JP2009235562A - Steel for cold press die excellent in machinability, heat treatment dimensional change characteristic and impact characteristic, and press die - Google Patents

Steel for cold press die excellent in machinability, heat treatment dimensional change characteristic and impact characteristic, and press die Download PDF

Info

Publication number
JP2009235562A
JP2009235562A JP2009038816A JP2009038816A JP2009235562A JP 2009235562 A JP2009235562 A JP 2009235562A JP 2009038816 A JP2009038816 A JP 2009038816A JP 2009038816 A JP2009038816 A JP 2009038816A JP 2009235562 A JP2009235562 A JP 2009235562A
Authority
JP
Japan
Prior art keywords
heat treatment
machinability
steel
impact
press die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009038816A
Other languages
Japanese (ja)
Other versions
JP5345415B2 (en
Inventor
Keisuke Shimizu
敬介 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2009038816A priority Critical patent/JP5345415B2/en
Publication of JP2009235562A publication Critical patent/JP2009235562A/en
Application granted granted Critical
Publication of JP5345415B2 publication Critical patent/JP5345415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for a press die for various kinds of cold working as represented by press dies for high tension working of automobile parts for which machinability, heat treatment dimensional change characteristics, impact characteristics, and peeling resistance of surface treatment films are required, and a press die. <P>SOLUTION: There is provided the steel for the cold press die containing, by mass%, 0.80 to 0.89% C, 1.0 to <1.4% Si, 0.1 to 1.0% Mn, 0.030 to 0.070% S, 7.5 to 8.5% Cr, 0.05 to 0.2% Ni, 0.9 to 1.6% one or two kinds of Mo and W in terms of Mo+1/2W, 0.03 to 0.3% one or two kinds of V and Nb in terms of V+1/2 Nb, the balance Fe and inevitable impurities, and is excellent in the machinability, the heat treatment dimensional change characteristics, the impact characteristics. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被削性、熱処理変寸特性、衝撃特性、表面処理膜の耐剥離性が要求される自動車部品のハイテン加工用プレス金型などに代表される、各種冷間加工用プレス金型用鋼およびプレス金型に関するものである。   The present invention relates to various cold working press dies, such as high-tensile press dies for automobile parts that require machinability, heat treatment sizing characteristics, impact characteristics, and surface treatment film peeling resistance. The present invention relates to steel and press dies.

従来、自動車のプレス金型、特に曲げ型、抜き型、絞り型などでは、自動車部品へのハイテン適用拡大に伴い、高硬質かつ耐摩耗性に優れたJIS SKD11などの高C−高Cr系の冷間ダイス鋼が用いられているが、SKD11は切削性が悪く、重切削を要する深絞り形状の金型では金型製作における加工コスト削減が課題となり、最近ではSKD11の切削性を改善したSKD11の改良鋼が広く使用されるようになってきた。   Conventionally, in press dies for automobiles, especially bending dies, punching dies, drawing dies, etc., with the expansion of high-tensile application to automobile parts, high C-high Cr-based materials such as JIS SKD11, which have high hardness and excellent wear resistance. Although cold die steel is used, SKD11 has poor machinability, and in the case of a deep drawing die that requires heavy cutting, reduction of the machining cost in die production has become an issue, and recently, SKD11 has improved the machinability of SKD11. The improved steel has been widely used.

しかし、これらの金型は素材から金型形状に粗加工、仕上げ加工した後に、熱処理(焼入焼戻し)を行ない、組み付け、試打ち、手直し後、表面処理という工程で完成に至るが、熱処理後の組み付け時の変寸による手直し工程と試打ち時の手直し工程の効率化がコスト削減に大きく寄与するため、熱処理変寸のゼロ化および焼入焼戻状態での切削性が要求されている。   However, these dies are roughly processed and finished from the raw material to the mold shape, and then heat treatment (quenching and tempering) is performed, and assembly, trial driving, rework, and surface treatment are completed. Therefore, the efficiency of the reworking process by changing the size during assembly and the reworking process at the time of trial placement greatly contributes to cost reduction, so that zero heat treatment size change and machinability in a quenching and tempering state are required.

そこで、例えば特開2007−197746号公報(特許文献1)に開示されている工具鋼は、Si:1.40〜2.6%、Cu:0.01〜0.50%を含有するNi,Cr,Mo,V鋼であり、また、特開2006−152356号公報(特許文献2)に開示されている冷間ダイス鋼は、Ni:0.3〜1.5%、Cu:0.1〜1.0%、Al:0.1〜0.7%を含有するCr,Mo鋼であり、同じく、特開2006−169624号公報(特許文献3)に開示されている冷間ダイス鋼は、Ni:0.3〜1.5%、Cu:0.1〜1.0%、Al:0.1〜0.5%を含有するCr,Mo鋼であって、その断面組織中に観察される炭化物分布を規制したものである。   Therefore, for example, the tool steel disclosed in Japanese Patent Application Laid-Open No. 2007-197746 (Patent Document 1) is Ni containing Si: 1.40 to 2.6% and Cu: 0.01 to 0.50%. It is Cr, Mo, V steel, and cold die steel disclosed in JP 2006-152356 A (Patent Document 2) is Ni: 0.3 to 1.5%, Cu: 0.1 The cold die steel disclosed in Japanese Patent Laid-Open No. 2006-169624 (Patent Document 3) is Cr, Mo steel containing ~ 1.0% and Al: 0.1-0.7%. , Ni: 0.3-1.5%, Cu: 0.1-1.0%, Al: Cr, Mo steel containing 0.1-0.5%, observed in its cross-sectional structure This regulates the distribution of carbides.

また、特開2006−28584号公報(特許文献4)に開示されている冷間加工用金型は、Ni:0.3〜1.5%,Cu:0.1〜1.0%、Al:0.1〜0.7%を含有するCr,Mo鋼であり、また、特開2007−77442号公報(特許文献5)に開示されている冷間工具鋼は、Cr:9〜12%を含有するCr,Mo,Ni鋼であって、その断面組織中に観察される炭化物を規制したものである。   Further, the cold working mold disclosed in Japanese Patent Application Laid-Open No. 2006-28584 (Patent Document 4) has Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0%, Al : Cr, Mo steel containing 0.1 to 0.7%, and cold tool steel disclosed in Japanese Patent Application Laid-Open No. 2007-77442 (Patent Document 5) is Cr: 9 to 12% Cr, Mo, Ni steel containing carbon, and carbides observed in the cross-sectional structure thereof are regulated.

さらに、特開2001−107181号公報(特許文献6)に開示されている工具鋼は、実施例によると、C:0.43〜0.81%を含有するCr,Mo鋼であって、CとCr量を規制したものである。また、特開平11−92871号公報(特許文献7)に開示されている冷間工具鋼は、C:1.10〜1.35%、Cr:9.00〜12.00%を含有するCr,Mo,V鋼であって、CとCr量を規制したものが、それぞれ提案されている。
特開2007−197746号公報 特開2006−152356号公報 特開2006−169624号公報 特開2006−28584号公報 特開2007−77442号公報 特開2001−107181号公報 特開平11−92871号公報
Furthermore, according to the example, the tool steel disclosed in Japanese Patent Laid-Open No. 2001-107181 (Patent Document 6) is Cr, Mo steel containing C: 0.43 to 0.81%, and C And the amount of Cr are regulated. Moreover, the cold tool steel currently disclosed by Unexamined-Japanese-Patent No. 11-92971 (patent document 7) is C: 1.10-1.35%, Cr: Cr containing 9.00-12.00% , Mo, and V steels, each of which restricts the amount of C and Cr, has been proposed.
JP 2007-197746 A JP 2006-152356 A JP 2006-169624 A JP 2006-28584 A JP 2007-77442 A JP 2001-107181 A Japanese Patent Laid-Open No. 11-92871

上述した特許文献1は、Si:1.40〜2.6%、Cu:0.01〜0.50%を含有するNi,Cr,Mo,V鋼であり、Siが高すぎて、靱性が低下するという問題があり、また、Cuを必須元素としている。特許文献2および3は、Ni:0.3〜1.5%、Cu:0.1〜1.5%、Al:0.1〜0.7%を含有するCr,Mo鋼であり、Niが高く、かつCu,Alを必須元素とした発明である。また、特許文献4も同様に、Ni:0.3〜1.5%,Cu:0.1〜1.0%、Al:0.1〜0.7%を含有するCr,Mo鋼であり、Ni,Cu,Alの添加により、固溶C量が低下して、焼入焼戻硬さが充分に得られないし、製造時の熱間加工性が劣化するなどの問題点が有る。また、Ni添加は金型加工時の切削性も劣化させる。   Patent Document 1 described above is a Ni, Cr, Mo, V steel containing Si: 1.40 to 2.6% and Cu: 0.01 to 0.50%, where Si is too high and the toughness is high. There is a problem that it decreases, and Cu is an essential element. Patent Documents 2 and 3 are Cr and Mo steels containing Ni: 0.3 to 1.5%, Cu: 0.1 to 1.5%, Al: 0.1 to 0.7%, Ni And is an invention using Cu and Al as essential elements. Similarly, Patent Document 4 is a Cr and Mo steel containing Ni: 0.3 to 1.5%, Cu: 0.1 to 1.0%, Al: 0.1 to 0.7%. However, the addition of Ni, Cu, and Al causes problems such as a decrease in the amount of solid solution C, a sufficient quenching and tempering hardness cannot be obtained, and hot workability during production deteriorates. Further, the addition of Ni also deteriorates the machinability at the time of die machining.

特許文献5は、Cr:9〜12%を含有するCr,Mo,Ni鋼であって、Crが高すぎて、切削性や靱性が低下してしまうという問題がある。また、特許文献6は、C:0.43〜0.81%を含有するCr,Mo鋼であって、Cが低すぎて、耐摩耗性や硬さが不十分である。さらに、特許文献7は、Cr:9.00〜12.00%を含有するCr,Mo,V鋼であり、Crが高すぎて、切削性や靱性が低下するという問題がある。   Patent Document 5 is Cr, Mo, Ni steel containing Cr: 9 to 12%, and there is a problem that Cr is too high and machinability and toughness are deteriorated. Moreover, patent document 6 is Cr, Mo steel containing C: 0.43-0.81%, Comprising: C is too low and abrasion resistance and hardness are inadequate. Furthermore, Patent Document 7 is a Cr, Mo, V steel containing Cr: 9.00 to 12.00%, and there is a problem that the machinability and toughness are deteriorated because Cr is too high.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、熱処理変寸の原因となる合金元素添加量を適正化すると共に、均質化処理を行うことで、金型の熱処理変寸を抑制し、熱処理後の切削性の改善を図ることで、金型作製におけるコスト削減に貢献するものである。また、衝撃特性に優れ、金型使用後の割れ欠けを抑制し、寿命改善に寄与できる被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼およびプレス金型を提供するものである。   In order to solve the problems as described above, the inventors have made extensive developments, and as a result, the alloy element addition amount causing the heat treatment size change is optimized and the homogenization treatment is performed, so that By suppressing the heat treatment size change and improving the machinability after the heat treatment, it contributes to cost reduction in mold production. We also offer steel for cold press dies and press dies that have excellent impact characteristics, suppress cracking after use of the dies, and contribute to life improvement, machinability, heat treatment sizing characteristics, and impact characteristics. To do.

その発明の要旨とするところは、
(1)質量%で、C:0.80〜0.89%、Si:1.0〜1.4%未満、Mn:0.1〜1.0%、S:0.030〜0.070%、Cr:7.5〜8.5%、Ni:0.05〜0.2%、MoおよびWの内の1種または2種をMo+1/2W:0.9〜1.6%、VおよびNbの内の1種または2種をV+1/2Nb:0.03〜0.3%を含有し、残部をFeおよび不可避的不純物からなる被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。
The gist of the invention is that
(1) By mass%, C: 0.80 to 0.89%, Si: 1.0 to less than 1.4%, Mn: 0.1 to 1.0%, S: 0.030 to 0.070 %, Cr: 7.5 to 8.5%, Ni: 0.05 to 0.2%, one or two of Mo and W being Mo + 1 / 2W: 0.9 to 1.6%, V One or two of Nb and V + 1 / 2Nb: 0.03 to 0.3% are contained, and the balance is excellent in machinability, heat treatment sizing characteristics, and impact characteristics comprising Fe and inevitable impurities. Steel for cold press dies.

(2)前記(1)に記載の鋼に加えて、Cr/C:8.5〜10.5、(Mo+1/2W/(V+1/2Nb):5.5〜15.5であることを特徴とする被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。
(3)前記(1)または(2)に記載の鋼に加えて、(Si+S×100)/〔(V+1/2Nb)×10〕:2.5〜10.0であることを特徴とする被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。
(2) In addition to the steel described in (1) above, Cr / C: 8.5 to 10.5, (Mo + 1 / 2W / (V + 1 / 2Nb): 5.5 to 15.5 Steel for cold press dies with excellent machinability, heat treatment sizing characteristics, and impact characteristics.
(3) In addition to the steel described in (1) or (2) above, (Si + S × 100) / [(V + ½Nb) × 10]: 2.5 to 10.0 Steel for cold press dies with excellent machinability, heat treatment sizing characteristics, and impact characteristics.

(4)前記(1)〜(3)のいずれか1に記載の鋼を鋼塊状態から鍛造により鋼塊幅方向で減面率25%以上の圧下を加えて、1075〜1150℃で8時間以上均熱保持した後に、鍛造または圧延してなることを特徴とする被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。
(5)前記(1)〜(4)のいずれか1に記載の鋼を使用し、切削加工後、熱処理または表面処理を施した冷間プレス金型にある。
(4) The steel according to any one of (1) to (3) above is subjected to forging at 1075 to 1150 ° C. at 1075 to 1150 ° C. by subjecting the steel according to any one of the steel ingot states to forging by a forging from the steel ingot state in the ingot width direction A steel for cold press dies excellent in machinability, heat treatment sizing characteristics, and impact characteristics, characterized by being forged or rolled after being kept soaked.
(5) A cold press die that uses the steel according to any one of (1) to (4) and is subjected to heat treatment or surface treatment after cutting.

以上述べたように、本発明により自動車プレス型作製時の切削時間、切削工具の削減、および熱処理時の変寸による手直し工数の削減、または、金型寿命向上によるメンテナンス費用削減、さらには、Mo,V合金元素低減による合金コストの低減を図ることが出来る極めて優れた効果を奏するものである。   As described above, according to the present invention, the cutting time at the time of manufacturing the automobile press die, the reduction of the cutting tool, the reduction of the reworking time due to the size change at the time of the heat treatment, the reduction of the maintenance cost by the improvement of the die life, and the Mo , It is possible to reduce the alloy cost by reducing the V alloy element, and to achieve an extremely excellent effect.

以下、本発明に係る成分組成の限定理由について述べる。
C:0.80〜0.89%
Cは、熱処理時に基地に固溶しての硬度を確保するための元素であり、その効果を得るためには0.80%以上必要である。また、Cr,Mo,V,W,Nbなどの合金元素と結合して炭化物を形成し二次硬化および耐摩耗性の向上に寄与するが、添加し過ぎると炭化物が粗大になり衝撃特性を著しく劣化されるため、その上限を0.89%とした。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.80 to 0.89%
C is an element for ensuring the hardness by dissolving in the matrix during heat treatment, and 0.80% or more is necessary to obtain the effect. Moreover, it combines with alloy elements such as Cr, Mo, V, W and Nb to form carbides and contributes to the improvement of secondary hardening and wear resistance. However, if added too much, the carbides become coarse and the impact characteristics are remarkably increased. Since it deteriorates, the upper limit was made 0.89%.

Si:1.0〜1.4%未満
Siは、製鋼時の脱酸剤として添加、焼入性にも有効である。さらに、本発明では、基地を脆化させて切削抵抗を下げ、切削工具刃先に構成刃先(酸化物層)を体積させるBelag効果で凝着を抑えて切削工具寿命を向上させることにより切削性改善を狙っており、そのためには、1.0%以上必要である。しかし、1.4%を超えると衝撃特性が顕著に低下するため上限を1.4%未満とした。
Si: 1.0 to less than 1.4% Si is added as a deoxidizer during steelmaking and is also effective for hardenability. Furthermore, in the present invention, the machinability is improved by improving the cutting tool life by suppressing adhesion by the Belag effect that embrittles the base and lowers the cutting resistance, and makes the constituent cutting edge (oxide layer) in the cutting tool edge. For that purpose, 1.0% or more is necessary. However, if it exceeds 1.4%, the impact characteristics are remarkably lowered, so the upper limit was made less than 1.4%.

Mn:0.1〜1.0%
Mnは、Siと同様に脱酸剤として添加し、焼入性にも有効である。さらに、本発明においては、硫化物MnSを形成させ被削性改善を狙っており、必要量の硫化物を得るために0.1%以上添加する必要がある。しかし、添加し過ぎると被削性と衝撃特性を劣化させるため上限を1.0%とした。
Mn: 0.1 to 1.0%
Mn is added as a deoxidizer in the same manner as Si, and is also effective for hardenability. Furthermore, in the present invention, sulfide MnS is formed to improve machinability, and it is necessary to add 0.1% or more in order to obtain a necessary amount of sulfide. However, if added too much, the machinability and impact properties are degraded, so the upper limit was made 1.0%.

S:0.030〜0.070%
Sは、MnSを形成させ被削性を高めるために、0.030%以上添加する必要がある。しかし、添加し過ぎると衝撃特性が劣化させるため上限を0.060%とした。
Ni:0.05〜0.2%
Niは、マトリックスに固溶して靱性を高めるので、0.05%以上添加する必要がある。しかし、焼きなまし硬さを高めるために焼きなまし状態での切削性を阻害するため、その上限を0.2%とする。
S: 0.030 to 0.070%
S is required to be added in an amount of 0.030% or more in order to form MnS and improve machinability. However, if added too much, impact characteristics deteriorate, so the upper limit was made 0.060%.
Ni: 0.05-0.2%
Since Ni dissolves in the matrix and improves toughness, it is necessary to add 0.05% or more. However, in order to inhibit the machinability in the annealed state in order to increase the annealing hardness, the upper limit is made 0.2%.

Cr:7.5〜8.5%
Crは、基地に固溶して焼入性を向上させ、また、炭化物を生成して耐摩耗性を確保するために7.5%以上必要である。しかし、Crは凝固時にCと結合して粗大な一次炭化物を形成しやすく、それが衝撃特性や被削性を著しく劣化させるため、その上限を8.5%とした。
Cr: 7.5 to 8.5%
Cr is required to be 7.5% or more in order to improve the hardenability by forming a solid solution in the base, and to form carbides and ensure wear resistance. However, Cr is likely to bond with C during solidification to form coarse primary carbide, which significantly deteriorates impact characteristics and machinability, so the upper limit was made 8.5%.

Mo+1/2W:0.9〜1.6%
Mo+1/2Wを規制したのは、焼入性確保と二次硬化による焼入れ焼戻し硬さの確保および析出炭化物による耐摩耗性改善のために、0.9%以上必要である。しかし、添加し過ぎると、凝固時に偏析して熱処理変寸や歪みの原因になったり、炭化物が粗大になり靱性や切削性が低下する。また、二次硬化で微細炭化物が多量に析出し、基地中のC量が低減した結果、残留オーステナイトのマルンサイト変態が促進され、高温焼戻し時の熱処理変寸量が大きくなるため、その上限を1.6%とした。
Mo + 1 / 2W: 0.9-1.6%
The reason why Mo + 1 / 2W is regulated is 0.9% or more in order to ensure hardenability, secure quenching and tempering hardness by secondary curing, and improve wear resistance by precipitated carbides. However, if it is added too much, it segregates during solidification and causes heat treatment size change and distortion, and the carbide becomes coarse and toughness and machinability deteriorate. In addition, a large amount of fine carbides are precipitated by secondary curing, and the amount of C in the matrix is reduced. As a result, martensitic transformation of the retained austenite is promoted, and the amount of heat treatment change during high temperature tempering is increased. 1.6%.

V+1/2Nb:0.03〜0.3%
V+1/2Nbを規制したのは、微細で硬質な炭化物の分散析出による耐摩耗性改善、さらに、プレス金型に適用される拡散浸透表面処理(TD処理など)の高温長時間保持時の結晶粒粗大化を抑えて衝撃特性を維持するために、0.03%以上必要である。しかし、添加し過ぎると、凝固時に偏析して熱処理変寸や歪みの原因になったり、炭化物が粗大になり靱性や切削性が低下する。さらに、二次硬化において微細炭化物が多量に析出し、高温焼戻し時の熱処理変寸量が大きくなるため、その上限を0.3%とした。
V + 1 / 2Nb: 0.03-0.3%
V + 1 / 2Nb was regulated because of improved wear resistance due to the dispersion and precipitation of fine and hard carbides, as well as crystal grains during diffusion and penetration surface treatment (TD treatment, etc.) applied to press dies at a high temperature for a long time. In order to suppress coarsening and maintain impact characteristics, 0.03% or more is necessary. However, if it is added too much, it segregates during solidification and causes heat treatment size change and distortion, and the carbide becomes coarse and toughness and machinability deteriorate. Furthermore, a large amount of fine carbides precipitates in the secondary curing, and the heat treatment dimensional change during high-temperature tempering increases, so the upper limit was made 0.3%.

Cr/C:8.5〜10.5
Cr/Cを規制したのは、C−Cr量の両者の最適化により、耐衝撃性、被削性や耐摩耗性に寄与する一次炭化物の大きさやマトリックスへの炭素の固溶量を規制すると共に、熱処理変寸や耐摩耗性に寄与するMo、Vなどの析出炭化物の量を規制して、被削性、熱処理変寸特性、耐衝撃性を兼ね備えるためには、8.5以上必要である。しかし、10.5を超えると、炭化物が粗大化して被削性と衝撃特性が著しく悪化するため、その範囲を8.5〜10.5とした。
Cr / C: 8.5 to 10.5
Cr / C was regulated by optimizing both the C-Cr amount and regulating the size of primary carbides that contribute to impact resistance, machinability and wear resistance, and the solid solution amount of carbon in the matrix. In addition, in order to combine the machinability, heat treatment sizing characteristics, and impact resistance by regulating the amount of precipitated carbides such as Mo and V that contribute to heat treatment sizing and wear resistance, 8.5 or more is required. is there. However, if it exceeds 10.5, the carbide is coarsened and the machinability and impact characteristics are remarkably deteriorated, so the range is set to 8.5 to 10.5.

(Mo+1/2W)/(V+1/2Nb):5.5〜15.5
Mo+1/2W、V+1/2Nbを低減することで、高温焼戻し時の炭化物析出を減らし、残留オーステナイトの分解を抑制することで、熱処理変寸による膨張を小さくできる。また、鍛伸均熱処理は成分偏析の軽減と炭化物の微細均一化による熱処理変寸特性および衝撃特性の改善を図るもので、その両者のバランスにおいて達成される。これらの特性を得るためには、5.5以上必要である。しかし、15.5を超えると凝固時に偏析して熱処理変寸や歪みの原因になったり、炭化物が粗大になり靱性や切削性が低下する。また、二次硬化で微細炭化物が多量に析出し、マルンサイト変態が促進され、高温焼戻し時の熱処理変寸量が大きくなるため、その上限を15.5とした。
(Mo + 1 / 2W) / (V + 1 / 2Nb): 5.5 to 15.5
By reducing Mo + 1 / 2W and V + 1 / 2Nb, carbide precipitation during high-temperature tempering is reduced, and decomposition of retained austenite is suppressed, so that expansion due to heat treatment size change can be reduced. Further, the forging and stretching heat treatment is intended to reduce the segregation of components and improve the heat treatment sizing characteristics and impact characteristics by making the carbide fine and uniform, and is achieved in a balance between the two. In order to obtain these characteristics, 5.5 or more is necessary. However, if it exceeds 15.5, it segregates at the time of solidification, causing heat treatment size change and distortion, and carbides become coarse and toughness and machinability deteriorate. In addition, a large amount of fine carbide precipitates by secondary curing, martensitic transformation is promoted, and the amount of heat treatment change during high temperature tempering is increased, so the upper limit was made 15.5.

(Si+S×100)/〔(V+1/2Nb)×10〕:2.5〜10.0
Si、Sを高めることで切削性は向上するが、過多の添加は衝撃特性を悪化させる。また、V、Nbを高めることで結晶粒粗大化を抑制し衝撃特性は向上するが、硬質な微細析出炭化物により著しく切削性が悪化する。これらのバランスを最適化することで、切削性と衝撃特性の両方が改善される。すなわち、これらの特性を得るためには、2.1以上必要である。しかし、13.0を超えると靱性が低下する。
(Si + S × 100) / [(V + 1 / 2Nb) × 10]: 2.5 to 10.0
Although machinability is improved by increasing Si and S, excessive addition deteriorates impact characteristics. Further, increasing V and Nb suppresses coarsening of crystal grains and improves impact characteristics, but machinability is remarkably deteriorated by hard fine precipitated carbides. By optimizing these balances, both machinability and impact properties are improved. That is, in order to obtain these characteristics, 2.1 or higher is required. However, if it exceeds 13.0, the toughness decreases.

鍛伸減面率25%以上
鍛伸減面率は、(鍛伸完了品の平均断面積)/(鋼塊の平均断面積)×100%で算出される。鍛伸減面率を規制したのは、熱処理変寸の要因となる成分偏析の低減、鋼塊の内部欠陥の閉塞、および切削性と衝撃値に寄与する晶出炭化物を分散させるために25%以上必要である。すなわち、鋼塊のV偏析、柱状晶帯および等軸晶帯などの正偏析部に圧下を加えて歪みを導入することで、後の均熱保持において偏析部での拡散が促進されて、成分が均一に分散されるため、熱処理変寸量が改善される。
The forging reduction area ratio is 25% or more. The forging reduction area ratio is calculated by (average cross-sectional area of forged products) / (average cross-section area of steel ingot) × 100%. The forging reduction rate was regulated by 25% in order to reduce component segregation that causes heat treatment size change, block internal defects in steel ingots, and disperse crystallized carbides that contribute to machinability and impact value. This is necessary. That is, by introducing a strain to the positive segregation part such as V segregation, columnar crystal zone and equiaxed crystal zone of the steel ingot, diffusion in the segregation part is promoted in the subsequent soaking, Is uniformly dispersed, so that the heat treatment size change is improved.

1075〜1150℃で8時間以上均熱保持
偏析部の合金成分を拡散させるためには、1075℃以上で8時間以上の均熱保持が必要である。しかし、保持温度を高くし過ぎると、圧延、鍛伸時にオーバーヒートして内部欠陥が発生するために、1150℃以下とした。
In order to diffuse the alloy components in the segregation part at 1075 to 1150 ° C. for 8 hours or more, it is necessary to maintain the soaking temperature at 1075 ° C. or more for 8 hours or more. However, if the holding temperature is too high, overheating occurs during rolling and forging, and internal defects are generated.

上述のように、切削性を改善するために、従来のS添加に加えてSi量増加によって、切削抵抗の低減とBelag効果による切削工具の寿命向上を図り、かつ、熱処理変寸特性を改善するために、Mo,Vの低減により、炭化物析出を減らし高温焼戻しで残留オーステナイトの分解を抑制するとともに、鍛伸均熱処理により成分偏析を軽減する。また、衝撃特性を改善するために、C−Cr量の最適化による炭化物とMo,Vの低減を図ったものである。   As described above, in order to improve machinability, in addition to the conventional S addition, by increasing the amount of Si, the cutting resistance is reduced, the life of the cutting tool is improved by the Belag effect, and the heat treatment size change characteristics are improved. Therefore, by reducing Mo and V, carbide precipitation is reduced and decomposition of residual austenite is suppressed by high-temperature tempering, and component segregation is reduced by forge-stretching heat treatment. In addition, in order to improve the impact characteristics, carbide, Mo, and V are reduced by optimizing the amount of C—Cr.

以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成の鋼を100kg真空誘導溶解炉にて溶解した後鋳型にて造塊し、この造塊を1100℃に加熱して鋼塊幅方向に減面率28%で鍛造し、1100℃、10時間の均熱保持後鍛伸により厚み35mm、幅150mmの平角材とし、その後径32mmの丸棒材を作製し供試材とした。その各化学成分での鍛伸減面率および加熱条件としての温度−時間を表1に示す。また、表2に各焼戻温度での熱処理変寸率、焼入焼戻硬さ(HRC)と残留オーステナイト量並びに切削性評価とシャルピー衝撃値を示す。
Hereinafter, the present invention will be specifically described with reference to examples.
Steel of the composition shown in Table 1 was melted in a 100 kg vacuum induction melting furnace and then ingot in a mold, and this ingot was heated to 1100 ° C. and forged at a reduction in area of 28% in the steel ingot width direction. A flat bar material having a thickness of 35 mm and a width of 150 mm was formed by forging after holding at 1100 ° C. for 10 hours, and then a round bar material having a diameter of 32 mm was prepared as a test material. Table 1 shows the forge elongation reduction ratio and the temperature-time as heating conditions for each chemical component. Table 2 shows the heat treatment sizing ratio, quenching and tempering hardness (HRC), residual austenite amount, machinability evaluation, and Charpy impact value at each tempering temperature.

熱処理変寸評価としては、試験片として、厚み25mm、幅120mm、長さ150mmのものを用いて真空熱処理(焼入:1030℃、1時間保持後加圧ガス冷却、焼戻し:480℃、500℃、520℃、540℃での1時間保持後ガス冷却)して、熱処理前と後の測定寸法から次の式により熱処理変寸率を算出する。
熱処理変寸率(%)=[(熱処理後寸法−熱処理前寸法)/熱処理前寸法]×100
なお、本発明では長手方向の変寸率で評価を行った。
For heat treatment sizing evaluation, a test piece having a thickness of 25 mm, a width of 120 mm, and a length of 150 mm was used, followed by vacuum heat treatment (quenching: 1030 ° C., holding for 1 hour followed by pressurized gas cooling, tempering: 480 ° C., 500 ° C. Gas cooling after holding at 520 ° C. and 540 ° C. for 1 hour), and the heat treatment change rate is calculated from the measured dimensions before and after the heat treatment by the following formula.
Heat treatment change rate (%) = [(size after heat treatment−size before heat treatment) / size before heat treatment] × 100
In the present invention, the evaluation was performed based on the longitudinal change rate.

焼入焼戻硬さ(HRC)の評価としては、厚み10mm、幅10mm、長さ15mmのブロックを各熱処理条件で処理した後、平面研磨して、ロックウエルCスケールで硬さを測定した。また、残留オーステナイト量の測定としては、硬さ測定試験片を用いてX線回折法により測定した。   As an evaluation of the quenching and tempering hardness (HRC), a block having a thickness of 10 mm, a width of 10 mm, and a length of 15 mm was treated under each heat treatment condition, then subjected to planar polishing, and the hardness was measured with a Rockwell C scale. The amount of retained austenite was measured by an X-ray diffraction method using a hardness measurement specimen.

切削性評価としては、熱処理変寸試験片(520℃焼戻材)を用い、焼入焼戻材でのドリル加工性試験を行う。試験は、切削工具:KOBELCO超硬ドリルVC−SSS、径1.5、切削深さ:4.5mm(3D)、切削速度10m/min(ドリル回転数2122rpm、送り量0.01mm/rev.)、切削油:エマルジョン(ユシローケンEC50)で連続穿孔を行ない、ドリル折損に至るまでに穿孔できた穴数で評価した。
また、シャルピー衝撃試験は、径32mm材中心部から圧延方向にシャルピー試験片(厚み10mm、幅10mm、長さ55mm、10R2mmCノッチ)を採取し、作製して、真空熱処理(焼入:1030℃、1時間保持後加圧ガス冷却、焼戻し:500℃、1時間保持後ガス冷却)の後、シャルピー衝撃試験を実施した。
As the machinability evaluation, a heat treatment sized test piece (520 ° C. tempered material) is used, and a drill workability test is performed on the quenched and tempered material. The test was performed using a cutting tool: KOBELCO carbide drill VC-SSS, diameter 1.5, cutting depth: 4.5 mm (3D), cutting speed 10 m / min (drilling speed 2122 rpm, feed rate 0.01 mm / rev.). Cutting oil: Continuous drilling was performed with an emulsion (Yushiloken EC50), and the number of drilled holes before drill breakage was evaluated.
In addition, the Charpy impact test was performed by collecting and producing a Charpy test piece (thickness 10 mm, width 10 mm, length 55 mm, 10R2 mmC notch) from the center of the 32 mm diameter material in the rolling direction, and vacuum heat treatment (quenching: 1030 ° C., After holding for 1 hour, cooling with pressurized gas and tempering: 500 ° C., after holding for 1 hour with gas cooling), a Charpy impact test was performed.

Figure 2009235562
Figure 2009235562

Figure 2009235562
表1に示すように、No.1〜6は本発明例であり、No.7〜13は比較例である。
Figure 2009235562
As shown in Table 1, no. Nos. 1 to 6 are examples of the present invention. 7 to 13 are comparative examples.

比較例No.7はC,Cr含有量が高く、Si、S含有量が低く、かつ加熱条件としての時間が短いことから、焼戻温度520℃、540℃での熱処理寸率が大きく、かつ残留オーステナイト量が少なく、切削性、衝撃特性が悪い。比較例No.8はC,Ni,CrおよびMo+1/2W含有量が高く、Si含有量が低く、かつ鍛伸減面率が高いために、焼戻温度520℃、540℃での熱処理寸率が大きく、かつ残留オーステナイト量が少なく、切削性、特に衝撃特性が非常に悪い。   Comparative Example No. 7 has a high C and Cr content, a low Si and S content, and a short time as a heating condition. Therefore, the heat treatment dimensions at tempering temperatures of 520 ° C. and 540 ° C. are large, and the amount of retained austenite is high. Less, poor machinability and impact characteristics. Comparative Example No. No. 8 has a high C, Ni, Cr, and Mo + 1 / 2W content, a low Si content, and a high forge elongation reduction ratio, so that the heat treatment dimensions at tempering temperatures of 520 ° C. and 540 ° C. are large, and The amount of retained austenite is small, and the machinability, particularly the impact properties, is very poor.

比較例No.9はNi、Mo+1/2W、V+1/2Nb含有量が高く、鍛伸減面率が低く、かつ加熱条件である時間が短いために、焼戻温度520℃、540℃での熱処理寸率が大きく、かつ残留オーステナイト量が少なく、切削性、衝撃特性が劣る。比較例No.10はC,Mn,Cr含有量が高く、また、Si,S、Mo+1/2W含有量が低く、鍛伸減面率が低いために、焼戻温度520℃、540℃での熱処理寸率が大きく、かつ残留オーステナイト量が少なく、切削性、特に衝撃特性が悪い。   Comparative Example No. No. 9 has a high Ni, Mo + 1 / 2W, V + 1 / 2Nb content, a low forging elongation reduction ratio, and a short heating time, so that the heat treatment dimensions at tempering temperatures of 520 ° C. and 540 ° C. are large. In addition, the amount of retained austenite is small, and the machinability and impact properties are inferior. Comparative Example No. No. 10 has a high C, Mn, Cr content, a low Si, S, Mo + 1 / 2W content, and a low forge elongation reduction ratio, so that the heat treatment dimensions at tempering temperatures of 520 ° C. and 540 ° C. It is large and the amount of retained austenite is small, and the machinability, particularly the impact property, is poor.

比較例No.11はNi,Mo+1/2W含有量が高く、また、加熱条件である温度が低いために、焼戻温度520℃、540℃での熱処理寸率が大きく、かつ焼戻温度520℃での残留オーステナイト量が少なく、切削性、衝撃特性に劣る。比較例No.12はNiおよびCr含有量が低く、V+1/2Nb含有量が高く、また、加熱条件である時間が短いために、焼戻温度、520℃、540℃での熱処理寸率が大きく、残留オーステナイト量が多いために、衝撃特性に劣る。   Comparative Example No. No. 11 has a high Ni, Mo + 1/2 W content and a low temperature as a heating condition, and therefore has a large heat treatment ratio at tempering temperatures of 520 ° C. and 540 ° C., and residual austenite at a tempering temperature of 520 ° C. The amount is small and inferior in machinability and impact characteristics. Comparative Example No. No. 12 has a low Ni and Cr content, a high V + 1 / 2Nb content, and a short heating time, resulting in a large heat treatment size at tempering temperatures of 520 ° C. and 540 ° C., and a residual austenite amount. Since there are many, it is inferior to an impact characteristic.

比較例No.13はCおよびCr含有量が高く、また、加熱条件である時間が短いために、焼戻温度、520℃、540℃での熱処理寸率が大きく、特に540℃での残留オーステナイト量が多いために、衝撃特性に劣る。これに対し、本発明例であるNo.1〜6は、いずれも本発明の条件を満たしていることから、高温熱処理による熱処理変寸率、切削性、衝撃特性等の特性に優れていることが分かる。   Comparative Example No. No. 13 has a high C and Cr content and a short heating time, so the heat treatment size at tempering temperatures of 520 ° C. and 540 ° C. is large, and especially the amount of retained austenite at 540 ° C. is large. In addition, the impact characteristics are inferior. On the other hand, No. which is an example of the present invention. Since all of Nos. 1 to 6 satisfy the conditions of the present invention, it can be seen that they are excellent in characteristics such as heat treatment size change rate, machinability, impact characteristics, etc. by high-temperature heat treatment.

以上のように、Si含有量を増加することで、基地を脆化させ、切削工具表面に酸化物層を生成させ、被削材の凝着を抑制させる。また、Mo,Vを低減することで、高温焼戻し時の炭化物析出を減らし、残留オーステナイトの分解を抑制することで、熱処理変寸による膨張を小さくできる。さらに、鍛伸均熱処理による成分偏析の軽減と炭化物の微細均一化により熱処理変寸特性および衝撃特性が改善される極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, by increasing the Si content, the base is embrittled, an oxide layer is generated on the surface of the cutting tool, and adhesion of the work material is suppressed. Further, by reducing Mo and V, carbide precipitation at the time of high-temperature tempering can be reduced, and decomposition of residual austenite can be suppressed, so that expansion due to heat treatment deformation can be reduced. Furthermore, it has an extremely excellent effect of improving heat treatment sizing characteristics and impact characteristics by reducing component segregation by forge-stretching heat treatment and making the carbides fine and uniform.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (5)

質量%で、
C:0.80〜0.89%、
Si:1.0〜1.4%未満、
Mn:0.1〜1.0%、
S:0.030〜0.070%、
Cr:7.5〜8.5%、
Ni:0.05〜0.2%、
MoおよびWの内の1種または2種をMo+1/2W:0.9〜1.6%、VおよびNbの内の1種または2種をV+1/2Nb:0.03〜0.3%を含有し、残部をFeおよび不可避的不純物からなる被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。
% By mass
C: 0.80 to 0.89%,
Si: 1.0 to less than 1.4%,
Mn: 0.1 to 1.0%,
S: 0.030 to 0.070%,
Cr: 7.5 to 8.5%
Ni: 0.05-0.2%
One or two of Mo and W are Mo + 1 / 2W: 0.9 to 1.6%, and one or two of V and Nb are V + 1 / 2Nb: 0.03 to 0.3% A steel for cold press dies that contains excellent balance of machinability, heat treatment sizing characteristics, and impact characteristics.
請求項1に記載の鋼に加えて、Cr/C:8.5〜10.5、(Mo+1/2W)/(V+1/2Nb):5.5〜15.5であることを特徴とする被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。 In addition to the steel according to claim 1, Cr / C: 8.5 to 10.5, (Mo + 1 / 2W) / (V + 1 / 2Nb): 5.5 to 15.5 Steel for cold press dies with excellent machinability, heat treatment sizing characteristics, and impact characteristics. 請求項1または2に記載の鋼に加えて、(Si+S×100)/〔(V+1/2Nb)×10〕:2.5〜10.0であることを特徴とする被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。 In addition to the steel according to claim 1 or 2, machinability and heat treatment size change, wherein (Si + S × 100) / [(V + 1 / 2Nb) × 10]: 2.5 to 10.0 Steel for cold press dies with excellent properties and impact properties. 請求項1〜3のいずれか1項に記載の鋼を鋼塊状態から鍛造により鋼塊幅方向で減面率25%以上の圧下を加えて、1075〜1150℃で8時間以上均熱保持した後に、鍛造または圧延してなることを特徴とする被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼。 The steel according to any one of claims 1 to 3 is subjected to soaking at 1075 to 1150 ° C for 8 hours or more by applying a reduction of a reduction in area of 25% or more in the width direction of the ingot by forging from the ingot state. A steel for cold press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics, characterized by being forged or rolled later. 請求項1〜3のいずれか1項に記載の鋼を使用し、切削加工後、熱処理または表面処理を施した冷間プレス金型。 A cold press die using the steel according to any one of claims 1 to 3 and subjected to heat treatment or surface treatment after cutting.
JP2009038816A 2008-03-05 2009-02-23 Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics Active JP5345415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038816A JP5345415B2 (en) 2008-03-05 2009-02-23 Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008054211 2008-03-05
JP2008054211 2008-03-05
JP2009038816A JP5345415B2 (en) 2008-03-05 2009-02-23 Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics

Publications (2)

Publication Number Publication Date
JP2009235562A true JP2009235562A (en) 2009-10-15
JP5345415B2 JP5345415B2 (en) 2013-11-20

Family

ID=41249864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038816A Active JP5345415B2 (en) 2008-03-05 2009-02-23 Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics

Country Status (1)

Country Link
JP (1) JP5345415B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732793A (en) * 2011-03-31 2012-10-17 日本高周波钢业株式会社 Cold work tool steel
JP2015040315A (en) * 2013-08-20 2015-03-02 山陽特殊製鋼株式会社 Die alloy tool steel having small anisotropy and dimensional change due to heat treatment
CN113604744A (en) * 2021-08-10 2021-11-05 攀钢集团攀枝花钢铁研究院有限公司 High-strength and high-toughness cold-work die steel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375312A (en) * 1989-08-17 1991-03-29 Daido Steel Co Ltd Method for soaking bearing steel
JPH1192871A (en) * 1997-09-12 1999-04-06 Nippon Koshuha Steel Co Ltd Cold tool steel
JP2002003988A (en) * 2000-06-23 2002-01-09 Daido Steel Co Ltd Cold working tool steel having excellent machinability
JP2007197746A (en) * 2006-01-25 2007-08-09 Daido Steel Co Ltd Tool steel
JP2009167435A (en) * 2008-01-10 2009-07-30 Kobe Steel Ltd Steel for cold-press die and die for cold-pressing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375312A (en) * 1989-08-17 1991-03-29 Daido Steel Co Ltd Method for soaking bearing steel
JPH1192871A (en) * 1997-09-12 1999-04-06 Nippon Koshuha Steel Co Ltd Cold tool steel
JP2002003988A (en) * 2000-06-23 2002-01-09 Daido Steel Co Ltd Cold working tool steel having excellent machinability
JP2007197746A (en) * 2006-01-25 2007-08-09 Daido Steel Co Ltd Tool steel
JP2009167435A (en) * 2008-01-10 2009-07-30 Kobe Steel Ltd Steel for cold-press die and die for cold-pressing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732793A (en) * 2011-03-31 2012-10-17 日本高周波钢业株式会社 Cold work tool steel
JP2015040315A (en) * 2013-08-20 2015-03-02 山陽特殊製鋼株式会社 Die alloy tool steel having small anisotropy and dimensional change due to heat treatment
CN113604744A (en) * 2021-08-10 2021-11-05 攀钢集团攀枝花钢铁研究院有限公司 High-strength and high-toughness cold-work die steel and preparation method thereof

Also Published As

Publication number Publication date
JP5345415B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5143531B2 (en) Cold mold steel and molds
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
EP2135962A1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP2013213255A (en) Hot working die steel
JP5929963B2 (en) Hardening method of steel
JPWO2016080315A1 (en) Rolled steel bar or wire rod for cold forging parts
JP5332517B2 (en) Manufacturing method of carburizing steel
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP2012214833A (en) Cold tool steel
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP4266341B2 (en) Steel for omitting spheroidizing annealing with excellent cold forgeability and anti-roughening properties during case hardening, and method for producing the same
JP5351528B2 (en) Cold mold steel and molds
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JPH11131176A (en) Induction hardened parts and production thereof
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
EP3272896A1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
CN108699650B (en) Rolled wire
JP2005336553A (en) Hot tool steel
WO2021187484A1 (en) Steel for hot working die, die for hot working, and manufacturing method for same
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JP2006028599A (en) Component for machine structure
JP2006257482A (en) Forged member having excellent coarsening preventive characteristic during carburization, manufacturing method therefor, and pulley for belt type continuously variable transmission using the forged member and/or manufacturing method
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Ref document number: 5345415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250