JP2009234879A - Single crystal production apparatus by floating zone melting method - Google Patents

Single crystal production apparatus by floating zone melting method Download PDF

Info

Publication number
JP2009234879A
JP2009234879A JP2008085581A JP2008085581A JP2009234879A JP 2009234879 A JP2009234879 A JP 2009234879A JP 2008085581 A JP2008085581 A JP 2008085581A JP 2008085581 A JP2008085581 A JP 2008085581A JP 2009234879 A JP2009234879 A JP 2009234879A
Authority
JP
Japan
Prior art keywords
single crystal
induction heating
heating coil
zone
geometric amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085581A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sato
利行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp filed Critical Sumco Techxiv Corp
Priority to JP2008085581A priority Critical patent/JP2009234879A/en
Publication of JP2009234879A publication Critical patent/JP2009234879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single crystal production apparatus by a floating zone melting method, which can easily measure a geometric quantity of a melting zone necessary for control by a simple configuration. <P>SOLUTION: The single crystal production apparatus is equipped with a first camera 18 provided to detect upper geometric quantities (length L1, material diameter Dp) by substantially aligning the optical axis to a first horizontal plane H1 including an upper outer rim P1 of an induction heating coil 16, a second camera 20 provided to detect lower geometric quantities (length L2, crystal diameter Ds) by substantially aligning the optical axis to a second horizontal plane H2 including a lower outer rim P2 of the coil, and a third camera 22 detecting geometric quantities (length L3 and diameter) of a melt part 11 through a gap between a single crystal 12 and the induction heating coil 16 from an oblique lower direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、浮遊帯域溶融法による単結晶製造装置に関する。   The present invention relates to an apparatus for producing a single crystal by a floating zone melting method.

従来より半導体生産に用いられる単結晶インゴットを成長、製造する方法として浮遊帯域溶融法(Floating Zone:FZ法)が公知である。この浮遊帯域溶融法は、単結晶シリコンの材料である多結晶シリコン棒を垂直に保持し、高周波誘導加熱コイル(以下、誘導加熱コイルという)等を用いて上記多結晶シリコン棒を部分的に加熱、溶融し、メルトゾーンを下から上又は上から下に移動させることにより、不純物の少ない高純度の単結晶を得るものである。   A floating zone melting method (Floating Zone: FZ method) is conventionally known as a method for growing and manufacturing a single crystal ingot used for semiconductor production. In this floating zone melting method, a polycrystalline silicon rod, which is a material of single crystal silicon, is held vertically, and the polycrystalline silicon rod is partially heated using a high frequency induction heating coil (hereinafter referred to as induction heating coil). By melting and moving the melt zone from the bottom to the top or from the top to the bottom, a high-purity single crystal with few impurities is obtained.

具体的には、浮遊帯域溶融法は、先ず縦形装置管の中に種結晶である単結晶シリコン棒が下から立てられると共に、素材の多結晶シリコン棒が上から吊るされる。そして、両者の先端が接合され、この接合部分が誘導加熱コイル内に挿通される。   Specifically, in the floating zone melting method, first, a single crystal silicon rod as a seed crystal is erected from below in a vertical apparatus tube, and a polycrystalline silicon rod as a material is suspended from above. And both the front-end | tips are joined and this junction part is penetrated in the induction heating coil.

次に、上記接合部分を外側から直接加熱して溶融させ、結晶全体を回転させると共に、徐々に下方に移動させてこの溶融部を相対的に上方に移動させる。こうして下側から多結晶シリコン棒が単結晶化されていくことになる。   Next, the joined portion is heated directly from the outside to be melted, and the entire crystal is rotated and gradually moved downward to move the melted portion relatively upward. Thus, the polycrystalline silicon rod is monocrystallized from the lower side.

そして、所定の直径となるまで結晶を円錐状に成長させ、所定の直径到達後は直径を一定に維持する。成長終了前は、徐々に直径を小さくするようにし、完成した単結晶シリコン棒と素材の多結晶シリコン棒とを切り放す。   Then, the crystal is grown in a conical shape until a predetermined diameter is reached, and the diameter is maintained constant after reaching the predetermined diameter. Before the growth is completed, the diameter is gradually reduced, and the completed single crystal silicon rod and the polycrystalline silicon rod of the material are cut off.

従って、この間、上記溶融部が延びすぎないよう、かつ、溶け落ちないよう、誘導加熱コイルの発振機に印加される電圧や、単結晶シリコン棒と多結晶シリコン棒の移動速度並びに回転速度を適切に制御する必要がある。   Therefore, during this time, the voltage applied to the induction heating coil oscillator and the moving speed and rotational speed of the single crystal silicon rod and polycrystalline silicon rod should be set appropriately so that the melted portion does not extend excessively and does not melt away. Need to control.

そこで、従来より、上記溶融部をCCDカメラ(テレビカメラ)等の撮像手段により撮像し、該撮像内容をコンピュータに取り込み解析を行って上記溶融部の画像変化を捉え、この結果に応じて上記制御を自動化する方法が試みられている。   Therefore, conventionally, the melting part is imaged by an imaging means such as a CCD camera (TV camera), the captured content is taken into a computer and analyzed, and an image change of the melting part is captured, and the control is performed according to the result. Attempts have been made to automate the process.

このようなテレビカメラを用いた従来技術として、撮像手段により溶融部の画像を捕らえるために、誘導加熱コイルの真横にテレビカメラを水平設置した技術も種々提供されている。   As a conventional technique using such a television camera, various techniques are also provided in which a television camera is installed horizontally next to the induction heating coil in order to capture an image of the melted portion by an imaging means.

しかしながら、誘導加熱コイル内に溶融部が位置している関係上、特に結晶成長初期において溶融部が加熱コイルに隠れてしまい、上記テレビカメラの視野内に溶融部を十分に捕捉することができず、溶融部の撮像結果に基づく制御が困難になるという問題点があった。   However, because the melting part is located in the induction heating coil, the melting part is hidden behind the heating coil particularly in the initial stage of crystal growth, and the melting part cannot be sufficiently captured in the field of view of the TV camera. There is a problem that it becomes difficult to control based on the imaging result of the melted part.

このような問題点を解決すべく、テレビカメラを用いた他の従来技術として、例えば特許文献1に係る技術が公知である。すなわち、この従来技術は、上記のような基本構成に加え、誘導加熱コイルの斜め上に設置された第1テレビカメラと、誘導加熱コイルの斜め下に設置された第2テレビカメラと、誘導加熱コイルの下部に位置する溶融帯域(溶融部)の真横に水平設置され、溶融帯域のゾーン長に略該当する範囲で垂直移動するようにした第3テレビカメラと、誘導加熱コイルの真横に水平に設置された第4テレビカメラと、からなり、各々のテレビカメラに個別に画像処理回路が接続されている。また、上記第3テレビカメラは垂直移動装置に取り付けられ、該垂直移動装置は上記ゾーン長の設定値に基づいて垂直往復移動するように構成されている。
特許第4016363号公報
In order to solve such problems, for example, a technique according to Patent Document 1 is known as another conventional technique using a television camera. That is, in addition to the basic configuration as described above, this prior art includes a first television camera installed obliquely above the induction heating coil, a second television camera installed obliquely below the induction heating coil, and induction heating. A third TV camera installed horizontally next to the melting zone (melting zone) located at the bottom of the coil and moving vertically within a range substantially corresponding to the zone length of the melting zone, and horizontally next to the induction heating coil And a fourth TV camera installed, and an image processing circuit is individually connected to each TV camera. The third television camera is attached to a vertical movement device, and the vertical movement device is configured to reciprocate vertically based on the set value of the zone length.
Japanese Patent No. 4016363

しかしながら、上記特許文献1に係る従来技術にあっては、第3テレビカメラを垂直往復移動させるための垂直移動装置を設ける必要があるため、装置構成や制御が複雑になると共に、装置がコストアップしてしまう、という課題があった。   However, in the prior art disclosed in Patent Document 1, it is necessary to provide a vertical movement device for reciprocating the third television camera vertically, which complicates the device configuration and control and increases the cost of the device. There was a problem that it would.

また、斜め上と斜め下にそれぞれテレビカメラを配置し、素材径や結晶径、溶融部のゾーン長等の幾何学量を計測しているため、両カメラから得られる計測結果も自ずと異なる。このため、カメラの配置位置の違いによって生じた計測結果を補正する必要があり、制御が複雑になる、という課題があった。   In addition, since the television cameras are arranged obliquely above and below, and geometric quantities such as the material diameter, crystal diameter, and zone length of the melted part are measured, the measurement results obtained from both cameras are naturally different. For this reason, there is a problem that it is necessary to correct a measurement result caused by a difference in the arrangement position of the cameras, and the control becomes complicated.

本発明は、上記に鑑みてなされたものであって、制御に必要な溶融帯域の幾何学量を簡易な構成によって容易に計測することができる浮遊帯域溶融法による単結晶製造装置を提供することを目的とする。   The present invention has been made in view of the above, and provides a single crystal manufacturing apparatus by a floating zone melting method that can easily measure a geometric amount of a melting zone necessary for control with a simple configuration. With the goal.

上記目的を達成するため、(1)本発明は、上下方向に沿って配置された多結晶素材の一部分を水平に配置された誘導加熱コイルで溶融して溶融帯域を形成し、多結晶素材及び晶出単結晶を前記誘導加熱コイルに対して相対的に移動させることにより単結晶を成長させ、前記溶融帯域の幾何学量を撮像手段によって検出し、該撮像手段によって検出された前記幾何学量に応じて前記誘導加熱コイルに供給する電力、前記多結晶素材又は前記単結晶の軸方向の移動速度、前記多結晶素材又は前記単結晶の回転速度、のうち1項目以上を調節することにより、前記溶融帯域のゾーン長及び晶出結晶径を一定に制御し前記単結晶を製造する浮遊帯域溶融法による単結晶製造装置であって、前記撮像手段は、前記誘導加熱コイルの上側外周縁を含む第1水平面に光軸を実質的に一致させることにより該第1水平面を含む上方の前記溶融帯域の幾何学量である上方幾何学量を検出可能に設けられた第1撮像手段と、前記誘導加熱コイルの下側外周縁を含む第2水平面に光軸を実質的に一致させることにより該第2水平面を含む下方の前記溶融帯域の幾何学量である下方幾何学量を検出可能に設けられた第2撮像手段と、を備えることを特徴とする。   In order to achieve the above object, (1) the present invention forms a melting zone by melting a part of a polycrystalline material arranged along the vertical direction with an induction heating coil arranged horizontally, The single crystal is grown by moving the crystallized single crystal relative to the induction heating coil, the geometric amount of the melting zone is detected by an imaging means, and the geometric amount detected by the imaging means By adjusting one or more of the electric power supplied to the induction heating coil according to, the moving speed in the axial direction of the polycrystalline material or the single crystal, the rotational speed of the polycrystalline material or the single crystal, A single crystal manufacturing apparatus using a floating zone melting method for manufacturing the single crystal by controlling a zone length and a crystallized crystal diameter of the melting zone to be constant, wherein the imaging unit includes an upper outer periphery of the induction heating coil. First A first imaging means provided so as to be able to detect an upper geometric amount that is a geometric amount of the upper melting zone including the first horizontal plane by making the optical axis substantially coincide with the horizontal plane; and the induction heating coil A lower geometric amount that is a geometric amount of the melting zone below the second horizontal plane including the second horizontal plane can be detected by making the optical axis substantially coincide with the second horizontal plane including the lower outer peripheral edge of the second horizontal plane. And 2 imaging means.

(1)の発明によれば、第1撮像手段によって全工程で多結晶素材の直径の計測を行うことができると共に、溶融帯域の上方幾何学量の計測を行うことができる。また、第2撮像手段によって晶出結晶径の計測を行い、溶融帯域の下方幾何学量の計測を行うことができる。すなわち、制御に必要な溶融帯域の幾何学量を簡易な構成によって容易に計測することができる   According to the invention of (1), the first imaging means can measure the diameter of the polycrystalline material in all steps, and can measure the upper geometric amount of the melting zone. Further, the crystallized crystal diameter can be measured by the second imaging means, and the lower geometric amount of the melting zone can be measured. That is, the geometric amount of the melting zone necessary for control can be easily measured with a simple configuration.

(2) (1)の発明においては、前記撮像手段は、斜め方向から前記単結晶と前記誘導加熱コイルとの隙間を通して前記溶融帯域の幾何学量を検出する第3撮像手段を更に備えることが好ましい。   (2) In the invention of (1), the imaging means further includes third imaging means for detecting a geometric amount of the melting zone through a gap between the single crystal and the induction heating coil from an oblique direction. preferable.

(2)の発明によれば、従来、誘導加熱コイルによって正確に計測できなかった絞り工程からテーパ工程の初期の晶出結晶径や融液部直径の計測を、第3撮像手段によって行うことができる。   According to the invention of (2), the third imaging means can measure the crystallized crystal diameter and the melt part diameter in the initial stage of the taper process from the drawing process that could not be accurately measured by the induction heating coil. it can.

(3) (1)又は(2)に記載の発明においては、前記上方幾何学量を検出する光路と、前記下方幾何学量を検出する光路とを所定の方向に変換する光路変換手段を備えることが好ましい。   (3) In the invention described in (1) or (2), an optical path conversion unit that converts the optical path for detecting the upper geometric amount and the optical path for detecting the lower geometric amount in a predetermined direction is provided. It is preferable.

(3)の発明によれば、水平方向の光路を所定の方向(例えば、下方直角方向)に変換することで、水平方向の設置スペースを削減することができるので、装置の設計レイアウトの自由度を高めることができる。   According to the invention of (3), the installation space in the horizontal direction can be reduced by converting the optical path in the horizontal direction into a predetermined direction (for example, the direction perpendicular to the lower side). Can be increased.

本発明によれば、制御に必要な溶融帯域の幾何学量を簡易な構成によって容易に計測することができる浮遊帯域溶融法による単結晶製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the single crystal manufacturing apparatus by the floating zone melting method which can measure easily the geometrical amount of a melting zone required for control with a simple structure can be provided.

以下に、本発明に係る浮遊帯域溶融法による単結晶製造装置(以下、単に単結晶製造装置という)を図面に基づいて詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
〔第1実施形態〕
第1実施形態に係る単結晶製造装置の構成について図1及び図2に基づいて説明する。ここで、図1は、第1実施形態に係る単結晶製造装置の構成を模式的に示す側面図であり、テーパ工程初期の結晶状態を示すものである。また、図2は、絞り工程における溶融帯域の計測ポイント(幾何学量)と制御パラメータを示す説明図である。
Below, the single crystal manufacturing apparatus (henceforth a single crystal manufacturing apparatus) by the floating zone melting method which concerns on this invention is demonstrated in detail based on drawing. In addition, this invention is not limited by this embodiment.
[First Embodiment]
The configuration of the single crystal manufacturing apparatus according to the first embodiment will be described with reference to FIGS. 1 and 2. Here, FIG. 1 is a side view schematically showing the configuration of the single crystal manufacturing apparatus according to the first embodiment, and shows the crystal state in the initial stage of the taper process. FIG. 2 is an explanatory diagram showing measurement points (geometric amounts) and control parameters of the melting zone in the drawing process.

本明細書では、単結晶を精製する工程において、結晶を無転位化するために結晶を直径数mmで数十mm成長させる工程を絞り工程と称し、単結晶の直径を所定径まで徐々に拡大していく工程をテーパ工程と称することとする。   In this specification, in the process of refining a single crystal, the process of growing the crystal to several tens of millimeters with a diameter of several millimeters in order to make the crystal dislocation-free is called a drawing process, and the diameter of the single crystal is gradually expanded to a predetermined diameter. This process is referred to as a taper process.

<全体構成の説明>
単結晶製造装置は、例えば鉛直方向に沿って配置されたシリコン棒の多結晶素材10をその真上に位置する上軸(図示せず)に装着して保持すると共に、単結晶たる種結晶14を多結晶素材10の直下に位置する下軸(図示せず)に装着して保持するように構成されている。この上軸及び下軸は、それぞれ回転可能に構成され、かつ、上下方向に送り可能に構成されている。
<Description of overall configuration>
The single crystal manufacturing apparatus, for example, attaches and holds a polycrystalline silicon material 10 of a silicon rod arranged along the vertical direction to an upper shaft (not shown) positioned directly above the polycrystalline material 10 and also seeds 14 as a single crystal. Is mounted and held on a lower shaft (not shown) located directly below the polycrystalline material 10. Each of the upper shaft and the lower shaft is configured to be rotatable and configured to be able to be fed in the vertical direction.

そして、単結晶製造装置は、高周波式の誘導加熱コイル16によって多結晶素材10を囲み、これを溶融して融液部(溶融帯域)11を形成する。更に、単結晶製造装置は、融液部11に種結晶14を融着させた後に多結晶素材10及び単結晶12(絞り工程においては種結晶14)を回転させ、かつ軸線方向に下降させながら該融液部11から単結晶(晶出単結晶)12を成長させる。   The single crystal manufacturing apparatus surrounds the polycrystalline material 10 by the high frequency induction heating coil 16 and melts it to form a melt part (melting zone) 11. Further, the single crystal manufacturing apparatus rotates the polycrystalline material 10 and the single crystal 12 (the seed crystal 14 in the drawing process) after the seed crystal 14 is fused to the melt part 11 and descends in the axial direction. A single crystal (crystallized single crystal) 12 is grown from the melt portion 11.

誘導加熱コイル16は、ほぼ円環状に形成されている。また、誘導加熱コイル16への発振電圧は、高周波発振器(図示せず)によって出力される。   The induction heating coil 16 is formed in a substantially annular shape. The oscillation voltage to the induction heating coil 16 is output by a high frequency oscillator (not shown).

ここで、説明の便宜上、誘導加熱コイル16の上記上面であって、上側外周縁P1を含む上記水平面を第1水平面H1と称することとする。また、誘導加熱コイル16の下側外周縁P2を含む仮想の水平面を第2水平面H2と称することとする。
また、第1水平面H1を含む上方の融液部11の幾何学量を上方幾何学量と称すると共に、第2水平面H2を含む下方の融液部11の幾何学量を下方幾何学量と称する。
Here, for convenience of explanation, the horizontal surface that is the upper surface of the induction heating coil 16 and includes the upper outer peripheral edge P1 is referred to as a first horizontal surface H1. In addition, a virtual horizontal plane including the lower outer peripheral edge P2 of the induction heating coil 16 is referred to as a second horizontal plane H2.
The geometric amount of the upper melt portion 11 including the first horizontal plane H1 is referred to as an upper geometric amount, and the geometric amount of the lower melt portion 11 including the second horizontal plane H2 is referred to as a lower geometric amount. .

<幾何学量の定義>
次に、計測対象である幾何学量について説明する。図1中に示すゾーン長Lは、融液部11の上下方向の長さであり、後述する撮像手段によって計測されるものである。すなわち、ゾーン長Lは、後述する撮像手段を用いて素材溶融面11aと固液界面11bとの間隔を測定することによって求められる。
<Definition of geometric quantities>
Next, the geometric amount that is a measurement target will be described. The zone length L shown in FIG. 1 is the length of the melt portion 11 in the vertical direction, and is measured by an imaging means described later. That is, the zone length L is obtained by measuring the distance between the material melting surface 11a and the solid-liquid interface 11b using an imaging means described later.

また、このゾーン長Lは、テーパ工程初期においては、後述する距離L1、距離L2及び距離L3を合計した距離である。   Further, the zone length L is a total distance of a distance L1, a distance L2, and a distance L3 described later in the initial stage of the taper process.

距離L1は、第1水平面H1から素材溶融面11aまでの距離であり、融液部11の上方幾何学量の一つである。距離L2は、第2水平面H2から固液界面11bまでの距離であり、融液部11の下方幾何学量の一つである。   The distance L1 is a distance from the first horizontal plane H1 to the material melting surface 11a, and is one of the upper geometric quantities of the melt part 11. The distance L2 is a distance from the second horizontal plane H2 to the solid-liquid interface 11b, and is one of the downward geometric quantities of the melt part 11.

距離L3は、誘導加熱コイル16の厚みに相当する距離である。また、融液部11の直胴部であって、該距離L3部分に対応する直胴部の直径も幾何学量に含まれる。   The distance L3 is a distance corresponding to the thickness of the induction heating coil 16. Further, the diameter of the straight body part of the melt part 11 corresponding to the distance L3 portion is also included in the geometric amount.

また、素材径Dpは、多結晶素材10の素材溶融面11aにおける直径である。結晶径Dsは、単結晶12の固液界面11bにおける直径である。   The material diameter Dp is the diameter of the polycrystalline material 10 at the material melting surface 11a. The crystal diameter Ds is a diameter at the solid-liquid interface 11b of the single crystal 12.

また、図2に示すように、多結晶素材10の下降速度をVp、回転速度をRpとする。また、単結晶12(絞り部12a)の下降速度をVs、回転速度をRsとする。   In addition, as shown in FIG. 2, the descending speed of the polycrystalline material 10 is Vp and the rotational speed is Rp. Further, the descending speed of the single crystal 12 (the constricted portion 12a) is Vs, and the rotational speed is Rs.

上述の幾何学量としてのゾーン長L、素材径Dp及び結晶径Dsは、後述する撮像手段としての第1カメラ18、第2カメラ20及び第3カメラ22によって検出される。
これら第1カメラ18、第2カメラ20及び第3カメラ22の検出結果は、画像処理装置(図示せず)により算出される。
The zone length L, the material diameter Dp, and the crystal diameter Ds as the geometric quantities described above are detected by a first camera 18, a second camera 20, and a third camera 22 as imaging means described later.
The detection results of the first camera 18, the second camera 20, and the third camera 22 are calculated by an image processing device (not shown).

そして、検出された上記幾何学量に応じて誘導加熱コイル16に供給する電力又は多結晶素材10の相対移動速度を調節する。
これにより、融液部11のゾーン長L及び結晶径Dsを所定の値に制御して単結晶を製造する。
Then, the electric power supplied to the induction heating coil 16 or the relative movement speed of the polycrystalline material 10 is adjusted according to the detected geometric amount.
Thereby, the zone length L and the crystal diameter Ds of the melt part 11 are controlled to predetermined values, and a single crystal is manufactured.

<撮像手段の説明>
上記撮像手段は、第1水平面H1に光軸を実質的に一致させることにより上方幾何学量を検出可能に設けられた第1カメラ(第1撮像手段)18と、第2水平面H2に光軸を実質的に一致させることにより下方幾何学量を検出可能に設けられた第2カメラ(第2撮像手段)20と、斜め下方向から単結晶(晶出単結晶)12と誘導加熱コイル16との隙間を通して融液部11の幾何学量を検出する第3カメラ(第3撮像手段)22と、を備える。
<Description of imaging means>
The imaging means includes a first camera (first imaging means) 18 provided so that an upper geometric amount can be detected by making the optical axis substantially coincide with the first horizontal plane H1, and the optical axis on the second horizontal plane H2. The second camera (second imaging means) 20 provided so that the lower geometric amount can be detected by substantially matching the two, the single crystal (crystallized single crystal) 12 and the induction heating coil 16 from obliquely below. And a third camera (third imaging means) 22 for detecting the geometric amount of the melt portion 11 through the gap.

ここで、第1カメラ18の光軸を「第1水平面H1に実質的に一致させる」とは、第1カメラ18の光軸を上方幾何学量が検出可能な範囲で第1水平面H1に一致させるという意味である。従って、上側外周縁P1における実際の光軸の偏差は、例えば8mm以内が好ましい。   Here, “the optical axis of the first camera 18 substantially coincides with the first horizontal plane H1” means that the optical axis of the first camera 18 coincides with the first horizontal plane H1 within a range in which the upper geometric amount can be detected. It means that Therefore, the actual optical axis deviation at the upper outer periphery P1 is preferably within 8 mm, for example.

同様に、第2カメラ20の光軸を「第2水平面H2に実質的に一致させる」とは、第2カメラ20の光軸を下方幾何学量が検出可能な範囲で第2水平面H2に一致させるという意味である。従って、下側外周縁P2における実際の光軸の偏差は、例えば8mm以内が好ましい。   Similarly, “substantially match the optical axis of the second camera 20 with the second horizontal plane H2” means that the optical axis of the second camera 20 matches the second horizontal plane H2 within a range in which the lower geometric amount can be detected. It means that Therefore, the actual optical axis deviation at the lower outer peripheral edge P2 is preferably within 8 mm, for example.

また、斜め下方向から単結晶12と誘導加熱コイル16との隙間を通して融液部11の幾何学量を検出する第3カメラ22は、その光軸が水平線となす角度が、例えば5度〜30度が好ましい。   In addition, the third camera 22 that detects the geometric amount of the melted part 11 through the gap between the single crystal 12 and the induction heating coil 16 from an obliquely downward direction has an angle between the optical axis and a horizontal line of, for example, 5 degrees to 30 degrees. Degree is preferred.

第3カメラ22では、絞り工程からテーパ工程の初期(結晶径が約30mmに至るまで)の結晶径Ds(図2参照)の計測を行うことができる。   The third camera 22 can measure the crystal diameter Ds (see FIG. 2) from the drawing process to the initial taper process (until the crystal diameter reaches about 30 mm).

また、第1カメラ18では、全工程で素材径Dpの計測を行い、融液部11の上方幾何学量(距離L1)の計測を行うことができる。   Further, in the first camera 18, the material diameter Dp can be measured in all steps, and the upper geometric amount (distance L1) of the melt part 11 can be measured.

また、第2カメラ20では、テーパ工程において結晶径Dsが例えば約30mmを超えた辺りからの該結晶径Dsの計測を行い、融液部11の下方幾何学量(距離L2)の計測を行うことができる。   Further, in the second camera 20, the crystal diameter Ds is measured from the vicinity where the crystal diameter Ds exceeds, for example, about 30 mm in the taper process, and the downward geometric amount (distance L2) of the melt portion 11 is measured. be able to.

従って、従来の水平配置カメラ40(図1参照)では捉えられなかった結晶径Ds(図2参照)を第3カメラ22によって撮影することができる。   Therefore, the third camera 22 can photograph the crystal diameter Ds (see FIG. 2) that could not be captured by the conventional horizontal camera 40 (see FIG. 1).

<制御の説明>
次に、絞り部12a(図2参照)を形成する絞り制御について説明する。
以上のように計測された各幾何学量に基づいて、ゾーン長Lを適切な長さに保ちながら誘導加熱コイル16に印加する電圧を制御する。
<Description of control>
Next, the aperture control for forming the aperture section 12a (see FIG. 2) will be described.
Based on each geometric amount measured as described above, the voltage applied to the induction heating coil 16 is controlled while keeping the zone length L at an appropriate length.

すなわち、多結晶素材10に供給される熱量を操作し、溶融量を変化させることにより晶出する結晶径Dsを所定の値に制御するものである。これは、ゾーン長Lが長く伸び過ぎると融液部11が切れてしまい、ゾーン長Lが短くなり過ぎると融液部11がメルトダウンしてしまうからである。   That is, the crystal diameter Ds to be crystallized is controlled to a predetermined value by manipulating the amount of heat supplied to the polycrystalline material 10 and changing the melting amount. This is because if the zone length L is too long, the melt portion 11 is cut, and if the zone length L is too short, the melt portion 11 melts down.

また、結晶径Dsを監視し、最適値から逸脱した場合には、多結晶素材10の下降速度Vpを微調整する。多結晶素材10のトップの加工精度、誘導加熱コイル16の使用状態により、製造工程のバッチ毎に同じゾーン形状が得られる訳ではないからである。
このように制御することにより、結晶径Dsを所定の径に形成することができる。
Further, the crystal diameter Ds is monitored, and when the deviation from the optimum value is made, the descending speed Vp of the polycrystalline material 10 is finely adjusted. This is because the same zone shape is not obtained for each batch of the manufacturing process depending on the processing accuracy of the top of the polycrystalline material 10 and the use state of the induction heating coil 16.
By controlling in this way, the crystal diameter Ds can be formed to a predetermined diameter.

以上のように、この第1実施形態に係る浮遊帯域溶融法による単結晶製造装置によれば、制御に必要な融液部11の幾何学量を簡易な構成によって容易に計測することができる。   As described above, according to the single crystal manufacturing apparatus using the floating zone melting method according to the first embodiment, the geometric amount of the melt part 11 necessary for control can be easily measured with a simple configuration.

また、第1カメラ18と第2カメラ20は、それぞれ光軸を第1水平面H1と第2水平面H2に実質的に一致させて配置したので、幾何学量を直接的に精度良く計測することができる。   In addition, since the first camera 18 and the second camera 20 are arranged with their optical axes substantially coincided with the first horizontal plane H1 and the second horizontal plane H2, respectively, the geometric amount can be measured directly and accurately. it can.

よって、第1実施形態による単結晶製造装置によれば、簡易な構成によって、絞り工程以降のすべての工程で多結晶素材10と単結晶12及び融液部11の幾何学量の撮影を行うことができる。   Therefore, according to the single crystal manufacturing apparatus according to the first embodiment, the geometric quantities of the polycrystalline material 10, the single crystal 12, and the melt portion 11 can be photographed with a simple configuration in all steps after the drawing step. Can do.

なお、上記第1実施形態においては、絞り工程からテーパ工程の初期(結晶径が約30mmに至るまで)の結晶径Ds(図2参照)の計測を第3カメラ22によって行うものとして説明したが、テーパ工程の初期以降(結晶径が例えば約30mmを超える場合)の結晶径Dsの計測のみをする場合には、これに限定されず、第3カメラ22を設けなくてもよい。   In the first embodiment, it has been described that the measurement of the crystal diameter Ds (see FIG. 2) from the drawing process to the initial stage of the taper process (until the crystal diameter reaches about 30 mm) is performed by the third camera 22. When only measuring the crystal diameter Ds after the initial stage of the taper process (when the crystal diameter exceeds about 30 mm, for example), the present invention is not limited to this, and the third camera 22 may not be provided.

また、第3カメラ22を斜め下方に設けるものとして説明したが、これに限定されず、斜め上方に設けてもよい。この場合も、上記と同様の効果を期待できる。
〔第2実施形態〕
この第2実施形態は、図3に示すように、上方幾何学量を検出する光路と、下方幾何学量を検出する光路とを下方直角方向に変換する直角プリズムミラー(光路変換手段)30を備え、更に、上方幾何学量及び下方幾何学量を一つのカメラ25で撮影できるように構成したものである。
Although the third camera 22 has been described as being provided obliquely below, the present invention is not limited to this and may be provided obliquely above. In this case, the same effect as described above can be expected.
[Second Embodiment]
In the second embodiment, as shown in FIG. 3, a right-angle prism mirror (optical path conversion means) 30 that converts an optical path for detecting an upper geometric amount and an optical path for detecting a lower geometric amount into a lower right angle direction is provided. In addition, the upper geometric amount and the lower geometric amount can be photographed by one camera 25.

ここで、図3は、第2実施形態に係る単結晶製造装置の構成を模式的に示す側面図である。なお、以下の説明において、既に説明した部材と同一もしくは相当する部材には、同一の符号を付して重複説明を省略又は簡略化する。   Here, FIG. 3 is a side view schematically showing the configuration of the single crystal manufacturing apparatus according to the second embodiment. In the following description, members that are the same as or correspond to those already described are denoted by the same reference numerals, and redundant description is omitted or simplified.

直角プリズムミラー(光路変換手段)30は、上方幾何学量を検出する光路を下方直角方向に変換する第1直角プリズムミラー(光路変換手段)30aと、下方幾何学量を検出する光路を下方直角方向に変換する第2直角プリズムミラー(光路変換手段)30bと、を備えている。その他の構成及び制御方法は、上記第1実施形態の場合と同様である。   The right-angle prism mirror (optical path conversion means) 30 is a first right-angle prism mirror (optical path conversion means) 30a for converting the optical path for detecting the upper geometric amount in the lower right direction, and the optical path for detecting the lower geometric amount at the lower right angle. A second right-angle prism mirror (optical path conversion means) 30b for converting the direction. Other configurations and control methods are the same as those in the first embodiment.

以上のように、この第2実施形態に係る浮遊帯域溶融法による単結晶製造装置によれば、水平方向の光路を下方直角方向に変換することで、水平方向の設置スペースを削減することができるので、装置の設計レイアウトの自由度を高めることができる。
また、上方幾何学量及び下方幾何学量を一つのカメラ25で撮影できるので、上記第1実施形態の場合よりも更に装置構成を簡略化することができる。
As described above, according to the single crystal manufacturing apparatus using the floating zone melting method according to the second embodiment, the horizontal installation space can be reduced by converting the optical path in the horizontal direction into the lower right angle direction. Therefore, the degree of freedom in the device design layout can be increased.
Further, since the upper geometric amount and the lower geometric amount can be photographed by one camera 25, the apparatus configuration can be further simplified as compared with the case of the first embodiment.

なお、上記第2実施形態においては、水平方向の光路を直角方向下向きに変換するものとして説明したが、これに限定されず、例えば、直角方向上向き、あるいはその他の方向であってもよく、上記と同様の効果を期待できる。   In the second embodiment, the description has been given on the assumption that the horizontal optical path is converted downward in the perpendicular direction. However, the present invention is not limited to this, and may be, for example, upward in the perpendicular direction or other directions. The same effect can be expected.

第1実施形態に係る単結晶製造装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the single crystal manufacturing apparatus which concerns on 1st Embodiment. 絞り工程における溶融帯域の計測ポイントと制御パラメータを示す説明図である。It is explanatory drawing which shows the measurement point and control parameter of the fusion zone in a drawing process. 第2実施形態に係る単結晶製造装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the single crystal manufacturing apparatus which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

10 多結晶素材
11 融液部(溶融帯域)
11a 素材溶融面
11b 固液界面
12 単結晶
12a 絞り部
14 種結晶
16 誘導加熱コイル
18 第1カメラ(第1撮像手段)
20 第2カメラ(第2撮像手段)
22 第3カメラ(第3撮像手段)
25 カメラ
30 直角プリズムミラー(光路変換手段)
30a 第1直角プリズムミラー(光路変換手段)
30b 第2直角プリズムミラー(光路変換手段)
Dp 素材径(幾何学量)
Ds 結晶径(幾何学量)
H1 第1水平面
H2 第2水平面
L ゾーン長(幾何学量)
L1 距離(幾何学量)
L2 距離(幾何学量)
L3 距離(幾何学量)
P1 上側外周縁
P2 下側外周縁
Vp 下降速度
Rp 回転速度
Vs 下降速度
Rs 回転速度
10 Polycrystalline material 11 Melt part (melting zone)
11a Material melting surface 11b Solid-liquid interface 12 Single crystal 12a Aperture part 14 Seed crystal 16 Induction heating coil 18 First camera (first imaging means)
20 Second camera (second imaging means)
22 3rd camera (3rd imaging means)
25 Camera 30 Right angle prism mirror (optical path conversion means)
30a First right angle prism mirror (optical path changing means)
30b Second right angle prism mirror (optical path changing means)
Dp Material diameter (geometric amount)
Ds Crystal diameter (geometric amount)
H1 1st horizontal plane H2 2nd horizontal plane L Zone length (geometric amount)
L1 distance (geometric amount)
L2 distance (geometric amount)
L3 distance (geometric amount)
P1 Upper outer periphery P2 Lower outer periphery Vp Lowering speed Rp Rotational speed Vs Lowering speed Rs Rotational speed

Claims (3)

上下方向に沿って配置された多結晶素材の一部分を水平に配置された誘導加熱コイルで溶融して溶融帯域を形成し、多結晶素材及び晶出単結晶を前記誘導加熱コイルに対して相対的に移動させることにより単結晶を成長させ、前記溶融帯域の幾何学量を撮像手段によって検出し、該撮像手段によって検出された前記幾何学量に応じて前記誘導加熱コイルに供給する電力、前記多結晶素材又は前記単結晶の軸方向の移動速度、前記多結晶素材又は前記単結晶の回転速度、のうち1項目以上を調節することにより、前記溶融帯域のゾーン長及び晶出結晶径を所定の値に制御し前記単結晶を製造する浮遊帯域溶融法による単結晶製造装置であって、
前記撮像手段は、
前記誘導加熱コイルの上側外周縁を含む第1水平面に光軸を実質的に一致させることにより該第1水平面を含む上方の前記溶融帯域の幾何学量である上方幾何学量を検出可能に設けられた第1撮像手段と、
前記誘導加熱コイルの下側外周縁を含む第2水平面に光軸を実質的に一致させることにより該第2水平面を含む下方の前記溶融帯域の幾何学量である下方幾何学量を検出可能に設けられた第2撮像手段と、
を備えることを特徴とする浮遊帯域溶融法による単結晶製造装置。
A portion of the polycrystalline material arranged along the vertical direction is melted by an induction heating coil arranged horizontally to form a melting zone, and the polycrystalline material and the crystallized single crystal are relative to the induction heating coil. A single crystal is grown by moving to the position, the geometric amount of the melting zone is detected by an imaging means, and the electric power supplied to the induction heating coil according to the geometric amount detected by the imaging means, By adjusting one or more items of the moving speed in the axial direction of the crystal material or the single crystal and the rotational speed of the polycrystalline material or the single crystal, the zone length and the crystallized crystal diameter of the melting zone are set to a predetermined value. A single crystal manufacturing apparatus by a floating zone melting method for controlling the value to manufacture the single crystal,
The imaging means includes
An upper geometric amount that is a geometric amount of the upper melting zone including the first horizontal plane is provided so as to be detected by substantially matching the optical axis with the first horizontal plane including the upper outer peripheral edge of the induction heating coil. First imaging means provided;
By making the optical axis substantially coincide with the second horizontal plane including the lower outer peripheral edge of the induction heating coil, it is possible to detect a lower geometric amount that is a geometric amount of the lower melting zone including the second horizontal plane. Provided second imaging means;
An apparatus for producing a single crystal by a floating zone melting method.
前記撮像手段は、斜め方向から前記単結晶と前記誘導加熱コイルとの隙間を通して前記溶融帯域の幾何学量を検出する第3撮像手段を更に備えることを特徴とする請求項1に記載の浮遊帯域溶融法による単結晶製造装置。   2. The floating zone according to claim 1, wherein the imaging unit further includes a third imaging unit that detects a geometric amount of the melting zone through a gap between the single crystal and the induction heating coil from an oblique direction. Single crystal manufacturing equipment by melting method. 前記上方幾何学量を検出する光路と、前記下方幾何学量を検出する光路とを所定の方向に変換する光路変換手段を備えることを特徴とする請求項1又は2に記載の浮遊帯域溶融法による単結晶製造装置。   3. The floating zone melting method according to claim 1, further comprising: an optical path conversion unit configured to convert an optical path for detecting the upper geometric amount and an optical path for detecting the lower geometric amount in a predetermined direction. Single crystal manufacturing equipment.
JP2008085581A 2008-03-28 2008-03-28 Single crystal production apparatus by floating zone melting method Pending JP2009234879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085581A JP2009234879A (en) 2008-03-28 2008-03-28 Single crystal production apparatus by floating zone melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085581A JP2009234879A (en) 2008-03-28 2008-03-28 Single crystal production apparatus by floating zone melting method

Publications (1)

Publication Number Publication Date
JP2009234879A true JP2009234879A (en) 2009-10-15

Family

ID=41249313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085581A Pending JP2009234879A (en) 2008-03-28 2008-03-28 Single crystal production apparatus by floating zone melting method

Country Status (1)

Country Link
JP (1) JP2009234879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218076A (en) * 2014-05-15 2015-12-07 信越半導体株式会社 Manufacturing method for single crystal and single crystal manufacturing apparatus
JP2018020925A (en) * 2016-08-02 2018-02-08 信越半導体株式会社 Diameter control apparatus and method for measuring diameter of fz single crystal
JP2020507548A (en) * 2017-02-14 2020-03-12 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Method and plant for pulling single crystal by FZ method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218076A (en) * 2014-05-15 2015-12-07 信越半導体株式会社 Manufacturing method for single crystal and single crystal manufacturing apparatus
JP2018020925A (en) * 2016-08-02 2018-02-08 信越半導体株式会社 Diameter control apparatus and method for measuring diameter of fz single crystal
JP2020507548A (en) * 2017-02-14 2020-03-12 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Method and plant for pulling single crystal by FZ method

Similar Documents

Publication Publication Date Title
US8349074B2 (en) Method for detecting diameter of single crystal, single-crystal manufacturing method by using the same and single-crystal manufacturing apparatus
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
JP2009057216A (en) Silicon single crystal pulling method
JP2008195545A (en) Method for measuring distance between lower end surface of heat shielding member and surface of material melt, and method for controlling the distance
TWI675131B (en) Method and device for manufacturing single crystal
US8936679B2 (en) Single crystal pulling-up apparatus of pulling-up silicon single crystal and single crystal pulling-up method of pulling-up silicon single crystal
CN106065492A (en) Hot melting gap measuring device, crystal growth device and hot melting gap measuring method
TW202140865A (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6064675B2 (en) Manufacturing method of semiconductor single crystal rod
JP2009234879A (en) Single crystal production apparatus by floating zone melting method
TWI615513B (en) Single crystal manufacturing method and device
JP2010076979A (en) Measurement method and system during manufacturing semiconductor single crystal by fz method, and control method and system during manufacturing semiconductor single crystal by fz method
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
JP3601280B2 (en) Method of manufacturing semiconductor single crystal by FZ method
JP6642234B2 (en) Method and apparatus for producing single crystal
JP5854757B2 (en) Single crystal ingot diameter control method
JP5768764B2 (en) Manufacturing method of semiconductor single crystal rod
CN110291231B (en) Method and device for pulling single crystal by FZ method
JP6036709B2 (en) Method for adjusting camera position of camera for detecting diameter of silicon single crystal and camera position adjusting jig
JP5293625B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2014240338A (en) Method of producing semiconductor single crystal rod
JP2003026495A (en) Device and method for pulling single crystal
WO2022185789A1 (en) Method for detecting state of surface of raw material melt, method for producing monocrystal, and cz monocrystal production device
KR20180005424A (en) Single-crystal ingot growth apparatus and method of controlling the same
JPH11314993A (en) Production of semiconductor single crystal by floating zone melting method