)のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
12) 前記SS除去手段について、定期的な逆洗浄を行うことでフィルターの閉塞を防ぐ手段を有することを特徴とする、()〜(11)のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
13) 前記原水性状に応じて算出した適切な希釈倍率が、流量データを基に計算した実際の希釈倍率を用いることを特徴とする、()〜(12)のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
14) 前記()〜(13)のいずれか1項に記載の濃度測定装置を用いて、事前に設定した基準値を超えた場合に警報を出す検知手段と、排水の供給の制限及び/又は排水の濃度調整を行う対処を行う対処手段と、を備えることを特徴とする排水中の特定の油又は特定の含油排水の検知装置。
The gist of the present invention is the following (1) to ( 14 ).
(1) using a fluorescence specific to a particular oil or a particular oil-containing wastewater, in the method of performing density measurement of the particular oil or a particular oil-containing wastewater is mixed in the raw water,
The specific oil is a flame retardant hydraulic oil or a water-soluble cutting oil, and the specific oil-containing wastewater is a drainage containing a flame retardant hydraulic oil or a water-soluble cutting oil,
The fluorescence spectrum is measured for the specific oil or the liquid sample containing the specific oil-containing wastewater in the entire excitation wavelength range of 200 to 800 nm, and the excitation wavelength and the fluorescence wavelength at the peak position of the fluorescence spectrum intensity of the specific oil or the specific oil-containing wastewater. And create a calibration curve by obtaining the correlation between the fluorescence spectrum intensity at the peak position and the concentration of the soluble chemical oxygen demand in the specific oil or specific oil-containing wastewater. A correlation between the fluorescence spectrum intensity and the concentration of the soluble chemical oxygen demand in the database generation process is obtained for the liquid sample obtained by continuously sampling the database and the raw water. In addition, a dilution ratio setting step for calculating the dilution ratio of the liquid sample according to the raw aqueous state,
A dilution step of obtaining diluted raw water by mixing dilution water with a liquid sample obtained by continuously sampling the raw water at the dilution rate calculated in the dilution rate setting step;
In the diluted raw water, a measurement step of measuring the fluorescence spectrum intensity at the excitation wavelength of the peak position;
Using the correlation in the database creation step, from the measurement result in the measurement step, calculate the concentration of the soluble chemical oxygen demand of the specific oil or specific oil-containing wastewater in the diluted raw water, Furthermore, a concentration calculation step for calculating the concentration of the dissolved chemical oxygen demand of the specific oil or the specific oil- containing wastewater in the raw water using the dilution factor;
A method for measuring the concentration of a specific oil in a wastewater or a specific oil-containing wastewater.
(2) Preparation of the calibration curve uses an approximate expression represented by the following formula (1), and the concentration measurement of the specific oil or the specific oil-containing wastewater in the drainage according to (1) Method.
Fluorescence spectrum intensity = a {1-exp (−bC)} + d (1)
(Here, in the above formula (1), a, b and d are constants, and C is the soluble chemical oxygen demand of the oil or oil-containing waste water.)
(3) In the method for calculating the concentration of the soluble chemical oxygen demand of the particular oil or a particular oil-containing wastewater in the in the diluted raw water, previously soluble chemical oxygen demand concentration and total chemical oxygen demand by keeping the correlation relationship between the concentration of the amount, and calculates the concentration of total chemical oxygen demand from the concentration of the resulting soluble chemical oxygen demand is calculated, (1) Or the density | concentration measuring method of the specific oil or specific oil-containing waste water in the waste_water | drain as described in (2).
(4) One of the influence of solid matter in the fluorescence analysis and the influence of the background of the liquid sample is provided by providing an SS removal step in which a filter is installed as a solid matter removal treatment for the raw water or diluted raw water. Alternatively, the method for measuring the concentration of specific oil or specific oil-containing wastewater in wastewater according to any one of (1) to (3), wherein two effects are reduced.
(5) About said SS removal process, the blockage | closure of a filter is prevented by performing regular backwashing, The specific oil in any one of (1)-(4) characterized by the above-mentioned Or a method for measuring the concentration of specific oil-containing wastewater.
( 6 ) The appropriate dilution ratio calculated according to the raw water state uses an actual dilution ratio calculated based on flow rate data, (1) to ( 5 ), Of measuring the concentration of specific oil or specific oil-containing wastewater in the drainage of water.
( 7 ) Using the concentration measurement method according to any one of (1) to ( 6 ) above, a detection step that issues an alarm when a preset reference value is exceeded, And / or a coping process for coping with the concentration adjustment of the wastewater, and a method for detecting specific oil in the wastewater or specific oil-containing wastewater.
(8) using a fluorescence specific to a particular oil or a particular oil-containing wastewater, in the apparatus for performing the density measurement of the particular oil or a particular oil-containing wastewater is mixed in the raw water,
The specific oil is a flame retardant hydraulic oil or a water-soluble cutting oil, and the specific oil-containing wastewater is a drainage containing a flame retardant hydraulic oil or a water-soluble cutting oil,
The fluorescence spectrum is measured for the specific oil or the liquid sample containing the specific oil-containing wastewater in the entire excitation wavelength range of 200 to 800 nm, and the excitation wavelength and the fluorescence wavelength at the peak position of the fluorescence spectrum intensity of the specific oil or the specific oil-containing wastewater. And create a calibration curve by obtaining the correlation between the fluorescence spectrum intensity at the peak position and the concentration of the soluble chemical oxygen demand in the specific oil or specific oil-containing wastewater. Databaseization means,
For a liquid sample obtained by continuously sampling the raw water, the raw water state is obtained so that a correlation between the fluorescence spectrum intensity and the concentration of the soluble chemical oxygen demand in the database is obtained. Dilution ratio setting means for calculating the dilution ratio of the liquid sample according to
Dilution means for obtaining diluted raw water by mixing dilution water with a liquid sample obtained by continuously sampling the raw water at the dilution ratio calculated by the dilution ratio setting means,
In the diluted raw water, measuring means for measuring the fluorescence spectrum intensity at the excitation wavelength of the peak position;
Using the correlation in the database creation means, from the measurement results in the measurement means, calculate the concentration of the dissolved chemical oxygen demand of the specific oil or specific oil-containing wastewater in the diluted raw water, Further, concentration calculation means for calculating the concentration of the dissolved chemical oxygen demand of the specific oil or the specific oil- containing wastewater in the raw water using the dilution factor;
A device for measuring the concentration of a specific oil in a waste water or a specific oil-containing waste water.
( 9 ) Concentration measurement of specific oil or specific oil-containing wastewater in wastewater according to ( 8 ), wherein the calibration curve is created using an approximate expression represented by the following equation (1): apparatus.
Fluorescence spectrum intensity = a {1-exp (−bC)} + d (1)
(Here, in the above formula (1), a, b and d are constants, and C is the soluble chemical oxygen demand of the oil or oil-containing waste water.)
(10) An apparatus for calculating the concentration of the soluble chemical oxygen demand of the particular oil or a particular oil-containing wastewater in the in the diluted raw water, previously soluble chemical oxygen demand concentration and total chemical oxygen demand by keeping the correlation relationship between the concentration of the amount, and calculates the concentration of total chemical oxygen demand from the concentration of the resulting soluble chemical oxygen demand is calculated, (8) Or the density | concentration measuring apparatus of the specific oil in the waste_water | drain or specific oil-containing waste_water | drain as described in ( 9 ).
( 11 ) One of the influences of solid matter in the fluorescence analysis and the influence of the background of the liquid sample is provided by providing SS removal means for installing a filter as solid matter removal treatment for the raw water or diluted raw water. Alternatively, the concentration measuring apparatus for specific oil or specific oil-containing wastewater in wastewater according to any one of ( 8 ) to ( 10 ), wherein two effects are reduced.
( 12 ) The SS removal means includes means for preventing clogging of the filter by performing periodic backwashing, wherein the SS removal means is characterized in that in the wastewater according to any one of ( 8 ) to ( 11 ) Concentration measuring device for specific oil or specific oil-containing wastewater.
( 13 ) Any one of ( 8 ) to ( 12 ), wherein an appropriate dilution factor calculated according to the raw water condition is an actual dilution factor calculated based on flow rate data. Concentration measuring device for specific oil or specific oil-containing wastewater in wastewater.
( 14 ) Using the concentration measuring device according to any one of ( 8 ) to ( 13 ), a detection unit that issues an alarm when a preset reference value is exceeded, And / or a coping means for coping with the concentration adjustment of the wastewater, and a specific oil in the wastewater or a specific oil-containing wastewater detection device.

本発明によれば、特定化学物質又は特定排水を含む排水を、原水性状に応じて算出した適切な希釈倍率で希釈することで、これまで濃度消光や検出上限超過、pH、バックグラウンド、固形物、共存塩の影響により蛍光光度法及び/又は紫外・可視吸光光度法の適用が不可能であった排水に対して、適用が可能となる。さらに、希釈することで排水中のSS濃度も希釈されるため、SSによる光の遮断・吸収あるいはSS自体から発する蛍光による検知精度への影響を低減することができる。また、排水配管内のSSによる詰まりが発生し難くなる。さらに、フィルター等の前処理を排水系に併設することで、バックグラウンド、固形物の影響を軽減することが可能となり、希釈を併用した固形物処理を行うことで、フィルターの目詰まりが発生し難くなる。さらに、適切な希釈倍率を設定するため、水資源の無駄遣いをしないで精度よく測定できる。   According to the present invention, waste water containing a specific chemical substance or specific waste water is diluted with an appropriate dilution factor calculated according to the raw water state, so far, concentration quenching, excess detection upper limit, pH, background, solid matter Therefore, it can be applied to wastewater in which the fluorescence method and / or the ultraviolet / visible absorption photometry method cannot be applied due to the influence of the coexisting salt. Furthermore, since the SS concentration in the waste water is also diluted by dilution, it is possible to reduce the influence on the detection accuracy due to the blocking and absorption of light by SS or the fluorescence emitted from SS itself. Moreover, clogging due to SS in the drainage pipe is less likely to occur. In addition, pre-treatment such as filters can be added to the drainage system to reduce the effects of background and solid matter, and solid matter treatment combined with dilution can cause clogging of the filter. It becomes difficult. Furthermore, since an appropriate dilution ratio is set, it is possible to measure accurately without wasting water resources.

蛍光スペクトル測定の原理図である。It is a principle diagram of fluorescence spectrum measurement. 本発明に係る、特定化学物質又は特定排水の含有排水での検知方法を示す構成図である。It is a block diagram which shows the detection method in the waste_water | drain containing specific chemical substance or specific waste_water | drain based on this invention. A成分濃度と蛍光スペクトル強度との相関関係を示す図である。It is a figure which shows correlation with A component density | concentration and fluorescence spectrum intensity | strength. A成分濃度と紫外・可視吸光度との相関関係を示す図である。It is a figure which shows correlation with A component density | concentration and ultraviolet and visible light absorbency. A成分濃度と蛍光スペクトル強度との相関関係における近似曲線を示す図である。It is a figure which shows the approximated curve in the correlation of A component density | concentration and fluorescence spectrum intensity | strength. 実施例1における含油排水の3次元励起・蛍光スペクトル図である。2 is a three-dimensional excitation / fluorescence spectrum diagram of oil-containing wastewater in Example 1. FIG. 実施例1における含油排水の紫外・可視吸光スペクトル図である。1 is an ultraviolet / visible absorption spectrum diagram of oil-containing wastewater in Example 1. FIG. 実施例1における含油排水の溶解性COD濃度、混入濃度、成分濃度と蛍光スペクトル強度との相関関係及び近似曲線を示す図である。It is a figure which shows the correlation and soluble curve of the soluble COD density | concentration of the oil-containing wastewater in Example 1, a mixing density | concentration, a component density | concentration, and fluorescence spectrum intensity | strength. 実施例1における含油排水の溶解性COD濃度、混入濃度、成分濃度と紫外・可視吸光度との相関関係及び近似曲線を示す図である。It is a figure which shows the correlation of the soluble COD density | concentration of an oil-containing wastewater in Example 1, a mixing density | concentration, a component density | concentration, and an ultraviolet-visible light absorbency, and an approximated curve. 実施例1における蛍光スペクトル強度と溶解性COD濃度の希釈前後の経時変化を示す図である。It is a figure which shows the time-dependent change before and behind dilution of the fluorescence spectrum intensity | strength and soluble COD density | concentration in Example 1. FIG. 実施例1における溶解性COD実測値と本発明による溶解性COD濃度計算値との相関関係を示す図である。It is a figure which shows the correlation of the soluble COD measured value in Example 1, and the soluble COD density | concentration calculated value by this invention. 実施例1における希釈によるバックグラウンドの影響の軽減効果を示す図である。It is a figure which shows the reduction effect of the influence of the background by dilution in Example 1. FIG. 実施例1における全COD濃度と溶解性COD濃度との相関関係を示す図である。It is a figure which shows the correlation of the total COD density | concentration in Example 1, and soluble COD density | concentration. 実施例1における全COD濃度と本発明による全COD濃度計算値との相関関係を示す図である。It is a figure which shows the correlation of the total COD density | concentration in Example 1, and the total COD density | concentration calculation value by this invention. 実施例3におけるろ過の有無による蛍光スペクトル強度の変化を示す図である。It is a figure which shows the change of the fluorescence spectrum intensity by the presence or absence of filtration in Example 3. FIG. 実施例3におけるフィルターの有無による蛍光スペクトル強度の経時変化を示す図である。It is a figure which shows the time-dependent change of the fluorescence spectrum intensity by the presence or absence of the filter in Example 3. FIG. 実施例4における水溶性切削油の3次元励起・蛍光スペクトル図である。It is a three-dimensional excitation and fluorescence spectrum figure of the water-soluble cutting oil in Example 4. 実施例5における含油排水をpH調整した時の蛍光強度の変化を示す図である。It is a figure which shows the change of the fluorescence intensity when the pH of the oil-containing wastewater in Example 5 is adjusted. 実施例5における希釈によるpHの影響の軽減効果を示す図である。It is a figure which shows the reduction effect of the influence of pH by the dilution in Example 5. FIG. 実施例6における含油排水の固形物濃度を調整した時の蛍光強度の変化を示す図である。It is a figure which shows the change of the fluorescence intensity when the solid substance density | concentration of the oil containing waste water in Example 6 is adjusted. 実施例6における希釈による固形物の影響の軽減効果を示す図である。It is a figure which shows the reduction effect of the influence of the solid substance by the dilution in Example 6. FIG. 実施例7における含油排水の共存塩濃度を調整した時の蛍光強度の変化を示す図である。It is a figure which shows the change of the fluorescence intensity when adjusting the coexistence salt density | concentration of the oil-containing wastewater in Example 7. FIG. 実施例7における希釈による共存塩の影響の軽減効果を示す図である。FIG. 10 is a graph showing the effect of reducing the influence of the coexisting salt by dilution in Example 7.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

まず、蛍光光度法による蛍光スペクトル測定装置の原理図を図1に示す。
キセノンランプ1を光源として発生した光2(以下、励起光2)は、ビームスプリッタ3によりモニタ側検知器4と測定の対象となる排水等の液体試料が入った試料セル5に分かれる。モニタ側検知器4へ入った励起光2は、比測光として用いられる。一方、液体試料の入った試料セル5に、ある波長の励起光2が照射されると、液体試料に含まれる成分に応じた蛍光6が発生し、それを光電子倍増管7で検知し、蛍光スペクトル強度(測光値)を読み取る。この場合、液体試料中に複数の成分が混在し、同じ励起波長で蛍光を発するとしても、蛍光波長が異なれば、最適な蛍光波長を選択することにより、複数の成分を分離して測定することが可能となる(蛍光スペクトル測定)。
First, FIG. 1 shows a principle diagram of a fluorescence spectrum measuring apparatus using a fluorometric method.
Light 2 (hereinafter referred to as excitation light 2) generated using the xenon lamp 1 as a light source is divided into a monitor cell 4 and a sample cell 5 containing a liquid sample such as waste water to be measured by a beam splitter 3. The excitation light 2 that has entered the monitor-side detector 4 is used as specific photometry. On the other hand, when the sample cell 5 containing the liquid sample is irradiated with the excitation light 2 having a certain wavelength, fluorescence 6 corresponding to the component contained in the liquid sample is generated and detected by the photomultiplier tube 7. Read the spectral intensity (photometric value). In this case, even if multiple components coexist in the liquid sample and emit fluorescence at the same excitation wavelength, if the fluorescence wavelength is different, select the optimal fluorescence wavelength and measure the multiple components separately (Fluorescence spectrum measurement).

励起光2の波長は、汎用の蛍光分光光度計を用いて計測できる波長範囲、即ち200nm〜800nmまで連続的に変更できる。蛍光6の波長も、汎用の蛍光分光光度計を用いて計測できる波長範囲、即ち200nm〜800nmまで連続的に測定する。検知対象の成分が特定されている場合は、励起光及び/又は蛍光の波長の範囲を狭くすることもできる。   The wavelength of the excitation light 2 can be continuously changed from a wavelength range that can be measured using a general-purpose fluorescence spectrophotometer, that is, 200 nm to 800 nm. The wavelength of the fluorescence 6 is also continuously measured in a wavelength range that can be measured using a general-purpose fluorescence spectrophotometer, that is, 200 nm to 800 nm. When the component to be detected is specified, the wavelength range of excitation light and / or fluorescence can be narrowed.

分析手順は、ろ紙でろ過した後のろ液(液体試料)を試料セルに1〜2mL程度移し、励起光を照射し、表示された測光値を記録する。操作手順は非常に簡易であり、試料セルを測定機器にセットしてから分析結果が出るまで数秒〜数分しかかからない。   In the analysis procedure, the filtrate (liquid sample) after filtering with filter paper is transferred to the sample cell by about 1 to 2 mL, irradiated with excitation light, and the displayed photometric value is recorded. The operation procedure is very simple, and it takes only a few seconds to a few minutes from setting the sample cell to the measuring instrument until an analysis result is obtained.

対象とする特定化学物質又は特定排水の蛍光スペクトルを予め測定し、その特定化学物質又は特定排水に特徴的な励起波長及び蛍光波長及び蛍光スペクトル強度をデータベース化する。さらに、対象とする原水を希釈し、特定化学物質の成分濃度又は特定排水の混入濃度を変えた水溶液(希釈済原水)について励起波長及び蛍光波長における蛍光スペクトル強度を測定し、特定化学物質の成分濃度又は特定排水の混入濃度と励起波長及び蛍光波長における蛍光スペクトル強度との相関関係あるいは検量線を予め作成し、液体試料の前記励起波長及び蛍光波長における蛍光スペクトル強度から、該液体試料中の特定化学物質の成分濃度又は特定排水の混入濃度を推定することができる。   The fluorescence spectrum of the target specific chemical substance or specific wastewater is measured in advance, and the excitation wavelength, fluorescence wavelength, and fluorescence spectrum intensity characteristic of the specific chemical substance or specific wastewater are compiled into a database. Furthermore, diluting the target raw water and measuring the fluorescence spectrum intensity at the excitation wavelength and fluorescence wavelength of the aqueous solution (diluted raw water) in which the component concentration of the specific chemical substance or the mixed concentration of the specific wastewater is changed, and the component of the specific chemical substance A correlation or calibration curve between the concentration or the concentration of specific wastewater and the fluorescence spectrum intensity at the excitation wavelength and the fluorescence wavelength is prepared in advance, and the specific in the liquid sample is determined from the fluorescence spectrum intensity at the excitation wavelength and the fluorescence wavelength of the liquid sample. The concentration of chemical substances or the concentration of specific wastewater can be estimated.

なお、特定化学物質とは、排水に混入する化学物質のうち、化合物又は薬剤として特定可能で、蛍光を発する化合物を示す。特定排水とは、排水の系列として特定可能で、蛍光を発する排水を示す。成分濃度とは、液体試料に含まれる特定化学物質の濃度を表し、混入濃度とは、液体試料に含まれる特定排水の濃度を表す。   The specific chemical substance is a chemical substance that can be specified as a compound or a drug and emits fluorescence among chemical substances mixed in waste water. Specific drainage refers to wastewater that can be identified as a series of drainage and emits fluorescence. The component concentration represents the concentration of the specific chemical substance contained in the liquid sample, and the contamination concentration represents the concentration of the specific wastewater contained in the liquid sample.

次に、参考形態として、紫外・可視吸光光度法による紫外・可視吸光スペクトル測定について説明する。
液体試料に200nm〜800nm程度の光を当て、その光が液体試料を通過する際の、液体試料中の対象となる成分による光の吸収の程度、即ち吸光度を測定することにより、その成分の濃度を定量的に分析する方法である。
Next, as a reference form, ultraviolet / visible absorption spectrum measurement by ultraviolet / visible absorption photometry will be described.
By applying light of about 200 nm to 800 nm to a liquid sample and measuring the degree of light absorption by the target component in the liquid sample, that is, the absorbance when the light passes through the liquid sample, the concentration of the component is measured. Is a method of quantitatively analyzing

分析手順は、ろ紙でろ過した後のろ液(液体試料)を試料セルに1〜2mL程度移し、光を照射し、表示された吸光値を記録する。操作手順は非常に簡易であり、試料セルを測定機器にセットしてから分析結果が出るまで数秒〜数分しかかからない。   In the analysis procedure, the filtrate (liquid sample) after filtration with filter paper is transferred to the sample cell by about 1 to 2 mL, irradiated with light, and the displayed absorbance value is recorded. The operation procedure is very simple, and it takes only a few seconds to a few minutes from setting the sample cell to the measuring instrument until an analysis result is obtained.

対象とする特定化学物質又は特定排水の紫外・可視吸光スペクトルを予め測定し、その特定化学物質又は特定排水に特徴的な吸光波長を選定する。さらに、対象とする原水を希釈し、特定化学物質の成分濃度又は特定排水の混入濃度を変えた水溶液(希釈済原水)について前記吸光波長の紫外・可視吸光度を測定し、特定化学物質の成分濃度又は特定排水の混入濃度と紫外・可視吸光度との相関関係あるいは検量線を予め作成し、液体試料の紫外・可視吸光度から、該液体試料中の特定化学物質の成分濃度又は特定排水の混入濃度を推定することができる。   The UV / visible absorption spectrum of the specific chemical substance or specific wastewater to be measured is measured in advance, and an absorption wavelength characteristic of the specific chemical substance or specific wastewater is selected. Furthermore, measure the ultraviolet / visible absorbance of the above absorption wavelength for an aqueous solution (diluted raw water) in which the target raw water is diluted and the component concentration of the specific chemical substance or the concentration of the specific wastewater mixed is changed, and the component concentration of the specific chemical substance Or, create a correlation or calibration curve between the contamination concentration of the specific wastewater and the ultraviolet / visible absorbance beforehand, and determine the component concentration of the specific chemical substance in the liquid sample or the contamination concentration of the specific wastewater from the ultraviolet / visible absorbance of the liquid sample. Can be estimated.

管理したい特定化学物質の成分濃度又は特定排水の混入濃度と、紫外・可視吸光度との関係はランベルト・ベールの法則に従うため、低濃度の成分を感度良く検知するためには紫外・可視吸光スペクトル測定時の光路長を長くすることで、また、逆に紫外・可視吸光度の測定上限値を上回るような高濃度の成分を検知するためには、光路長を短くすることで精度良く検出できる。   The relationship between the concentration of the specified chemical substance or the concentration of the specified wastewater to be controlled and the UV / visible absorbance conforms to the Lambert-Beer law. Therefore, UV / visible absorption spectrum measurement is required to detect low-concentration components with high sensitivity. In order to detect a high-concentration component by increasing the optical path length at the time and, conversely, exceeding the measurement upper limit of ultraviolet / visible absorbance, it is possible to detect with high accuracy by shortening the optical path length.

但し、蛍光光度法の蛍光スペクトル強度及び紫外・可視吸光度は、蛍光性成分及び吸光性成分の周囲の性質(液体試料のpH、共存塩、SS等)により影響を受ける可能性があるので、例えば、検知に供する液体試料のpH等を一定範囲に調整する前処理を行うことが望ましい。特に、測定は光学的な原理に基づくことから、液体試料の濁度やSSは、光が遮断・吸収等されることや、SS自体から蛍光が発せられること、蛍光スペクトル強度及び紫外・可視吸光度に影響を与えるため、SS濃度を低減させることが望ましい。さらに、接液型の検出器ではSSが検出部に汚れとして付着し、測定自体が困難になることから、SS濃度を低減させることが望ましい。   However, since the fluorescence spectrum intensity and ultraviolet / visible absorbance of the fluorometric method may be affected by the fluorescent component and the surrounding properties of the light absorbing component (pH of liquid sample, coexisting salt, SS, etc.), for example, It is desirable to perform a pretreatment for adjusting the pH or the like of the liquid sample to be detected to a certain range. In particular, since the measurement is based on the optical principle, the turbidity and SS of the liquid sample are such that light is blocked / absorbed, fluorescence is emitted from the SS itself, fluorescence spectrum intensity and ultraviolet / visible absorbance. Therefore, it is desirable to reduce the SS concentration. Furthermore, in a liquid contact type detector, SS adheres to the detection part as dirt, making measurement difficult. Therefore, it is desirable to reduce the SS concentration.

さらに、蛍光光度法において、液体試料中の成分の濃度が高まると蛍光が弱められるような消光作用(quenching)がある。これは、水中に存在する分子同士の衝突や異種又は同種の励起−未励起分子間の非衝突エネルギー移動により生じると考えられている。この作用のため、蛍光光度法では低濃度の混入を高感度で検知することができるが、高濃度で混入した場合には低濃度の混入であると誤判断し、正しく検知できなくなるおそれがある。   Furthermore, in the fluorometric method, there is a quenching action in which the fluorescence is weakened as the concentration of the component in the liquid sample increases. This is considered to be caused by collision between molecules existing in water or non-collision energy transfer between different or similar excited-unexcited molecules. Because of this action, low-concentration contamination can be detected with high sensitivity in the fluorescence method, but if it is mixed at high concentration, it may be erroneously determined as low-concentration contamination and cannot be detected correctly. .

また、紫外・可視吸光光度法においては、測定装置の検出上限があり、ある一定以上の濃度になると、吸光度が非常に高くなる(光を透過しなくなる)ため、検出上限超過により測定不可能となる。   In addition, in the UV / visible absorptiometry, there is an upper limit of detection of the measuring device, and when the concentration exceeds a certain level, the absorbance becomes very high (it does not transmit light). Become.

本発明では、上記のような蛍光光度法及び/又は紫外・可視吸光光度法の原理を応用するにあたり、特定化学物質又は特定排水が濃度消光や検出上限超過により測定ができない問題を解消することや、液体試料中のSS濃度、pH、バックグラウンド及び共存塩の影響を軽減させるため、原水性状に応じて算出した適切な希釈倍率で希釈を行うことに着目した。   In the present invention, in applying the principle of the fluorescence photometry and / or ultraviolet / visible absorption photometry as described above, the problem that the specific chemical substance or specific wastewater cannot be measured due to concentration quenching or exceeding the detection upper limit, In order to reduce the influence of SS concentration, pH, background and coexisting salt in the liquid sample, attention was paid to diluting at an appropriate dilution factor calculated according to the raw aqueous state.

図2には、本発明に係る、特定化学物質又は特定排水の含有排水での検知方法を示す構成を示す。
原水11には、特定化学物質又は特定排水12が混入している。特定化学物質又は特定排水12については、予め希釈倍率設定工程16では、蛍光光度法及び/又は紫外・可視吸光光度法におけるデータベース化を行う。データベース化工程13を基に希釈倍率設定工程16では、原水性状に応じた適切な希釈倍率を決定する。得られた希釈倍率を基に、希釈工程17では、原水11と希釈用水15を混合し、希釈済原水19を得る。得られた希釈済原水19は、必要に応じて、SS除去工程18で固形物が除去される。SS除去工程を経た希釈済原水19は、測定工程20にて、蛍光光度法及び/又は紫外・可視吸光光度法により測定される。データベース化工程13を基に相関関係14で検量線等が得られ、測定工程20と相関関係14から濃度計算工程21にて原水11のCOD濃度等が計算される。得られたCOD濃度等が予め設定した目標レベルを超えた場合には検知工程23でアラームを出し、対処工程24では、現場にて流路の遮断等の措置を行う。
In FIG. 2, the structure which shows the detection method in the waste_water | drain containing a specific chemical substance or specific waste_water | drain based on this invention is shown.
The raw water 11 is mixed with specific chemical substances or specific waste water 12. About the specific chemical substance or the specific waste water 12, in the dilution rate setting step 16, a database in the fluorescence photometry and / or the ultraviolet / visible absorption photometry is performed in advance. In the dilution rate setting step 16 based on the database creation step 13, an appropriate dilution rate is determined according to the raw aqueous state. Based on the obtained dilution ratio, in the dilution step 17, the raw water 11 and the dilution water 15 are mixed to obtain a diluted raw water 19. As for the obtained diluted raw | natural water 19, a solid substance is removed by SS removal process 18 as needed. The diluted raw water 19 that has undergone the SS removal step is measured in the measurement step 20 by a fluorescence method and / or an ultraviolet / visible absorption photometry method. A calibration curve or the like is obtained with the correlation 14 based on the database creation step 13, and the COD concentration or the like of the raw water 11 is calculated in the concentration calculation step 21 from the measurement step 20 and the correlation 14. When the obtained COD concentration or the like exceeds a preset target level, an alarm is issued in the detection step 23, and in the coping step 24, measures such as blocking the flow path are performed on site.

データベース化工程13において、蛍光光度法及び/又は紫外・可視吸光光度法のデータを、特定化学物質又は特定排水12についてデータベース化する。即ち、管理したい特定化学物質又は特定排水12を高濃度に含む液体試料について、予め蛍光スペクトル測定及び/又は紫外・可視吸光スペクトル測定して蛍光特性及び/又は紫外・可視吸光特性を把握し、蛍光光度法においては励起波長、蛍光波長、蛍光スペクトル強度のデータをデータベース化し、紫外・可視吸光光度法においては励起波長、紫外・可視吸光度のデータをデータベース化する。さらに、特定化学物質、又は、特定排水のCOD濃度及び/又はTOCを測定しておくことが望ましい。   In the database preparation step 13, the data of the fluorescence method and / or the ultraviolet / visible absorption photometry method is made into a database for the specific chemical substance or the specific waste water 12. That is, for a specific chemical substance to be managed or a liquid sample containing a specific wastewater 12 at a high concentration, a fluorescence spectrum measurement and / or ultraviolet / visible absorption spectrum measurement is performed in advance to grasp the fluorescence characteristics and / or ultraviolet / visible absorption characteristics, and fluorescence In the photometric method, the data of excitation wavelength, fluorescence wavelength, and fluorescence spectrum intensity are made into a database, and in the ultraviolet / visible absorption photometry method, the data of excitation wavelength, ultraviolet / visible absorbance are made into a database. Furthermore, it is desirable to measure the COD concentration and / or TOC of specific chemical substances or specific wastewater.

相関関係14は、前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度を変えた水溶液の蛍光スペクトル及び/又は紫外・可視吸光スペクトルを前記データベース化工程13において予め測定しておき、管理したい前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度と、ピーク位置における蛍光スペクトル強度及び/又は紫外・可視吸光度との相関関係を求めておき、検量線を予め作成して求めておく。検量線を求める際には、pH、固形物の影響を除外するため、pH調整、固形物除去を行うことが望ましい。   The correlation 14 is obtained by previously measuring the fluorescence spectrum and / or ultraviolet / visible absorption spectrum of the aqueous solution in which the COD concentration, the component concentration, or the mixed concentration in the specific chemical substance or the specific waste water 12 is changed in the database creation step 13. The correlation between the COD concentration, component concentration, or contamination concentration in the specific chemical substance or specific waste water 12 to be managed and the fluorescence spectrum intensity and / or ultraviolet / visible absorbance at the peak position is obtained, and a calibration curve is obtained. Create and obtain in advance. When obtaining a calibration curve, it is desirable to adjust the pH and remove the solid matter in order to exclude the influence of pH and solid matter.

検量線を用いて、後述の希釈倍率設定工程16では、蛍光光度法の消光作用が起きず、紫外・可視吸光光度法の検出上限を超えずに、蛍光スペクトル強度、紫外・可視吸光度と相関性が見られる濃度域を設定することができる。この濃度域を設定するには広範囲の濃度データを得る必要があるが、実サンプルの濃度変動が小さい場合は、実サンプルを任意に希釈して低濃度域の相関関係を得ることができる。   Using the calibration curve, in the dilution factor setting step 16 to be described later, the quenching action of the fluorescence method does not occur, and the upper limit of detection of the ultraviolet / visible absorption photometry is not exceeded, and the correlation with the fluorescence spectrum intensity and the ultraviolet / visible absorbance is correlated. It is possible to set a density range in which is seen. In order to set this concentration range, it is necessary to obtain a wide range of concentration data. However, when the variation in the concentration of the actual sample is small, the correlation can be obtained by arbitrarily diluting the actual sample.

例えば、図3には排水に含まれる化学物質Aの成分濃度と蛍光スペクトル強度との相関を示すが、成分濃度10mg/Lまでは蛍光スペクトル強度との線形性が見られるが、それを超えると消光作用が起きて線形性が見られなくなる。よって、対象とする原水11に10mg/Lを超える化学物質Aが含まれていた場合、10mg/L以下の濃度域まで希釈しないと正しい濃度が検知できないことになる。即ち、対象とする排水に20mg/Lの化学物質Aが含まれていた場合、蛍光スペクトル強度として1030mVの値を検知するが、これは14mg/Lの化学物質Aの蛍光スペクトル強度と同じであり、誤判断をしてしまう。そのため、この場合は対象とする排水を少なくとも2倍に希釈する必要がある。同様に、図4には化学物質Aの成分濃度と紫外・可視吸光度との相関を示すが、成分濃度10mg/Lまでは線形性が見られるが、それを超えると上限値のままとなる。この場合も、20mg/Lの化学物質Aが正しく検知できないため、誤判断をしてしまう。   For example, FIG. 3 shows the correlation between the component concentration of the chemical substance A contained in the waste water and the fluorescence spectrum intensity, and linearity with the fluorescence spectrum intensity is seen up to the component concentration of 10 mg / L. Quenching occurs and linearity is not seen. Therefore, when the target raw water 11 contains the chemical substance A exceeding 10 mg / L, the correct concentration cannot be detected unless it is diluted to a concentration range of 10 mg / L or less. That is, when 20 mg / L of chemical substance A is contained in the target wastewater, a value of 1030 mV is detected as the fluorescence spectrum intensity, which is the same as the fluorescence spectrum intensity of chemical substance A of 14 mg / L. , Misjudgment. Therefore, in this case, it is necessary to dilute the target waste water at least twice. Similarly, FIG. 4 shows the correlation between the component concentration of the chemical substance A and the ultraviolet / visible absorbance, but linearity is seen up to the component concentration of 10 mg / L, but when it exceeds that, the upper limit value remains. Also in this case, since 20 mg / L of the chemical substance A cannot be detected correctly, an erroneous determination is made.

前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度と、蛍光スペクトル強度、紫外・可視吸光度との相関性の有無は、所望の濃度測定精度を5%と設定した場合には、近似直線と実測値が5%以内に収まるかで判断できる。   Whether or not there is a correlation between the COD concentration, the component concentration, or the mixed concentration in the specific chemical substance or the specific waste water 12 and the fluorescence spectrum intensity or the ultraviolet / visible absorbance is determined when the desired concentration measurement accuracy is set to 5%. Can be determined based on whether the approximate straight line and the actually measured value are within 5%.

また、線形ではなく曲線を用いてフィッティングしても良いが、高濃度になるにしたがい、蛍光スペクトル強度、紫外・可視吸光度から、前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度の変化が見辛くなる頭打ちの曲線が得られるため、この検量線を用いた管理には注意が必要である。即ち、高濃度側では蛍光スペクトル強度、紫外・可視吸光度の変化が小さく、異常値検知や混入を発見し辛くなる可能性がある。   In addition, fitting may be performed using a curve instead of a linear shape. As the concentration increases, the COD concentration, component concentration, or Care must be taken in the management using this calibration curve because a peaking curve that makes it difficult to see changes in the concentration of contamination is obtained. That is, changes in fluorescence spectrum intensity and ultraviolet / visible absorbance are small on the high concentration side, and it may be difficult to detect abnormal value detection or contamination.

そこで、前記フィッティングした近似曲線を用いて、蛍光スペクトル強度の変動範囲で発生する測定濃度の変動の範囲が、濃度測定精度の範囲内に収まることを必要条件とすることで、検量線の有効範囲を決定することができる。   Therefore, using the fitted approximate curve, the effective range of the calibration curve can be obtained by making it a necessary condition that the measurement concentration fluctuation range occurring within the fluorescence spectrum intensity fluctuation range is within the concentration measurement accuracy range. Can be determined.

曲線には、例えば、式(1)に表わされる近似式を用いることができる。   For the curve, for example, an approximate expression represented by Expression (1) can be used.

・・・式(1) ... Formula (1)

ここで、Fluorescenceは蛍光スペクトル強度、Cは特定化学物質又は特定排水のCOD濃度、特定化学物質の成分濃度、特定排水の混入濃度のいずれかを表し、a、b、dはそれぞれ定数を表す。   Here, Fluorescence represents the intensity of the fluorescence spectrum, C represents one of the COD concentration of the specific chemical substance or the specific waste water, the component concentration of the specific chemical substance, or the concentration of the specific waste water mixed, and a, b, and d represent constants, respectively.

そこで、式(1)の曲線ともに上記の頭打ちが見られるため、蛍光光度法の消光作用が起きない範囲、即ち検量線の有効範囲を決定する必要がある。この理由は、検量線に消光作用が起きている範囲を含めると、濃度が高くなるにつれ、蛍光スペクトル強度の変化が小さくなるため、分析精度に影響するためである。   Therefore, since the above-mentioned peak is observed in the curve of the formula (1), it is necessary to determine a range where the quenching action of the fluorometric method does not occur, that is, an effective range of the calibration curve. The reason for this is that if the range in which the quenching action occurs is included in the calibration curve, the change in the fluorescence spectrum intensity decreases as the concentration increases, which affects the analysis accuracy.

検量線の有効範囲を決定するには、排水の平均的水質における蛍光スペクトル強度の変動範囲を用いて、その変動範囲に対応する検量線の濃度域を求め、その濃度域が所望の濃度測定精度に収まる範囲を検量線の有効範囲とすることができる。   To determine the effective range of the calibration curve, use the fluctuation range of the fluorescence spectrum intensity in the average water quality of the wastewater, obtain the concentration range of the calibration curve corresponding to the fluctuation range, and the concentration range is the desired concentration measurement accuracy. The effective range of the calibration curve can be defined as a range that falls within the range.

即ち、まず事前に対象とする排水の経時データを収集しておき、平均的水質における蛍光スペクトル強度の変動範囲を把握する。平均的水質は、例えば、1週間の水質を対象にするのであれば、その間の3点以上、例えば、2日、4日、6日経過時のデータを取得し、その変動範囲を把握することができる。次に、得られた検量線を基に、前記蛍光スペクトル強度の変動範囲がある濃度においてどの程度の濃度域に対応するかを把握する。次に、濃度測定精度を設定し、前記ある濃度における蛍光スペクトル強度の変動範囲に対応する濃度域が、濃度測定精度に収まる範囲を検量線の有効範囲に設定することができる。   That is, first, the time-lapse data of the target wastewater is collected in advance, and the fluctuation range of the fluorescence spectrum intensity in the average water quality is grasped. For example, if the average water quality is for one week of water quality, obtain data at the time of 3 points or more, for example, 2 days, 4 days, 6 days, and grasp the fluctuation range. Can do. Next, based on the obtained calibration curve, it is ascertained how much the concentration range corresponds to a certain concentration range of the fluorescence spectrum intensity. Next, the concentration measurement accuracy is set, and the range where the concentration range corresponding to the fluctuation range of the fluorescence spectrum intensity at the certain concentration falls within the concentration measurement accuracy can be set as the effective range of the calibration curve.

例えば、図5では、図3のデータを基に前記式(1)でフィッティングを行った場合を示す。このとき、事前に収集した排水の経時データから、前記平均的水質における蛍光スペクトル強度の変動範囲が±5mVと分かった。このとき、前記所望の濃度測定精度の範囲を10%とした場合、ある濃度における蛍光スペクトル強度の変動範囲±5mVに対応する濃度域は、式(2)のように求まる。   For example, FIG. 5 shows a case where the fitting is performed by the equation (1) based on the data of FIG. At this time, the fluctuation range of the fluorescence spectrum intensity in the average water quality was found to be ± 5 mV from the time-lapse data of wastewater collected in advance. At this time, when the range of the desired concentration measurement accuracy is 10%, the concentration range corresponding to the fluctuation range ± 5 mV of the fluorescence spectrum intensity at a certain concentration is obtained as shown in Equation (2).

・・・式(2) ... Formula (2)

この式より、蛍光スペクトル強度の変動範囲±5mVは、12mg/Lで11.2〜13.1mg/L、13mg/Lで12.0〜14.4mg/Lの濃度域に対応することが分かった。   From this equation, it can be seen that the fluctuation range of fluorescence spectrum intensity ± 5 mV corresponds to the concentration range of 11.2 to 13.1 mg / L at 12 mg / L and 12.0 to 14.4 mg / L at 13 mg / L. It was.

次に、所望の濃度測定精度は10%なので、12mg/Lでは10.8〜13.2mg/L、13mg/Lでは11.7〜14.3mg/Lとなる。このとき、12mg/Lでは、蛍光スペクトル強度の変動範囲に対応する濃度域は、所望の濃度測定精度の範囲内に収まっており、13mg/Lでは範囲外となった。よって、図5における検量線の有効範囲は12mg/L以下となる。   Next, since the desired concentration measurement accuracy is 10%, it is 10.8 to 13.2 mg / L at 12 mg / L, and 11.7 to 14.3 mg / L at 13 mg / L. At this time, at 12 mg / L, the concentration range corresponding to the fluctuation range of the fluorescence spectrum intensity was within the range of the desired concentration measurement accuracy, and was outside the range at 13 mg / L. Therefore, the effective range of the calibration curve in FIG. 5 is 12 mg / L or less.

但し、前記の方法では0〜0.7mg/Lの濃度域においても、蛍光スペクトル強度の変動範囲に対応する濃度域は、所望の濃度測定精度の範囲内に収まっているが、これは蛍光光度法の消光作用が起きない範囲を見極める目的から外れると考え、無視することができる。   However, in the above method, even in the concentration range of 0 to 0.7 mg / L, the concentration range corresponding to the fluctuation range of the fluorescence spectrum intensity is within the range of the desired concentration measurement accuracy. It can be disregarded because it deviates from the purpose of determining the range where the quenching action of the law does not occur.

また、相関関係14においては、前記溶解性化学的酸素要求量と全化学的酸素要求量との相関関係を予め求めておく。これを用いて、後述の濃度計算工程21で、溶解性化学的酸素要求量から全化学的酸素要求量を推定することが可能となる。   In the correlation 14, a correlation between the soluble chemical oxygen demand and the total chemical oxygen demand is obtained in advance. By using this, it becomes possible to estimate the total chemical oxygen demand from the soluble chemical oxygen demand in the concentration calculation step 21 described later.

希釈倍率設定工程16では、前記の相関関係14を基に、後述の希釈工程17における希釈倍率を設定する。希釈倍率は対象とする特定化学物質又は特定排水12により異なるが、前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度に対する蛍光スペクトル強度、紫外・可視吸光度はそれぞれ、消光作用が起きる濃度以下、検出上限の濃度以下で、相関性が見られる濃度域まで希釈することが望ましい。   In the dilution factor setting step 16, the dilution factor in the dilution step 17 described later is set based on the correlation 14. The dilution factor varies depending on the specific chemical substance or specific wastewater 12 to be processed, but the fluorescence spectrum intensity, ultraviolet / visible absorbance with respect to the COD concentration, component concentration, or contamination concentration in the specific chemical substance or specific wastewater 12 is a quenching action. It is desirable to dilute to a concentration range where a correlation is observed at a concentration lower than the concentration at which the occurrence of gas is below the upper limit of detection.

希釈倍率の設定の目的として、濃度の管理を目的とする希釈倍率や、異常値検知を目的とする場合の希釈倍率が挙げられる。   Examples of the purpose of setting the dilution rate include a dilution rate for the purpose of concentration management and a dilution rate for the purpose of detecting abnormal values.

濃度の管理を目的とする希釈倍率には、予め対象とする特定化学物質又は特定排水12を含む原水11を定期的にサンプリング・分析を行い、原水11中の前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度データを元に、その平均値及び/又は標準偏差から決定することができる。例えば、3ヶ月間、毎週2〜3回のサンプリング・分析により、特定化学物質Aの平均成分濃度が27.5±2.5mg/Lであれば、最大30mg/Lにさらに余裕を見て40mg/Lまでを測定範囲と設定し、4倍希釈をすれば特定化学物質Aの測定範囲10mg/L以内に収まる。   In the dilution ratio for the purpose of concentration management, the raw water 11 containing the target specific chemical substance or specific waste water 12 is periodically sampled and analyzed, and the specific chemical substance or specific waste water 12 in the raw water 11 Based on the COD concentration, component concentration, or contamination concentration data, the average value and / or the standard deviation can be determined. For example, if the average component concentration of the specified chemical substance A is 27.5 ± 2.5 mg / L by sampling and analysis twice to three times every week for 3 months, 40 mg with a margin of up to 30 mg / L If the measurement range is set up to / L and dilution is performed 4 times, the measurement range of the specified chemical substance A is within 10 mg / L.

異常値検知を目的とする場合の希釈倍率には、目標とする前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度の異常値を設定し、測定範囲内に収まるように決定する。例えば、目標とする異常値を80mg/Lと設定した場合、余裕を見て希釈倍率を10倍とすれば、特定化学物質Aの測定範囲10mg/L以内に収まる。   As the dilution factor for the purpose of detecting an abnormal value, an abnormal value of COD concentration, component concentration, or mixed concentration in the target specific chemical substance or specific waste water 12 is set so as to be within the measurement range. decide. For example, when the target abnormal value is set to 80 mg / L, if the dilution factor is set to 10 with a margin, the measurement range of the specific chemical substance A is within 10 mg / L.

但し、濃度の管理又は異常値検知の目的において、原水の平均濃度範囲又は設定異常値が、蛍光分析又は紫外・可視吸光度での検量線の有効範囲に収まっている場合には、設定する希釈倍率は1倍であり、本発明では希釈倍率1倍も含まれる。   However, for the purpose of concentration management or abnormal value detection, if the average concentration range or the set abnormal value of the raw water is within the effective range of the calibration curve for fluorescence analysis or ultraviolet / visible absorbance, set the dilution factor. Is 1 time, and in the present invention, a dilution factor of 1 is also included.

また、原水性状に応じて算出した適切な希釈倍率調節するには、流入する原水11の流量、及び、希釈用水15の流量を一定に保つ必要がある。それには、原水11を分析装置に引き込むポンプにおいて流量が大きく変化しないものを選定することや、希釈用水15において減圧弁、定流量弁を用いて水圧を制御して流量を一定にすることができる。さらに、これらの原水11、希釈用水15の流量を流量計によって、蛍光スペクトル強度、紫外・可視吸光度と同時にモニタリングすることで、希釈倍率を常時維持・管理できる。希釈倍率については、分析精度5%と設定した場合、希釈倍率の変化割合を5%以内に収めることで、一定と判断できる。例えば、希釈倍率を5倍と設定した場合には、5±0.25倍希釈となる流量変動は許容できる。   Moreover, in order to adjust the appropriate dilution ratio calculated according to the raw water state, it is necessary to keep the flow rate of the incoming raw water 11 and the flow rate of the dilution water 15 constant. For this purpose, it is possible to select a pump that draws the raw water 11 into the analyzer so that the flow rate does not change greatly, or to control the water pressure by using a pressure reducing valve and a constant flow valve in the dilution water 15 to make the flow rate constant. . Furthermore, by monitoring the flow rates of the raw water 11 and dilution water 15 with a flow meter at the same time as the fluorescence spectrum intensity and the ultraviolet / visible absorbance, the dilution factor can be constantly maintained and managed. Regarding the dilution factor, when the analysis accuracy is set to 5%, it can be determined that the change rate of the dilution factor is within 5%. For example, if the dilution factor is set to 5 times, flow rate fluctuations that result in 5 ± 0.25 times dilution are acceptable.

希釈工程17では、前記希釈倍率設定工程16で設定した希釈倍率に基づき、管理したい特定化学物質又は特定排水12を含む原水11を連続的に希釈する。特定化学物質又は特定排水12を含む原水11について、希釈用水15により一定倍率で希釈することで、消光作用を低減させることができる。したがって、低濃度の混入であるという誤判断を避け、正しい濃度を検知することが可能となる。また、希釈をすることで、液体試料の濁度やSS濃度を減少させることができるため、その影響を軽減できると共に、濁度、SS除去のためにフィルターが併設されている場合には、目詰まりの発生抑制が可能となる。   In the dilution step 17, based on the dilution rate set in the dilution rate setting step 16, the raw water 11 containing the specific chemical substance to be managed or the specific waste water 12 is continuously diluted. The quenching action can be reduced by diluting the raw water 11 containing the specific chemical substance or the specific waste water 12 with the dilution water 15 at a constant magnification. Therefore, it is possible to avoid the erroneous determination that the concentration is low and to detect the correct concentration. In addition, by diluting, the turbidity and SS concentration of the liquid sample can be reduced, so that the influence can be reduced, and when a filter is additionally provided for removing turbidity and SS, The occurrence of clogging can be suppressed.

具体的に希釈する方法には、連続的に流入する原水11に対して、希釈用水15を一定流量で合一させる方法がある。希釈用水15には、対象とする特定化学物質又は特定排水12における蛍光スペクトルのピーク位置に蛍光スペクトル強度が殆ど認められず、紫外・可視吸光スペクトルのピーク位置に紫外・可視吸光度が殆ど認められず、COD、TOC濃度が低い水を用いることが望ましい。例えば、分析誤差5%以内であれば、対象とする特定化学物質又は特定排水12のピーク位置における蛍光スペクトル強度及び紫外・可視吸光度を100とした時、希釈用水15の同じピーク位置における蛍光スペクトル強度及び紫外・可視吸光度が5以下であれば許容することができる。また、平均COD濃度が100mg/L程度であれば、水道水、工業用水等のCOD濃度10mg/L未満の希釈用水15を用いることが望ましく、特定化学物質又は特定排水12の平均COD濃度が10mg/L程度であれば、蒸留水等のCOD濃度1mg/L未満の希釈用水15を用いることが望ましい。   As a specific dilution method, there is a method in which the dilution water 15 is united with the raw water 11 continuously flowing in at a constant flow rate. In the dilution water 15, almost no fluorescence spectrum intensity is observed at the peak position of the fluorescence spectrum of the specific chemical substance or specific waste water 12, and almost no ultraviolet / visible absorbance is observed at the peak position of the ultraviolet / visible absorption spectrum. It is desirable to use water with low COD and TOC concentrations. For example, if the analysis error is within 5%, the fluorescence spectrum intensity at the same peak position of the dilution water 15 when the fluorescence spectrum intensity and the ultraviolet / visible absorbance at the peak position of the target specific chemical substance or specified wastewater 12 are 100. If the ultraviolet / visible absorbance is 5 or less, it is acceptable. If the average COD concentration is about 100 mg / L, it is desirable to use dilution water 15 having a COD concentration of less than 10 mg / L, such as tap water and industrial water, and the average COD concentration of the specific chemical substance or specific waste water 12 is 10 mg. If it is about / L, it is desirable to use dilution water 15 such as distilled water having a COD concentration of less than 1 mg / L.

SS除去工程18では、フィルターを流路に設置することで、原水11中のSS成分を除去する。SS成分を除去することで、蛍光スペクトル強度及び紫外・可視吸光度の変動が抑制され、安定化される。さらに、排水管のSS成分による閉塞を抑制できる。フィルターによるSS除去レベルは液体試料によって異なるが、ろ過処理の前後で蛍光スペクトル強度及び紫外・可視吸光度が大きく変化しない程度まで除濁することが望ましい。例えば、JIS P 3801に規定の5種Aろ紙によりろ過した液体試料と、そのろ過液体試料を5種Cろ紙でろ過した液体試料とで蛍光スペクトル強度が大きく変化しなければ、5種Aろ紙で除濁すれば十分と考えられる。ろ過による蛍光スペクトル強度及び紫外・可視吸光度の変化については、例えば分析誤差5%以内であれば、ろ過により5%以内の変化であれば許容することができる。   In the SS removal step 18, the SS component in the raw water 11 is removed by installing a filter in the flow path. By removing the SS component, fluctuations in fluorescence spectrum intensity and ultraviolet / visible absorbance are suppressed and stabilized. Furthermore, the blockage by the SS component of the drain pipe can be suppressed. Although the SS removal level by the filter varies depending on the liquid sample, it is desirable to remove the turbidity to such an extent that the fluorescence spectrum intensity and the ultraviolet / visible absorbance do not change significantly before and after the filtration treatment. For example, if the fluorescence spectrum intensity does not change significantly between a liquid sample filtered through JIS P 3801 with a 5-type A filter paper and a liquid sample obtained by filtering the filtered liquid sample with a 5-type C filter paper, It is considered sufficient to remove turbidity. Regarding changes in the fluorescence spectrum intensity and ultraviolet / visible absorbance due to filtration, for example, if the analysis error is within 5%, it is acceptable if the change is within 5% due to filtration.

また、フィルターを定期的に逆洗浄を行うことで、目詰まりの発生がかなり軽減されると共に、フィルター洗浄、フィルター交換等の定期メンテナンス作業の頻度が軽減される。   Further, by regularly back-cleaning the filter, the occurrence of clogging is considerably reduced, and the frequency of periodic maintenance operations such as filter cleaning and filter replacement is reduced.

測定工程20では、データベース化工程13で得られた蛍光特性及び/又は紫外・可視吸光特性から、管理したい特定化学物質又は特定排水12に特有の蛍光スペクトル及び/又は紫外・可視吸光スペクトルを選定し、蛍光スペクトル強度及び/又は紫外・可視吸光度を測定し、対象とする特定化学物質又は特定排水12の蛍光スペクトル及び/又は紫外・可視吸光スペクトルのピーク位置における蛍光スペクトル強度及び/又は紫外・可視吸光度を得る。   In the measurement step 20, a fluorescence spectrum and / or ultraviolet / visible absorption spectrum specific to the specific chemical substance or specific wastewater 12 to be managed is selected from the fluorescence property and / or ultraviolet / visible absorption property obtained in the database creation step 13. The fluorescence spectrum intensity and / or ultraviolet / visible absorbance is measured, and the fluorescence spectrum intensity and / or ultraviolet / visible absorbance at the peak position of the fluorescence spectrum and / or ultraviolet / visible absorption spectrum of the target specific chemical substance or specified wastewater 12 is measured. Get.

得られた蛍光スペクトル強度及び/又は紫外・可視吸光度から前記相関関係14で作成した検量線を用いて、管理したい特定化学物質又は特定排水12を含有する希釈済原水19の蛍光スペクトル強度及び/又は紫外・可視吸光度から、前記希釈工程17にて原水11を希釈して得られた希釈済原水19中の管理したい前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度を推定することができる。   Using the calibration curve created in the correlation 14 from the obtained fluorescence spectrum intensity and / or ultraviolet / visible absorbance, the fluorescence spectrum intensity and / or the diluted raw water 19 containing the specified chemical substance or specified waste water 12 to be managed From the ultraviolet / visible absorbance, the COD concentration, component concentration, or contamination concentration in the specified chemical substance or specified waste water 12 to be managed in the diluted raw water 19 obtained by diluting the raw water 11 in the dilution step 17 is estimated. can do.

但し、蛍光光度法の蛍光スペクトル強度及び紫外・可視吸光度は、蛍光性成分、吸光性成分の周囲の性質(液体試料のpH、共存塩、SS等)により影響を受ける可能性があるので、原水11のpH変動によっては、例えば、検知に供する液体試料のpHを一定範囲に調整する前処理工程を加えることが望ましい。   However, since the fluorescence spectrum intensity and ultraviolet / visible absorbance of the fluorometric method may be affected by the fluorescent component and the surrounding properties (pH of liquid sample, coexisting salt, SS, etc.), the raw water Depending on the pH variation of 11, it is desirable to add, for example, a pretreatment step for adjusting the pH of the liquid sample to be detected to a certain range.

また、後述する濃度計算工程21で用いる場合がある希釈倍率の実測データを得るため、対象とする原水11、希釈用水15、希釈済原水19の3つの流量データの内、2つ以上のデータを測定する。   In addition, in order to obtain actual measurement data of the dilution rate that may be used in the concentration calculation step 21 described later, two or more of the three flow rate data of the target raw water 11, the dilution water 15, and the diluted raw water 19 are used. taking measurement.

濃度計算工程21では、前記測定工程20で求めた希釈済原水19の特定化学物質又は特定排水12の濃度を、前記測定工程20で得られた流量データから希釈倍率を求めて割り戻すことで、対象とする原水11に含まれる前記特定化学物質又は特定排水12における、COD濃度、成分濃度、又は混入濃度を推定可能となる。但し、流量をほぼ一定に制御できれば、希釈倍率設定工程16で設定した希釈倍率を用いても良い。これは、分析精度5%と設定した場合、希釈倍率の変化割合が5%以内に収めることで、一定と判断できる。例えば希釈倍率を5倍と設定した場合には、5±0.25倍希釈となる流量変動は許容できる。   In the concentration calculation step 21, the concentration of the specific chemical substance or the specific waste water 12 of the diluted raw water 19 obtained in the measurement step 20 is calculated by dividing the flow rate data obtained in the measurement step 20 to obtain a dilution factor. It becomes possible to estimate the COD concentration, the component concentration, or the contamination concentration in the specific chemical substance or specific waste water 12 contained in the target raw water 11. However, the dilution rate set in the dilution rate setting step 16 may be used as long as the flow rate can be controlled to be substantially constant. If the analysis accuracy is set to 5%, it can be determined that the change rate of the dilution factor is within 5%. For example, when the dilution rate is set to 5 times, flow rate fluctuations that result in 5 ± 0.25 times dilution are acceptable.

また、相関関係14で求めた溶解性化学的酸素要求量と全化学的酸素要求量との相関関係を用いて、溶解性化学的酸素要求量から全化学的酸素要求量を推定することができる。   Further, the total chemical oxygen demand can be estimated from the solubility chemical oxygen demand using the correlation between the soluble chemical oxygen demand and the total chemical oxygen demand obtained in the correlation 14. .

検知工程23では、前記濃度計算工程21で得られた対象とする原水11のCOD濃度、成分濃度、又は混入濃度を基に、所望の検知レベルを超えたかを判定し、超えた場合はアラームを動作させる。   In the detection step 23, it is determined whether or not a desired detection level has been exceeded based on the COD concentration, component concentration, or contamination concentration of the target raw water 11 obtained in the concentration calculation step 21. Make it work.

対処工程14では、前記検知工程13で動作したアラームに対し、流路の遮断等の措置を行う。   In the coping process 14, a measure such as blocking the flow path is performed for the alarm operated in the detection process 13.

また、前記特定化学物質が難燃性作動油又は水溶性切削油であり、又は、前記特定排水が難燃性作動油又は水溶性切削油を含む場合、難燃性作動油又は水溶性切削油自体が蛍光を発する場合や、難燃性作動油又は水溶性切削油以外の成分が蛍光を発する場合があり、高い蛍光スペクトル強度を発する場合には希釈が必要となる。この場合も上記と同様の工程を踏むことで、難燃性作動油又は水溶性切削油の濃度測定が可能となる。   In addition, when the specific chemical substance is a flame retardant hydraulic oil or a water-soluble cutting oil, or the specific drainage includes a flame retardant hydraulic oil or a water-soluble cutting oil, the flame retardant hydraulic oil or the water-soluble cutting oil When the fluorescent substance itself emits fluorescence, components other than the flame retardant hydraulic fluid or water-soluble cutting oil may emit fluorescent light, and dilution is necessary when emitting a high fluorescence spectrum intensity. In this case, the concentration of the flame-retardant hydraulic fluid or water-soluble cutting oil can be measured by following the same steps as described above.

(実施例1:含油排水のCOD濃度、混入濃度及び成分濃度の推定)
以下、含油排水を対象としたCOD濃度、混入濃度及び成分濃度の推定方法について説明をする。
(Example 1: Estimation of COD concentration, contamination concentration and component concentration of oil-containing wastewater)
Hereinafter, a method for estimating the COD concentration, the mixing concentration, and the component concentration for the oil-containing wastewater will be described.

図2に示すデータベース化工程13では、図6に示すように、前記含油排水の蛍光特性として(励起波長)/(蛍光波長)=220nm/300nm、270nm/300nmにピークが存在することを明らかにした。但し、270nm/300nmは励起波長と蛍光波長が近く、散乱光の影響を強く受けるため、後述する測定工程20では、検知に用いる波長セットとして220nm/300nmを選定した。   In the database creation step 13 shown in FIG. 2, as shown in FIG. 6, it is clear that there are peaks at (excitation wavelength) / (fluorescence wavelength) = 220 nm / 300 nm, 270 nm / 300 nm as the fluorescence characteristics of the oil-containing wastewater. did. However, since 270 nm / 300 nm is close to the excitation wavelength and the fluorescence wavelength and is strongly influenced by scattered light, 220 nm / 300 nm was selected as the wavelength set used for detection in the measurement step 20 described later.

また、図7に示すように、前記含油排水の紫外・可視吸光特性として励起波長220nm、260nmにピークが存在することを明らかにした。一般に市販されている紫外・可視吸光光度法による分析計は264nmに設定されているため、検知に用いる波長を264nmとした。   Further, as shown in FIG. 7, it was clarified that there are peaks at excitation wavelengths of 220 nm and 260 nm as ultraviolet / visible absorption characteristics of the oil-containing waste water. Since a commercially available analyzer based on ultraviolet / visible absorptiometry is set to 264 nm, the wavelength used for detection is set to 264 nm.

図2に示す相関関係14では、前記含油排水の蛍光スペクトル及び紫外・可視吸光スペクトルを測定し、前記含油排水のCOD濃度、混入濃度及び成分濃度と、ピーク位置における蛍光スペクトル強度との相関関係及び検量線を予め作成した(図8、図9)。COD濃度については、以下の式(3)が得られた。   In the correlation 14 shown in FIG. 2, the fluorescence spectrum and ultraviolet / visible absorption spectrum of the oil-containing wastewater are measured, and the correlation between the COD concentration, contamination concentration and component concentration of the oil-containing wastewater, and the fluorescence spectrum intensity at the peak position, A calibration curve was prepared in advance (FIGS. 8 and 9). For the COD concentration, the following formula (3) was obtained.

・・・式(3) ... Formula (3)

COD濃度については、実サンプル及び純水で希釈した実サンプルをpH8に調整し、JIS P 3801に規定の5種Cろ紙でろ過した液体試料について、蛍光スペクトル強度及び紫外・可視吸光度を測定し、COD濃度実測値とプロットした。混入濃度及び成分濃度は含油排水を純水で段階的に希釈することで相関関係を得た。その結果、およそ50mg/L以上のCOD濃度において濃度消光が見られた。さらに、式(3)からの乖離が大きくなったが、これは高COD濃度側において、液体試料に含まれる固形物の影響、pHの影響、バックグラウンドの影響及び共存塩である鉄の消光作用の影響が大きかったためである。即ち、希釈を行った低COD濃度側では固形物の影響、pHの影響、バックグラウンドの影響及び共存塩の影響が軽減されたため、式(3)からの乖離が小さくなった。   For the COD concentration, the actual sample and the actual sample diluted with pure water were adjusted to pH 8, and the fluorescence spectrum intensity and the ultraviolet / visible absorbance were measured for the liquid sample filtered through the 5 C filter paper specified in JIS P 3801. Plotted with actual measured values of COD concentration. Contamination concentration and component concentration were correlated by diluting oil-containing wastewater in stages with pure water. As a result, concentration quenching was observed at a COD concentration of about 50 mg / L or more. Furthermore, the divergence from the formula (3) has increased. This is due to the influence of solids contained in the liquid sample, the influence of pH, the influence of the background, and the quenching action of iron as a coexisting salt on the high COD concentration side. This is because of the large influence. That is, on the low COD concentration side after dilution, the effect of solids, the effect of pH, the effect of background, and the effect of coexisting salts were reduced, so that the deviation from equation (3) was reduced.

また、事前に収集した排水の経時データから、前記平均的水質における蛍光スペクトル強度の変動範囲が±7.5mVと分かった。平均的水質は2か月間に得られた50個の分析データから得られた。このとき、図8において、ある濃度における蛍光スペクトル強度の変動範囲±7.5mVに対応するCOD濃度域は、70mg/Lで64.3〜76.7mg/L、75mg/Lで68.6〜82.6mg/Lの濃度域に対応することが分かった。   In addition, the fluctuation range of the fluorescence spectrum intensity in the average water quality was found to be ± 7.5 mV from the time-lapse data of wastewater collected in advance. The average water quality was obtained from 50 analytical data obtained over 2 months. At this time, in FIG. 8, the COD concentration ranges corresponding to the fluctuation range ± 7.5 mV of the fluorescence spectrum intensity at a certain concentration are 64.3 to 76.7 mg / L at 70 mg / L, and 68.6 to 75 mg / L. It was found to correspond to a concentration range of 82.6 mg / L.

次に、所望の濃度測定精度は10%なので、70mg/Lで63〜77mg/L、75mg/Lで67.5〜82.5mg/Lとなる。このとき、70mg/Lでは、蛍光スペクトル強度の変動範囲に対応する濃度域は、所望の濃度測定精度の範囲内に収まっており、75mg/Lでは範囲外となった。よって、図8における検量線の有効範囲は70mg/L以下となる。   Next, since the desired concentration measurement accuracy is 10%, it is 63 to 77 mg / L at 70 mg / L and 67.5 to 82.5 mg / L at 75 mg / L. At this time, at 70 mg / L, the concentration range corresponding to the fluctuation range of the fluorescence spectrum intensity was within the range of the desired concentration measurement accuracy, and was outside the range at 75 mg / L. Therefore, the effective range of the calibration curve in FIG. 8 is 70 mg / L or less.

また、同様に混入濃度で7.0%以下、成分濃度で0.38%以下まで相関関係が認められた。   Similarly, a correlation was recognized up to a contamination concentration of 7.0% or less and a component concentration of 0.38% or less.

紫外・可視吸光光度法での検出上限以下で線形性が見られる濃度域はCOD濃度で0〜100mg/L、混入濃度で0〜10%、成分濃度で0〜0.67%まで相関関係が認められた。それ以上の濃度域では検出上限超過のため測定できないことが分かった。   The concentration range where linearity is observed below the upper limit of detection in the ultraviolet / visible absorptiometry is 0 to 100 mg / L for COD concentration, 0 to 10% for mixed concentration, and 0 to 0.67% for component concentration. Admitted. It was found that measurement could not be performed in the higher concentration range because the detection limit was exceeded.

前記相関関係14から得られた結果から、蛍光スペクトル強度で濃度消光が見られ、紫外・可視吸光光度法に比べて有効な検量線の範囲が制限されていたため、希釈倍率設定工程16では、濃度消光の影響を軽減するための希釈倍率の決定を行った。異常値COD濃度を250mg/L、混入濃度34%、成分濃度で1.9%と設定し、前記相関関係14における曲線のフィッティングを用いることとし、希釈倍率は250/70=3.57より、余裕をみて4倍希釈とした。   From the result obtained from the correlation 14, concentration quenching was observed in the fluorescence spectrum intensity, and the range of the effective calibration curve was limited as compared with the ultraviolet / visible absorptiometry. The dilution factor for reducing the influence of quenching was determined. The abnormal value COD concentration was set to 250 mg / L, the mixing concentration was 34%, the component concentration was set to 1.9%, the curve fitting in the correlation 14 was used, and the dilution rate was 250/70 = 3.57, A 4-fold dilution was made for allowance.

希釈工程17では、前記希釈倍率設定工程16で設定した希釈倍率に基づき、前記含油排水を連続的に4倍希釈した。具体的には、連続的に流入する原水流量を2.0L/分に設定し、淡水流量を6.0L/分に設定し、合一させた。淡水は220nm/300nmのピーク位置における蛍光スペクトル強度が2.5程度であり、分析誤差5%以内とした場合、含油排水の蛍光スペクトル強度に比べて2.5/100=2.5%であるため、許容することができる。また、平均COD濃度として2.7mg/Lであり、希釈用水としては問題ないことを確認した。   In the dilution step 17, the oil-containing wastewater was continuously diluted 4 times based on the dilution rate set in the dilution rate setting step 16. Specifically, the raw water flow rate that continuously flows in was set to 2.0 L / min, the fresh water flow rate was set to 6.0 L / min, and they were combined. Fresh water has a fluorescence spectrum intensity at a peak position of 220 nm / 300 nm of about 2.5, and when the analysis error is within 5%, it is 2.5 / 100 = 2.5% compared to the fluorescence spectrum intensity of oil-containing wastewater. Therefore, it can be tolerated. The average COD concentration was 2.7 mg / L, and it was confirmed that there was no problem as dilution water.

測定工程20では、データベース化工程13で得られた前記含油排水の蛍光スペクトルのピーク位置220nm/300nmにおける蛍光スペクトル強度及び/又は紫外・可視吸光スペクトル強度を得た。   In the measurement process 20, the fluorescence spectrum intensity and / or ultraviolet / visible absorption spectrum intensity at the peak position of 220 nm / 300 nm of the fluorescence spectrum of the oil-containing wastewater obtained in the database preparation process 13 was obtained.

前記相関関係14で作成した検量線を用いて、前記含油排水を希釈した希釈済原水19の蛍光スペクトル強度から、前記希釈済原水19のCOD濃度、混入濃度及び成分濃度を推定した。希釈を行わなかった場合、及び、希釈を行った場合の、蛍光スペクトル強度、推定したCOD濃度の経時変化を、COD濃度実測値と同時に図10に示す。その結果、希釈を行わなかった場合には蛍光スペクトル強度からの排水COD濃度は殆ど推定できていなかったが、希釈を行ったことで希釈済原水9のCOD濃度とCOD濃度実測値がよく一致することが分かった。   Using the calibration curve created in the correlation 14, the COD concentration, contamination concentration, and component concentration of the diluted raw water 19 were estimated from the fluorescence spectrum intensity of the diluted raw water 19 in which the oil-containing wastewater was diluted. FIG. 10 shows changes in fluorescence spectrum intensity and estimated COD concentration over time when dilution is not performed and when the dilution is performed, together with the measured COD concentration. As a result, when the dilution was not performed, the wastewater COD concentration from the fluorescence spectrum intensity could hardly be estimated. However, by performing the dilution, the COD concentration of the diluted raw water 9 and the measured COD concentration agree well. I understood that.

また、測定工程20では、原水流量、及び、淡水流量を測定した。   Moreover, in the measurement process 20, the raw | natural water flow volume and the fresh water flow volume were measured.

濃度計算工程21では、測定工程20で得られた希釈済原水19のCOD濃度、混入濃度及び成分濃度を、前記測定工程20で測定した原水流量、及び、淡水流量から都度計算した希釈倍率を用いて、含油排水の原水11中のCOD濃度を求めた。含油排水の原水11のCOD濃度計算値とCOD濃度実測値の比較を図11に示す。また、比較のため希釈倍率設定工程16で設定した希釈倍率4倍を用いて、含油排水源水中のCOD濃度を求めた結果を示す。その結果、希釈倍率を4倍で一定とした場合ではCOD濃度計算値とCOD濃度実測値よりも、希釈倍率を都度計算した場合の方が良く一致した。この理由として、原水流量のSS成分によって配管が閉塞することがあり、設定した流量を一定に維持できず、流量が減少し、希釈倍率が増加したためである。その結果、希釈倍率設定工程16で設定した希釈倍率に変動が生じたことで、設定した希釈倍率による原水COD濃度の計算値はCOD濃度実測値と乖離し、実測した希釈倍率による原水COD濃度の計算値がCOD濃度実測値とよく一致した。   In the concentration calculation step 21, the COD concentration, the mixed concentration and the component concentration of the diluted raw water 19 obtained in the measurement step 20 are used as the raw water flow rate measured in the measurement step 20 and the dilution rate calculated each time from the fresh water flow rate. Thus, the COD concentration in the raw water 11 of the oil-containing wastewater was determined. FIG. 11 shows a comparison between the calculated COD concentration of the raw water 11 of the oil-containing wastewater and the measured COD concentration. Moreover, the result of having calculated | required the COD density | concentration in oil-containing drainage source water using the dilution factor 4 times set in the dilution factor setting process 16 for the comparison is shown. As a result, when the dilution rate was fixed at 4 times, the COD concentration calculation value and the COD concentration actual measurement value were better matched when the dilution rate was calculated each time. This is because the pipe may be blocked by the SS component of the raw water flow rate, the set flow rate cannot be kept constant, the flow rate is reduced, and the dilution factor is increased. As a result, due to fluctuations in the dilution factor set in the dilution factor setting step 16, the calculated value of the raw water COD concentration by the set dilution factor deviates from the measured COD concentration, and the raw water COD concentration by the actually measured dilution factor The calculated value was in good agreement with the measured COD concentration.

また、相関関係14を用いることで、含油排水の混入濃度及び成分濃度の推定が可能になった。   In addition, by using the correlation 14, it is possible to estimate the concentration and component concentration of oil-containing wastewater.

また、図12には希釈を行うことでバックグラウンドの影響の軽減効果を示す。希釈を行う前は蛍光強度に大きな変動が見られたが、バックグラウンドの影響が軽減されることでベースライン変動が抑制され、蛍光スペクトル強度、及び吸光度が安定した。   FIG. 12 shows the effect of reducing the influence of the background by performing dilution. Before the dilution, a large fluctuation was observed in the fluorescence intensity, but the influence of the background was reduced, so that the baseline fluctuation was suppressed and the fluorescence spectrum intensity and absorbance were stabilized.

検知工程23では、濃度計算工程21で得られたCOD濃度計算値が、目標とする異常値を超えたかの判定を行った。その結果、図10において35日目にCOD濃度計算値が原水11のCOD濃度300mg/L(希釈済原水9で75mg/L)を検知し、異常値と判断してアラームが作動した。   In the detection step 23, it was determined whether the calculated COD concentration value obtained in the concentration calculation step 21 exceeded the target abnormal value. As a result, on the 35th day in FIG. 10, the calculated COD concentration detected a COD concentration of 300 mg / L in the raw water 11 (75 mg / L in diluted raw water 9), and judged that it was an abnormal value, and the alarm was activated.

対処工程24では、検知工程23で作動したアラームを現場作業者が確認した後、含油排水原水ラインの供給を停止した。   In the coping process 24, after the field worker confirmed the alarm that was activated in the detection process 23, the supply of the oil-containing drainage raw water line was stopped.

(実施例2:全化学的酸素要求量の推定)
以下、実施例1において、含油排水を対象とした溶解性COD濃度を求めた後に、全COD濃度を推定する方法について説明をする。
(Example 2: Estimation of total chemical oxygen demand)
Hereinafter, a method for estimating the total COD concentration after obtaining the soluble COD concentration for oil-containing wastewater in Example 1 will be described.

前記相関関係14で、溶解性COD濃度と全COD濃度との相関関係を予め求めておく。その結果を図13に示す。ここでは溶解性COD濃度と全COD濃度に線形性があると判断し、原点を通る直線で近似を行い、その傾きを得ることで、溶解性COD濃度と全COD濃度との換算係数を得た。この換算係数を、実施例1で得られたCOD濃度計算値で除する、即ち、以下の演算式(4)を立てることで、全COD濃度計算値を得た。   Based on the correlation 14, a correlation between the soluble COD concentration and the total COD concentration is obtained in advance. The result is shown in FIG. Here, it is judged that the soluble COD concentration and the total COD concentration are linear, approximation is performed with a straight line passing through the origin, and the conversion coefficient between the soluble COD concentration and the total COD concentration is obtained by obtaining the slope thereof. . This conversion factor is divided by the calculated COD concentration value obtained in Example 1, that is, the following calculation formula (4) is established to obtain the calculated total COD concentration value.

・・・式(4) ... Formula (4)

演算式(4)から求めた本発明による全COD濃度計算値と全COD濃度実測値との相関関係を図14に示す。その結果、推定値と実測値がよく一致した。   FIG. 14 shows the correlation between the calculated total COD concentration according to the present invention and the total measured COD concentration obtained from the calculation formula (4). As a result, the estimated value and the measured value agreed well.

(実施例3:フィルターによるSS濃度の低減と検知性の向上)
以下、実施例1において、前記希釈工程17の後に、SS除去工程18を追加し、含油排水を対象とした溶解性COD濃度を推定する方法について説明をする。
(Example 3: Reduction of SS concentration and improvement of detectability by filter)
Hereinafter, in Example 1, the SS removal process 18 is added after the dilution process 17, and the method of estimating the soluble COD concentration for oil-containing wastewater will be described.

SS除去工程18では、前記希釈工程17で4倍希釈した希釈済原水19に対して、原水11中の浮遊性固形物を除去するためのフィルターを設置し、定期的な逆洗浄を行った。フィルターの選定は事前に行い、溶解性COD濃度が目標検知濃度と同等であった前記希釈済原水19に対して、ろ過を行っていない液体試料と、JIS P 3801に規定の5種Aろ紙によりろ過した液体試料と、そのろ過した液体試料を5種Cろ紙でろ過した液体試料とで蛍光スペクトル強度、及び吸光度の比較を行った。その結果、ろ過を行っていない液体試料よりろ過を行った液体試料では蛍光スペクトル強度が大きく上昇し、フィルターによる固形物除去によりよる光の遮断・吸収の影響が軽減された。また、ろ過を行った液体試料では5種Aろ紙と5種Cろ紙で、そのろ液の蛍光スペクトル強度が大きく変化しないことを確認し、5種Aろ紙に相当するフィルターを設置した(図15参照)。   In the SS removal step 18, a filter for removing floating solids in the raw water 11 was installed on the diluted raw water 19 diluted four times in the dilution step 17, and regular backwashing was performed. The filter is selected in advance, and the diluted raw water 19 having a soluble COD concentration equal to the target detected concentration is subjected to a liquid sample that has not been filtered, and a 5-type A filter paper defined in JIS P 3801. The fluorescence spectrum intensity and the absorbance were compared between the filtered liquid sample and the liquid sample obtained by filtering the filtered liquid sample with 5 types C filter paper. As a result, the fluorescence spectrum intensity greatly increased in the filtered liquid sample from the unfiltered liquid sample, and the influence of light blocking / absorption due to the solid removal by the filter was reduced. Further, in the filtered liquid sample, it was confirmed that the fluorescence spectrum intensity of the filtrate was not greatly changed between the 5 type A filter paper and the 5 type C filter paper, and a filter corresponding to the 5 type A filter paper was installed (FIG. 15). reference).

また、フィルターを設置してSSを除去することにより、蛍光スペクトル強度、及び吸光度の固形物による光の遮断・吸収の影響が軽減され、さらにバックグラウンドの影響が軽減されることでベースライン変動が抑制され、蛍光スペクトル強度、及び吸光度が安定した(図16参照)。さらに、排水管の閉塞が1週間に1回起きていたものが、1ヶ月以上に1回まで頻度が抑制された。   In addition, by removing the SS by installing a filter, the influence of light blocking / absorption due to the solid substance of the fluorescence spectrum intensity and absorbance is reduced, and further, the influence of the background is reduced, thereby changing the baseline. It was suppressed and the fluorescence spectrum intensity and absorbance were stabilized (see FIG. 16). Furthermore, the frequency of the drainage pipe clogging once a week was suppressed to once a month or more.

また、フィルターを設置した後に1ヶ月の通水を行った結果、凡そ3日でフィルターの目詰まりが確認されたため、前記希釈工程17で使用している希釈用水15を用いて、2時間に1回逆洗浄を行った。希釈を併用したフィルターによる固形物除去を行うことで、フィルターの交換時期が3日から2週間以上となり、交換頻度が大きく軽減できた。   Further, as a result of passing water for one month after installing the filter, it was confirmed that the filter was clogged in about 3 days. Therefore, using the dilution water 15 used in the dilution step 17, it was 1 every 2 hours. Back washing was performed once. By removing solid matter using a filter combined with dilution, the filter replacement time was changed from 3 days to 2 weeks or more, and the replacement frequency was greatly reduced.

(実施例4:水溶性切削油の濃度推定)
以下、実施例1において、前記特定化学物質が水溶性切削油である時、水溶性切削油を含む排水中の水溶性切削油濃度推定をする方法について説明をする。
(Example 4: Estimating the concentration of water-soluble cutting oil)
Hereinafter, in Example 1, when the said specific chemical substance is a water-soluble cutting oil, the method to estimate the water-soluble cutting oil density | concentration in the waste_water | drain containing a water-soluble cutting oil is demonstrated.

データベース化工程13では、図17に示すように前記水溶性切削油の蛍光特性として(励起波長)/(蛍光波長)=280nm/340〜360nmにピークが存在することを明らかにした。よって、検知に用いる波長セットとして(励起波長)/(蛍光波長)=280nm/360nmを選定した。また、紫外・可視吸光特性は見られなかった。   In the database preparation step 13, as shown in FIG. 17, it was clarified that a peak exists at (excitation wavelength) / (fluorescence wavelength) = 280 nm / 340 to 360 nm as the fluorescence characteristics of the water-soluble cutting oil. Therefore, (excitation wavelength) / (fluorescence wavelength) = 280 nm / 360 nm was selected as the wavelength set used for detection. Further, no ultraviolet / visible light absorption characteristics were observed.

相関関係14では、実施例1と同様に、前記水溶性切削油のCOD濃度及び成分濃度と、ピーク位置における蛍光スペクトル強度との相関関係及び検量線を予め作成した。但し、原水11及び希釈済原水19はpH7程度で安定しており、かつ、固形物成分が少なく、蛍光分析に与える影響は小さかったため、相関関係を求める際には、pH調整及び固形物除去は行わなかった。   In correlation 14, as in Example 1, a correlation and calibration curve between the COD concentration and component concentration of the water-soluble cutting oil and the fluorescence spectrum intensity at the peak position were prepared in advance. However, since the raw water 11 and the diluted raw water 19 are stable at about pH 7 and have a small amount of solid components and little influence on the fluorescence analysis, pH adjustment and solid removal should be performed when determining the correlation. Not done.

また、水溶性切削油の所望の成分濃度検知レベルは0.05v/v%であり、0〜0.1v/v%の成分濃度域において蛍光スペクトル強度の消光作用は見られず、直線性を保っていたため、検量線の有効範囲の決定は行わなかった。   The desired component concentration detection level of the water-soluble cutting oil is 0.05 v / v%, and the quenching action of the fluorescence spectrum intensity is not seen in the component concentration range of 0 to 0.1 v / v%, and the linearity is As a result, the effective range of the calibration curve was not determined.

但し、前記平均的水質における蛍光スペクトル強度の変動範囲が±5mV、前記所望の濃度測定精度の範囲を5%とした場合、蛍光スペクトル強度の変動範囲が±5mVとなるのは、水溶性切削油の成分濃度1v/v%以下となるため、検量線の有効範囲を精査したとしても、前記検量線の有効範囲は十分満たされていた。   However, when the fluctuation range of the fluorescence spectrum intensity in the average water quality is ± 5 mV and the desired concentration measurement accuracy range is 5%, the fluctuation range of the fluorescence spectrum intensity is ± 5 mV. Therefore, even if the effective range of the calibration curve was scrutinized, the effective range of the calibration curve was sufficiently satisfied.

希釈倍率設定工程16では、前記相関関係14から得られた結果を基に、異常値検知を目的とした希釈倍率の決定を行ったが、所望の検知レベルが検量線の有効範囲に収まっていたため、原水11の希釈は行わず、即ち、希釈倍率を1倍と設定し、希釈工程17も省略した。   In the dilution factor setting step 16, the dilution factor for the purpose of detecting an abnormal value was determined based on the result obtained from the correlation 14, but the desired detection level was within the effective range of the calibration curve. The raw water 11 was not diluted, that is, the dilution factor was set to 1 and the dilution step 17 was also omitted.

SS除去工程18では、原水11及び希釈済原水19で固形物成分が少なく、蛍光分析に与える影響は小さかったため、SS除去工程18も省略した。   In the SS removal step 18, since the raw water 11 and the diluted raw water 19 have few solid components and the influence on the fluorescence analysis was small, the SS removal step 18 was also omitted.

測定工程20では、データベース化工程13で得られた前記水溶性切削油の蛍光スペクトルのピーク位置280nm/360nmにおける蛍光スペクトル強度を得た。   In the measurement process 20, the fluorescence spectrum intensity in the peak position of 280 nm / 360 nm of the fluorescence spectrum of the water-soluble cutting oil obtained in the database preparation process 13 was obtained.

前記相関関係14で作成した検量線を用いて、前記水溶性切削油を含む排水の蛍光スペクトル強度から、前記水溶性切削油を含む排水の水溶性切削油のCOD濃度及び成分濃度を推定した。その結果、排水中の水溶性切削油の推定COD濃度値と実測COD濃度値がよく一致することが分かった。   Using the calibration curve created in the correlation 14, the COD concentration and the component concentration of the water-soluble cutting oil in the wastewater containing the water-soluble cutting oil were estimated from the fluorescence spectrum intensity of the wastewater containing the water-soluble cutting oil. As a result, it was found that the estimated COD concentration value of the water-soluble cutting oil in the waste water was in good agreement with the measured COD concentration value.

濃度計算工程21は、原水11の希釈を行わなかったため、省略した。   The concentration calculation step 21 was omitted because the raw water 11 was not diluted.

検知工程23では、測定工程20で得られた水溶性切削油濃度の推定値が、目標とする異常値を超えたかの判定を行った。その結果、10日目に水溶性切削油の推定成分濃度値が0.05v/v%を超えたため、異常値と判断してアラームが作動した。   In the detection step 23, it was determined whether the estimated value of the water-soluble cutting oil concentration obtained in the measurement step 20 exceeded the target abnormal value. As a result, since the estimated component concentration value of the water-soluble cutting oil exceeded 0.05 v / v% on the 10th day, it was judged as an abnormal value and the alarm was activated.

対処工程24では、検知工程23で作動したアラームを現場作業者が確認した後、水溶性切削油を含む原水ラインの供給量を減らした。   In the coping process 24, after the field worker confirmed the alarm that was activated in the detection process 23, the supply amount of the raw water line containing the water-soluble cutting oil was reduced.

(実施例5:希釈によるpHの影響の軽減)
以下、実施例1における含油排水を用いて、バッチ試験を行うことで、希釈によるpH影響の軽減効果を説明する。
(Example 5: Reduction of pH effect by dilution)
Hereinafter, the effect of reducing the influence of pH due to dilution will be described by performing a batch test using the oil-containing wastewater in Example 1.

図18には、含油排水をJIS P 3801に規定の5種Cろ紙でろ過した液体試料について、pH3〜9に調整した時の蛍光強度の変化を示す。その結果、当該含油排水においては、pH4以下で蛍光強度が大きく減少することが分かった。   FIG. 18 shows changes in fluorescence intensity when the oil-containing wastewater is adjusted to pH 3 to 9 with respect to a liquid sample obtained by filtering the oil-containing wastewater with 5 types C filter paper defined in JIS P3801. As a result, it was found that in the oil-containing wastewater, the fluorescence intensity greatly decreased at pH 4 or lower.

次に、pH4の含油排水を用いて、希釈によるpHの影響の軽減効果をみた。具体的にはpH4の含油排水を、JIS P 3801に規定の5種Cろ紙でろ過した液体試料について、10倍希釈した時の蛍光強度から、実施例1における相関関係14を用いて求めた溶解性COD濃度に、希釈倍率10倍を乗じて、溶解性COD濃度実測値と比較を行った。   Next, using an oil-containing wastewater having a pH of 4, an effect of reducing the influence of pH by dilution was observed. Specifically, the dissolution obtained by using the correlation 14 in Example 1 from the fluorescence intensity when a liquid sample obtained by filtering oil-containing wastewater having a pH of 4 with 5 type C filter paper defined in JIS P 3801 was diluted 10 times. The soluble COD concentration was multiplied by a dilution factor of 10 and compared with the measured soluble COD concentration.

図19に検討結果を示す。pH4では図18と同様に蛍光強度が大きく減少しており、この蛍光強度を基に溶解性COD濃度を算出した結果、17.5mg/Lとなった。一方、10倍希釈を行うことにより、pH5程度になった前記液体試料を測定し、得られた蛍光強度を基に溶解性COD濃度を算出した結果、5.7mg/Lとなった。この値に希釈倍率10倍を乗じることで、溶解性COD濃度計算値は57mg/Lとなった。また、このときの溶解性COD濃度実測値は58.8mg/Lであった。   FIG. 19 shows the examination results. At pH 4, the fluorescence intensity greatly decreased as in FIG. 18. As a result of calculating the soluble COD concentration based on this fluorescence intensity, it was 17.5 mg / L. On the other hand, the liquid sample having a pH of about 5 was measured by 10-fold dilution, and the soluble COD concentration was calculated based on the obtained fluorescence intensity. As a result, it was 5.7 mg / L. By multiplying this value by 10 times the dilution rate, the calculated soluble COD concentration was 57 mg / L. Further, the actually measured value of the soluble COD concentration at this time was 58.8 mg / L.

以上の結果から、希釈を行うことでpHの影響を軽減でき、溶解性COD濃度の濃度測定精度を高めることができた。   From the above results, it was possible to reduce the influence of pH by performing dilution, and to improve the concentration measurement accuracy of the soluble COD concentration.

以上のことは、紫外・可視吸光光度法についても同様のことが言える。   The same can be said for the ultraviolet / visible absorptiometry.

(実施例6:希釈による固形物の影響の軽減)
以下、実施例1における含油排水を用いて、バッチ試験を行うことで、希釈による固形物の影響の軽減効果を説明する。
(Example 6: Reduction of influence of solid substance by dilution)
Hereinafter, the reduction effect of the influence of the solid substance by dilution is demonstrated by performing a batch test using the oil-containing wastewater in Example 1. FIG.

図20には、pH8に調整した含油排水及び含油排水ろ過液を混合することで、固形物濃度を調整した時の蛍光強度の変化を示す。その結果、当該含油排水においては、固形物濃度が増加するにしたがい蛍光強度が減少することが分かった。   FIG. 20 shows changes in fluorescence intensity when the solid concentration is adjusted by mixing the oil-containing wastewater adjusted to pH 8 and the oil-containing wastewater filtrate. As a result, in the oil-containing wastewater, it was found that the fluorescence intensity decreased as the solid concentration increased.

次に、固形物濃度360mg/Lの含油排水を用いて、希釈による固形物の影響の軽減効果をみた。具体的には、固形物濃度360mg/Lの含油排水をpH8に調整した液体試料について、10倍希釈した時の蛍光強度から、実施例1における相関関係14を用いて求めた溶解性COD濃度に、希釈倍率10倍を乗じて、溶解性COD濃度実測値と比較を行った。   Next, using an oil-containing wastewater having a solid concentration of 360 mg / L, the effect of reducing the influence of the solid by dilution was observed. Specifically, for a liquid sample in which a solid substance concentration of 360 mg / L of oil-containing wastewater was adjusted to pH 8, from the fluorescence intensity when diluted 10 times, to the soluble COD concentration determined using the correlation 14 in Example 1 Multiply by a dilution factor of 10 and compare with the measured dissolved COD concentration.

図21に検討結果を示す。固形物濃度360mg/Lでは図20と同様に蛍光強度が減少しており、この蛍光強度を元に溶解性COD濃度を算出した結果、1.9mg/Lとなった。一方、10倍希釈を行うことにより、pH5程度になった前記液体試料を測定し、得られた蛍光強度を基に溶解性COD濃度を算出した結果、4.7mg/Lとなった。この値に希釈倍率10倍を乗じることで、溶解性COD濃度計算値は47mg/Lとなった。また、このときの溶解性COD濃度実測値は58.8mg/Lであった。   FIG. 21 shows the examination results. At a solid matter concentration of 360 mg / L, the fluorescence intensity decreased as in FIG. 20. As a result of calculating the soluble COD concentration based on this fluorescence intensity, it was 1.9 mg / L. On the other hand, the liquid sample having a pH of about 5 was measured by performing 10-fold dilution, and the soluble COD concentration was calculated based on the obtained fluorescence intensity. As a result, it was 4.7 mg / L. By multiplying this value by 10 times the dilution factor, the calculated soluble COD concentration was 47 mg / L. Further, the actually measured value of the soluble COD concentration at this time was 58.8 mg / L.

以上の結果から、希釈を行うことで固形物の影響を軽減でき、溶解性COD濃度の濃度測定精度を高めることができた。
From the above results, it was possible to reduce the influence of solid matter by performing dilution, and to improve the concentration measurement accuracy of the soluble COD concentration.

以上のことは、紫外・可視吸光光度法についても同様のことが言える。   The same can be said for the ultraviolet / visible absorptiometry.

(実施例7:希釈による共存塩の影響の軽減)
以下、実施例1における含油排水を用いて、バッチ試験を行うことで、希釈による共存塩の影響の軽減効果を説明する。
(Example 7: Reduction of influence of coexisting salt by dilution)
Hereinafter, the effect of reducing the influence of the coexisting salt due to dilution will be described by performing a batch test using the oil-containing wastewater in Example 1.

図22には、pH8に調整し、JIS P 3801に規定の5種Cろ紙でろ過した含油排水に、共存塩として溶解性鉄を添加することで、共存塩濃度を調整した時の蛍光強度の変化を示す。その結果、当該含油排水においては、共存塩濃度が増加するにしたがい蛍光強度が減少することが分かった。ただし、当該含油排水には共存塩である溶解性鉄は蛍光強度に影響を与えるほど含有していない。   FIG. 22 shows the fluorescence intensity when adjusting the concentration of the coexisting salt by adding soluble iron as coexisting salt to the oil-containing wastewater adjusted to pH 8 and filtered with JIS P 3801 as specified in Class 5 C filter paper. Showing change. As a result, it was found that the fluorescence intensity decreased in the oil-containing wastewater as the concentration of the coexisting salt increased. However, the oil-containing wastewater does not contain soluble iron, which is a coexisting salt, so as to affect the fluorescence intensity.

次に、共存塩濃度100mg/Lの含油排水を用いて、希釈による共存塩の影響の軽減効果をみた。具体的には、共存塩濃度100mg/Lの含油排水をpH8に調整し、JIS P 3801に規定の5種Cろ紙でろ過した液体試料について、10倍希釈した時の蛍光強度から、実施例1における相関関係14を用いて求めた溶解性COD濃度に、希釈倍率10倍を乗じて、溶解性COD濃度実測値と比較を行った。   Next, using an oil-containing wastewater having a coexisting salt concentration of 100 mg / L, an effect of reducing the influence of the coexisting salt by dilution was observed. Specifically, from the fluorescence intensity when diluted 10-fold with respect to a liquid sample prepared by adjusting oil-containing wastewater having a coexisting salt concentration of 100 mg / L to pH 8, and filtered through 5 types C filter paper defined in JIS P 3801, Example 1 The soluble COD concentration obtained using the correlation 14 in FIG. 5 was multiplied by a dilution factor of 10 and compared with the actually measured soluble COD concentration.

図23に検討結果を示す。共存塩濃度100mg/Lでは図22と同様に蛍光強度が減少しており、この蛍光強度を元に溶解性COD濃度を算出した結果、27.4mg/Lとなった。一方、10倍希釈を行うことにより、pH5程度になった前記液体試料を測定し、得られた蛍光強度を基に溶解性COD濃度を算出した結果、4.9mg/Lとなった。この値に希釈倍率10倍を乗じることで、溶解性COD濃度計算値は49mg/Lとなった。また、このときの溶解性COD濃度実測値は58.8mg/Lであった。   FIG. 23 shows the examination results. At the coexisting salt concentration of 100 mg / L, the fluorescence intensity decreased as in FIG. 22. As a result of calculating the soluble COD concentration based on this fluorescence intensity, it was 27.4 mg / L. On the other hand, the liquid sample having a pH of about 5 was measured by 10-fold dilution, and the soluble COD concentration was calculated based on the obtained fluorescence intensity. As a result, it was 4.9 mg / L. By multiplying this value by 10 times the dilution factor, the calculated soluble COD concentration was 49 mg / L. Further, the actually measured value of the soluble COD concentration at this time was 58.8 mg / L.

以上の結果から、希釈を行うことで共存塩の影響を軽減でき、溶解性COD濃度の濃度測定精度を高めることができた。
From the above results, it was possible to reduce the influence of the coexisting salt by performing dilution, and to improve the concentration measurement accuracy of the soluble COD concentration.

以上のことは、紫外・可視吸光光度法についても同様の結果であった。   The above results were the same for the ultraviolet / visible absorptiometry.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1 キセノンランプ
2 励起光
3 ビームスプリッタ
4 モニタ側検知器
5 試料セル
6 蛍光
7 光電子倍増管
8 プロセッサ
11 原水
12 特定化学物質又は特定排水
13 データベース化工程
14 相関関係
15 希釈用水
16 希釈倍率設定工程
17 希釈工程
18 SS除去工程
19 希釈済原水
20 測定工程
21 濃度計算工程
22 放流水
23 検知工程
24 対処工程
25 濃度測定方法
26 対処方法
DESCRIPTION OF SYMBOLS 1 Xenon lamp 2 Excitation light 3 Beam splitter 4 Monitor side detector 5 Sample cell 6 Fluorescence 7 Photomultiplier tube 8 Processor 11 Raw water 12 Specific chemical substance or specific waste water 13 Database production process 14 Correlation 15 Water for dilution 16 Dilution rate setting process 17 Dilution process 18 SS removal process 19 Diluted raw water 20 Measurement process 21 Concentration calculation process 22 Effluent water 23 Detection process 24 Countermeasure process 25 Concentration measurement method 26 Countermeasure method

Claims (14)

特定の油又は特定の含油排水に特有の蛍光を用いて、原水中に混入している前記特定の油又は特定の含油排水の濃度測定を行う方法において
前記特定の油が難燃性作動油又は水溶性切削油であり、前記特定の含油排水が難燃性作動油又は水溶性切削油を含む排水であって、
200〜800nmの励起波長全域における前記特定の油又は特定の含油排水を含む液体試料について蛍光スペクトルを測定し、前記特定の油又は特定の含油排水の蛍光スペク
ル強度のピーク位置における励起波長と蛍光波長を記録したデータベースを作成し、かつ、当該ピーク位置における蛍光スペクトル強度と、前記特定の油又は特定の含油排水における溶解性化学的酸素要求量の濃度との相関関係を求めて検量線を作成するデータベース化工程と
前記原水を連続的にサンプリングして得られた液体試料について、前記データベース化工程における、前記蛍光スペクトル強度と、前記溶解性化学的酸素要求量の濃度との相関関係が得られるように、原水性状に応じて前記液体試料の希釈倍率を算出する希釈倍率設定工程と、
前記希釈倍率設定工程で算出された希釈倍率で、前記原水を連続的にサンプリングして得られた液体試料に希釈用水を混合することで希釈済原水を得る希釈工程と、
前記希釈済原水において、前記ピーク位置の励起波長における蛍光スペクトル強度を測定する測定工程と、
前記データベース化工程における前記相関関係を用いて、前記測定工程での測定結果から、前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出し、さらに、前記希釈倍率を用いて前記原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する濃度計算工程と、
を備えることを特徴とする、排水中の特定の油又は特定の含油排水の濃度測定方法。
In the method carried out using a specific fluorescence particular oil or a particular oil-containing wastewater, the concentration measurement of the particular oil or a particular oil-containing wastewater is mixed in the raw water,
The specific oil is a flame retardant hydraulic oil or a water-soluble cutting oil, and the specific oil-containing wastewater is a drainage containing a flame retardant hydraulic oil or a water-soluble cutting oil,
A fluorescence spectrum is measured for the specific oil or a liquid sample containing a specific oil-containing wastewater in the entire excitation wavelength range of 200 to 800 nm, and the excitation wavelength and the fluorescence wavelength at the peak position of the fluorescence spectrum intensity of the specific oil or the specific oil-containing wastewater. And create a calibration curve by obtaining the correlation between the fluorescence spectrum intensity at the peak position and the concentration of the soluble chemical oxygen demand in the specific oil or specific oil-containing wastewater. A correlation between the fluorescence spectrum intensity and the concentration of the soluble chemical oxygen demand in the database generation process is obtained for the liquid sample obtained by continuously sampling the database and the raw water. In addition, a dilution ratio setting step for calculating the dilution ratio of the liquid sample according to the raw aqueous state,
A dilution step of obtaining diluted raw water by mixing dilution water with a liquid sample obtained by continuously sampling the raw water at the dilution rate calculated in the dilution rate setting step;
In the diluted raw water, a measurement step of measuring the fluorescence spectrum intensity at the excitation wavelength of the peak position;
Using the correlation in the database creation step, from the measurement result in the measurement step, calculate the concentration of the soluble chemical oxygen demand of the specific oil or specific oil-containing wastewater in the diluted raw water, Furthermore, a concentration calculation step for calculating the concentration of the dissolved chemical oxygen demand of the specific oil or the specific oil- containing wastewater in the raw water using the dilution factor;
A method for measuring the concentration of a specific oil in a wastewater or a specific oil-containing wastewater.
前記検量線の作成は、下記の式(1)に表される近似式を用いることを特徴とする、請求項1に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
蛍光スペクトル強度=a{1−exp(−bC)}+d ・・・式(1)
(ここで、上記式(1)において、a、b、dは定数であり、Cは油又は含油排水の溶
解性化学的酸素要求量である。)
The method for measuring the concentration of specific oil in wastewater or specific oil-containing wastewater according to claim 1, wherein the calibration curve is created using an approximate expression represented by the following formula (1).
Fluorescence spectrum intensity = a {1-exp (−bC)} + d (1)
(Here, in the above formula (1), a, b and d are constants, and C is the soluble chemical oxygen demand of the oil or oil-containing waste water.)
前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する方法において、
予め溶解性化学的酸素要求量の濃度と全化学的酸素要求量の濃度との相関関係を求めておくことで、算出して得られた溶解性化学的酸素要求量の濃度から全化学的酸素要求量の濃度算出することを特徴とする、請求項1又は2に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。
In the method of calculating the concentration of the soluble chemical oxygen demand of the specific oil or the specific oil-containing wastewater in the diluted raw water,
By calculating the correlation between the concentration of the soluble chemical oxygen demand and the concentration of the total chemical oxygen demand in advance, the total chemical oxygen demand is calculated from the calculated concentration of the soluble chemical oxygen demand. The method for measuring the concentration of a specific oil in a wastewater or a specific oil-containing wastewater according to claim 1 or 2, wherein the concentration of the required amount is calculated .
前記原水又は希釈済原水に対して、固形物除去処理としてフィルターを設置するSS除去工程を備えることで、蛍光分析における固形物の影響、液体試料のバックグラウンドの影響の内、一つ又は二つの影響を軽減することを特徴とする、請求項1〜3のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。   By providing an SS removal step in which a filter is installed as a solid matter removal treatment for the raw water or diluted raw water, one or two of the influence of solid matter in the fluorescence analysis and the influence of the background of the liquid sample are included. The method for measuring the concentration of a specific oil in a wastewater or a specific oil-containing wastewater according to any one of claims 1 to 3, wherein the influence is reduced. 前記SS除去工程について、定期的な逆洗浄を行うことでフィルターの閉塞を防ぐことを特徴とする、請求項1〜4のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。   5. The specific oil in the wastewater or the specific oil-containing wastewater according to claim 1, wherein the SS removal step is performed by periodically performing backwashing to prevent clogging of the filter. Concentration measurement method. 前記原水性状に応じて算出した適切な希釈倍率が、流量データを基に計算した実際の希釈倍率を用いることを特徴とする、請求項1〜のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定方法。 The specific dilution rate calculated according to the raw water state uses an actual dilution rate calculated based on flow rate data, and the identification in waste water according to any one of claims 1 to 5 , Of concentration of oil or specific oil-containing wastewater. 前記請求項1〜のいずれか1項に記載の濃度測定方法を用いて、事前に設定した基準値を超えた場合に警報を出す検知工程と、
排水の供給の制限及び/又は排水の濃度調整を行う対処を行う対処工程と、を備えることを特徴とする排水中の特定の油又は特定の含油排水の検知方法。
Using the concentration measurement method according to any one of claims 1 to 6 , a detection step of issuing an alarm when a preset reference value is exceeded,
A method for detecting a specific oil in a waste water or a specific oil-containing waste water, comprising: a coping process for performing a coping process for limiting the supply of waste water and / or adjusting the concentration of waste water.
特定の油又は特定の含油排水に特有の蛍光を用いて、原水中に混入している前記特定の油又は特定の含油排水の濃度測定を行う装置において
前記特定の油が難燃性作動油又は水溶性切削油であり、前記特定の含油排水が難燃性作動油又は水溶性切削油を含む排水であって、
200〜800nmの励起波長全域における前記特定の油又は特定の含油排水を含む液体試料について蛍光スペクトルを測定し、前記特定の油又は特定の含油排水の蛍光スペクトル強度のピーク位置における励起波長と蛍光波長を記録したデータベースを作成し、かつ、当該ピーク位置における蛍光スペクトル強度と、前記特定の油又は特定の含油排水における溶解性化学的酸素要求量の濃度との相関関係を求めて検量線を作成するデータベース化手段と、
前記原水を連続的にサンプリングして得られた液体試料について、前記データベース化手段における、前記蛍光スペクトル強度と、前記溶解性化学的酸素要求量の濃度との相関関係が得られるように、原水性状に応じて前記液体試料の希釈倍率を算出する希釈倍率設定手段と、
前記希釈倍率設定手段で算出された希釈倍率で、前記原水を連続的にサンプリングして得られた液体試料に希釈用水を混合することで希釈済原水を得る希釈手段と、
前記希釈済原水において、前記ピーク位置の励起波長における蛍光スペクトル強度を測定する測定手段と、
前記データベース化手段における前記相関関係を用いて、前記測定手段での測定結果から、前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出し、さらに、前記希釈倍率を用いて前記原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する濃度計算手段と、
を備えることを特徴とする、排水中の特定の油又は特定の含油排水の濃度測定装置。
In the apparatus for performing it, the concentration measurement of the particular oil or a particular oil-containing wastewater is mixed in the raw water using a specific fluorescence particular oil or a particular oil-containing wastewater,
The specific oil is a flame retardant hydraulic oil or a water-soluble cutting oil, and the specific oil-containing wastewater is a drainage containing a flame retardant hydraulic oil or a water-soluble cutting oil,
The fluorescence spectrum is measured for the specific oil or the liquid sample containing the specific oil-containing wastewater in the entire excitation wavelength range of 200 to 800 nm, and the excitation wavelength and the fluorescence wavelength at the peak position of the fluorescence spectrum intensity of the specific oil or the specific oil-containing wastewater. And create a calibration curve by obtaining the correlation between the fluorescence spectrum intensity at the peak position and the concentration of the soluble chemical oxygen demand in the specific oil or specific oil-containing wastewater. Databaseization means,
For a liquid sample obtained by continuously sampling the raw water, the raw water state is obtained so that a correlation between the fluorescence spectrum intensity and the concentration of the soluble chemical oxygen demand in the database is obtained. Dilution ratio setting means for calculating the dilution ratio of the liquid sample according to
Dilution means for obtaining diluted raw water by mixing dilution water with a liquid sample obtained by continuously sampling the raw water at the dilution ratio calculated by the dilution ratio setting means,
In the diluted raw water, measuring means for measuring the fluorescence spectrum intensity at the excitation wavelength of the peak position;
Using the correlation in the database creation means, from the measurement results in the measurement means, calculate the concentration of the dissolved chemical oxygen demand of the specific oil or specific oil-containing wastewater in the diluted raw water, Further, concentration calculation means for calculating the concentration of the dissolved chemical oxygen demand of the specific oil or the specific oil- containing wastewater in the raw water using the dilution factor;
A device for measuring the concentration of a specific oil in a waste water or a specific oil-containing waste water.
前記検量線の作成は、下記の式(1)に表される近似式を用いることを特徴とする、請求項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
蛍光スペクトル強度=a{1−exp(−bC)}+d ・・・式(1)
(ここで、上記式(1)において、a、b、dは定数であり、Cは油又は含油排水の溶解性化学的酸素要求量である。)
9. The concentration measuring device for specific oil in waste water or specific oil-containing waste water according to claim 8 , wherein the calibration curve is created using an approximate expression represented by the following formula (1).
Fluorescence spectrum intensity = a {1-exp (−bC)} + d (1)
(Here, in the above formula (1), a, b and d are constants, and C is the soluble chemical oxygen demand of the oil or oil-containing waste water.)
前記希釈済原水中における前記特定の油又は特定の含油排水の溶解性化学的酸素要求量の濃度を算出する装置において、
予め溶解性化学的酸素要求量の濃度と全化学的酸素要求量の濃度との相関関係を求めておくことで、算出して得られた溶解性化学的酸素要求量の濃度から全化学的酸素要求量の濃度算出することを特徴とする、請求項又はに記載の排水中の特定の油又は特定の含油排水の濃度測定装置。
In the apparatus for calculating the concentration of the soluble chemical oxygen demand of the specific oil or the specific oil-containing wastewater in the diluted raw water,
By calculating the correlation between the concentration of the soluble chemical oxygen demand and the concentration of the total chemical oxygen demand in advance, the total chemical oxygen demand is calculated from the calculated concentration of the soluble chemical oxygen demand. The concentration measuring apparatus for specific oil or specific oil-containing wastewater in wastewater according to claim 8 or 9 , wherein the concentration of the required amount is calculated .
前記原水又は希釈済原水に対して、固形物除去処理としてフィルターを設置するSS除去手段を備えることで、蛍光分析における固形物の影響、液体試料のバックグラウンドの影響の内、一つ又は二つの影響を軽減することを特徴とする、請求項10のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。 By providing SS removal means for installing a filter as solid matter removal treatment for the raw water or diluted raw water, one or two of the influence of solid matter in the fluorescence analysis and the influence of the background of the liquid sample The concentration measuring device for specific oil or specific oil-containing wastewater in wastewater according to any one of claims 8 to 10 , wherein the influence is reduced. 前記SS除去手段について、定期的な逆洗浄を行うことでフィルターの閉塞を防ぐ手段を有することを特徴とする、請求項11のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。 The specific oil or specific in waste water according to any one of claims 8 to 11 , wherein the SS removing means includes means for preventing clogging of the filter by performing periodic back washing. Concentration measuring device for oil-containing wastewater. 前記原水性状に応じて算出した適切な希釈倍率が、流量データを基に計算した実際の希釈倍率を用いることを特徴とする、請求項12のいずれか1項に記載の排水中の特定の油又は特定の含油排水の濃度測定装置。 The appropriate dilution factor calculated according to the raw water state uses an actual dilution factor calculated based on flow rate data, and is specified in waste water according to any one of claims 8 to 12. For measuring concentration of oil or specific oil-containing wastewater. 前記請求項13のいずれか1項に記載の濃度測定装置を用いて、事前に設定した基準値を超えた場合に警報を出す検知手段と、
排水の供給の制限及び/又は排水の濃度調整を行う対処を行う対処手段と、
を備えることを特徴とする、排水中の特定の油又は特定の含油排水の検知装置。
Using the concentration measuring device according to any one of claims 8 to 13 , a detection unit that issues an alarm when a preset reference value is exceeded,
Coping means for coping with limiting the drainage supply and / or adjusting the drainage concentration;
A device for detecting a specific oil in a waste water or a specific oil-containing waste water.
JP2010019616A 2010-01-29 2010-01-29 Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water Active JP5631015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019616A JP5631015B2 (en) 2010-01-29 2010-01-29 Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019616A JP5631015B2 (en) 2010-01-29 2010-01-29 Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water

Publications (2)

Publication Number Publication Date
JP2011158340A JP2011158340A (en) 2011-08-18
JP5631015B2 true JP5631015B2 (en) 2014-11-26

Family

ID=44590411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019616A Active JP5631015B2 (en) 2010-01-29 2010-01-29 Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water

Country Status (1)

Country Link
JP (1) JP5631015B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862211B2 (en) * 2011-11-08 2016-02-16 大日本印刷株式会社 Method for determining washing conditions for cell culture supports
CN103439272B (en) * 2013-08-31 2016-12-28 浙江泰坦股份有限公司 Multi-channel multi-component dye liquor concentration detection device based on spectrophotography and method
KR101580894B1 (en) * 2014-06-16 2016-01-11 동양하이테크산업주식회사 Method for measuring COD with Multi-wavelength analysis
JP6481201B2 (en) * 2015-03-30 2019-03-13 新日鐵住金株式会社 Method for measuring the concentration of specified chemical substances or specified wastewater
CN112881353B (en) * 2021-01-11 2022-11-15 江西师范大学 Method and device for measuring concentration of soluble organic carbon in water body
WO2023053585A1 (en) * 2021-09-30 2023-04-06 富士フイルム株式会社 Training data acquisition method, training data acquisition system, soft sensor construction method, soft sensor, and training data
JP7453702B2 (en) * 2022-05-20 2024-03-21 ラボテック株式会社 COD automatic measuring device
CN117420092B (en) * 2023-12-19 2024-03-12 河北德润厚天科技股份有限公司 Water quality detection method, device and equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148074A (en) * 1992-11-12 1994-05-27 Sumitomo Metal Ind Ltd Method for detecting leakage of water-soluble working fluid
JP5194899B2 (en) * 2008-03-10 2013-05-08 新日鐵住金株式会社 Management method of factory wastewater treatment
JP5601797B2 (en) * 2009-06-30 2014-10-08 新日鐵住金株式会社 Method for detecting leakage of specified chemical substances into the basin outside the system

Also Published As

Publication number Publication date
JP2011158340A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5631015B2 (en) Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water
US11874226B2 (en) Determination of water treatment parameters based on absorbance and fluorescence
CN107209112B (en) Determining water treatment parameters based on absorbance and fluorescence
Langergraber et al. Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy
TWI576586B (en) Method for monitoring and control of a wastewater process stream
JP5194899B2 (en) Management method of factory wastewater treatment
JP6719292B2 (en) Method for evaluating organic matter in water in water treatment system and water treatment system
Carstea et al. Online fluorescence monitoring of effluent organic matter in wastewater treatment plants
JP5601797B2 (en) Method for detecting leakage of specified chemical substances into the basin outside the system
Batchelli et al. Size fractionation and optical properties of colloids in an organic-rich estuary (Thurso, UK)
KR20190040278A (en) Water quality detection
US8343771B2 (en) Methods of using cyanine dyes for the detection of analytes
JP5047846B2 (en) Management method of factory wastewater treatment
JP2009236831A (en) Monitoring method and device for dissolved pollutant
US11307138B2 (en) Testing method for residual organic compounds in a liquid sample
KR101617822B1 (en) Apparatus for realtime measuring hydroxyl radical scavenging index in advanced oxidation process, and method for the same
Ross et al. On-line monitoring of ozonation through estimation of Ct value, bromate and AOC formation with UV/Vis spectrometry
JP7420333B2 (en) Sensitizer for ammonium ion chemiluminescence measurement, ammonium ion analysis method, and ammonium ion analysis device
JP6413855B2 (en) Cr6 + concentration measurement method
SE2250244A1 (en) Method and system for determining at least one of the character, composition and reactivity of dissolved organic matter in water
Boley et al. Experiences with a multi-parameter submersible UV/VIS spectrometer for monitoring a denitrification reactor system
JP2016011947A (en) Concentration measuring method
Arai et al. Measurement method of nutrient using principal component regression

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5631015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250