JP2009236361A - Steam compression-absorption hybrid refrigerating machine - Google Patents

Steam compression-absorption hybrid refrigerating machine Download PDF

Info

Publication number
JP2009236361A
JP2009236361A JP2008080853A JP2008080853A JP2009236361A JP 2009236361 A JP2009236361 A JP 2009236361A JP 2008080853 A JP2008080853 A JP 2008080853A JP 2008080853 A JP2008080853 A JP 2008080853A JP 2009236361 A JP2009236361 A JP 2009236361A
Authority
JP
Japan
Prior art keywords
regenerator
steam
exhaust heat
engine
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008080853A
Other languages
Japanese (ja)
Other versions
JP5389366B2 (en
Inventor
Kazushi Hiromasa
一志 広政
Kazuyuki Makita
和志 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2008080853A priority Critical patent/JP5389366B2/en
Publication of JP2009236361A publication Critical patent/JP2009236361A/en
Application granted granted Critical
Publication of JP5389366B2 publication Critical patent/JP5389366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating machine can increase refrigeration capacity without using in particular, expensive materials, and have high efficiency, safety and environmental friendliness. <P>SOLUTION: The steam compression refrigerating machine includes a compressor 1 for mechanically compressing steam, a condenser 2 for introducing, cooling and condensing the superheated steam compressed by the compressor 1, and an evaporator 3 for introducing the water condensed in the condenser 2 and taking out cold water. An absorber 10 for introducing absorbing solution using water as a refrigerant is connected to the evaporator 3 via a steam line, and a regenerator 16 is provided in a superheated steam line for interconnecting the compressor 1 and the condenser 2. The regenerator 16 is connected to the absorber 10 via a diluted solution extracting line having a diluted solution extracting pump, and the regenerator 16 is connected to the absorber 10 via a concentrated solution line. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水を冷媒とする吸湿性の吸収液を用いる吸収冷凍機と、水蒸気圧縮冷凍機とを組み合わせた水蒸気圧縮・吸収ハイブリッド冷凍機に関するものである。   The present invention relates to a water vapor compression / absorption hybrid refrigerating machine in which an absorption refrigerator using a hygroscopic absorption liquid using water as a refrigerant and a water vapor compression refrigerator are combined.

従来、水蒸気圧縮冷凍機として、一例として図10に示すように、水蒸気を機械的に圧縮するための圧縮機1と、この圧縮機1で圧縮された過熱蒸気を導入し冷却して凝縮させるための凝縮器2と、この凝縮器2で凝縮した水を導入して冷水を取り出すための蒸発器3とを備えた構成のものが知られている。4は冷媒散布ポンプ、5は圧力調整手段である。   Conventionally, as a steam compression refrigerator, as shown in FIG. 10 as an example, a compressor 1 for mechanically compressing steam and superheated steam compressed by the compressor 1 are introduced, cooled, and condensed. The thing of the structure provided with the condenser 2 and the evaporator 3 for taking in the water condensed with this condenser 2 and taking out cold water is known. 4 is a refrigerant spray pump, and 5 is a pressure adjusting means.

従来の水蒸気圧縮冷凍機における水冷媒は、安全性、環境性及び性能面において長所を有している。すなわち、水冷媒は毒性がなく、また、運転圧力が真空圧下のため破裂の危険性がない。また、水冷媒は、GWP(Global Warming Potential:地球温暖化係数)及び、ODP(Ozone Depletion Potential:オゾン破壊係数)がともにゼロである。また、水冷媒は、冷凍用途での理論成績係数が高く、高温域でも大きな蒸発潜熱を有している。このように、水冷媒には利点が多いので、水冷媒蒸気圧縮冷凍機の実用化に関する技術開発が望まれている。   The water refrigerant in the conventional steam compression refrigerator has advantages in terms of safety, environmental performance and performance. That is, the water refrigerant is not toxic and there is no risk of rupture because the operating pressure is under vacuum. The water refrigerant has zero GWP (Global Warming Potential) and ODP (Ozone Depletion Potential). Moreover, the water refrigerant has a high theoretical coefficient of performance for refrigeration applications, and has a large latent heat of vaporization even in a high temperature range. As described above, since water refrigerant has many advantages, technical development relating to practical use of the water refrigerant vapor compression refrigerator is desired.

しかしながら、従来の水蒸気圧縮冷凍機には、圧力比(凝縮圧力/蒸発圧力)が大きい、冷媒蒸気の比容積が大きい、単位容積当たりの冷凍能力が小さい、等の短所があり、高圧力比・大容量の圧縮過程を真空圧下で行う圧縮機が必要であるが、実際面では難しいという問題がある。   However, conventional steam compression refrigerators have disadvantages such as a large pressure ratio (condensation pressure / evaporation pressure), a large specific volume of refrigerant vapor, and a small refrigeration capacity per unit volume. Although a compressor that performs a large-capacity compression process under vacuum pressure is necessary, there is a problem that it is difficult in practice.

高圧力比・大容量の圧縮過程を真空圧下で行うことは何が難しいのかについて以下に説明する。まず、径の大きな羽根車を高速で回転させる必要があり、このためには、強度の高い特殊な材料を使う必要があり、強度の高い材料は、値段が高い。すなわち、商品として成立し難い。
逆に、一般的で廉価な材料で羽根車を作ろうとすると、羽根車の径に制限が生じ、圧縮できる冷媒蒸気量が限られ、このため、冷凍能力の小さな冷凍機しかできない。
The following explains what is difficult to perform a high pressure ratio and large capacity compression process under vacuum. First, it is necessary to rotate an impeller with a large diameter at high speed. For this purpose, it is necessary to use a special material with high strength, and a material with high strength is expensive. That is, it is difficult to establish as a product.
On the other hand, when an impeller is made of a general and inexpensive material, the diameter of the impeller is limited, and the amount of refrigerant vapor that can be compressed is limited. Therefore, only a refrigerator having a small refrigerating capacity can be achieved.

従来から、冷媒にアンモニア、吸収液に水を使った吸収冷凍機とエンジン駆動の蒸気圧縮冷凍機を組み合わせた冷凍機、複合ヒートポンプシステムが知られている(例えば、特許文献1、特許文献2、特許文献3参照)。また、従来、水、フロン系冷媒、アンモニア等の冷媒を循環させて散布あるいは噴霧する蒸発器を用いたヒートポンプ及び熱利用装置が知られている(例えば、特許文献4参照)。
特開平8−145496号公報(第1頁、図1) 特開2007−263482号公報(第1頁、図1) 特開2007−225191号公報(第1頁、図2) 特開2005−241204号公報(第1頁、図2)
Conventionally, a refrigerator and a combined heat pump system in which an absorption refrigerator using ammonia as a refrigerant and water as an absorption liquid and an engine-driven vapor compression refrigerator are combined are known (for example, Patent Document 1, Patent Document 2, (See Patent Document 3). Conventionally, a heat pump and a heat utilization device using an evaporator that circulates and sprays or sprays a refrigerant such as water, a fluorocarbon refrigerant, and ammonia are known (for example, see Patent Document 4).
JP-A-8-14596 (first page, FIG. 1) JP 2007-263482 A (first page, FIG. 1) JP 2007-225191 A (first page, FIG. 2) Japanese Patent Laying-Open No. 2005-241204 (first page, FIG. 2)

解決しようとする問題点は、蒸気圧縮冷凍機は水を冷媒とするので冷凍能力を大きくするために、高圧力比・大容量の圧縮過程を真空圧下で行う圧縮機を制作することが困難である点にある。   The problem to be solved is that it is difficult to produce a compressor that performs a compression process with a high pressure ratio and a large capacity under vacuum pressure in order to increase the refrigeration capacity because the vapor compression refrigerator uses water as a refrigerant. There is a point.

本発明は、特に高級な材料を使うことなく、冷凍能力を大きくすることができるとともに、高効率で安全性、環境性も兼ね備えた冷凍機を提供するために、水蒸気圧縮冷凍機に吸収器及び再生器を追加して、動力をほとんど増やすことなく、冷房冷凍能力が増加するように構成したことを最も主要な特徴とする。   In order to provide a refrigerator that can increase the refrigeration capacity without using a particularly high-grade material, and also has high efficiency, safety, and environment, an absorber and a steam compression refrigerator are provided. The most important feature is that a regenerator is added to increase the cooling and refrigeration capacity with little increase in power.

本発明の水蒸気圧縮・吸収ハイブリッド冷凍機は、水蒸気を機械的(例えば、ターボ式、回転式、往復動式)に圧縮するための圧縮機と、この圧縮機で圧縮された過熱蒸気を導入し冷却して凝縮させるための凝縮器と、この凝縮器で凝縮した水を導入して冷水を取り出すための蒸発器とを備えた水蒸気圧縮冷凍機において、水を冷媒とする吸収液を導入する吸収器を、蒸気ラインを介して蒸発器に接続し、圧縮機と凝縮器とを接続する過熱蒸気ラインに再生器を設け、希溶液抜出しポンプを備えた希溶液抜出しラインを介して吸収器に再生器を接続し、この再生器と吸収器とを濃溶液ラインを介して接続したことを特徴としている(図1参照)。   The steam compression / absorption hybrid refrigerator of the present invention introduces a compressor for mechanically compressing steam (for example, a turbo type, a rotary type, a reciprocating type) and superheated steam compressed by the compressor. In a water vapor compression refrigerator having a condenser for cooling and condensing and an evaporator for introducing water condensed in the condenser and taking out cold water, absorption for introducing an absorption liquid using water as a refrigerant The regenerator is connected to the evaporator via the vapor line, the regenerator is installed in the superheated vapor line connecting the compressor and the condenser, and the regenerator is regenerated via the dilute solution extraction line equipped with the dilute solution extraction pump. The regenerator and the absorber are connected via a concentrated solution line (see FIG. 1).

この冷凍機において、希溶液抜出しライン及び濃溶液ラインに、希溶液と濃溶液との間で間接的に熱交換するための熱交換器を設けた構成をすることが望ましい(図1参照)。また、蒸発器又は凝縮器を低圧と高圧の少なくとも2つに区分した構成としてもよい(図2参照)。また、蒸発器及び凝縮器を低圧と高圧の少なくとも2つに区分した構成としてもよい(図2参照)。   In this refrigerator, it is desirable to provide a heat exchanger for indirectly exchanging heat between the dilute solution and the concentrated solution in the dilute solution extraction line and the concentrated solution line (see FIG. 1). Moreover, it is good also as a structure which divided the evaporator or the condenser into at least two of low pressure and high pressure (refer FIG. 2). Moreover, it is good also as a structure which divided the evaporator and the condenser into at least two of low pressure and high pressure (refer FIG. 2).

また、これらの冷凍機において、再生器からの濃溶液ラインに、外部排熱を加熱源とする排熱回収再生器を設けた構成としてもよい(図3参照)。また、再生器を、外部排熱を加熱源とする排熱回収再生器とした構成としてもよい(図4参照)。   Moreover, in these refrigerators, it is good also as a structure which provided the waste heat recovery regenerator which uses external waste heat as a heating source in the concentrated solution line from a regenerator (refer FIG. 3). The regenerator may be configured as an exhaust heat recovery regenerator using external exhaust heat as a heating source (see FIG. 4).

これらの冷凍機において、排熱回収再生器の代りに、外部熱源用の再生器を二重効用以上の多重効用とした構成としてもよい(図5参照)。また、この冷凍機において、外部排熱を加熱源とする排熱回収再生器をさらに設けた構成とすることができる(図6参照)。   In these refrigerators, instead of the exhaust heat recovery regenerator, a regenerator for an external heat source may be configured to have a multiple effect of double effect or more (see FIG. 5). In addition, this refrigerator can be configured to further include an exhaust heat recovery / regenerator using external exhaust heat as a heating source (see FIG. 6).

また、これらの冷凍機において、低温側の再生器の蒸気ドレインライン、又は/及び排熱回収再生器の蒸気ラインに冷暖切替弁を設けた構成としてもよい(図4、図7参照)。また、上記の冷凍機において、エンジン駆動の蒸気圧縮冷凍機の場合、エンジンのジャケット及び排ガスから熱回収した排熱温水を熱源とするエンジン排熱再生器を設けた構成とすることができる(図8参照)。また、エンジン駆動の蒸気圧縮冷凍機の場合、エンジンのジャケット及び排ガスから熱回収した排熱温水を熱源とするエンジン排熱再生器を、排熱回収再生器の代りに設けることもできる(図8参照)。   Moreover, in these refrigerators, it is good also as a structure which provided the cooling / heating switching valve in the steam drain line of the low temperature side regenerator, and / or the steam line of a waste heat recovery regenerator (refer FIG. 4, FIG. 7). Further, in the above-described refrigerator, in the case of an engine-driven vapor compression refrigerator, an engine exhaust heat regenerator that uses exhaust hot water recovered as heat from the engine jacket and exhaust gas can be provided (see FIG. 8). In the case of an engine-driven vapor compression refrigerator, an engine exhaust heat regenerator that uses exhaust hot water recovered from the engine jacket and exhaust gas as a heat source can be provided instead of the exhaust heat recovery regenerator (FIG. 8). reference).

また、上記の冷凍機において、エンジン駆動の蒸気圧縮冷凍機の場合、排熱回収再生器の代りに、外部熱源用の低温再生器及び高温再生器を設け、エンジンのジャケットで熱回収した排熱温水を低温再生器と同等の温度域で熱源として利用できるようにエンジン排熱再生器を設け、エンジンの排ガスは高温のまま高温再生器の熱源とするように構成することもできる(図9参照)。また、この冷凍機において、追焚きの高温再生器をさらに設けた構成とすることもできる(図9参照)。   In addition, in the above-mentioned refrigerator, in the case of an engine-driven vapor compression refrigerator, instead of the exhaust heat recovery regenerator, a low temperature regenerator and a high temperature regenerator for an external heat source are provided, and the exhaust heat recovered by the engine jacket is recovered. An engine exhaust heat regenerator can be provided so that hot water can be used as a heat source in a temperature range equivalent to that of the low temperature regenerator, and the exhaust gas of the engine can be configured as a heat source for the high temperature regenerator while maintaining a high temperature (see FIG. 9). ). Moreover, this refrigerator can also be set as the structure which further provided the reheating high temperature regenerator (refer FIG. 9).

本発明の冷凍機は、冷媒に水、吸収液にLiBr水溶液等(吸湿性の液体であれば可。LiBrに限定はしない)を使った吸収冷凍機と蒸気圧縮冷凍機を組み合わせたものである。蒸気圧縮冷凍機についても、エンジン駆動でもかまわないし、モーター駆動でもかまわない。また、本発明の冷凍機は、直膨式でも良いし、吸収冷凍機に用いる間接式でもかまわない。   The refrigerator of the present invention is a combination of an absorption refrigerator and a vapor compression refrigerator using water as a refrigerant and an aqueous LiBr solution or the like as an absorption liquid (as long as it is a hygroscopic liquid, but not limited to LiBr). . The vapor compression refrigerator may be driven by an engine or a motor. The refrigerator of the present invention may be a direct expansion type or an indirect type used for an absorption refrigerator.

本発明は上記のように構成されているので、つぎのような効果を奏する。
(1)特に高級な材料を用いることなく、冷凍能力を大きくすることができ、かつ、高効率で安全性に優れ、環境汚染のおそれもない。
(2)動力をほとんど増やすことなく、冷房冷凍能力を増加させることができる。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) The refrigerating capacity can be increased without using a particularly high-grade material, and the efficiency and safety are excellent, and there is no risk of environmental pollution.
(2) The cooling / refrigeration capacity can be increased without increasing the power.

特に高級な材料を用いることなく、安全性、環境性、性能面に優れた冷凍機を提供するという目的を、水蒸気圧縮冷凍機に、吸収器及び再生器を追加することにより実現した。   The object of providing a refrigerator that is excellent in safety, environmental performance, and performance without using a high-grade material was realized by adding an absorber and a regenerator to the steam compression refrigerator.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施できるものである。図1は、本発明の実施の第1形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 shows a steam compression / absorption hybrid refrigerator according to a first embodiment of the present invention.

本実施形態による冷凍機は、水蒸気圧縮冷凍機と冷媒を水とする吸収液を用いる吸収冷凍機を組み合わせたものである。圧縮機の負担を減らすことで効率向上が図れるとともに、冷房能力の増加が見込める。再生器では、圧縮機で圧縮された加熱蒸気の熱を利用して再生を行う。加熱蒸気の顕熱の一部を使うことになるが、ガス体での利用となり、熱伝達が悪いので、排熱ボイラ構造の再生器を使用する。また、効率向上のために、従来の吸収冷凍機と同様に希溶液と濃溶液の間で熱交換するための熱交換器を搭載することが望ましい。   The refrigerator according to this embodiment is a combination of a water vapor compression refrigerator and an absorption refrigerator that uses an absorption liquid containing water as a refrigerant. By reducing the burden on the compressor, efficiency can be improved and cooling capacity can be expected to increase. In the regenerator, regeneration is performed using the heat of the heated steam compressed by the compressor. Part of the sensible heat of the heating steam will be used, but it will be used as a gas body and heat transfer will be poor, so a regenerator with a waste heat boiler structure will be used. In order to improve efficiency, it is desirable to mount a heat exchanger for exchanging heat between the dilute solution and the concentrated solution as in the conventional absorption refrigerator.

以下、図1に基づいて詳細に説明する。水蒸気圧縮・吸収ハイブリッド冷凍機は、水蒸気を機械的に圧縮するための圧縮機1と、この圧縮機1で圧縮された過熱蒸気を導入し冷却して凝縮させるための凝縮器2と、この凝縮器2で凝縮した水を導入して冷水を取り出すための蒸発器3とを備えた従来の水蒸気圧縮冷凍機において、水を冷媒とする吸収液を導入する吸収器10を、蒸気ライン12を介して蒸発器3に接続し、圧縮機1と凝縮器2とを接続する過熱蒸気ライン14に再生器16を設け、希溶液抜出しポンプ18を備えた希溶液抜出しライン20を介して吸収器10に再生器16を接続し、この再生器16と吸収器10とを濃溶液ライン22を介して接続して構成されている。4は冷媒散布ポンプ、5は圧力調整手段である。   Hereinafter, it demonstrates in detail based on FIG. The water vapor compression / absorption hybrid refrigerator includes a compressor 1 for mechanically compressing water vapor, a condenser 2 for introducing superheated steam compressed by the compressor 1, cooling it, and condensing it, and this condensation In a conventional water vapor compression refrigerator having an evaporator 3 for introducing water condensed in the vessel 2 and taking out cold water, an absorber 10 for introducing an absorption liquid using water as a refrigerant is connected via a vapor line 12. The regenerator 16 is provided on the superheated steam line 14 connecting the compressor 1 and the condenser 2 to the evaporator 3, and is connected to the absorber 10 via the dilute solution extraction line 20 provided with the dilute solution extraction pump 18. The regenerator 16 is connected, and the regenerator 16 and the absorber 10 are connected via a concentrated solution line 22. 4 is a refrigerant spray pump, and 5 is a pressure adjusting means.

吸収液としては、例えば、水を冷媒とした臭化リチウム(LiBr)水溶液が用いられるが、吸湿性の液体であれば、他の水溶液を用いてもよい。LiBrに何ら限定はされるものではない。
希溶液抜出しライン20及び濃溶液ライン22に、希溶液と濃溶液との間で間接的に熱交換するための熱交換器24が設けられている。
As the absorbing solution, for example, a lithium bromide (LiBr) aqueous solution using water as a refrigerant is used, but other aqueous solutions may be used as long as they are hygroscopic liquids. No limitation is imposed on LiBr.
The dilute solution extraction line 20 and the concentrated solution line 22 are provided with a heat exchanger 24 for indirectly exchanging heat between the diluted solution and the concentrated solution.

吸収器10で多量の冷媒蒸気を吸収して濃度が薄められた吸収液(希溶液)が吸収器10から熱交換器24に送給され、この熱交換器24により加熱された後に再生器16に送給される。前記希溶液は、この再生器16において、圧縮機で圧縮された過熱蒸気の熱を利用して再生され、吸収している冷媒の一部を水蒸気として凝縮器2に放出し、濃度がその分高くなって濃溶液となる。この濃溶液は熱交換器24の加熱側に前記希溶液を加熱する加熱源として戻された後、吸収器10に帰還する。この帰還した濃溶液は吸収器10において伝熱管上に散布され、冷却水により冷却されながら再び冷媒蒸気を吸収して希溶液となる。   Absorbing liquid (dilute solution) whose concentration has been reduced by absorbing a large amount of refrigerant vapor in the absorber 10 is fed from the absorber 10 to the heat exchanger 24 and heated by the heat exchanger 24, and then the regenerator 16. To be sent to. The dilute solution is regenerated in the regenerator 16 using the heat of the superheated steam compressed by the compressor, and a part of the absorbed refrigerant is discharged to the condenser 2 as water vapor. Increases to a concentrated solution. The concentrated solution is returned to the heating side of the heat exchanger 24 as a heating source for heating the diluted solution, and then returned to the absorber 10. The returned concentrated solution is spread on the heat transfer tube in the absorber 10 and again absorbs the refrigerant vapor while being cooled by the cooling water to become a diluted solution.

図2は、本発明の実施の第2形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、蒸発器又は凝縮器を低圧と高圧の少なくとも2つに区分した構成である。また、蒸発器及び凝縮器を低圧と高圧の少なくとも2つに区分した構成としてもよい。2aは低圧側凝縮器、2bは高圧側凝縮器、3aは低圧側蒸発器、3bは高圧側蒸発器である。   FIG. 2 shows a water vapor compression / absorption hybrid refrigerator according to a second embodiment of the present invention. The refrigerator according to this embodiment has a configuration in which an evaporator or a condenser is divided into at least two of a low pressure and a high pressure. Further, the evaporator and the condenser may be divided into at least two of a low pressure and a high pressure. 2a is a low pressure side condenser, 2b is a high pressure side condenser, 3a is a low pressure side evaporator, and 3b is a high pressure side evaporator.

すなわち、蒸発器は、低圧と高圧の2つに分けても良い。分ける方法は単胴を隔壁で仕切っても良いし、2つの胴に分けても良い。圧力比を小さくして圧縮機1の負担を減らすために、高圧側(冷水入口側)は、圧縮機1に接続し、低圧側(冷水出口側)を吸収器10に接続することが望ましい。コストを勘案して、冷媒散布ポンプ4は低圧側と高圧側で共通とし、1台とすることが望ましい。
凝縮器は、低圧と高圧の2つに分けても良い。分ける方法は単胴を隔壁で仕切っても良いし、2つの胴に分けても良い。低圧側(冷却水入口側)を圧縮機1に接続すれば、圧縮比を小さくして高効率化を図ることが可能である。また、再生器16に接続すれば、回収熱量を大きくとれ、能力増強が可能となる。効率と冷房能力のどちらを重視するかにより低圧側を圧縮機と再生器のどちらと接続するかを使い分ければ良い。勿論、前述のように単胴として、同圧とすることも可能である。蒸発器、凝縮器の個数の組み合わせは自由に選択することができる。他の構成及び作用は、実施の第1形態の場合と同様である。
That is, the evaporator may be divided into a low pressure and a high pressure. As a method of dividing, a single cylinder may be divided by a partition wall or divided into two cylinders. In order to reduce the pressure ratio and reduce the burden on the compressor 1, it is desirable to connect the high pressure side (cold water inlet side) to the compressor 1 and connect the low pressure side (cold water outlet side) to the absorber 10. Considering the cost, it is desirable that the refrigerant spray pump 4 is common to the low pressure side and the high pressure side, and one unit is used.
The condenser may be divided into a low pressure and a high pressure. As a method of dividing, a single cylinder may be divided by a partition wall or divided into two cylinders. If the low pressure side (cooling water inlet side) is connected to the compressor 1, it is possible to reduce the compression ratio and increase the efficiency. If connected to the regenerator 16, the amount of recovered heat can be increased and the capacity can be increased. Depending on whether importance is placed on efficiency or cooling capacity, the low pressure side may be connected to either the compressor or the regenerator. Of course, as described above, it is possible to use the same pressure as a single cylinder. The combination of the number of evaporators and condensers can be freely selected. Other configurations and operations are the same as those in the first embodiment.

図3は、本発明の実施の第3形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、再生器16からの濃溶液ライン22に、外部排熱を加熱源とする排熱回収再生器26を設けたものである。   FIG. 3 shows a steam compression / absorption hybrid refrigerator according to a third embodiment of the present invention. In the refrigerator according to the present embodiment, the concentrated solution line 22 from the regenerator 16 is provided with an exhaust heat recovery regenerator 26 using external exhaust heat as a heating source.

本実施形態では、外部排熱を利用することにより、冷房出力を大きくすることが可能である。外部排熱には、90℃程度の排熱温水や、1kg/cm2 程度の廃蒸気が利用できる。排熱回収再生器26に接続する凝縮器2は、単独でも共通でもかまわない。他の構成及び作用は、実施の第1、2形態の場合と同様である。 In the present embodiment, it is possible to increase the cooling output by utilizing external exhaust heat. For external exhaust heat, exhaust heat hot water of about 90 ° C. and waste steam of about 1 kg / cm 2 can be used. The condenser 2 connected to the exhaust heat recovery regenerator 26 may be independent or common. Other configurations and operations are the same as those of the first and second embodiments.

図4は、本発明の実施の第4形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、再生器を、外部排熱を加熱源とする排熱回収再生器26としたものである。つまり、図1における再生器16の代わりに、排熱回収再生器26を設けて、吸収式側単独効用としたものである。   FIG. 4 shows a steam compression / absorption hybrid refrigerator according to a fourth embodiment of the present invention. In the refrigerator according to the present embodiment, the regenerator is an exhaust heat recovery regenerator 26 using external exhaust heat as a heating source. That is, instead of the regenerator 16 in FIG. 1, an exhaust heat recovery regenerator 26 is provided for the absorption-type single effect.

すなわち、排熱等、外部熱源を入れる場合には、再生器をつけなくても良い。排熱ボイラ構造の再生器は比較的容量が大きいので本構造とすることによりコンパクト化が期待できる。他の構成及び作用は、実施の第1、2形態の場合と同様である。   That is, when an external heat source such as exhaust heat is input, the regenerator need not be attached. Since the regenerator with the exhaust heat boiler structure has a relatively large capacity, it can be expected to be compact by adopting this structure. Other configurations and operations are the same as those of the first and second embodiments.

図5は、本発明の実施の第5形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、排熱回収再生器の代わりに、高温の外部熱源用の再生器を二重効用以上の多重効用としたものである。   FIG. 5 shows a steam compression / absorption hybrid refrigerator according to a fifth embodiment of the present invention. In the refrigerator according to the present embodiment, a regenerator for a high-temperature external heat source has a multi-effect more than double effect, instead of the exhaust heat recovery regenerator.

図5では、一例として、低温再生器28及び高温再生器30を設けて二重効用とした場合を示している。32は低温熱交換器、34は高温熱交換器、36は濃溶液ポンプである。 このように、高温熱源があれば、実施第3、4形態における排熱回収再生器を多重効用化することが可能である。熱源としては、二重効用の場合は、蒸気(8kg/cm2 程度)、ガス・油など燃料の直接燃焼熱、排ガスなどが用いられ、三重効用の場合は、ガス・油など燃料の直接燃焼熱などが用いられる。図5は、いわゆるリバースサイクルであるが、シリーズでもパラレルでもかまわない。他の構成及び作用は、実施の第3、4形態の場合と同様である。 FIG. 5 shows, as an example, a case where a low-temperature regenerator 28 and a high-temperature regenerator 30 are provided for double effect. 32 is a low temperature heat exchanger, 34 is a high temperature heat exchanger, and 36 is a concentrated solution pump. Thus, if there is a high-temperature heat source, the exhaust heat recovery regenerator in the third and fourth embodiments can be multi-effected. As a heat source, in the case of double effect, steam (about 8 kg / cm 2 ), direct combustion heat of fuel such as gas and oil, exhaust gas, etc. are used. In the case of triple effect, direct combustion of fuel such as gas and oil is used. Heat or the like is used. FIG. 5 shows a so-called reverse cycle, but it may be a series or a parallel cycle. Other configurations and operations are the same as those in the third and fourth embodiments.

図6は、本発明の実施の第6形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、外部排熱を加熱源とする排熱回収再生器38を、低温再生器28の上流側にさらに設けて、吸収式・排熱投入型に構成したものである。   FIG. 6 shows a steam compression / absorption hybrid refrigerator according to a sixth embodiment of the present invention. In the refrigerator according to the present embodiment, an exhaust heat recovery regenerator 38 that uses external exhaust heat as a heat source is further provided on the upstream side of the low temperature regenerator 28, and is configured as an absorption type / exhaust heat input type.

すなわち、実施の第5形態ににおける吸収式冷凍機側にさらに排熱を投入することも可能である。したがって、二種類の熱源を投入することになり、いわゆる、排熱投入型吸収冷凍機との組み合わせに構成されている。他の構成及び作用は、実施の第5形態の場合と同様である。   That is, it is also possible to input waste heat further to the absorption refrigerator side in the fifth embodiment. Therefore, two types of heat sources are input, and it is configured in combination with a so-called exhaust heat input type absorption refrigerator. Other configurations and operations are the same as those in the fifth embodiment.

図7は、本発明の実施の第7形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、実施の第5、6形態における低温再生器28の蒸気ドレインライン40、及び排熱回収再生器38の蒸気ライン42にそれぞれ冷暖切替弁44、46を設けたものである。
このように冷暖切替弁44、46を設けることにより、従来の水蒸気圧縮ではできなかった暖房運転ができる。他の構成及び作用は、実施の第5、6形態の場合と同様である。また、実施の第3、4形態の排熱回収再生器の蒸気ラインに冷暖切替弁を設ける場合もある。
FIG. 7 shows a steam compression / absorption hybrid refrigerator according to a seventh embodiment of the present invention. The refrigerator according to this embodiment is provided with cooling / heating switching valves 44 and 46 in the steam drain line 40 of the low temperature regenerator 28 and the steam line 42 of the exhaust heat recovery regenerator 38 in the fifth and sixth embodiments, respectively. is there.
By providing the cooling / heating switching valves 44 and 46 in this way, heating operation that cannot be achieved by conventional steam compression can be performed. Other configurations and operations are the same as those in the fifth and sixth embodiments. Moreover, a cooling / heating switching valve may be provided in the steam line of the exhaust heat recovery regenerator of the third and fourth embodiments.

図8は、本発明の実施の第8形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、エンジン駆動の蒸気圧縮冷凍機の場合、エンジン48のジャケット及び排ガスから熱回収した排熱温水を熱源とするエンジン排熱再生器50を設けたものである。   FIG. 8 shows a steam compression / absorption hybrid refrigerator according to an eighth embodiment of the present invention. In the case of an engine-driven vapor compression refrigerator, the refrigerator according to the present embodiment is provided with an engine exhaust heat regenerator 50 that uses exhaust heat hot water recovered from the jacket and exhaust gas of the engine 48 as a heat source.

また、エンジン駆動の蒸気圧縮冷凍機の場合、エンジンのジャケット及び排ガスから熱回収した排熱温水を熱源とするエンジン排熱再生器50を、実施の第4形態における排熱回収再生器26の代りに設けた構成としてもよい。
すなわち、エンジン駆動の場合、エンジン48のジャケット及び排ガスから熱回収した、排熱温水を吸収式側の熱源とすることも可能である。実施の第1形態はもちろん、第2形態に組み合わせても良い。実施の第3形態のように外部排熱回収再生器をさらに取り付けることも可能である。また、実施の第4形態の外部排熱回収再生器をエンジン排熱再生器に変えることもできる。他の構成及び作用は、実施の第1、2、3、4形態の場合と同様である。
In the case of an engine-driven vapor compression refrigerator, an engine exhaust heat regenerator 50 using exhaust heat hot water recovered from the engine jacket and exhaust gas as a heat source is used in place of the exhaust heat recovery regenerator 26 in the fourth embodiment. It is good also as a structure provided in.
That is, in the case of engine driving, it is possible to use exhaust hot water recovered from the jacket of the engine 48 and exhaust gas as a heat source on the absorption side. Of course, the first embodiment may be combined with the second embodiment. It is also possible to attach an external exhaust heat recovery regenerator as in the third embodiment. Moreover, the external waste heat recovery regenerator of the fourth embodiment can be changed to an engine exhaust heat regenerator. Other configurations and operations are the same as those in the first, second, third, and fourth embodiments.

図9は、本発明の実施の第9形態による水蒸気圧縮・吸収ハイブリッド冷凍機を示している。本実施形態による冷凍機は、エンジン駆動の蒸気圧縮冷凍機の場合、実施の第3、4形態における排熱回収再生器の代りに、外部熱源用の低温再生器28及び高温再生器30を設け、エンジン48のジャケットで熱回収した排熱温水を低温再生器と同等の温度域で熱源として利用できるようにエンジン排熱再生器52を設け、エンジン48の排ガスは高温のまま高温再生器30の熱源とするようにしたものである。   FIG. 9 shows a steam compression / absorption hybrid refrigerator according to a ninth embodiment of the present invention. In the case of the engine-driven steam compression refrigerator, the refrigerator according to this embodiment is provided with a low-temperature regenerator 28 and a high-temperature regenerator 30 for external heat sources instead of the exhaust heat recovery regenerator in the third and fourth embodiments. An engine exhaust heat regenerator 52 is provided so that the exhaust heat hot water recovered by the jacket of the engine 48 can be used as a heat source in a temperature range equivalent to that of the low temperature regenerator. It is designed as a heat source.

また、図9に示す構成に、追焚きの高温再生器をさらに設けるようにする場合もある。 上記のように、エンジン駆動の場合、エンジン48のジャケット排熱(温水)は実施の第8形態の場合と同じように低温再生器と同等の温度域で利用し、排ガスは高温のまま、高温再生器の熱源とすることも可能である。さらに、追焚きの高温再生器を追加しても良い。他の構成及び作用は、実施の第3、4形態の場合と同様である。   Further, there may be a case where an additional high-temperature regenerator is further provided in the configuration shown in FIG. As described above, when the engine is driven, the jacket exhaust heat (hot water) of the engine 48 is used in the same temperature range as the low temperature regenerator as in the case of the eighth embodiment, and the exhaust gas remains at a high temperature while maintaining a high temperature. It can also be used as a heat source for the regenerator. In addition, a reheating high temperature regenerator may be added. Other configurations and operations are the same as those in the third and fourth embodiments.

本発明の実施の第1形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the first embodiment of the present invention. 本発明の実施の第2形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the second embodiment of the present invention. 本発明の実施の第3形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the third embodiment of the present invention. 本発明の実施の第4形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the fourth embodiment of the present invention. 本発明の実施の第5形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the fifth embodiment of the present invention. 本発明の実施の第6形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the sixth embodiment of the present invention. 本発明の実施の第7形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the seventh embodiment of the present invention. 本発明の実施の第8形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the eighth embodiment of the present invention. 本発明の実施の第9形態による水蒸気圧縮・吸収ハイブリッド冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the water vapor compression / absorption hybrid refrigerator according to the ninth embodiment of the present invention. 従来の水蒸気圧縮冷凍機の系統的概略構成図である。It is a systematic schematic block diagram of the conventional steam compression refrigerator.

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
2a 低圧側凝縮器
2b 高圧側凝縮器
3 蒸発器
3a 低圧側蒸発器
3b 高圧側蒸発器
4 冷媒散布ポンプ
5 圧力調整手段
10 吸収器
12 蒸気ライン
14 過熱蒸気ライン
16 再生器
18 希溶液抜出しポンプ
20 希溶液抜出しライン
22 濃溶液ライン
24 熱交換器
26 排熱回収再生器
28 低温再生器
30 高温再生器
32 低温熱交換器
34 高温熱交換器
36 濃溶液ポンプ
38 排熱回収再生器
40 蒸気ドレンライン
42 蒸気ライン
44、46 冷暖切替弁
48 エンジン
50 排熱再生器
52 エンジン排熱再生器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 2a Low pressure side condenser 2b High pressure side condenser 3 Evaporator 3a Low pressure side evaporator 3b High pressure side evaporator 4 Refrigerant spray pump 5 Pressure adjusting means 10 Absorber 12 Steam line 14 Superheated steam line 16 Regenerator 18 Diluted Solution Extraction Pump 20 Diluted Solution Extraction Line 22 Concentrated Solution Line 24 Heat Exchanger 26 Waste Heat Recovery Regenerator 28 Low Temperature Regenerator 30 High Temperature Regenerator 32 Low Temperature Heat Exchanger 34 High Temperature Heat Exchanger 36 Concentrated Solution Pump 38 Exhaust Heat Recovery Regenerator 40 Steam drain line 42 Steam line 44, 46 Cooling / heating switching valve 48 Engine 50 Waste heat regenerator 52 Engine exhaust heat regenerator

Claims (13)

水蒸気を機械的に圧縮するための圧縮機と、この圧縮機で圧縮された過熱蒸気を導入し冷却して凝縮させるための凝縮器と、この凝縮器で凝縮した水を導入して冷水を取り出すための蒸発器とを備えた水蒸気圧縮冷凍機において、水を冷媒とする吸収液を導入する吸収器を、蒸気ラインを介して蒸発器に接続し、圧縮機と凝縮器とを接続する過熱蒸気ラインに再生器を設け、希溶液抜出しポンプを備えた希溶液抜出しラインを介して吸収器に再生器を接続し、この再生器と吸収器とを濃溶液ラインを介して接続したことを特徴とする水蒸気圧縮・吸収ハイブリッド冷凍機。   Compressor for mechanically compressing water vapor, condenser for introducing superheated steam compressed by this compressor, cooling and condensing, and introducing water condensed by this condenser to take out cold water A superheated steam that connects an absorber that introduces an absorbing liquid that uses water as a refrigerant to the evaporator via a steam line, and that connects the compressor and the condenser. A regenerator is provided in the line, the regenerator is connected to the absorber via a dilute solution extraction line equipped with a dilute solution extraction pump, and the regenerator and the absorber are connected via a concentrated solution line. Water vapor compression / absorption hybrid refrigerator. 希溶液抜出しライン及び濃溶液ラインに、希溶液と濃溶液との間で間接的に熱交換するための熱交換器を設けた請求項1記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to claim 1, wherein a heat exchanger for indirectly exchanging heat between the dilute solution and the concentrated solution is provided in the dilute solution extraction line and the concentrated solution line. 蒸発器又は凝縮器を低圧と高圧の少なくとも2つに区分した請求項1又は請求項2記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The water vapor compression / absorption hybrid refrigerator according to claim 1 or 2, wherein the evaporator or the condenser is divided into at least two of a low pressure and a high pressure. 蒸発器及び凝縮器を低圧と高圧の少なくとも2つに区分した請求項1又は請求項2記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to claim 1 or 2, wherein the evaporator and the condenser are divided into at least two of a low pressure and a high pressure. 再生器からの濃溶液ラインに、外部排熱を加熱源とする排熱回収再生器を設けた請求項1〜4のいずれかに記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to any one of claims 1 to 4, wherein an exhaust heat recovery regenerator using external exhaust heat as a heating source is provided in a concentrated solution line from the regenerator. 再生器を、外部排熱を加熱源とする排熱回収再生器とした請求項1〜4のいずれかに記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to any one of claims 1 to 4, wherein the regenerator is an exhaust heat recovery regenerator using external exhaust heat as a heating source. 排熱回収再生器の代りに、外部熱源用の再生器を二重効用以上の多重効用とした請求項5又は6記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to claim 5 or 6, wherein a regenerator for an external heat source is a double effect or more multiple effect instead of the exhaust heat recovery regenerator. 外部排熱を加熱源とする排熱回収再生器をさらに設けた請求項7記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to claim 7, further comprising a waste heat recovery regenerator using external waste heat as a heating source. 低温側の再生器の蒸気ドレインライン、又は/及び排熱回収再生器の蒸気ラインに冷暖切替弁を設けた請求項5〜8記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to claim 5, wherein a cooling / heating switching valve is provided in the steam drain line of the regenerator on the low temperature side and / or the steam line of the exhaust heat recovery regenerator. エンジン駆動の蒸気圧縮冷凍機の場合、エンジンのジャケット及び排ガスから熱回収した排熱温水を熱源とするエンジン排熱再生器を設けた請求項1〜4のいずれかに記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid according to any one of claims 1 to 4, further comprising an engine exhaust heat regenerator that uses exhaust hot water recovered from the exhaust gas and exhaust from the engine jacket in the case of an engine driven vapor compression refrigerator. refrigerator. エンジン駆動の蒸気圧縮冷凍機の場合、エンジンのジャケット及び排ガスから熱回収した排熱温水を熱源とするエンジン排熱再生器を、排熱回収再生器の代りに設けた請求項6又は8記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   9. In the case of an engine-driven steam compression refrigerator, an engine exhaust heat regenerator using exhaust heat hot water recovered from the engine jacket and exhaust gas as a heat source is provided instead of the exhaust heat recovery regenerator. Steam compression / absorption hybrid refrigerator. エンジン駆動の蒸気圧縮冷凍機の場合、排熱回収再生器の代りに、外部熱源用の低温再生器及び高温再生器を設け、エンジンのジャケットで熱回収した排熱温水を低温再生器と同等の温度域で熱源として利用できるようにエンジン排熱再生器を設け、エンジンの排ガスは高温のまま高温再生器の熱源とするようにした請求項5、6又は8記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   In the case of an engine-driven steam compression refrigerator, a low-temperature regenerator and a high-temperature regenerator for external heat sources are provided instead of the exhaust heat recovery regenerator, and the exhaust heat hot water recovered by the engine jacket is equivalent to the low-temperature regenerator. 9. A steam compression / absorption hybrid refrigerator according to claim 5, 6 or 8, wherein an engine exhaust heat regenerator is provided so that it can be used as a heat source in a temperature range, and the exhaust gas of the engine is used as a heat source for the high temperature regenerator while the temperature is high. . 追焚きの高温再生器をさらに設けた請求項12記載の水蒸気圧縮・吸収ハイブリッド冷凍機。   The steam compression / absorption hybrid refrigerator according to claim 12, further comprising a reheating high-temperature regenerator.
JP2008080853A 2008-03-26 2008-03-26 Steam compression / absorption hybrid refrigerator Active JP5389366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080853A JP5389366B2 (en) 2008-03-26 2008-03-26 Steam compression / absorption hybrid refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080853A JP5389366B2 (en) 2008-03-26 2008-03-26 Steam compression / absorption hybrid refrigerator

Publications (2)

Publication Number Publication Date
JP2009236361A true JP2009236361A (en) 2009-10-15
JP5389366B2 JP5389366B2 (en) 2014-01-15

Family

ID=41250537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080853A Active JP5389366B2 (en) 2008-03-26 2008-03-26 Steam compression / absorption hybrid refrigerator

Country Status (1)

Country Link
JP (1) JP5389366B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410660A (en) * 2011-10-25 2012-04-11 浙江理工大学 Absorption-compression-type dual-purpose second species heat pump system
CN108105795A (en) * 2017-07-10 2018-06-01 昊姆(上海)节能科技有限公司 Compression, absorption heat pump coupling fume treatment auxiliary
CN108426460A (en) * 2018-05-21 2018-08-21 马鞍山钢铁股份有限公司 Water at low temperature preparation system suitable for coke oven gas purification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197089A (en) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd Absorption refrigerator
JP2002098435A (en) * 2000-09-22 2002-04-05 Kawasaki Thermal Engineering Co Ltd Absorption freezer
JP2002130857A (en) * 2000-10-26 2002-05-09 Kawasaki Thermal Engineering Co Ltd Steam heating double effect type absorption refrigerating machine, water cooler and heater as well as power generating, room cooling-and-heating and hot- water supplying system employing the same, and control method thereof
JP2007263482A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Composite heat pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197089A (en) * 1996-12-27 1998-07-31 Tokyo Gas Co Ltd Absorption refrigerator
JP2002098435A (en) * 2000-09-22 2002-04-05 Kawasaki Thermal Engineering Co Ltd Absorption freezer
JP2002130857A (en) * 2000-10-26 2002-05-09 Kawasaki Thermal Engineering Co Ltd Steam heating double effect type absorption refrigerating machine, water cooler and heater as well as power generating, room cooling-and-heating and hot- water supplying system employing the same, and control method thereof
JP2007263482A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Composite heat pump system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410660A (en) * 2011-10-25 2012-04-11 浙江理工大学 Absorption-compression-type dual-purpose second species heat pump system
CN102410660B (en) * 2011-10-25 2013-04-24 浙江理工大学 Absorption-compression-type dual-purpose second species heat pump system
CN108105795A (en) * 2017-07-10 2018-06-01 昊姆(上海)节能科技有限公司 Compression, absorption heat pump coupling fume treatment auxiliary
CN108426460A (en) * 2018-05-21 2018-08-21 马鞍山钢铁股份有限公司 Water at low temperature preparation system suitable for coke oven gas purification system
CN108426460B (en) * 2018-05-21 2024-01-16 马鞍山钢铁股份有限公司 Low-temperature water preparation system suitable for coke oven gas purification system

Also Published As

Publication number Publication date
JP5389366B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
CN102016451B (en) Absorption refrigeration cycles using a LGWP refrigerant
JP4101373B2 (en) Heat absorption system
JP2897587B2 (en) Absorption refrigerator
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
CN109506391A (en) Thermal drivers are without the Trans-critical cycle CO for pumping absorption auxiliary supercooling2Refrigeration system
JP4301666B2 (en) Waste heat absorption refrigerator
CN211012099U (en) High-pressure gas cold and hot water unit
US4805419A (en) Absorption type heat exchanging apparatus
JPH05272837A (en) Compression absorption composite heat pump
CN209197196U (en) Ammonium hydroxide double effect absorption refrigeration system
JP4187563B2 (en) Ammonia absorption refrigerator
JP2772868B2 (en) Absorption refrigerator
JP2004069276A (en) Waste heat recovering cooling system
CN102062493B (en) Low-temperature refrigerator with double-absorber
Thapar et al. A comparative review of NH3-H2O and H2O-LiBr based vapor absorption refrigeration systems
JP7145679B2 (en) Hybrid heat pump device
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
KR100381373B1 (en) Absorbent solution composition for use with absorption refrigeration and heating apparatus
JP4233201B2 (en) Waste heat absorption refrigerator
JPH0297855A (en) Absorption type refrigerator
CN112165994A (en) Method for separation by solidification for use in an absorption heating cooling system and working in a crystallization/freezing/icing method
Chavan et al. Exhaust Gas Heat Utilization for Air Conditioning
JP2004325048A (en) Low temperature water manufacturing device
JPS6122224B2 (en)
CN109269142A (en) Ammonium hydroxide double effect absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5389366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150