JP2009235558A - Member coated with aluminum nitride by thermal splaying and its manufacturing method - Google Patents

Member coated with aluminum nitride by thermal splaying and its manufacturing method Download PDF

Info

Publication number
JP2009235558A
JP2009235558A JP2008186566A JP2008186566A JP2009235558A JP 2009235558 A JP2009235558 A JP 2009235558A JP 2008186566 A JP2008186566 A JP 2008186566A JP 2008186566 A JP2008186566 A JP 2008186566A JP 2009235558 A JP2009235558 A JP 2009235558A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sprayed
powder
film
sprayed film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008186566A
Other languages
Japanese (ja)
Inventor
Masanori Abe
昌則 阿部
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008186566A priority Critical patent/JP2009235558A/en
Priority to TW97146888A priority patent/TW200944618A/en
Priority to PCT/JP2008/073657 priority patent/WO2009084606A1/en
Publication of JP2009235558A publication Critical patent/JP2009235558A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal-spraying deposit having a low porosity and a high aluminum nitride content since thermal-spraying deposit of aluminum nitride excellent in thermal conductivity and insulating properties is desired to be formed on members for electrostatic chucks, heaters, and plasma-processing chambers for use in the production of semiconductors, etc. or on members for use in radiating insulating substrates for power devices. <P>SOLUTION: In the member coated with aluminum nitride by thermal spraying, a thermal-spraying deposit is formed on at least part of a base, and particles of a thermal-spraying deposit is constituted of fine aluminum nitride particles which are nearly spherical and have a diameter of ≥1 to ≤10 μm on the average, and the member is characterized in that interstices among the aluminum nitride particles are filled with a Group IIIA and/or Group IIA element compound, and that the deposit has a porosity of ≤15%. This member can be produced by conducting thermal spraying with an aluminum nitride powder having an average particle diameter of 1 to 10 μm or with a powder mixture obtained by incorporating a Group IIIA and/or Group IIA element compound into the same aluminum nitride powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体等の製造における静電チャック、ヒーター、プラズマ処理チャンバーなどの部材やパワーデバイスの放熱絶縁基板に係るものであり、特に窒化アルミニウムの持つ特性を溶射膜として部材表面に付与するために、窒化物含有量が高く強固で緻密な溶射膜を与えるものに関する。   The present invention relates to a member such as an electrostatic chuck, a heater or a plasma processing chamber in the manufacture of a semiconductor or the like and a heat-radiating insulating substrate of a power device, and particularly to impart the characteristics of aluminum nitride to the surface of the member as a sprayed film. Furthermore, it relates to a material having a high nitride content and providing a strong and dense sprayed film.

窒化アルミニウムは、熱伝導が高い絶縁材料であり、また、フッ素プラズマに対する耐性も優れている。このため、半導体素子などの製造工程におけるCVD(Chemical Vapor Deposition)などの成膜装置やプラズマエッチング装置等において、このような特性が要求される部品、例えば、ウエハ基板を保持するための静電チャックにおいては、ウエハ基板を所定の温度に面内で均一に保つためにウエハ基板と接する部分について、ウエハ基板加熱用ヒーターにおいては、金属電極と一体成形される絶縁部分について、また、プラズマエッチングやCVD工程のプラズマクリーニングにおけるチャンバーの保護用部材等について使用されている。   Aluminum nitride is an insulating material with high thermal conductivity and has excellent resistance to fluorine plasma. For this reason, in a film forming apparatus such as CVD (Chemical Vapor Deposition) or a plasma etching apparatus in a manufacturing process of a semiconductor element or the like, an electrostatic chuck for holding a component that requires such characteristics, for example, a wafer substrate In the wafer substrate, in order to keep the wafer substrate uniformly at a predetermined temperature in the plane, in the wafer substrate heater, in the insulating part integrally formed with the metal electrode, in the plasma etching or CVD It is used for a chamber protection member in plasma cleaning of a process.

窒化アルミニウム部分の形成方法としては溶射法、焼結法等を例示することができるが、成形等を必要とせず、複雑な部品に対しても窒化アルミニウム部分を形成可能という観点から溶射法にて形成することが好ましい。   Examples of the method of forming the aluminum nitride portion include a spraying method and a sintering method. However, the forming method is not necessary, and the spraying method is used from the viewpoint that the aluminum nitride portion can be formed even for complex parts. It is preferable to form.

しかしながら、単純に窒化アルミニウム部分を溶射法で形成しようとすると、溶射条件によっては溶射の際、融解する前に酸化・分解してしまい、窒化アルミニウム膜の形成は容易ではなかった。そのため、窒化アルミニウムの溶射方法に関しては、種々の方法が検討されている。   However, if an aluminum nitride portion is simply formed by a thermal spraying method, depending on the thermal spraying conditions, it is oxidized and decomposed before melting, and it is not easy to form an aluminum nitride film. For this reason, various methods have been studied for the thermal spraying method of aluminum nitride.

例えば、アルミナとカーボンとを混合して溶射し、得られた溶射膜を窒素中で熱処理する方法が報告されている(例えば、特許文献1参照)が、1800℃程度の高温が必要であり、金属基材への適用ができない。   For example, a method of mixing and spraying alumina and carbon and heat-treating the obtained sprayed film in nitrogen has been reported (for example, see Patent Document 1), but a high temperature of about 1800 ° C. is required, Cannot be applied to metal substrates.

次いで、窒化アルミニウムとアルミナとを混合して造粒した粉末を用いて溶射する方法が報告されている(例えば、非特許文献1参照)。しかし、この報告では溶射膜中のAlN存在量は47%程度であり、溶射膜にはポアが多く、報告された熱伝導率はアルミナセラミックの焼結体より低く、更なる熱伝導率の向上が望まれている。   Next, a method of thermal spraying using a powder obtained by mixing and granulating aluminum nitride and alumina has been reported (for example, see Non-Patent Document 1). However, in this report, the amount of AlN present in the sprayed film is about 47%, and there are many pores in the sprayed film. The reported thermal conductivity is lower than that of the sintered body of alumina ceramic, and further improvement in thermal conductivity is achieved. Is desired.

また、金属とその金属の窒化物と酸化物とを混合したサーメット粉末、具体的には、金属ケイ素、窒化ケイ素及び酸化ケイ素の混合粉末を溶射して、ケイ素系サーメットのアンダーコートとし、その上にジルコニアを含むセラミックス溶射膜を形成する技術が報告されている(例えば、特許文献2参照)。しかし、窒化物を金属と混合することにより絶縁性が低下してしまうおそれがあった。   Further, a cermet powder in which a metal, a nitride of the metal and an oxide thereof are mixed, specifically, a mixed powder of metal silicon, silicon nitride, and silicon oxide is thermally sprayed to form an undercoat of a silicon-based cermet. A technique for forming a ceramic sprayed film containing zirconia is reported (for example, see Patent Document 2). However, there is a possibility that the insulating properties may be lowered by mixing the nitride with the metal.

さらに、金属アルミニウム粉末或いは金属アルミニウム粉末と窒化アルミニウムとを真空中で窒素ガスを含むプラズマ溶射によって反応性溶射を行うことで窒化アルミニウムを堆積させることも提案されている(例えば、特許文献3及び4参照)が、真空プロセスであるため大きな部材への溶射が容易でなく、また、金属アルミニウムが残ることにより絶縁性の低下が懸念される。   Furthermore, it is also proposed to deposit aluminum nitride by performing reactive spraying of metal aluminum powder or metal aluminum powder and aluminum nitride by plasma spraying containing nitrogen gas in a vacuum (for example, Patent Documents 3 and 4). However, since it is a vacuum process, thermal spraying on a large member is not easy, and there is a concern that the insulating property may be lowered due to the remaining metal aluminum.

特開平5−051285号公報Japanese Patent Laid-Open No. 5-051285 特開2003−313077号公報JP 2003-313077 A 特開2004−083929号公報JP 2004-083929 A 特開2006−307298号公報JP 2006-307298 A 特開2001−332668号公報JP 2001-332668 A H.Yang,W.Luan,S−T.Tu“AlN/Al2O3 Composite Coating Deposited by Plasma Spray”Proceedigs of the 1st Asian Thermal Spray Conference,41(2005)H. Yang, W .; Luan, ST. Tu “AlN / Al 2 O 3 Composite Coating Deposited by Plasma Spray” Proceedings of the 1st Asian Thermal Spray Conference, 41 (2005)

以上説明した様に、半導体素子などの製造工程におけるCVDなどの成膜装置やプラズマエッチング装置の静電チャック、ヒーター、チャンバーなどの部材に窒化アルミニウムを溶射することで、焼結法においては必須の高温処理工程が省け、金属基材に直接プラズマ耐性を付与することが期待されるが、窒化アルミニウムの緻密な溶射膜を、高い生産性で溶射成膜することは困難であった。   As explained above, by spraying aluminum nitride on members such as electrostatic chucks, heaters, and chambers of CVD and other film forming apparatuses and plasma etching apparatuses in the manufacturing process of semiconductor elements and the like, it is essential in the sintering method. Although it is expected that the high-temperature treatment process is omitted and the plasma resistance is directly imparted to the metal substrate, it is difficult to form a dense sprayed aluminum nitride sprayed film with high productivity.

本発明の目的は、上述の用途に適した、緻密で基材への密着性が良好な窒化アルミニウム溶射膜を形成した溶射部材とその製造方法を与えるものである。   An object of the present invention is to provide a thermal spray member formed with an aluminum nitride thermal spray film which is suitable for the above-mentioned applications and has good adhesion to a substrate, and a method for producing the thermal spray member.

本発明者らは、上述のような現状に鑑み、鋭意検討を行った結果、特定の大きさの窒化アルミニウムの粉末を溶射原料として用いて大気圧プラズマ溶射し、基材直前での窒化アルミニウムの粉末を表層が酸化するに留まる温度で高速に基材に衝突させることにより窒化物の比率が高く、基材への密着性が良好な窒化アルミニウム溶射膜を形成した部材を提供できること、また、窒化アルミニウム粉末のかわりに、窒化アルミニウム粉末とIIIA族及び/又はIIA族化合物粉末とを混合、分散させた混合粉末を使用することによって、より緻密な窒化アルミニウム溶射膜を形成した部材を提供できることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies in view of the above situation, the present inventors have performed atmospheric pressure plasma spraying using a powder of aluminum nitride having a specific size as a spraying raw material, It is possible to provide a member formed with a sprayed aluminum nitride film having a high nitride ratio and good adhesion to the base material by causing the powder to collide with the base material at a high temperature at a temperature at which the surface layer is oxidized. It has been found that by using a mixed powder in which an aluminum nitride powder and a group IIIA and / or group IIA compound powder are mixed and dispersed in place of the aluminum powder, a member formed with a denser aluminum nitride sprayed film can be provided. The present invention has been completed.

即ち、本発明は、基材上に、平均的な直径が1μm以上10μm以下の略球状をした窒化アルミニウム粒子からなる溶射膜が形成されてなる窒化アルミニウム溶射部材等に関する。   That is, the present invention relates to an aluminum nitride sprayed member in which a sprayed film made of substantially spherical aluminum nitride particles having an average diameter of 1 μm to 10 μm is formed on a substrate.

以下、本発明の部材について詳細に説明する。   Hereinafter, the member of this invention is demonstrated in detail.

本発明の窒化アルミニウム溶射部材を模式的に表すと、図1に示すように基材11上に平均的な直径が1μm以上10μm以下の略球状をした窒化アルミニウム粒子13が堆積して構成される溶射膜12からなるものである。この窒化アルミニウム粒子の堆積のメカニズムとしては、溶射によって窒化アルミニウム粒子の表面が一部酸化して粒子同士の付着が発生し、溶射膜が堆積すると考えられる。   When schematically representing the aluminum nitride sprayed member of the present invention, as shown in FIG. 1, a substantially spherical aluminum nitride particle 13 having an average diameter of 1 μm or more and 10 μm or less is deposited on the substrate 11. It consists of a sprayed film 12. As a mechanism for depositing the aluminum nitride particles, it is considered that a part of the surface of the aluminum nitride particles is oxidized by the thermal spraying to cause adhesion between the particles, and a sprayed film is deposited.

基材上の窒化アルミニウム粒子の平均的な直径としては、1μm以上10μm以下であり、好ましくは2μm以上8μm以下である。窒化アルミニウム粒子の平均的な直径は大きい程、溶射の過程で生ずる粒子表面の酸化層による熱伝導率の低下が少ないが、平均的な直径が大きくなりすぎると、中心部の酸化されていない窒化アルミニウムが多くなることで、溶射時に基材に付着せずに跳ね返るため、溶射膜が形成しにくくなる。   The average diameter of the aluminum nitride particles on the substrate is 1 μm or more and 10 μm or less, preferably 2 μm or more and 8 μm or less. The larger the average diameter of the aluminum nitride particles, the less the thermal conductivity is reduced by the oxide layer on the surface of the particles generated during the thermal spraying process. By increasing the amount of aluminum, the sprayed film is rebounded without adhering to the base material during spraying, so that it becomes difficult to form a sprayed film.

なお、本発明において、平均的な直径とは、溶射膜を構成する個々の粒子の直径の平均値のことをいい、溶射膜断面のSEM(走査型電子顕微鏡)観察による個々の粒子の直径の計測、あるいはEPMA(電子線プローブマイクロアナライザー)、EDS(エネルギー分散型分光器)などで窒素、酸素、アルミニウムの組成像を観察し、その個々の粒子の直径を計測するなどの方法にて測定された値である。   In the present invention, the average diameter means an average value of the diameters of the individual particles constituting the sprayed film, and the diameter of each particle by SEM (scanning electron microscope) observation of the sprayed film cross section. Measured or measured by methods such as observing composition images of nitrogen, oxygen, and aluminum with an EPMA (electron probe microanalyzer), EDS (energy dispersive spectrometer), and measuring the diameter of each particle. Value.

また、窒化アルミニウム粒子は溶射の過程で表面が若干酸化・溶融して丸みを帯びる。従って、本発明でいう略球状とは、具体的には球状又は楕円状の丸みを帯びた形状のことを意味する。窒化アルミニウム粒子の形状は溶射膜の断面を研磨してSEM観察あるいはEPMA、EDSなどで窒素、酸素、アルミニウムの組成像を観察することで判別できる。   In addition, the aluminum nitride particles are rounded because the surface is slightly oxidized and melted during the thermal spraying process. Therefore, the substantially spherical shape in the present invention specifically means a spherical or elliptical round shape. The shape of the aluminum nitride particles can be determined by polishing the cross section of the sprayed film and observing the composition image of nitrogen, oxygen, and aluminum with SEM observation or EPMA or EDS.

窒化アルミニウム溶射膜の厚みは、5μm以上500μm以下が好ましい。5μm未満では絶縁性が乏しい場合があり、500μmより厚いと、溶射膜が基材から剥がれやすい場合がある。   The thickness of the aluminum nitride sprayed film is preferably 5 μm or more and 500 μm or less. If the thickness is less than 5 μm, the insulating property may be poor. If the thickness is greater than 500 μm, the sprayed film may be easily peeled off from the substrate.

窒化アルミニウム溶射膜を構成する窒化アルミニウム粒子は、溶射時に表面しか潰れないので粒子間に間隙が形成される。溶射膜中に間隙が生ずると、溶射膜の気孔率が増加するために熱伝導率の低下、絶縁性の低下等が発生するおそれがある。そこで、図2に示すように窒化アルミニウム粒子23の隙間をIIIA族及び/又はIIA族化合物24で埋めることにより気孔が低減される。IIIA族及び/又はIIA化合物は、溶射により溶融するため、スプラットとして窒化アルミニウム粒子が形成する間隙に堆積していくものと本発明者らは考えている。窒化アルミニウムの良好な物性(熱伝導率、絶縁耐圧など)を得るためには、気孔率を15%以下とすることが好ましい。   Since the aluminum nitride particles constituting the aluminum nitride sprayed film are crushed only on the surface during thermal spraying, gaps are formed between the particles. If a gap is generated in the sprayed film, the porosity of the sprayed film increases, which may cause a decrease in thermal conductivity, a decrease in insulation, and the like. Therefore, as shown in FIG. 2, pores are reduced by filling the gaps between the aluminum nitride particles 23 with a group IIIA and / or group IIA compound 24. The present inventors consider that the group IIIA and / or IIA compound melts by thermal spraying and therefore accumulates in the gap formed by the aluminum nitride particles as splats. In order to obtain good physical properties (thermal conductivity, withstand voltage, etc.) of aluminum nitride, the porosity is preferably 15% or less.

本発明における気孔率の測定方法としては、溶射膜を基材から剥がしてアルキメデス法によって嵩密度を測定し、真密度との比率から計算する方法や、溶射膜の断面をSEM等によって観察した画像から気孔部分をトレースし、画像処理ソフトを用いて気孔部分の面積を計測し、その面積を気孔部分と溶射膜の面積で割ることで測定できる。   As a method for measuring the porosity in the present invention, the sprayed film is peeled off from the base material, the bulk density is measured by the Archimedes method, and the ratio is calculated from the ratio with the true density, or the cross section of the sprayed film is observed by SEM or the like. Then, the pore portion is traced, the area of the pore portion is measured using image processing software, and the area is divided by the area of the pore portion and the sprayed film.

IIIA族化合物とは、Sc,Y,La,Ceなどの希土類金属の酸化物、フッ化物、燐酸塩などを意味し、IIA族化合物とは、Mg、Ca、Sr、Ba等のアルカリ土類金属の酸化物、フッ化物、燐酸塩などを意味し、絶縁性の化合物であることが好ましい。溶射膜中のIIIA族及び/又はIIA族化合物の含有量は1wt%以上30wt%以下であることが好ましい。1wt%未満では気孔低減効果が少ない場合があり、30wt%より多いと熱伝導率が低くなるおそれがある。溶射膜中のIIIA族及び/又はIIA族化合物の含有量は1wt%以上25wt%以下であることがさらに好ましい。   Group IIIA compounds mean rare earth metal oxides such as Sc, Y, La, and Ce, fluorides, phosphates, etc., and Group IIA compounds mean alkaline earth metals such as Mg, Ca, Sr, and Ba. Means an oxide, fluoride, phosphate and the like, and is preferably an insulating compound. The content of the group IIIA and / or group IIA compound in the sprayed film is preferably 1 wt% or more and 30 wt% or less. If it is less than 1 wt%, the pore reduction effect may be small, and if it exceeds 30 wt%, the thermal conductivity may be lowered. The content of the group IIIA and / or group IIA compound in the sprayed film is more preferably 1 wt% or more and 25 wt% or less.

また、本発明の溶射部材の基材としては、熱伝導率が100W/mK以上のアルミニウム、モリブデン、銅などの金属や、銅―モリブデン、アルミニウム―シリコンなどの複合金属や合金、アルミニウム―炭化珪素、シリコン―炭化珪素などの金属セラミックス複合材を例示することができる。これらの基材表面は、サンドブラスト等やフッ酸によって粗面化し、溶射膜を付着しやすくしてもよい。基材表面の表面粗さRaとしては、0.1〜15μmが好ましい。ここで表面粗さRaとは、JISB0601:2001に記載される算術平均粗さRaを指す。一方、窒化アルミニウム溶射膜の熱伝導率は10W/mK以上であることが好ましい。   Further, as the base material of the thermal spray member of the present invention, a metal such as aluminum, molybdenum or copper having a thermal conductivity of 100 W / mK or more, a composite metal or alloy such as copper-molybdenum or aluminum-silicon, or aluminum-silicon carbide. Examples thereof include metal ceramic composite materials such as silicon-silicon carbide. The surface of these base materials may be roughened by sandblasting or hydrofluoric acid to make it easier to adhere the sprayed film. The surface roughness Ra of the substrate surface is preferably 0.1 to 15 μm. Here, the surface roughness Ra refers to the arithmetic average roughness Ra described in JIS B0601: 2001. On the other hand, the thermal conductivity of the aluminum nitride sprayed film is preferably 10 W / mK or more.

上述のように、窒化アルミニウム粒子夫々の表面は溶射過程で若干酸化することで溶融して隣接粒子と結合している。図3に、本発明で用いられる窒化アルミニウム溶射膜のX線回折チャートの一例を示す。六方晶の窒化アルミニウムの(100)面(2θ:33.256°)がメインピーク31で、その他の相としてγ酸化アルミニウムの(400)面(2θ:45.789°)のピーク32が見られる。また、プラズマの出力が高いとα酸化アルミニウム(104)面(2θ:35.103°)のピークが発生することがある。強固に粒子同士が結合し、ある程度の熱伝導性を確保するには溶射膜のX線回折ピーク強度において、窒化アルミニウム(100)面のピーク強度に対するγ酸化アルミニウム(400)面とα酸化アルミニウム(104)面のピーク強度の和との比が0.05以上0.2以下であることが好ましい。ここでこの比が0.05未満の場合、窒化アルミニウム粒子同士の結合が弱く、IIIA族及び/又はIIA族化合物を添加して粒子同士の結合を強化した方が良い場合があり、この比が0.2を超えると、熱伝導性が犠牲となる場合がある。   As described above, the surface of each aluminum nitride particle is melted by being slightly oxidized during the thermal spraying process and bonded to adjacent particles. FIG. 3 shows an example of an X-ray diffraction chart of the aluminum nitride sprayed film used in the present invention. The (100) plane (2θ: 33.256 °) of hexagonal aluminum nitride is the main peak 31, and the peak 32 of the (400) plane (2θ: 45.789 °) of γ aluminum oxide is seen as the other phase. . In addition, when the plasma output is high, a peak of the α aluminum oxide (104) plane (2θ: 35.103 °) may occur. In order to firmly bond the particles and ensure a certain degree of thermal conductivity, in the X-ray diffraction peak intensity of the sprayed film, the γ aluminum oxide (400) plane and the α aluminum oxide (with respect to the peak intensity of the aluminum nitride (100) plane) It is preferable that the ratio with the sum of the peak intensity of the 104) plane is 0.05 or more and 0.2 or less. Here, when this ratio is less than 0.05, the bonding between the aluminum nitride particles is weak, and it may be better to add the IIIA group and / or IIA group compound to strengthen the bonding between the particles, and this ratio is If it exceeds 0.2, thermal conductivity may be sacrificed.

本発明の窒化アルミニウム溶射部材は半導体素子などの製造工程におけるCVDなどの成膜装置やプラズマエッチング装置などにおいて、ウエハ基板を保持するための静電チャックや、また、ウエハ基板を加熱するためのヒーターに用いることができる。具体的には図4に示すようにアルミニウム合金、ステンレスなどの金属やアルミニウム−炭化珪素、シリコン−炭化珪素などの金属セラミックス複合材で構成された基材41に、少なくとも第1の溶射膜42、金属電極層又はヒーター層43、第2の溶射膜44が形成され、第1の溶射膜及び/又は第2の溶射膜が上述した窒化アルミニウム溶射膜、又は窒化アルミニウム粒子とIIIA族及び/又はIIA族化合物とからなる溶射膜である。   The aluminum nitride sprayed member of the present invention is an electrostatic chuck for holding a wafer substrate or a heater for heating the wafer substrate in a film forming apparatus such as CVD or a plasma etching apparatus in a manufacturing process of a semiconductor element or the like. Can be used. Specifically, as shown in FIG. 4, at least a first sprayed film 42 is formed on a base material 41 made of a metal ceramic composite material such as an aluminum alloy, a metal such as stainless steel, or aluminum-silicon carbide or silicon-silicon carbide. The metal electrode layer or heater layer 43 and the second sprayed film 44 are formed, and the first sprayed film and / or the second sprayed film is the above-described aluminum nitride sprayed film, or the aluminum nitride particles and the group IIIA and / or IIA. It is a sprayed film made of a group compound.

本発明の窒化アルミニウム溶射部材は、また、半導体素子などの製造工程におけるCVDなどの成膜装置、プラズマエッチング装置、プラズマクリーニング装置、アッシング装置などの装置内部の部材としてプラズマにさらされる部分に前記窒化アルミニウム溶射膜を形成して用いることができる。   The aluminum nitride sprayed member of the present invention is also formed by nitriding a portion exposed to plasma as a member inside a film forming apparatus such as CVD, a plasma etching apparatus, a plasma cleaning apparatus, an ashing apparatus or the like in a manufacturing process of a semiconductor element or the like. An aluminum sprayed film can be formed and used.

上記プラズマにさらされる部分に用いる前記窒化アルミニウム溶射膜を形成した部材の好適な例としては、ドーム(ベルジャー)、シリンダー、又はリングが挙げられ、該窒化アルミニウム溶射膜の表面粗さRaは1μm以上15μm以下が好ましい。これらの部品は部材表面がプラズマにより腐食されるだけでなく、ウエハをエッチング、クリーニング、或いはアッシングすることにより、部材表面に堆積膜が付着し、それにプラズマが当たることで発塵となる。窒化アルミニウム溶射膜の算術平均粗さRaを1μm以上とすることで堆積膜の付着性が高まる。また、プラズマが当たることにより堆積膜に熱負荷がかかるが、高熱伝導の窒化アルミニウム溶射膜に放つことで温度変化が緩和される。これらにより発塵を低減することができる。ここで、算術平均粗さRaが15μmを超える場合、基材の算術平均粗さを窒化アルミニウム溶射膜で被覆するために必要な溶射膜厚が厚くなり、生産性が低下することがある。これらの部品の基材は、上述の熱伝導が高い材料の他に、チタン、或いは絶縁性が高い石英ガラス、セラミックなどを用いることができる。なお、部材の外側から内側へ誘導結合で高周波を導入するには絶縁性が高い基材を用いる。   As a suitable example of the member on which the aluminum nitride sprayed film used for the portion exposed to the plasma is formed, a dome (bell jar), a cylinder, or a ring can be cited, and the surface roughness Ra of the aluminum nitride sprayed film is 1 μm or more. It is preferably 15 μm or less. In these parts, not only the surface of the member is corroded by plasma, but also the wafer is etched, cleaned, or ashed, so that a deposited film adheres to the surface of the member, and dust is generated when it hits the plasma. Adhesiveness of the deposited film is increased by setting the arithmetic average roughness Ra of the aluminum nitride sprayed film to 1 μm or more. In addition, although a thermal load is applied to the deposited film by being exposed to plasma, the temperature change is mitigated by releasing the deposited film on a high thermal conductivity aluminum nitride sprayed film. By these, dust generation can be reduced. Here, when the arithmetic average roughness Ra exceeds 15 μm, the sprayed film thickness necessary for coating the arithmetic average roughness of the substrate with the aluminum nitride sprayed film becomes thick, and the productivity may be lowered. As the base material of these components, titanium, quartz glass having high insulating properties, ceramics, or the like can be used in addition to the above-described material having high heat conduction. In order to introduce high frequency by inductive coupling from the outside to the inside of the member, a highly insulating base material is used.

本発明の窒化アルミニウム溶射部材は、さらに、パワーデバイスの放熱絶縁基板として用いることができる。その場合、図5に示すように基材が金属放熱基板51であり、その上に窒化アルミニウム溶射膜52が形成されている。基材としては、熱伝導率が100W/mK以上のアルミニウム、モリブデン、銅などの金属や、銅―モリブデン、アルミニウム―シリコンなどの複合金属や合金、アルミニウム―炭化珪素、シリコン―炭化珪素などの金属セラミックス複合材を用いることができる。窒化アルミニウム溶射膜52は熱伝導率10W/mK以上であることが好ましい。窒化アルミニウム溶射膜52はその上にパワーデバイス55を載せるため表面は研磨されており、その上に半田54を載せてパワーデバイス55と接合するため、銅やニッケルなどの金属53がメッキ又は溶射されている。   The aluminum nitride sprayed member of the present invention can be further used as a heat dissipation insulating substrate for power devices. In that case, as shown in FIG. 5, the base material is a metal heat dissipation substrate 51, and an aluminum nitride sprayed film 52 is formed thereon. Base materials include metals such as aluminum, molybdenum, and copper with thermal conductivity of 100 W / mK or more, composite metals and alloys such as copper-molybdenum and aluminum-silicon, and metals such as aluminum-silicon carbide and silicon-silicon carbide. Ceramic composite materials can be used. The aluminum nitride sprayed film 52 preferably has a thermal conductivity of 10 W / mK or more. The surface of the aluminum nitride sprayed film 52 is polished to place the power device 55 thereon, and the solder 54 is placed on the aluminum nitride sprayed film 52 to join the power device 55, so that a metal 53 such as copper or nickel is plated or sprayed. ing.

さらに、本発明の窒化アルミニウム溶射部材においては、窒化アルミニウム溶射膜に存在する気孔を封孔しているものも使用することが出来る。本発明でいう封孔とは、溶射膜中の気孔が何らかの封孔剤で埋まっている状態を指し、封孔剤としては、例えば、エポキシ系、アクリル系、シリコン系、フッ素系等の熱硬化型や室温硬化型の樹脂や、ポリシラザンやアルミニウム、イットリウムの有機金属等で構成される無機酸化物系コーティング剤を使用することが出来る。   Furthermore, in the aluminum nitride sprayed member of the present invention, it is possible to use a member sealing pores present in the aluminum nitride sprayed film. The sealing referred to in the present invention refers to a state in which pores in the sprayed film are filled with some sealing agent, and examples of the sealing agent include thermosetting such as epoxy, acrylic, silicon, and fluorine. An inorganic oxide coating agent composed of a mold, a room temperature curable resin, polysilazane, aluminum, an organic metal of yttrium, or the like can be used.

封孔の方法としては、例えば、溶射膜表面に封孔剤を塗布した後に硬化させる方法や、溶射膜を真空中で液状の封孔剤に浸漬させた後に硬化させる方法等を挙げることが出来る。封孔することにより、窒化アルミニウム溶射膜の強度や、熱伝導率、後述する絶縁耐圧等の溶射膜の特性が向上する。   Examples of the sealing method include a method of curing after applying a sealing agent to the surface of the sprayed film, and a method of curing after spraying the sprayed film in a liquid sealing agent in a vacuum. . By sealing, the properties of the sprayed film such as the strength, thermal conductivity, and dielectric strength voltage described later are improved.

本発明の窒化アルミニウム溶射部材は、窒化アルミニウム溶射膜の絶縁耐圧が0.15MV/cm以上であることが好ましく、0.2MV/cm以上であることがより好ましい。絶縁耐圧が0.15MV/cmより低いとパワーデバイスの放熱絶縁基板やプラズマ処理装置の部材で使用する場合に窒化アルミニウム溶射膜を厚くつける必要があり、基材への放熱が低下することがある。窒化アルミニウム溶射膜の絶縁耐圧を向上する方法としては、溶射膜の密度を向上することや、封孔をすることを挙げることが出来る。   In the aluminum nitride sprayed member of the present invention, the withstand voltage of the aluminum nitride sprayed film is preferably 0.15 MV / cm or more, and more preferably 0.2 MV / cm or more. When the withstand voltage is lower than 0.15 MV / cm, it is necessary to thicken the aluminum nitride sprayed film when used as a heat dissipation insulating substrate of a power device or a member of a plasma processing apparatus, and heat dissipation to the substrate may be reduced. . Examples of a method for improving the withstand voltage of the aluminum nitride sprayed film include improving the density of the sprayed film and sealing.

本発明の窒化アルミニウム溶射部材の製造方法は、例えば、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末を溶射装置に供給し、基材直前における窒化アルミニウム粒子の平均温度が2200℃以上、2280℃以下、平均飛行速度が400m/s以上600m/s以下となる条件の大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することで製造することができる。この窒化アルミニウム粉末の溶射時の温度や速度は、例えばカナダのTECNAR社製、商品名「DPV−2000」を用いて測定することができる。DPV−2000においては、溶射粒子温度は粒子の発光を2色温度計によって計測し、粒子の飛行速度は発光している粒子がセンサーを通過する時間から計測する。この粒子の温度が2200℃未満では溶射膜の堆積効率が低くなり、また、膜の基材への付着が弱くなることがあり、2280℃を超えると窒化アルミニウムの酸化、分解が促進される。   In the method for producing an aluminum nitride sprayed member of the present invention, for example, an aluminum nitride powder having an average particle diameter of 1 μm or more and 10 μm or less is supplied to a thermal spraying apparatus, and the average temperature of the aluminum nitride particles immediately before the substrate is 2200 ° C. or more and 2280 ° C. Hereinafter, it can be manufactured by forming an aluminum nitride sprayed film on a base material by atmospheric pressure plasma spraying under conditions where the average flight speed is 400 m / s or more and 600 m / s or less. The temperature and speed at the time of thermal spraying of the aluminum nitride powder can be measured using, for example, a product name “DPV-2000” manufactured by TECNAR of Canada. In DPV-2000, the sprayed particle temperature is measured by measuring the emission of the particles with a two-color thermometer, and the flight speed of the particles is measured from the time when the emitted particles pass through the sensor. When the temperature of the particles is less than 2200 ° C., the deposition efficiency of the sprayed film is low, and adhesion of the film to the substrate may be weakened. When the temperature exceeds 2280 ° C., oxidation and decomposition of aluminum nitride are promoted.

本発明の窒化アルミニウム溶射部材において、窒化アルミニウム粒子間の間隙をIIIA族及び/又はIIA族化合物粒子で埋めるためには、例えば、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末と、平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物とを一緒に溶射装置に供給し、基材直前における熔融粒子の平均温度が2200℃以上、2280℃以下、平均行速度が400m/s以上600m/s以下となる条件の大気圧プラズマ溶射することにより、得ることができる。   In the aluminum nitride sprayed member of the present invention, in order to fill the gap between aluminum nitride particles with group IIIA and / or group IIA compound particles, for example, an aluminum nitride powder having an average particle size of 1 μm to 10 μm, and an average particle size Is supplied together with a Group IIIA and / or Group IIA compound of 1 μm or more and 10 μm or less to the thermal spraying apparatus, the average temperature of the molten particles immediately before the substrate is 2200 ° C. or more and 2280 ° C. or less, and the average line speed is 400 m / s or more It can be obtained by atmospheric pressure plasma spraying under conditions of 600 m / s or less.

本発明で用いる溶射原料粉末の平均粒径とは、レーザー回折法にて測定した平均粒径や、粉末をSEM観察した写真の粉末の平均の直径として1〜10μmが好ましく、更に好ましくは2〜8μmである。平均粒径が10μmよりも大きい粉末を用いると、先に述べたように融点が高い窒化物粉末が溶融せずに溶射膜が堆積しないことがある。また、平均粒径が1μmよりも小さいと、基材に衝突する速度が下がり、付着性が悪くなることや、酸化が促進されるため、窒化アルミニウムの割合が低下することがある。なお、一般にセラミックは融点が高くしかも熱伝導率が低いため、均一な溶融状態が得られにくいので金属粉末に比べて細かめの粒度の粉末が用いられるが、細かすぎると、溶射フレーム中の最適位置への投入が難しい・送給時にトラブルを生じやすい等の問題が生ずるため、通常のプラズマで、平均粒径30〜50μm、高出力高能率の水安定化プラズマの場合で〜100μm程度の粉末が用いられる(例えば、沖幸男ら、日本溶射協会編「溶射技術入門」(2006)第191〜192頁参照)。これに対して、本発明で用いる原料粉末の平均粒径は従前に比べて、かなり微細なものとなっている。このような微細な粉末の供給は、例えば表面倣い式を用いるテクノサーブ社製、商品名「AM−30」や容量式を用いるドイツサーミコ社製、商品名「CPF−2HP」を使用することで達成できる。   The average particle diameter of the thermal spray raw material powder used in the present invention is preferably 1 to 10 μm, more preferably 2 to 2 as an average particle diameter measured by a laser diffraction method or an average diameter of a powder obtained by SEM observation of the powder. 8 μm. When a powder having an average particle size larger than 10 μm is used, as described above, the nitride powder having a high melting point may not melt and the sprayed film may not be deposited. On the other hand, when the average particle size is smaller than 1 μm, the rate of collision with the substrate is decreased, the adhesion is deteriorated, and the oxidation is promoted, so that the ratio of aluminum nitride may be decreased. In general, ceramics have a high melting point and low thermal conductivity, so it is difficult to obtain a uniform molten state, so finer-grained powder is used compared to metal powder. It is difficult to throw into the position, and problems such as troubles are likely to occur during feeding. Therefore, with normal plasma, powder with an average particle size of 30-50 μm and high-power high-efficiency water-stabilized plasma of about 100 μm (For example, see Yukio Oki et al., Japan Thermal Spray Association, “Introduction to Thermal Spray Technology” (2006), pages 191 to 192). On the other hand, the average particle diameter of the raw material powder used in the present invention is considerably finer than before. The supply of such fine powder is achieved by using, for example, a product of “TechnoServ” using a surface scanning method, a product name “AM-30”, a product of German Thermico using a capacitance method, and a product name “CPF-2HP”. it can.

本発明で用いる溶射膜形成方法としてはプラズマ溶射であることが好ましい。特に、高出力・高ガス流量のプラズマによって溶射することが好ましい。高出力とは、50kW以上、高ガス流量とは120SLM(Standard Litter Per Minute)以上のプラズマを挙げることが出来る。出力・ガス流量を上げる事の効果は定かではないが、ガス流量を上げる事で、窒化物粉末がプラズマに滞在する時間が短くなり、酸化・分解が抑制されるものと考えられる。通常、ガス流量を増加させると、粉末が溶融しないために溶射膜が堆積しにくいが、プラズマの出力を増加させることで、粉末表面に溶融層が形成されると考える。   The thermal spray film forming method used in the present invention is preferably plasma spraying. In particular, it is preferable to perform thermal spraying with plasma having a high output and a high gas flow rate. Examples of the high output include plasma of 50 kW or more, and the high gas flow rate of 120 SLM (Standard Litter Per Minute) or more. Although the effect of increasing the output and gas flow rate is not clear, it is considered that increasing the gas flow rate shortens the time that the nitride powder stays in the plasma and suppresses oxidation and decomposition. Usually, when the gas flow rate is increased, the powder is not melted, so that the sprayed film is hard to be deposited. However, it is considered that the molten layer is formed on the powder surface by increasing the plasma output.

また、本発明の製造方法において、原料粉末の溶射ガンへの供給としては、プラズマ内部へ供給する方式であることが好ましい。プラズマ内部への粉末を供給する方式の溶射ガンとしては、例えば、カナダNorthwest Mettech社製の商品名「Axial III」が挙げられる。この溶射ガンでは、3個のプラズマ電極が溶射粉末供給ノズルの周囲に120度の間隔で配置されていることから、プラズマ中心に溶射粉末が投入されるため、プラズマがNやH等の還元雰囲気である場合には、溶射粉末が酸素に触れることによる酸化を防ぐことも出来る。 In the production method of the present invention, the supply of the raw material powder to the spray gun is preferably a method of supplying the inside of the plasma. As a spray gun of a system for supplying powder into the plasma, for example, trade name “Axial III” manufactured by Northwest Mettech, Canada can be mentioned. In this spray gun, since the three plasma electrodes are arranged at intervals of 120 degrees around the spray powder supply nozzle, since the spray powder is introduced into the plasma center, the plasma is N 2 or H 2, etc. In the case of a reducing atmosphere, the thermal spraying powder can also prevent oxidation due to contact with oxygen.

図6にプラズマ内部への粉末供給方式のプラズマ溶射装置の一例の概念図を示す。プラズマ溶射装置は3つのアノード61とカソード60との間に流れたプラズマガス62がアーク放電にすることによって形成されるプラズマジェットをコンバージェンス64で集合させる。この集合したプラズマジェットを熱源として、その中央に溶射粉末63が投入されて溶融し、溶融した溶射粉末はプラズマガスの流速で基材66にぶつかり堆積するものである。   FIG. 6 shows a conceptual diagram of an example of a plasma spraying apparatus of a powder supply system into the plasma. In the plasma spraying apparatus, a plasma jet 62 formed between the three anodes 61 and the cathode 60 by arc discharge is collected by a convergence 64. Using the assembled plasma jet as a heat source, the sprayed powder 63 is introduced into the center and melted, and the melted sprayed powder collides with the base material 66 at the flow rate of the plasma gas.

本発明の製造方法において、溶射膜形成の際の溶射ガスとしては、N、Ar等不活性ガスあるいはH等還元性ガスを用いることができる。溶射ガス中に酸素が存在すると溶射原料粉末中の窒素が溶射中に酸化されて、溶射膜の窒素含有量が大きく低下するため、溶射ガス中の酸素濃度はできる限り低い方が好ましいが、大気中で窒化物粉末を溶射する際、溶射の出力を上げることで、高温になって飛行する溶射粉末や、堆積後の溶射粉末の表面の少量が酸化物に変化し、この酸化物が窒化物同士をつなげる役割になることも考えられる。溶射膜中の窒化物の存在とその量は、溶射膜表面をX線回折法によって確認可能であり、溶射膜中の窒素量は、EPMAによって測定することが可能である。また、溶射膜中のIIIA族及び/又はIIA族の量は、蛍光X線分析等を行うことで測定可能である。 In the production method of the present invention, an inert gas such as N 2 or Ar or a reducing gas such as H 2 can be used as the spray gas in forming the sprayed film. If oxygen is present in the thermal spray gas, the nitrogen in the thermal spray raw material powder is oxidized during thermal spraying, and the nitrogen content of the thermal spray film is greatly reduced. Therefore, the oxygen concentration in the thermal spray gas is preferably as low as possible. When spraying nitride powder in it, by increasing the power of spraying, a small amount of the surface of the sprayed powder that flies at high temperature and the sprayed powder after deposition changes to oxide, and this oxide is converted into nitride. It can also be a role to connect each other. The presence and amount of nitride in the sprayed film can be confirmed on the surface of the sprayed film by X-ray diffraction, and the amount of nitrogen in the sprayed film can be measured by EPMA. Further, the amount of group IIIA and / or group IIA in the sprayed film can be measured by performing fluorescent X-ray analysis or the like.

本発明の製造方法において、常圧下での溶射ガン先端と基板との間の距離である溶射距離は、40〜150mmが好ましい。溶射距離が150mmをこえると基板に溶射粉末が付着するまでに冷却されてしまい、基板上に溶射膜が堆積されない場合があり、溶射距離が40mmより短いと基材、溶射膜両方の温度が上昇してしまい、溶射膜や基材の割れの原因や、溶射膜中の窒素含有量が低下する場合がある。   In the production method of the present invention, the spray distance, which is the distance between the tip of the spray gun and the substrate under normal pressure, is preferably 40 to 150 mm. If the spraying distance exceeds 150 mm, the sprayed powder will be cooled until it adheres to the substrate, and the sprayed film may not be deposited on the substrate. If the spraying distance is shorter than 40 mm, the temperature of both the substrate and the sprayed film will rise. Therefore, the cause of cracking of the sprayed film and the base material and the nitrogen content in the sprayed film may be reduced.

更に、溶射フレームを基材に溶射する際の投入する溶射パワーは用いる装置によっても異なるが、例えば図6に示すようなプラズマ溶射装置の場合、溶射パワーとして、50kW以上150kW以下を例示することができる。   Furthermore, although the spraying power to be charged when spraying the spray frame on the base material varies depending on the apparatus to be used, for example, in the case of a plasma spraying apparatus as shown in FIG. 6, the spraying power may be 50 kW or more and 150 kW or less. it can.

上記においては、高出力・高ガス流量のプラズマ溶射法によって本発明の窒化アルミニウム溶射部材を得ることを説明したが、次いで、高出力・高ガス流量によらない、他のプラズマ溶射法により、本発明の窒化アルミニウム溶射部材を得る製造方法を以下に示す。   In the above description, it has been described that the aluminum nitride sprayed member of the present invention is obtained by a plasma spraying method with a high output and a high gas flow rate. A manufacturing method for obtaining the aluminum nitride sprayed member of the invention will be described below.

即ち、(1)平均粒径が1μm以上10μm以下の窒化アルミニウム粉末及び当該窒化アルミニウム粉末の重量に対して、0.1〜5wt%の潤滑剤を添加した混合粉末、又は平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末、及びこれらの粉末の合計重量に対して、0.1〜5wt%の潤滑剤を添加した混合粉末を溶射粉末として溶射装置に供給し、大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成する方法、又は、
(2)平均粒径が1μm以上10μm以下の窒化アルミニウム粉末、又は平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末と平均粒径が1μm以上10μm以下の窒化アルミニウム粉末との混合粉末を溶射ガンのプラズマ出口の外側に、プラズマジェットに垂直に2ヵ所以上で対向して供給し、溶射距離が40mm以上70mm以下となる条件で大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成する方法に係るものである。
That is, (1) an aluminum nitride powder having an average particle diameter of 1 μm or more and 10 μm or less and a mixed powder in which a lubricant of 0.1 to 5 wt% is added to the weight of the aluminum nitride powder, or an average particle diameter of 1 μm or more Group IIIA and / or Group IIA compound powder of 10 μm or less, aluminum nitride powder having an average particle diameter of 1 μm or more and 10 μm or less, and mixing in which 0.1 to 5 wt% of lubricant is added to the total weight of these powders A method of supplying powder to a thermal spraying apparatus as a thermal spray powder and forming an aluminum nitride sprayed film on a substrate by atmospheric pressure plasma spraying, or
(2) An aluminum nitride powder having an average particle size of 1 μm to 10 μm, or a group IIIA and / or IIA compound powder having an average particle size of 1 μm to 10 μm and an aluminum nitride powder having an average particle size of 1 μm to 10 μm The mixed powder is supplied to the outside of the plasma outlet of the spray gun at two or more locations perpendicular to the plasma jet, and the base material is an aluminum nitride sprayed film by atmospheric pressure plasma spraying under the condition that the spraying distance is 40 mm or more and 70 mm or less. It relates to the method of forming above.

まず、(1)の製造方法においては、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末及び当該窒化アルミニウム粉末の重量に対して、0.1〜5wt%の潤滑剤を添加した混合粉末、又は平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末、及びこれらの粉末の合計重量に対して、0.1〜5wt%の潤滑剤を添加した混合粉末を溶射粉末として使用することに特徴がある。   First, in the production method (1), an average particle diameter of 1 μm or more and 10 μm or less of an aluminum nitride powder and a mixed powder in which a lubricant of 0.1 to 5 wt% is added to the weight of the aluminum nitride powder, or Group IIIA and / or Group IIA compound powder having an average particle size of 1 μm to 10 μm, aluminum nitride powder having an average particle size of 1 μm to 10 μm, and 0.1 to 5 wt% of the total weight of these powders It is characterized in that a mixed powder to which a lubricant is added is used as a thermal spray powder.

潤滑剤としては、例えば、ステアリン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸やパラフィンなどが挙げられる。これら潤滑剤を溶射原料粉末に添加することにより、高ガス流量で溶射原料粉末を溶射装置に送給することなく溶射が可能となり、また溶射原料粉末が送給中に詰まることや供給量の変動等のトラブルが減少するとの効果が生じる。この効果の原理としては、粉末表面に存在する潤滑剤が粉末同士の摩擦を少なくさせるためと考えられる。   Examples of the lubricant include saturated fatty acids such as stearic acid, behenic acid, and lignoceric acid, and paraffin. By adding these lubricants to the thermal spraying raw material powder, it becomes possible to spray the thermal spraying raw material powder at a high gas flow rate without feeding it to the thermal spraying device. The effect of reducing such troubles occurs. The principle of this effect is considered that the lubricant present on the powder surface reduces friction between the powders.

潤滑剤の量としては、窒化アルミニウム粉末を溶射粉末として単独で用いる場合には、窒化アルミニウム粉末重量の0.1〜5wt%の量を、窒化アルミニウム粉末とIIIA族及び/又はIIA族化合物との混合粉末を溶射粉末として用いる場合には、混合粉末重量の0.1〜5wt%の量を添加することが好ましい。潤滑剤の添加量が0.1wt%より少ないと潤滑効果が少なくなるために、送給トラブルが発生し易くなり、5wt%よりも多いと潤滑剤が溶射膜に残留するために溶射膜の膜質が低下するおそれがある。   As the amount of the lubricant, when the aluminum nitride powder is used alone as the spray powder, the amount of the aluminum nitride powder is 0.1 to 5 wt% of the weight of the aluminum nitride powder and the group IIIA and / or group IIA compound. When the mixed powder is used as the thermal spray powder, it is preferable to add an amount of 0.1 to 5 wt% of the mixed powder weight. If the addition amount of the lubricant is less than 0.1 wt%, the lubrication effect is reduced, so that a supply trouble is likely to occur, and if it is more than 5 wt%, the lubricant remains in the sprayed film, so that the film quality of the sprayed film is increased. May decrease.

窒化アルミニウム粉末に潤滑剤を添加する方法や、窒化アルミニウム粉末とIIIA族及び/又はIIA族化合物との混合粉末に潤滑剤を添加する方法としては、例えば、それぞれの粉末と潤滑剤の混合物に乾式や湿式のボールミル行うことが挙げられる。   As a method of adding a lubricant to aluminum nitride powder and a method of adding a lubricant to a mixed powder of aluminum nitride powder and a group IIIA and / or group IIA compound, for example, a dry process is applied to each powder and lubricant mixture. Or wet ball milling.

このように調製した溶射原料粉末は、流動性が向上したことで、通常のディスク式供給機(例えばスルザーメテコ製の商品名「Twin−120A」やPraxair社製の商品名「1264Powder Feeder」)、振動式供給機(例えばエアロプラズマ社製の商品名「UF−7050」)、流動床式供給機(例えばスルザーメテコ社製の商品名「4MP」や「5MPE」、「9MP」)等を用いて、高出力・高ガス流量をなし得ない溶射装置に供給して、本発明の窒化アルミニウム部材を製造することが可能となった。   The thermal spray raw material powder thus prepared has improved fluidity, so that a normal disk type feeder (for example, trade name “Twin-120A” made by Sulzer Metco or trade name “1264 Powder Feeder” made by Praxair), vibration Using a type feeder (for example, trade name “UF-7050” manufactured by Aeroplasma), a fluidized bed type feeder (for example, trade names “4MP”, “5MPE”, “9MP” manufactured by Sulzer Metco) It became possible to manufacture the aluminum nitride member of the present invention by supplying it to a thermal spraying apparatus that cannot produce an output and a high gas flow rate.

一方、(2)の製造方法においては、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末、又は平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末と平均粒径が1μm以上10μm以下の窒化アルミニウム粉末との混合粉末を、溶射ガンのプラズマ出口の外側に、プラズマジェットに垂直に2ヵ所以上で対向して供給し、溶射距離が40mm以上70mm以下となる条件で大気圧プラズマ溶射することを特徴とする。   On the other hand, in the production method (2), the average particle size is 1 μm or more and 10 μm or less of the aluminum nitride powder, or the average particle size of 1 μm or more and 10 μm or less of the group IIIA and / or IIA group compound powder and the average particle size of 1 μm or more. A mixed powder of aluminum nitride powder of 10 μm or less is supplied to the outside of the spray gun plasma outlet at two or more locations perpendicular to the plasma jet, and atmospheric pressure plasma is applied under the condition that the spray distance is 40 mm or more and 70 mm or less. It is characterized by spraying.

窒化アルミニウム粉末、又はIIIA族及び/又はIIA族化合物粉末と窒化アルミニウム粉末との混合粉末を、溶射ガンのプラズマ出口の外側に、プラズマジェットに垂直に2ヵ所以上で対向して供給している状態の一例を図12に示す。溶射原料粉末(121)を粉末供給機(122)により、He等の不活性ガス(123)を用いて供給する。途中で二股に分岐する(124)か、若しくは2台の供給機を用いて、プラズマジェット部分(125)に垂直に2ヵ所(図12の場合)で対向して、供給する。このような溶射装置としては、例えば、Praxair社製の商品名「SG−100」やスルザーメテコ社製の商品名「9MB」、「F4」、「Triplex」等の溶射装置を挙げることができる。   A state in which aluminum nitride powder, or a mixed powder of group IIIA and / or group IIA compound powder and aluminum nitride powder is supplied to the outside of the plasma outlet of the thermal spray gun at two or more locations perpendicular to the plasma jet. An example is shown in FIG. The thermal spray raw material powder (121) is supplied using an inert gas (123) such as He by a powder feeder (122). It is bifurcated on the way (124), or is supplied by using two feeders so as to face the plasma jet part (125) at two positions (in the case of FIG. 12). Examples of such a thermal spraying apparatus include thermal spraying apparatuses such as the trade name “SG-100” manufactured by Praxair, and the product names “9MB”, “F4”, and “Triplex” manufactured by Sulzer Metco.

溶融原料粉末を供給するためのHe等の不活性ガスの供給量は5〜30SLMであることが好ましい。不活性ガスの供給量が5SLMより低いと細かい粉末が流れにくくなり、30SLMよりも高いとプラズマジェットを弱めてしまい、溶射膜の付着量が減少することや膜質の低下が発生することがある。また、2ヶ所以上で対向して供給する理由としては、対向せず、プラズマに対して一方向のみから粉末を供給すると、粉末がプラズマを突き抜けてしまうことがあるが、対向とすることで粉末がプラズマ、特にその中心に入り易くなるためである。   The supply amount of an inert gas such as He for supplying the molten raw material powder is preferably 5 to 30 SLM. If the supply amount of the inert gas is lower than 5 SLM, it is difficult for fine powder to flow, and if it is higher than 30 SLM, the plasma jet is weakened, and the amount of deposited sprayed film may decrease or the film quality may deteriorate. In addition, the reason for supplying oppositely at two or more locations is that if the powder is supplied only from one direction with respect to the plasma, the powder may penetrate the plasma. This is because it becomes easier to enter the plasma, particularly the center thereof.

そして、溶射距離としては、40〜70mmとすることが好ましい。溶射距離が70mmをこえると基板に溶射粉末が付着するまでに冷却されてしまい、基板上に溶射膜が堆積されない場合があり、溶射距離が40mmより短いと基材、溶射膜両方の温度が上昇してしまい、溶射膜や基材の割れの原因や、溶射膜中の窒素含有量の低下や組成の変化が発生する場合がある。   And as a spraying distance, it is preferable to set it as 40-70 mm. When the spraying distance exceeds 70 mm, the sprayed powder is cooled until it adheres to the substrate, and the sprayed film may not be deposited on the substrate. When the spraying distance is shorter than 40 mm, the temperature of both the base material and the sprayed film rises. As a result, cracking of the sprayed film and the substrate, a decrease in nitrogen content in the sprayed film, and a change in composition may occur.

又、これら溶射装置で溶射膜形成の際の溶射ガスとしては、例えば、主ガスとして、Ar及び/又はN、副ガスとして、Hを用いることが好ましい。Hを用いることでプラズマの熱量とプラズマジェットの速度を上昇させ、さらに溶射距離を40〜70mmとすることで、飛行する溶射粉末や堆積後の溶射粉末の表面が高温になり、その一部が酸化物に変化し、この酸化物が窒化物同士をつなげる役割を果たすものと考えられる。主ガスであるAr及び/又はNと副ガスであるHのガス流量としては、溶射装置によって多少異なるが、それぞれ60SLM以上、1〜15SLMが好ましい。 Moreover, as a spraying gas at the time of forming a sprayed film with these spraying apparatuses, it is preferable to use, for example, Ar and / or N 2 as the main gas and H 2 as the auxiliary gas. By using H 2 , the amount of heat of plasma and the speed of the plasma jet are increased, and further, the spraying distance is set to 40 to 70 mm, so that the surface of the sprayed powder to fly and the sprayed powder after deposition become high temperature. Is converted to an oxide, and this oxide is considered to play a role of connecting nitrides. The gas flow rates of Ar and / or N 2 as the main gas and H 2 as the sub gas vary somewhat depending on the thermal spraying apparatus, but are preferably 60 SLM or more and 1 to 15 SLM, respectively.

なお、潤滑剤を含有した溶射原料粉末を(2)の発明に適用可能であることはいうまでもない。   Needless to say, the thermal spray raw material powder containing the lubricant can be applied to the invention of (2).

本発明の窒化アルミニウム部材は、窒化アルミニウムの持つ優れた特性を溶射によって部材表面に付与することで、半導体等の製造における静電チャック、ヒーター、プラズマ処理装置チャンバーに使用した際、絶縁性と高い熱伝導性を持ち、ウェハの面内温度分布を均一にすることができるため、安定して処理を行うことができる。また、パワーデバイスの放熱絶縁基板に使用した際、大面積で絶縁層が薄い絶縁基板を容易に提供することができる。   The aluminum nitride member of the present invention imparts excellent properties of aluminum nitride to the surface of the member by thermal spraying, so that when used in an electrostatic chuck, heater, plasma processing apparatus chamber in the manufacture of semiconductors, etc., it has high insulation properties. Since it has thermal conductivity and can make the in-plane temperature distribution of the wafer uniform, processing can be performed stably. In addition, when used as a heat dissipation insulating substrate of a power device, an insulating substrate having a large area and a thin insulating layer can be easily provided.

本発明を実施例に基づき詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。   The present invention will be described in detail based on examples, but the present invention is not limited to these examples.

なお、以下の実施例・比較例における溶射膜を構成する粉末の平均的な直径、気孔率、絶縁耐圧は次のように測定した。
(1)平均的な直径
溶射膜断面のSEMにて1000倍の倍率で観察による観察した画像から、観察可能な個々の粒子の直径を計測し、その平均値を求めた。
(2)気孔率
溶射膜断面をSEMにて1000倍の倍率で観察した画像から、気孔部分をトレースした。このトレースした気孔部分の面積をナノシステム社製品名「ナノハンター」を用いて計測した。また、気孔を含む溶射膜全体の面積も測定し、気孔部分の面積を溶射膜の面積で割ることで気孔率を求めた。
(3)絶縁耐圧
図7に示すように、溶射基材としてアルミニウム溶射膜72を100μm堆積させたグラファイト73を用いた窒化アルミニウム溶射膜71の上に直径1cmの電極74を押し付け、グラファイトにも電極をつなぎ、菊水電子工業(株)製、耐電圧試験機商品名「TOS8750」75を用い、DC、1mAの条件で徐々に電圧を5kVまで上昇させて絶縁破壊電圧を測定した。
In addition, the average diameter of the powder which comprises the sprayed film in a following example and a comparative example, the porosity, and the withstand voltage were measured as follows.
(1) Average diameter The diameter of each observable particle | grain was measured from the image observed by observation by 1000-times multiplication factor by SEM of the sprayed film cross section, and the average value was calculated | required.
(2) Porosity The pore portion was traced from an image obtained by observing a cross section of the sprayed film with an SEM at a magnification of 1000 times. The area of the traced pore portion was measured using a product name “Nanohunter” manufactured by Nanosystem. Further, the area of the entire sprayed film including pores was also measured, and the porosity was determined by dividing the area of the pores by the area of the sprayed film.
(3) Dielectric withstand voltage As shown in FIG. 7, an electrode 74 having a diameter of 1 cm is pressed on an aluminum nitride sprayed film 71 using graphite 73 on which an aluminum sprayed film 72 is deposited to a thickness of 100 μm as a spraying base. The dielectric breakdown voltage was measured by gradually increasing the voltage to 5 kV under the conditions of DC and 1 mA using a withstand voltage tester trade name “TOS8750” 75 manufactured by Kikusui Electronics Co., Ltd.

実施例1
東洋アルミニウム(株)製窒化アルミニウム粉末FLC(平均粒径4.2μm)をNorthwest Mettech社製、商品名「Axial III」溶射装置を用いて石英ガラス基材上に溶射を行った。粉末の供給としては、ドイツサーミコ社製、商品名「CPF−2HP」を使用した。
Example 1
An aluminum nitride powder FLC (average particle size of 4.2 μm) manufactured by Toyo Aluminum Co., Ltd. was sprayed onto a quartz glass substrate using a product name “Axial III” spraying apparatus manufactured by Northwest Mettech. As a powder supply, a product name “CPF-2HP” manufactured by German Thermico Co., Ltd. was used.

溶射に用いた石英ガラス基板は、ブラストにより表面粗さRaを5μmとした石英ガラスに対し、5%フッ酸で2時間処理して表面粗さRaを8μmとしたものを使用した。   As the quartz glass substrate used for thermal spraying, a quartz glass having a surface roughness Ra of 5 μm by blasting and treated with 5% hydrofluoric acid for 2 hours to have a surface roughness Ra of 8 μm was used.

このときの溶射条件としては、常圧にて、溶射距離100mm、プラズマパワーを95kW、溶射ガスとしてAr、NとHガス合わせて280SLM流し、上記窒化アルミニウム粉末を15g/分の供給量で流し、溶射ガンを400mm/秒の速度で移動させながら、20パス溶射を行った。この溶射中の粒子の速度、温度をカナダのテクナー社製、商品名「DPV−2000」にて測定したところ、590m/秒、2250℃であった。 The spraying conditions at this time are normal pressure, spraying distance 100 mm, plasma power 95 kW, Ar, N 2 and H 2 gas as spraying gas, 280 SLM, and aluminum nitride powder at a supply rate of 15 g / min. While spraying, the thermal spray gun was moved at a speed of 400 mm / second, and 20-pass thermal spraying was performed. The velocity and temperature of the particles during the thermal spraying were measured with a trade name “DPV-2000” manufactured by Techner of Canada and found to be 590 m / sec and 2250 ° C.

この成膜した溶射膜の膜厚は120μm、表面粗さRaは9μmであり、X線回折法による構成相の解析では、六方晶窒化アルミニウムとγ酸化アルミニウムが観察され、六方晶窒化アルミニウム(100)面とγ酸化アルミニウム(400)面のX線回折のピーク強度比は、0.11であった。また、この溶射膜の断面をSEMによる観察を行ったところ、平均的な直径が4μm程度の球状粒子から構成され、この断面SEM観察を行った画像に対して画像解析法による気孔率を測定したところ、気孔率は27%であった。   The deposited thermal spray film has a film thickness of 120 μm and a surface roughness Ra of 9 μm. In the analysis of the constituent phases by the X-ray diffraction method, hexagonal aluminum nitride and γ aluminum oxide are observed, and hexagonal aluminum nitride (100 ) Plane and γ aluminum oxide (400) plane X-ray diffraction peak intensity ratio was 0.11. Further, when the cross section of this sprayed film was observed by SEM, it was composed of spherical particles having an average diameter of about 4 μm, and the porosity of the image subjected to the cross section SEM observation was measured by an image analysis method. However, the porosity was 27%.

実施例2
溶射条件として、プラズマガス流量を100〜280L/min、出力を60〜130kW、溶射距離を60〜140mmと変化させた以外は実施例1と同様の条件で溶射を行い、飛行中の粉末温度、速度と溶射の膜厚、六方晶窒化アルミニウムのピーク強度比を測定した。図8に示すように、溶射膜の膜厚は飛行中の粉末温度の上昇と共に上昇するが、2280℃を超えると酸化アルミニウムの割合が増え、六方晶窒化アルミニウムの割合が急激に減少した。また、2200℃よりも低いと、溶射膜の堆積が少なかった。
Example 2
Thermal spraying was performed under the same conditions as in Example 1 except that the plasma gas flow rate was changed to 100 to 280 L / min, the output was changed to 60 to 130 kW, and the thermal spray distance was changed to 60 to 140 mm. The velocity, the sprayed film thickness, and the peak intensity ratio of hexagonal aluminum nitride were measured. As shown in FIG. 8, the film thickness of the sprayed film increases with an increase in the powder temperature during the flight, but when the temperature exceeded 2280 ° C., the proportion of aluminum oxide increased and the proportion of hexagonal aluminum nitride decreased rapidly. On the other hand, when the temperature was lower than 2200 ° C., the deposition of the sprayed film was small.

実施例3
溶射基材として表面をブラストした上にアルミニウム溶射膜を100μm堆積させたグラファイトを用い、溶射に用いる粉末として混合比率を変化させた窒化アルミニウム粉末と酸化イットリウム(日本イットリウム製4N、平均粒径4μm)又は酸化マグネシウム(高純度化学製2N、平均粒径4μm)との混合粉末を実施例1と同様の条件で溶射を行った。この溶射膜について、蛍光X線分析によって溶射膜中の酸化イットリウム又は酸化マグネシウムの量を測定し、溶射膜の断面SEM観察した画像を画像解析法によって気孔率を測定し、アルバック理工(株)社製、商品名「LaserPIT」によって熱伝導率の測定を行った。その結果を表1に示す。溶射膜の酸化イットリウムの含有量は7から30重量%、酸化マグネシウムの含有量は8重量%、気孔率は11%から13%、六方晶窒化アルミニウムのピーク強度比は0.11から0.12、熱伝導率は11から46W/mKであった。また、どの溶射膜も平均的な直径が4μm程度の球状粒子から構成されていた。酸化イットリウム含有量7重量%の溶射膜断面のSEM像を図9に示す。また、酸化イットリウム含有量30%の溶射膜断面のEPMAによるAl、N、Yの分布を図10に示す。粒子状のAl、Nの間隙にY濃度が高い部分があり、窒化アルミニウム粒子の間隙に酸化イットリウムが存在していることが確認される。
Example 3
Graphite with a blasted surface and an aluminum sprayed film deposited at 100 μm is used as the thermal spray base, and aluminum nitride powder and yttrium oxide with different mixing ratios as the powder used for thermal spraying (4N, yttrium made in Japan, average particle size 4 μm) Alternatively, a mixed powder with magnesium oxide (2N made by high-purity chemical, average particle size 4 μm) was sprayed under the same conditions as in Example 1. About this sprayed film, the amount of yttrium oxide or magnesium oxide in the sprayed film is measured by fluorescent X-ray analysis, the porosity of the image obtained by observing the cross-sectional SEM of the sprayed film is measured by an image analysis method, and ULVAC-RIKO Co., Ltd. The thermal conductivity was measured by the product name “LaserPIT”. The results are shown in Table 1. The content of yttrium oxide in the sprayed film is 7 to 30% by weight, the content of magnesium oxide is 8% by weight, the porosity is 11% to 13%, and the peak intensity ratio of hexagonal aluminum nitride is 0.11 to 0.12. The thermal conductivity was 11 to 46 W / mK. Each sprayed coating was composed of spherical particles having an average diameter of about 4 μm. FIG. 9 shows an SEM image of a cross section of the sprayed film having an yttrium oxide content of 7% by weight. FIG. 10 shows the distribution of Al, N, and Y by EPMA on the cross section of the sprayed film having an yttrium oxide content of 30%. It is confirmed that there is a portion where the Y concentration is high in the gap between the particulate Al and N, and yttrium oxide is present in the gap between the aluminum nitride particles.

Figure 2009235558
Figure 2009235558

実施例4
図11に示すプラズマクリーニング装置の石英製のベルジャー111及びリング絶縁基台112の表面をブラストして表面粗さを各々、7、6、3μmとした。実施例3と同じ窒化アルミニウム粉末および酸化イットリウム粉末を用いて、酸化イットリウム粉末の混合比率を2wt%として、パス数のみ15とした他は、実施例1と同様の条件で溶射を行い、平均溶射膜厚90μmの窒化アルミニウム溶射部材を得た。ベルジャー111、リング絶縁基台112の表面粗さは各々、8、7、4μmであった。これらの部材とその他の必要な部材を超純水で超音波洗浄し、クリーンオーブンで乾燥後、プラズマクリーニング装置のチャンバーにセットした。
Example 4
Surfaces of the quartz bell jar 111 and the ring insulating base 112 of the plasma cleaning apparatus shown in FIG. 11 were blasted to 7, 6, and 3 μm, respectively. Using the same aluminum nitride powder and yttrium oxide powder as in Example 3, the mixture ratio of yttrium oxide powder was set to 2 wt%, and only the number of passes was set to 15, and thermal spraying was performed under the same conditions as in Example 1 to obtain an average spray. An aluminum nitride sprayed member having a thickness of 90 μm was obtained. The surface roughness of the bell jar 111 and the ring insulating base 112 was 8, 7, and 4 μm, respectively. These members and other necessary members were ultrasonically cleaned with ultrapure water, dried in a clean oven, and set in a chamber of a plasma cleaning apparatus.

実施例5
基材として、アルミニウム−炭化珪素複合体である電気化学工業株式会社製の商品名「アルシンクA−SC60」を用意し、その表面に表1の酸化イットリウム含有量7wt%の窒化アルミニウム溶射膜を実施例1と同様の条件で作製した。
Example 5
As a base material, a trade name “Alsink A-SC60” manufactured by Denki Kagaku Kogyo Co., Ltd., which is an aluminum-silicon carbide composite, is prepared, and an aluminum nitride sprayed film having an yttrium oxide content of 7 wt% shown in Table 1 is applied to the surface. It was produced under the same conditions as in Example 1.

この窒化アルミニウム溶射膜に対する封孔剤として、シリコン系の樹脂でアルコキシシラン化合物で構成される株式会社ディ・アンド・ディ社製、商品名「パーミエイトHS−100クリア」、エポキシ系樹脂と硬化剤であるペルノックス株式会社製、商品名「ペルノックスWE−1263」と「ペルキュアHV−126」との混合物、シリカコート剤であるポリシラザンであるクラリアントジャパン株式会社製、商品名「アクアミカ」を用いて封孔を行った。   As a sealing agent for this aluminum nitride sprayed film, a product name “Permeate HS-100 Clear” manufactured by D & D Co., Ltd., which is composed of an alkoxysilane compound made of silicon resin, an epoxy resin and a curing agent Sealed with a product made by Pernox Co., Ltd., trade name “Pernox WE-1263” and “Percure HV-126”, polysilazane which is a silica coating agent, made by Clariant Japan Co., Ltd., trade name “AQUAMICA” went.

封孔方法としては、パーミエイトHS−100クリアでは真空に引いたサンプルに浸漬させた後に室温放置、ペルノックスWE−1263/ペルキュアHV−126の混合物では真空に引いたサンプルに浸漬させた後に130℃2時間の硬化を行った。アクアミカでは、溶射膜表面にスプレーして乾燥後に150℃、1時間の硬化をし、このスプレーから硬化までのプロセスを2回行った。この封孔前サンプルの気孔率は10%であったが、封孔後はいずれも気孔が無くなっていた。   As for the sealing method, in case of Permeate HS-100 Clear, it was allowed to stand at room temperature after being immersed in a vacuumed sample. Time curing was performed. In AQUAMICA, spraying was performed on the surface of the sprayed film, followed by drying and curing at 150 ° C. for 1 hour, and the process from spraying to curing was performed twice. The porosity of this pre-sealing sample was 10%, but the pores disappeared after sealing.

この封孔を行った窒化アルミニウム溶射膜と無封孔の窒化アルミニウム溶射膜に対して、表面を研磨して窒化アルミニウム溶射膜の膜厚を200μmとした後、絶縁耐圧のテストを実施した。絶縁耐圧試験機の性能が5kVまでであったが、封孔を行ったサンプルは全て5kVを超え、0.25MV/cm以上であった。無封孔の窒化アルミニウム溶射膜の絶縁耐圧は0.16MV/cmであった。   The sealed aluminum nitride sprayed film and the non-sealed aluminum nitride sprayed film were polished to have a film thickness of 200 μm, and then the dielectric strength test was performed. The performance of the dielectric strength tester was up to 5 kV, but all the samples subjected to sealing exceeded 5 kV and were 0.25 MV / cm or more. The insulation breakdown voltage of the non-sealed aluminum nitride sprayed film was 0.16 MV / cm.

実施例6
90wt%の窒化アルミニウム粉末と10wt%の酸化イットリウム(日本イットリウム製4N、平均粒径4μm)との混合粉末に対して、潤滑剤としてステアリン酸を0、0.3、2、4、6wt%添加し、それぞれ乾式のボールミルによって混合した溶射原料粉末を調製し、スルザーメテコ社製の商品名「5MPE」を使用し、フィードガスとしてHeを25L/min流して供給テストを行った。また、実施例1と同様の条件で溶射膜の作成を行った。供給性の評価方法としては、供給中の粉末の流量に変化が無いかの確認(脈動)、粉末の供給の連続性とした。また、溶射膜の外見観察を行った。結果を表2に示す。
Example 6
Adds 0, 0.3, 2, 4, 6 wt% of stearic acid as a lubricant to the mixed powder of 90 wt% aluminum nitride powder and 10 wt% yttrium oxide (4N made in Japan, average particle size 4 μm) Then, thermal spraying raw material powders mixed with a dry ball mill were prepared, and a supply test was performed using a trade name “5MPE” manufactured by Sulzer Metco and flowing He at 25 L / min as a feed gas. Further, a sprayed coating was prepared under the same conditions as in Example 1. As the evaluation method of supplyability, confirmation was made as to whether there was any change in the flow rate of the powder being supplied (pulsation), and continuity of the supply of powder was used. In addition, the appearance of the sprayed film was observed. The results are shown in Table 2.

ステアリン酸を添加した粉末は全て粉末流量に変化無く、供給の連続性も確認でき、10分間以上の供給が可能であった。ステアリン酸無添加の粉末は、時折脈動が見られた。ステアリン酸6wt%添加した粉末を使用した溶射膜は、溶射膜が薄い茶色に着色していた。   All the powders to which stearic acid was added did not change in the powder flow rate, and the continuity of supply could be confirmed, and supply for 10 minutes or more was possible. Occasional pulsations were observed in the powder without the addition of stearic acid. The sprayed film using the powder added with 6 wt% stearic acid had a light brown color.

Figure 2009235558
Figure 2009235558

実施例7
潤滑剤としてパラフィン(融点68〜70℃)を1wt%使用した以外は実施例6と同様の方法で、粉末の供給テストを行った。パラフィンを添加した粉末は粉末流量に変化無く、供給の連続性も確認でき、10分間以上の供給が可能であった。
Example 7
A powder supply test was performed in the same manner as in Example 6 except that 1 wt% of paraffin (melting point: 68 to 70 ° C.) was used as the lubricant. The powder to which paraffin was added did not change in the powder flow rate, and the continuity of supply could be confirmed, and supply for 10 minutes or more was possible.

実施例8
90wt%の窒化アルミニウム粉末と10wt%の酸化イットリウム(日本イットリウム製4N、平均粒径4μm)との混合粉末に対して、ステアリン酸1wt%を添加し、乾式のボールミルによって混合した粉末を溶射原料粉末として、スルザーメテコ社製、商品名「F4」溶射装置を用いて石英ガラス基材上に溶射を行った。粉末の供給としては、スルザーメテコ社製の商品名「5MPE」を使用し、Heガスをフィードガスとして25L/min供給し、上記窒化アルミニウム粉末と酸化イットリウムとステアリン酸の混合粉末を24g/分の供給量で流し、溶射ガン出口に2ヶ所の対向式供給を行った。
Example 8
1 wt% of stearic acid is added to a mixed powder of 90 wt% aluminum nitride powder and 10 wt% yttrium oxide (4N made by Japan yttrium, average particle size 4 μm), and the powder mixed by a dry ball mill is used as a spraying raw material powder As described above, thermal spraying was performed on a quartz glass substrate using a product name “F4” spraying device manufactured by Sulzer Metco. As the supply of powder, the product name “5MPE” manufactured by Sulzer Metco is used, and He gas is supplied as a feed gas at 25 L / min, and the mixed powder of aluminum nitride powder, yttrium oxide and stearic acid is supplied at 24 g / min. The counter flow was supplied at two locations to the spray gun outlet.

溶射条件としては、溶射距離50mm、プラズマガスとして、Ar:60SLM、H:0、5、10、13、15SLMとし、溶射ガンを400mm/秒の速度で移動させながら、20パス溶射を行った。結果を表3に示す。全てのHガス流量で膜は付着したが、0SLMでは膜の付着が弱く、15SLMでは溶射膜表面に突起が発生した。 As spraying conditions, the spraying distance was 50 mm, the plasma gas was Ar: 60 SLM, H 2 : 0, 5, 10, 13, 15 SLM, and 20-pass spraying was performed while moving the spray gun at a speed of 400 mm / sec. . The results are shown in Table 3. Although the film adhered at all H 2 gas flow rates, the film adhesion was weak at 0 SLM, and protrusions occurred on the surface of the sprayed film at 15 SLM.

Figure 2009235558
Figure 2009235558

実施例9
ガス流量を10SLMとし、溶射距離を40〜80mmとした以外は実施例8と同様の条件で溶射を行った。結果を表4に示す。溶射距離80mmでは溶射膜の付着が弱かったが、他は良好であった。
Example 9
Thermal spraying was performed under the same conditions as in Example 8 except that the H 2 gas flow rate was 10 SLM and the thermal spray distance was 40 to 80 mm. The results are shown in Table 4. At a spraying distance of 80 mm, the adhesion of the sprayed film was weak, but the others were good.

Figure 2009235558
Figure 2009235558

比較例1
平均粒径15μmの窒化アルミニウム粉末(東洋アルミニウム(株)製窒化アルミニウム粉末FLX(平均粒径18.1μm))について、実施例1、2と同様の条件で溶射を行ったが、溶射膜は付着しなかった。
Comparative Example 1
An aluminum nitride powder having an average particle size of 15 μm (aluminum nitride powder FLX (average particle size: 18.1 μm) manufactured by Toyo Aluminum Co., Ltd.) was sprayed under the same conditions as in Examples 1 and 2, but the sprayed film adhered. I did not.

比較例2
プラズマクリーニング装置の石英製のベルジャー及びリング絶縁基台の表面をブラストして表面粗さを各々、7、6、3μmとした。これらの部材とその他の必要な部材を超純水で超音波洗浄し、クリーンオーブンで乾燥後、プラズマクリーニング装置のチャンバーにセットした。
Comparative Example 2
Surfaces of the quartz bell jar and ring insulating base of the plasma cleaning device were blasted to 7, 6, and 3 μm, respectively. These members and other necessary members were ultrasonically cleaned with ultrapure water, dried in a clean oven, and set in a chamber of a plasma cleaning apparatus.

実施例4と比較例2の部材の連続使用試験
実施例4と比較例2のチャンバーのプラズマクリーニング装置を半導体製造プロセスで連続使用したところ、比較例2では3日後にパーティクルが増加し、実施例4で20日後にパーティクルが増加して、ベルジャー、リング絶縁基台などの部材を取り出して交換した。本発明の窒化アルミニウム溶射部材のパーティクル低減効果が示された。
Continuous use test of members of Example 4 and Comparative Example 2 When the chamber plasma cleaning apparatus of Example 4 and Comparative Example 2 was continuously used in the semiconductor manufacturing process, in Comparative Example 2, particles increased after 3 days. 4 and 20 days later, the particles increased and members such as bell jars and ring insulation bases were taken out and replaced. The particle reduction effect of the aluminum nitride sprayed member of the present invention was shown.

窒化アルミニウム溶射部材の模式図の一例を示す図である。It is a figure which shows an example of the schematic diagram of an aluminum nitride spraying member. 窒化アルミニウム溶射部材の模式図の一例を示す図である。It is a figure which shows an example of the schematic diagram of an aluminum nitride spraying member. 窒化アルミニウム溶射膜のX線回折チャートの一例を示す図である。It is a figure which shows an example of the X-ray-diffraction chart of an aluminum nitride sprayed film. 窒化アルミニウム溶射部材のヒーター、静電チャックの構成の一例を示す図である。It is a figure which shows an example of a structure of the heater of an aluminum nitride spraying member, and an electrostatic chuck. 窒化アルミニウム溶射部材の放熱絶縁基板の構成の一例を示す図である。It is a figure which shows an example of a structure of the thermal radiation insulation board | substrate of an aluminum nitride spraying member. 絶縁耐圧試験の一例を示す図である。It is a figure which shows an example of a withstand voltage test. プラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a plasma spraying apparatus. 飛行中の窒化アルミニウム粒子の温度と溶射膜の付着効率、六方晶窒化アルミニウムのピーク強度比を示す図である。It is a figure which shows the temperature of the aluminum nitride particle in flight, the adhesion efficiency of a sprayed film, and the peak intensity ratio of hexagonal aluminum nitride. 作製した窒化アルミニウム溶射膜断面のSEM像である。It is a SEM image of the cross section of the produced aluminum nitride sprayed film. 作製した窒化アルミニウム溶射膜断面のEPMAによるAl、N、Y組成像である。It is the Al, N, Y composition image by EPMA of the cross section of the produced aluminum nitride sprayed film. プラズマクリーニング装置の概略の一例を示す図である。It is a figure which shows an example of the outline of a plasma cleaning apparatus. 溶射原料粉末をプラズマジェットに対して2ヵ所から対向して供給する態様の一例を示す図である。It is a figure which shows an example of the aspect which supplies a thermal spray raw material powder facing two places with respect to a plasma jet.

符号の説明Explanation of symbols

11:基材
12:溶射膜
13:窒化アルミニウム粒子
21:基材
22:溶射膜
23:窒化アルミニウム粒子
24:IIIA族及び/又はIIA族化合物
41:金属基材
42:第1の溶射膜
43:金属電極膜又はヒーター層
44:第2の溶射膜
51:金属放熱基材
52:窒化アルミニウム溶射膜
53:金属メッキ又は溶射膜
54:半田
55:パワーデバイス
60:カソード
61:アノード
62:プラズマガス
63:溶射粉末(供給口)
64:コンバージェンス
65:溶射距離
66:基材
67:溶射膜
68:電源
111:ベルジャー
112:リング絶縁基台
113:シリコンウエハ
114:Arイオン
115:Arイオンスパッタによる堆積物
116:アンテナパワー高周波電源
117:高周波コイル
118:バイアスパワー高周波電源
121:溶射原料粉末
122:粉末供給機
123:不活性ガスボンベ
124:二股に分岐
125:プラズマジェット
126:溶射ガン
DESCRIPTION OF SYMBOLS 11: Base material 12: Thermal spray film 13: Aluminum nitride particle 21: Base material 22: Thermal spray film 23: Aluminum nitride particle 24: IIIA group and / or IIA group compound 41: Metal base material 42: 1st thermal spray film 43: Metal electrode film or heater layer 44: Second sprayed film 51: Metal heat dissipation base material 52: Aluminum nitride sprayed film 53: Metal plating or sprayed film 54: Solder 55: Power device 60: Cathode 61: Anode 62: Plasma gas 63 : Thermal spray powder (supply port)
64: Convergence 65: Spraying distance 66: Substrate 67: Sprayed film 68: Power supply 111: Bell jar 112: Ring insulating base 113: Silicon wafer 114: Ar ion 115: Deposit by Ar ion sputtering 116: Antenna power high frequency power supply 117 : High frequency coil 118: Bias power high frequency power supply 121: Spraying raw material powder 122: Powder supply machine 123: Inert gas cylinder 124: Bifurcated 125: Plasma jet 126: Thermal spray gun

Claims (24)

基材上に、平均的な直径が1μm以上10μm以下の略球状をした窒化アルミニウム粒子からなる溶射膜が形成されてなる窒化アルミニウム溶射部材。 An aluminum nitride sprayed member in which a sprayed film made of substantially spherical aluminum nitride particles having an average diameter of 1 μm or more and 10 μm or less is formed on a substrate. 基材上に、平均的な直径が1μm以上10μm以下の略球状をした窒化アルミニウム粒子と、IIIA族及び/又はIIA族化合物とからなる溶射膜が形成されてなる窒化アルミニウム溶射部材。 An aluminum nitride sprayed member in which a sprayed film made of a substantially spherical aluminum nitride particle having an average diameter of 1 μm or more and 10 μm or less and a group IIIA and / or a group IIA compound is formed on a substrate. 窒化アルミニウム粒子間の間隙に、IIIA族及び/又はIIA族化合物が存在し、溶射膜の気孔率が15%以下であることを特徴とする請求項2に記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to claim 2, wherein a group IIIA and / or a group IIA compound exists in the gap between the aluminum nitride particles, and the porosity of the sprayed film is 15% or less. 溶射膜中のIIIA族及び/又はIIA族化合物の含有量が1wt%以上30wt%以下であることを特徴とする請求項2又は請求項3に記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to claim 2 or 3, wherein the content of the group IIIA and / or group IIA compound in the sprayed film is 1 wt% or more and 30 wt% or less. 窒化アルミニウム粒子夫々の表面が酸化して、隣接粒子と結合していることを特徴とする請求項1〜4のいずれかに記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to any one of claims 1 to 4, wherein the surface of each aluminum nitride particle is oxidized and bonded to adjacent particles. 溶射膜のX線回折ピーク強度において、窒化アルミニウム(100)面のピーク強度に対するγ酸化アルミニウム(400)面とα酸化アルミニウム(104)面のピーク強度の和との比が0.05以上0.2以下であることを特徴とする請求項5に記載の窒化アルミニウム溶射部材。 In the X-ray diffraction peak intensity of the sprayed film, the ratio of the sum of the peak intensity of the γ aluminum oxide (400) plane and the α aluminum oxide (104) plane to the peak intensity of the aluminum nitride (100) plane is 0.05 or more and 0.00. The aluminum nitride sprayed member according to claim 5, wherein the number is 2 or less. 基材に、少なくとも第1の溶射膜、金属電極層又はヒーター層、第2の溶射膜がこの順に形成されてなる溶射部材であって、第1の溶射膜及び/又は第2の溶射膜が、平均的な直径が1μm以上10μm以下の略球状をした窒化アルミニウム粒子からなる溶射膜であることを特徴とする窒化アルミニウム溶射部材。 A thermal spray member in which at least a first thermal spray film, a metal electrode layer or a heater layer, and a second thermal spray film are formed in this order on a substrate, and the first thermal spray film and / or the second thermal spray film are provided. An aluminum nitride sprayed member comprising a sprayed film made of substantially spherical aluminum nitride particles having an average diameter of 1 μm to 10 μm. 基材に、少なくとも第1の溶射膜、金属電極層又はヒーター層、第2の溶射膜がこの順に形成されてなる溶射部材であって、第1の溶射膜及び/又は第2の溶射膜が、平均的な直径が1μm以上10μm以下の略球状をした窒化アルミニウム粒子と、IIIA族及び/又はIIA族化合物とからなる溶射膜であることを特徴とする窒化アルミニウム溶射部材。 A thermal spray member in which at least a first thermal spray film, a metal electrode layer or a heater layer, and a second thermal spray film are formed in this order on a substrate, and the first thermal spray film and / or the second thermal spray film are provided. A sprayed aluminum nitride member, characterized in that it is a sprayed film composed of substantially spherical aluminum nitride particles having an average diameter of 1 μm or more and 10 μm or less and a group IIIA and / or a group IIA compound. 窒化アルミニウム粒子間の間隙に、IIIA族及び/又はIIA族化合物が存在し、溶射膜の気孔率が15%以下であることを特徴とする請求項8に記載の窒化アルミニウム溶射部材。 9. The aluminum nitride sprayed member according to claim 8, wherein a group IIIA and / or a group IIA compound is present in the gap between the aluminum nitride particles, and the porosity of the sprayed film is 15% or less. 溶射膜中のIIIA族及び/又はIIA族化合物の含有量が1wt%以上30wt%以下であることを特徴とする請求項8又は請求項9に記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to claim 8 or 9, wherein the content of the group IIIA and / or group IIA compound in the sprayed film is 1 wt% or more and 30 wt% or less. 窒化アルミニウム粒子夫々の表面が酸化して、隣接粒子と結合していることを特徴とする請求項7〜10のいずれかに記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to any one of claims 7 to 10, wherein the surface of each aluminum nitride particle is oxidized and bonded to an adjacent particle. 溶射膜のX線回折ピーク強度において、窒化アルミニウム(100)面のピーク強度に対するγ酸化アルミニウム(400)面とα酸化アルミニウム(104)面のピーク強度の和との比が0.05以上0.2以下であることを特徴とする請求項11に記載の窒化アルミニウム溶射部材。 In the X-ray diffraction peak intensity of the sprayed film, the ratio of the sum of the peak intensity of the γ aluminum oxide (400) plane and the α aluminum oxide (104) plane to the peak intensity of the aluminum nitride (100) plane is 0.05 or more and 0.00. The aluminum nitride sprayed member according to claim 11, wherein the number is 2 or less. プラズマにさらされる部分に、窒化アルミニウム溶射膜が形成されていることを特徴とする請求項1〜12のいずれかに記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to any one of claims 1 to 12, wherein an aluminum nitride sprayed film is formed on a portion exposed to the plasma. プラズマにさらされる部分に、窒化アルミニウムおよびIIIA族及び/又はIIA族化合物からなる溶射膜が形成されていることを特徴とする請求項2、請求項8又は請求項9に記載の窒化アルミニウム溶射部材。 10. The aluminum nitride sprayed member according to claim 2, 8 or 9, wherein a sprayed film made of aluminum nitride and a group IIIA and / or a group IIA compound is formed on a portion exposed to plasma. . 前記窒化アルミニウム溶射部材がドーム状、シリンダー状、又はリング状であり、該窒化アルミニウム溶射膜の表面粗さRaが1μm以上15μm以下であることを特徴とする請求項13又は14に記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to claim 13 or 14, wherein the aluminum nitride sprayed member has a dome shape, a cylinder shape, or a ring shape, and a surface roughness Ra of the aluminum nitride sprayed film is not less than 1 µm and not more than 15 µm. Thermal spray member. 基材が、熱伝導率100W/mK以上の金属又は金属―セラミックス複合の放熱基板であり、前記窒化アルミニウム溶射膜が熱伝導率10W/mK以上であることを特徴とする請求項1〜15のいずれかに記載の窒化アルミニウム溶射部材。 The substrate is a metal or metal-ceramic composite heat dissipation substrate having a thermal conductivity of 100 W / mK or more, and the aluminum nitride sprayed film has a thermal conductivity of 10 W / mK or more. The aluminum nitride thermal spray member according to any one of the above. 前期窒化アルミニウム溶射膜が封孔されていることを特徴とする請求項1〜16のいずれかに記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to any one of claims 1 to 16, wherein the aluminum nitride sprayed film is sealed. 前期窒化アルミニウム溶射膜の絶縁耐圧が0.15MV/cm以上であることを特徴とする請求項1〜17のいずれかに記載の窒化アルミニウム溶射部材。 The aluminum nitride sprayed member according to any one of claims 1 to 17, wherein the insulation breakdown voltage of the aluminum nitride sprayed film is 0.15 MV / cm or more. 平均粒径が1μm以上10μm以下の窒化アルミニウム粉末を溶射装置に供給し、基材直前で窒化アルミニウム粒子の平均温度が2200℃以上、2280℃以下、平均飛行速度が400m/s以上600m/s以下となる条件の大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することを特徴とする請求項第1または請求項7記載の窒化アルミニウム溶射部材の製造方法。 Aluminum nitride powder having an average particle diameter of 1 μm or more and 10 μm or less is supplied to the thermal spraying apparatus, and the average temperature of the aluminum nitride particles immediately before the substrate is 2200 ° C. or more and 2280 ° C. or less, and the average flight speed is 400 m / s or more and 600 m / s or less. 8. The method for producing an aluminum nitride sprayed member according to claim 1 or 7, wherein an aluminum nitride sprayed film is formed on the substrate by atmospheric pressure plasma spraying under the following conditions. 平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末と、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末とを溶射装置に供給し、基材直前で窒化アルミニウム粒子平均温度が2200℃以上、2280℃以下、平均飛行速度が400m/s以上600m/s以下となる条件の大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することを特徴とする請求項第2又は請求項8に記載の窒化アルミニウム溶射部材の製造方法。 A group IIIA and / or group IIA compound powder having an average particle size of 1 μm to 10 μm and an aluminum nitride powder having an average particle size of 1 μm to 10 μm are supplied to the thermal spraying apparatus, and the average temperature of the aluminum nitride particles is just before the substrate. The aluminum nitride sprayed film is formed on the substrate by atmospheric pressure plasma spraying under the conditions of 2200 ° C or higher and 2280 ° C or lower and an average flight speed of 400m / s or higher and 600m / s or lower. The manufacturing method of the aluminum nitride thermal spray member of Claim 8. 平均粒径が1μm以上10μm以下の窒化アルミニウム粉末、及び当該窒化アルミニウム粉末の重量に対して、0.1〜5wt%の潤滑剤を添加した混合粉末を溶射粉末として溶射装置に供給し、大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することを特徴とする請求項1又は請求項7に記載の窒化アルミニウム溶射部材の製造方法。 An aluminum nitride powder having an average particle size of 1 μm or more and 10 μm or less, and a mixed powder obtained by adding a lubricant of 0.1 to 5 wt% with respect to the weight of the aluminum nitride powder is supplied to the thermal spraying apparatus as a thermal spraying powder. The method for producing an aluminum nitride sprayed member according to claim 1 or 7, wherein an aluminum nitride sprayed film is formed on the substrate by plasma spraying. 平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末、平均粒径が1μm以上10μm以下の窒化アルミニウム粉末、及びこれらの粉末の合計重量に対して、0.1〜5wt%の潤滑剤を添加した混合粉末を溶射粉末として溶射装置に供給し、大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することを特徴とする請求項2又は請求項8に記載の窒化アルミニウム溶射部材の製造方法。 Group IIIA and / or Group IIA compound powder having an average particle size of 1 μm to 10 μm, aluminum nitride powder having an average particle size of 1 μm to 10 μm, and 0.1 to 5 wt% of the total weight of these powders 9. The aluminum nitride according to claim 2, wherein the mixed powder to which the lubricant is added is supplied as a thermal spray powder to a thermal spraying apparatus, and an aluminum nitride sprayed film is formed on the substrate by atmospheric pressure plasma spraying. Manufacturing method of thermal spray member. 平均粒径が1μm以上10μm以下の窒化アルミニウム粉末を溶射ガンのプラズマ出口の外側に、プラズマジェットに垂直に2ヵ所以上で対向して供給し、溶射距離が40mm以上70mm以下となる条件で大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することを特徴とする請求項1又は請求項7に記載の窒化アルミニウム溶射部材の製造方法。 An aluminum nitride powder having an average particle size of 1 μm or more and 10 μm or less is supplied to the outside of the plasma outlet of the spray gun at two or more locations perpendicular to the plasma jet, and atmospheric pressure is applied under the condition that the spray distance is 40 mm or more and 70 mm or less. The method for producing an aluminum nitride sprayed member according to claim 1 or 7, wherein an aluminum nitride sprayed film is formed on the substrate by plasma spraying. 平均粒径が1μm以上10μm以下のIIIA族及び/又はIIA族化合物粉末と平均粒径が1μm以上10μm以下の窒化アルミニウム粉末との混合粉末を、溶射ガンのプラズマ出口の外側に、プラズマジェットに垂直に2ヵ所以上で対向して供給し、溶射距離が40mm以上70mm以下となる条件で大気圧プラズマ溶射により窒化アルミニウム溶射膜を基材上に形成することを特徴とする請求項2又は請求項8に記載の窒化アルミニウム溶射部材の製造方法。 A mixed powder of a group IIIA and / or group IIA compound powder having an average particle size of 1 μm to 10 μm and an aluminum nitride powder having an average particle size of 1 μm to 10 μm is perpendicular to the plasma jet outside the plasma outlet of the spray gun. The aluminum nitride sprayed film is formed on the substrate by atmospheric pressure plasma spraying under the condition that the spraying distance is 40 mm or more and 70 mm or less. The manufacturing method of the aluminum nitride spraying member as described in any one of.
JP2008186566A 2007-12-28 2008-07-17 Member coated with aluminum nitride by thermal splaying and its manufacturing method Pending JP2009235558A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008186566A JP2009235558A (en) 2007-12-28 2008-07-17 Member coated with aluminum nitride by thermal splaying and its manufacturing method
TW97146888A TW200944618A (en) 2007-12-28 2008-12-03 Member coated with aluminum nitride by thermal spraying and process for producing the same
PCT/JP2008/073657 WO2009084606A1 (en) 2007-12-28 2008-12-25 Member coated with aluminum nitride by thermal spraying and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007339830 2007-12-28
JP2008054412 2008-03-05
JP2008186566A JP2009235558A (en) 2007-12-28 2008-07-17 Member coated with aluminum nitride by thermal splaying and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009235558A true JP2009235558A (en) 2009-10-15

Family

ID=40824320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186566A Pending JP2009235558A (en) 2007-12-28 2008-07-17 Member coated with aluminum nitride by thermal splaying and its manufacturing method

Country Status (3)

Country Link
JP (1) JP2009235558A (en)
TW (1) TW200944618A (en)
WO (1) WO2009084606A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091259A (en) * 2009-10-23 2011-05-06 Denso Corp Semiconductor module and method of manufacturing the same
JPWO2010027073A1 (en) * 2008-09-05 2012-02-02 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP2013101773A (en) * 2011-11-07 2013-05-23 Toyota Industries Corp Secondary battery, temperature adjustment structure of secondary battery, and vehicle equipped with secondary battery
JP2014123663A (en) * 2012-12-21 2014-07-03 Tokyo Electron Ltd Apparatus and method of manufacturing electrode for lithium ion capacitor
JP2014522913A (en) * 2011-07-25 2014-09-08 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of specially coated powdered coating materials and coating methods using such coating materials
JP2014527575A (en) * 2011-07-25 2014-10-16 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Methods for substrate coating and use of additive-containing powdered coating materials in such methods
JP2014198898A (en) * 2013-03-11 2014-10-23 群馬県 Coating-provided substrate and production method thereof
JP2014240511A (en) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド Method of producing sprayed coating and material for flame spray
JP2015002306A (en) * 2013-06-18 2015-01-05 富士電機株式会社 Insulating substrate and manufacturing method therefor
JP2016006219A (en) * 2013-12-06 2016-01-14 日本碍子株式会社 Spray deposit, member for semiconductor production equipment, raw material for spray coating, and spray deposit production method
JP2016074935A (en) * 2014-10-03 2016-05-12 富士電機株式会社 Composite powder material for flame spray and flame sprayed insulation base plate
JP2016121366A (en) * 2014-12-24 2016-07-07 トーカロ株式会社 Forming method of electrical insulation film
JP2017071835A (en) * 2015-10-08 2017-04-13 広島県 Membrane production method of aluminum nitride, and aluminum nitride film manufactured by the production method
JP2018048554A (en) * 2017-12-18 2018-03-29 パナソニックIpマネジメント株式会社 Resin molding and method for producing the same, and kitchen counter, floor pan for bathroom, toilet bowl and washroom cabinet
JP2018059398A (en) * 2017-12-18 2018-04-12 パナソニックIpマネジメント株式会社 Resin molding and method for producing the same, and kitchen counter, floor pan for bathroom, toilet bowl and washroom cabinet
JP2018080574A (en) * 2017-12-18 2018-05-24 パナソニックIpマネジメント株式会社 Resin molding and method for producing the same, and kitchen counter, floor pan for bathroom, toilet bowl and washroom cabinet
JP2019512611A (en) * 2016-09-08 2019-05-16 セウォン ハードフェイシング カンパニー リミテッドSewon Hard Facing Co.,Ltd. High flowability thermal spray powder and method for producing the same
KR102055483B1 (en) 2017-09-19 2019-12-16 최 윤 High efficiency heater block for semiconductor wafer and method for manufacturing the same
JP2020136469A (en) * 2019-02-19 2020-08-31 日本特殊陶業株式会社 Composite base material, semiconductor module, and manufacturing method thereof
KR20210039464A (en) 2018-08-27 2021-04-09 도카로 가부시키가이샤 Method of forming a thermal sprayed film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185741A (en) * 2013-03-25 2014-10-02 Nsk Ltd Electric corrosion prevention rolling bearing and manufacturing method of the same
CN114990464B (en) * 2022-05-27 2023-12-29 扬州轩业电热电器有限公司 Automatic heating system for intelligent temperature-controlled thermal spraying workpiece
CN115612969A (en) * 2022-11-01 2023-01-17 苏州众芯联电子材料有限公司 Compact yttrium oxide coating and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195624A (en) * 1996-12-26 1998-07-28 Suzuki Motor Corp Nitriding treatment of surface of aluminum base material
JP3915628B2 (en) * 2002-08-22 2007-05-16 東ソー株式会社 Aluminum nitride sprayed film and manufacturing method thereof
JP2006307298A (en) * 2005-04-28 2006-11-09 Toyohashi Univ Of Technology Nitride film and film-forming method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010027073A1 (en) * 2008-09-05 2012-02-02 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP5566891B2 (en) * 2008-09-05 2014-08-06 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP2011091259A (en) * 2009-10-23 2011-05-06 Denso Corp Semiconductor module and method of manufacturing the same
JP2014522913A (en) * 2011-07-25 2014-09-08 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of specially coated powdered coating materials and coating methods using such coating materials
JP2014527575A (en) * 2011-07-25 2014-10-16 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Methods for substrate coating and use of additive-containing powdered coating materials in such methods
JP2013101773A (en) * 2011-11-07 2013-05-23 Toyota Industries Corp Secondary battery, temperature adjustment structure of secondary battery, and vehicle equipped with secondary battery
JP2014123663A (en) * 2012-12-21 2014-07-03 Tokyo Electron Ltd Apparatus and method of manufacturing electrode for lithium ion capacitor
JP2014198898A (en) * 2013-03-11 2014-10-23 群馬県 Coating-provided substrate and production method thereof
JP2014240511A (en) * 2013-06-11 2014-12-25 株式会社フジミインコーポレーテッド Method of producing sprayed coating and material for flame spray
JP2015002306A (en) * 2013-06-18 2015-01-05 富士電機株式会社 Insulating substrate and manufacturing method therefor
JP2016006219A (en) * 2013-12-06 2016-01-14 日本碍子株式会社 Spray deposit, member for semiconductor production equipment, raw material for spray coating, and spray deposit production method
JP2016074935A (en) * 2014-10-03 2016-05-12 富士電機株式会社 Composite powder material for flame spray and flame sprayed insulation base plate
JP2016121366A (en) * 2014-12-24 2016-07-07 トーカロ株式会社 Forming method of electrical insulation film
JP2017071835A (en) * 2015-10-08 2017-04-13 広島県 Membrane production method of aluminum nitride, and aluminum nitride film manufactured by the production method
JP2019512611A (en) * 2016-09-08 2019-05-16 セウォン ハードフェイシング カンパニー リミテッドSewon Hard Facing Co.,Ltd. High flowability thermal spray powder and method for producing the same
KR102055483B1 (en) 2017-09-19 2019-12-16 최 윤 High efficiency heater block for semiconductor wafer and method for manufacturing the same
JP2018048554A (en) * 2017-12-18 2018-03-29 パナソニックIpマネジメント株式会社 Resin molding and method for producing the same, and kitchen counter, floor pan for bathroom, toilet bowl and washroom cabinet
JP2018059398A (en) * 2017-12-18 2018-04-12 パナソニックIpマネジメント株式会社 Resin molding and method for producing the same, and kitchen counter, floor pan for bathroom, toilet bowl and washroom cabinet
JP2018080574A (en) * 2017-12-18 2018-05-24 パナソニックIpマネジメント株式会社 Resin molding and method for producing the same, and kitchen counter, floor pan for bathroom, toilet bowl and washroom cabinet
KR20210039464A (en) 2018-08-27 2021-04-09 도카로 가부시키가이샤 Method of forming a thermal sprayed film
JP2020136469A (en) * 2019-02-19 2020-08-31 日本特殊陶業株式会社 Composite base material, semiconductor module, and manufacturing method thereof
JP7132868B2 (en) 2019-02-19 2022-09-07 日本特殊陶業株式会社 Composite substrate and semiconductor module, and method for producing the same

Also Published As

Publication number Publication date
WO2009084606A1 (en) 2009-07-09
TW200944618A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
WO2009084606A1 (en) Member coated with aluminum nitride by thermal spraying and process for producing the same
US20200325073A1 (en) Slurry plasma spray of plasma resistant ceramic coating
US7364798B2 (en) Internal member for plasma-treating vessel and method of producing the same
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
US20120196139A1 (en) Thermal spray composite coatings for semiconductor applications
WO2007108549A1 (en) Plasma processing apparatus and plasma processing method
JP2004332081A (en) Plasma resistant member, and its production method
US11473181B2 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2007247042A (en) Ceramic covered member for semi-conductor machining apparatus
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
US11312637B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same
JP2004002101A (en) Plasma resistant member and its manufacturing process
US20230051800A1 (en) Methods and apparatus for plasma spraying silicon carbide coatings for semiconductor chamber applications
KR20060044497A (en) Corrosion-resistant member and process of producing the same
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
Nicolaus et al. Yttria coatings as wear protection layer in the semiconductor industry
JP2006097114A (en) Corrosion-resistant spray deposit member
JP2007119924A (en) High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same