JP2009234388A - Air-conditioning system - Google Patents

Air-conditioning system Download PDF

Info

Publication number
JP2009234388A
JP2009234388A JP2008081991A JP2008081991A JP2009234388A JP 2009234388 A JP2009234388 A JP 2009234388A JP 2008081991 A JP2008081991 A JP 2008081991A JP 2008081991 A JP2008081991 A JP 2008081991A JP 2009234388 A JP2009234388 A JP 2009234388A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
heat exchanger
air
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008081991A
Other languages
Japanese (ja)
Inventor
Toshio Yajima
敏雄 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008081991A priority Critical patent/JP2009234388A/en
Publication of JP2009234388A publication Critical patent/JP2009234388A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning system capable of performing dehumidification heating in heating operation and exhibiting high heating performance, in the system capable of performing cooling operation and heating operation. <P>SOLUTION: The air-conditioning system 1 for a vehicle is provided with a compressor 2; an indoor capacitor 3 for performing heat exchange between a coolant of a high temperature and high pressure and fed air led into a cabin; a first expansion valve 6 for pressure-reducing the coolant cooled by the indoor capacitor 3 to make it as a coolant of low pressure; an indoor evaporator 4 for performing heat exchange between the coolant of the low pressure and the fed air led into the cabin; an outdoor heat exchanger 5 for performing exchange between the coolant and external air. In the air-conditioning system 1, a circulation route of the coolant in which the outdoor heat exchanger 5 is connected to a high pressure side of a refrigeration cycle together with the indoor capacitor 3, and a circulation route of the coolant in which the outdoor heat exchanger 5 is connected to a low pressure side of the refrigeration cycle together with the indoor evaporator 4, and also connected in series to a downstream of the indoor evaporator 4 can be switched. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷房運転と暖房運転が可能であり、暖房運転では除湿暖房となる空気調和システムに関する。   The present invention relates to an air conditioning system that is capable of cooling operation and heating operation, and that is dehumidifying and heating in the heating operation.

この種の従来の空気調和システムとしては、特許文献1に開示されたものがある。この空気調和システム100は、図6に示すように、冷媒を圧縮して冷媒を高温高圧とするコンプレッサ101と、コンプレッサ101で高温高圧とされた冷媒を外気との間で熱交換させる室外コンデンサ102と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ103と、室内コンデンサ103で冷却された冷媒を減圧して低圧の冷媒とする第1減圧手段104と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータ105と、コンプレッサ101で高温高圧とされた冷媒を室外コンデンサ102に供給するか、室外コンデンサ102をバイパスさせるバイパス経路106に導くか否かを選択できる三方弁107とを備えている。   A conventional air conditioning system of this type is disclosed in Patent Document 1. As shown in FIG. 6, the air conditioning system 100 includes a compressor 101 that compresses a refrigerant to make the refrigerant at a high temperature and a high pressure, and an outdoor capacitor 102 that exchanges heat between the refrigerant that has been made a high temperature and high pressure by the compressor 101 with the outside air. And an indoor condenser 103 that exchanges heat between the high-temperature and high-pressure refrigerant and the air blown into the room, a first decompression means 104 that depressurizes the refrigerant cooled by the indoor condenser 103 to form a low-pressure refrigerant, and a low-pressure refrigerant Whether to supply heat to the indoor evaporator 105 that exchanges heat between the air and the air that is led into the room, and to the bypass condenser 106 that bypasses the outdoor condenser 102 or supplies the high-temperature and high-pressure refrigerant in the compressor 101 to the outdoor condenser 102. A three-way valve 107 that can be selected is provided.

冷房運転時には、三方弁107が室外コンデンサ102側を選択し、コンプレッサ101からの高温高圧の冷媒が室外コンデンサ102、室内コンデンサ103及び室内エバポレータ105を通る循環経路に切り替えられる。   During the cooling operation, the three-way valve 107 selects the outdoor condenser 102 side, and the high-temperature and high-pressure refrigerant from the compressor 101 is switched to a circulation path that passes through the outdoor condenser 102, the indoor condenser 103, and the indoor evaporator 105.

暖房運転時には、三方弁107がバイパス経路106側を選択し、コンプレッサ101からの高温高圧の冷媒が室内コンデンサ103と室内エバポレータ105のみを通る循環経路に切り替えられる。   During the heating operation, the three-way valve 107 selects the bypass path 106 side, and the high-temperature and high-pressure refrigerant from the compressor 101 is switched to a circulation path that passes only through the indoor condenser 103 and the indoor evaporator 105.

冷房運転では、室内に導かれる送風は、室内エバポレータ105と必要に応じて室内コンデンサ103を通過し、所望温度の冷風とされて室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ103と室外コンデンサ102の双方で放熱するため、室内エバポレータ105では吸熱量が室内コンデンサ103より大きく、十分な冷房性能が期待できる。   In the cooling operation, the air blown into the room passes through the indoor evaporator 105 and the indoor condenser 103 as necessary, is cooled to a desired temperature, and is led into the room. Looking at the transfer of heat from the refrigerant in the cooling operation, the heat of the refrigerant is dissipated by both the indoor condenser 103 and the outdoor condenser 102. Therefore, the indoor evaporator 105 has a larger amount of heat absorption than the indoor condenser 103, and has sufficient cooling performance. I can expect.

一方、暖房運転では、室内に導かれる送風は、室内エバポレータ105と必要に応じて室内コンデンサ103を通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータ105を通過する際に凝縮水を発生するため、室内を除湿暖房することができる。
特許公報第2745997号
On the other hand, in the heating operation, the air blown into the room passes through the indoor evaporator 105 and the indoor condenser 103 as necessary, and is heated to a desired temperature and led into the room. The air blown into the room generates condensed water when it passes through the room evaporator 105, and thus the room can be dehumidified and heated.
Patent Publication No. 2745997

しかしながら、図7に示すように、暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ103でのみ放熱し、室内エバポレータ105で吸熱するため、コンプレッサ101の動力に相当する熱量だけが暖房熱量となる。従って、除湿暖房できるものの暖房性能が低いという問題がある。   However, as shown in FIG. 7, when the transfer of heat of the refrigerant in the heating operation is seen, the heat of the refrigerant is radiated only by the indoor condenser 103 and absorbed by the indoor evaporator 105, so that only the amount of heat corresponding to the power of the compressor 101 is obtained. Becomes the amount of heating heat. Accordingly, there is a problem that although the dehumidifying heating can be performed, the heating performance is low.

そこで、本発明は、冷房運転と暖房運転ができるシステムにあって、暖房運転では除湿暖房でき、しかも、高い暖房性能を発揮する空気調和システムを提供することを目的とする。   Therefore, an object of the present invention is to provide an air conditioning system that can perform cooling operation and heating operation, can perform dehumidification heating in the heating operation, and exhibits high heating performance.

上記目的を達成する請求項1の発明は、冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサと、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサと、前記室内コンデンサで冷却された冷媒を減圧して低圧の冷媒とする第1減圧手段と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータと、冷媒と外気との間で熱交換させる室外熱交換器とを備えた空気調和システムであって、前記室外熱交換器が前記室内コンデンサと共に冷凍サイクルの高圧側に接続される冷媒の循環経路と、前記室外熱交換器が前記室内エバポレータと共に冷凍サイクルの低圧側で、且つ、前記室内エバポレータの下流に直列に接続される冷媒の循環経路に切り替えできることを特徴とする。   The invention according to claim 1 that achieves the above object includes a compressor that compresses the refrigerant to make the refrigerant a high-temperature and high-pressure refrigerant, an indoor condenser that exchanges heat between the high-temperature and high-pressure refrigerant and the air blown into the room, and the indoor Heat is exchanged between the refrigerant and the outside air, a first pressure reducing means that depressurizes the refrigerant cooled by the condenser to form a low-pressure refrigerant, an indoor evaporator that exchanges heat between the low-pressure refrigerant and the air blown into the room. An air conditioning system comprising an outdoor heat exchanger, wherein the outdoor heat exchanger is connected to the high-pressure side of a refrigeration cycle together with the indoor condenser, and the outdoor heat exchanger is combined with the indoor evaporator. It is possible to switch to a refrigerant circulation path connected in series on the low pressure side of the refrigeration cycle and downstream of the indoor evaporator.

請求項2の発明は、請求項1記載の空気調和システムであって、前記室外熱交換器が前記室内エバポレータの下流に配置される冷媒の循環経路では、前記室内エバポレータと室外熱交換器との間に第2減圧手段が介在されることを特徴とする。   Invention of Claim 2 is an air conditioning system of Claim 1, Comprising: In the circulation path of the refrigerant | coolant by which the said outdoor heat exchanger is arrange | positioned downstream of the said indoor evaporator, between the said indoor evaporator and an outdoor heat exchanger, A second decompression means is interposed between the two.

請求項3の発明は、請求項1又は請求項2に記載の空気調和システムであって、前記室外熱交換器は、冷媒が循環されない位置に切り替えできることを特徴とする。   Invention of Claim 3 is an air conditioning system of Claim 1 or Claim 2, Comprising: The said outdoor heat exchanger can be switched to the position where a refrigerant | coolant is not circulated.

請求項1の発明によれば、冷房運転ではコンプレッサからの高温高圧の冷媒が室外熱交換器及び室内コンデンサに導かれ、低圧の冷媒が室内エバポレータに導かれる循環経路とする。これによって、室内に導かれる送風は、室内エバポレータと必要に応じて室内コンデンサを通過し、所望温度の冷風とされて室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサと室外熱交換器の双方で放熱するため、室内エバポレータでは吸熱量が室内コンデンサより大きく、冷房性能が高い。   According to the first aspect of the present invention, in the cooling operation, the high-temperature and high-pressure refrigerant from the compressor is led to the outdoor heat exchanger and the indoor condenser, and the low-pressure refrigerant is led to the circulation path that leads to the indoor evaporator. As a result, the air blown into the room passes through the indoor evaporator and the indoor condenser as required, is cooled to a desired temperature, and is led into the room. When looking at the heat exchange of the refrigerant in the cooling operation, the refrigerant dissipates heat in both the indoor condenser and the outdoor heat exchanger. Therefore, the indoor evaporator has a larger amount of heat absorption than the indoor condenser and has high cooling performance.

又、暖房運転では、コンプレッサからの高温高圧の冷媒が室内コンデンサに導かれ、低圧の冷媒が室内エバポレータ及び室外熱交換器に導かれる循環経路とする。これによって、室内に導かれる送風は、室内エバポレータと必要に応じて室内コンデンサを通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータを通過する際に凝縮水を発生するため、室内を除湿暖房することができる。そして、暖房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサでのみ放熱し、室内エバポレータと室外熱交換器の双方で吸熱するため、コンプレッサの動力に相当する熱量と室外熱交換器の吸熱に相当する熱量が暖房用熱量となる。以上より、冷房運転と暖房運転ができるシステムにあって、暖房運転では除湿暖房ができ、しかも、高い暖房性能を発揮することができる。   In the heating operation, a high-temperature and high-pressure refrigerant from the compressor is led to the indoor condenser, and a low-pressure refrigerant is led to the indoor evaporator and the outdoor heat exchanger. As a result, the air blown into the room passes through the indoor evaporator and the indoor condenser as necessary, and is heated to a desired temperature and led into the room. The air blown into the room generates condensed water when passing through the indoor evaporator, so that the room can be dehumidified and heated. Looking at the transfer of heat from the refrigerant in the heating operation, the refrigerant radiates heat only in the indoor condenser and absorbs heat in both the indoor evaporator and the outdoor heat exchanger, so the amount of heat corresponding to the power of the compressor and the outdoor heat exchanger The amount of heat corresponding to the endotherm is the amount of heat for heating. As described above, in the system capable of cooling operation and heating operation, dehumidifying heating can be performed in the heating operation, and high heating performance can be exhibited.

請求項2の発明によれば、請求項1の発明の効果に加え、第2減圧手段によって室内エバポレータの冷媒蒸発温度より室外熱交換器の冷媒蒸発温度を低く設定できるため、室外熱交換器は外気温度が低い時でも外気からの吸熱を行うことができ、外気が低温でも優れた暖房性能を発揮することができる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, since the refrigerant evaporation temperature of the outdoor heat exchanger can be set lower than the refrigerant evaporation temperature of the indoor evaporator by the second decompression means, Even when the outside air temperature is low, heat can be absorbed from the outside air, and excellent heating performance can be exhibited even when the outside air is at a low temperature.

請求項3の発明によれば、請求項1又は請求項2の発明の効果に加え、除湿を主目的とした除湿暖房運転では、コンプレッサからの高温高圧の冷媒が室内コンデンサに導かれ、低圧の冷媒が室外熱交換器に導かれる循環経路とする。これによって、室内に導かれる送風は、室内エバポレータと必要に応じて室内コンデンサを通過し、所望温度の温風とされて室内に導かれる。室内に導かれる送風は、室内エバポレータを通過する際に凝縮水を発生するため、室内を除湿暖房することができる。そして、除湿暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサで放熱し、室内エバポレータで吸熱するため、コンプレッサの動力に相当する熱量だけが暖房熱量となる。以上より、除湿を主目的とした除湿暖房運転が可能である。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, in the dehumidifying heating operation mainly for dehumidification, the high-temperature and high-pressure refrigerant from the compressor is led to the indoor condenser, A circulation path through which the refrigerant is guided to the outdoor heat exchanger is assumed. As a result, the air blown into the room passes through the indoor evaporator and the indoor condenser as necessary, and is heated to a desired temperature and led into the room. The air blown into the room generates condensed water when passing through the indoor evaporator, so that the room can be dehumidified and heated. When looking at the transfer of the heat of the refrigerant in the dehumidifying heating operation, the heat of the refrigerant is radiated by the indoor condenser and absorbed by the indoor evaporator, so only the amount of heat corresponding to the power of the compressor becomes the amount of heating heat. From the above, dehumidifying heating operation mainly for dehumidification is possible.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図5は本発明の空気調和システムを車両用空気調和システムに適用した一実施形態を示し、図1は車両用空気調和システムの構成図、図2は冷房運転時の冷媒の流れを示す図、図3は除湿暖房運転時の冷媒の流れを示す図、図4は暖房運転時の冷媒の流れを示す図、図5はP−h線上に本実施形態に係る冷凍サイクルの状態を示した図である。   1 to 5 show an embodiment in which the air conditioning system of the present invention is applied to a vehicle air conditioning system, FIG. 1 is a configuration diagram of the vehicle air conditioning system, and FIG. 2 shows the flow of refrigerant during cooling operation. FIG. 3 is a diagram showing the flow of the refrigerant during the dehumidifying heating operation, FIG. 4 is a diagram showing the flow of the refrigerant during the heating operation, and FIG. 5 is a state of the refrigeration cycle according to the present embodiment on the Ph line. FIG.

図1に示すように、車両用空気調和システム1は、コンプレッサ2と、室内コンデンサ3と、室内エバポレータ4と、室外熱交換器5と、第1減圧手段である第1膨張弁6と、第2減圧手段である第2膨張弁7と3つの三方弁8a,8b,8cと1つの開閉弁9とを備え、三方弁8a,8b,8c及び開閉弁9の切り替えによって、図2〜図4に示す3つの循環経路に切り替えできるように構成されている。つまり、図2に示す冷房用循環経路と、図3に示す除湿暖房用循環経路と、図4に示す暖房用循環経路に切り替えできる。各循環経路の詳しい冷媒の流れは、車両用空気調和システム1の動作の箇所で説明する。   As shown in FIG. 1, a vehicle air conditioning system 1 includes a compressor 2, an indoor condenser 3, an indoor evaporator 4, an outdoor heat exchanger 5, a first expansion valve 6 that is a first pressure reducing means, 2 is provided with a second expansion valve 7 which is a pressure reducing means, three three-way valves 8a, 8b and 8c, and one on-off valve 9. By switching between the three-way valves 8a, 8b and 8c and the on-off valve 9, FIGS. It is comprised so that it can switch to the three circulation paths shown in these. That is, it is possible to switch to the cooling circulation path shown in FIG. 2, the dehumidifying heating circulation path shown in FIG. 3, and the heating circulation path shown in FIG. The detailed refrigerant flow in each circulation path will be described in the operation of the vehicle air conditioning system 1.

図1に戻り、コンプレッサ2は、冷媒を圧縮し、高温高圧の冷媒として吐出する。冷媒は、二酸化炭素等の超臨界冷媒が使用されている。   Returning to FIG. 1, the compressor 2 compresses the refrigerant and discharges it as a high-temperature and high-pressure refrigerant. As the refrigerant, a supercritical refrigerant such as carbon dioxide is used.

室内コンデンサ3は、送風を車室内に導く空調ダクト10内に配置され、高温高圧の冷媒と送風との間で熱交換させる。   The indoor condenser 3 is disposed in the air conditioning duct 10 that guides the air flow into the passenger compartment, and exchanges heat between the high-temperature and high-pressure refrigerant and the air.

室内エバポレータ4は、同じく空調ダクト10内で、且つ、室内コンデンサ3より上流位置に配置され、低温低圧の冷媒と送風との間で熱交換させる。空調ダクト10内には、室内コンデンサ3を通過する送風と室内コンデンサ3をバイパスする送風との配風割合を調整できる配風ドア(図示せず)が設けられている。   The indoor evaporator 4 is also disposed in the air conditioning duct 10 and upstream of the indoor condenser 3, and exchanges heat between the low-temperature and low-pressure refrigerant and the air. In the air conditioning duct 10, an air distribution door (not shown) capable of adjusting the air distribution ratio between the air passing through the indoor condenser 3 and the air blowing bypassing the indoor condenser 3 is provided.

室外熱交換器5は、車室外(例えばエンジンルーム内)に配置され、冷媒と外気との間で熱交換させる。   The outdoor heat exchanger 5 is disposed outside the passenger compartment (for example, in the engine room) and exchanges heat between the refrigerant and the outside air.

第1膨張弁6は、室内コンデンサ3と室内エバポレータ4との間に介在され、室内コンデンサ3より排出された冷媒を減圧する。   The first expansion valve 6 is interposed between the indoor condenser 3 and the indoor evaporator 4 and depressurizes the refrigerant discharged from the indoor condenser 3.

第2膨張弁7は、図5の暖房用循環経路にあって室内エバポレータ4と室外熱交換器5との間に介在され、室内エバポレータ4より排出された低圧の冷媒を更に減圧する。   The second expansion valve 7 is in the heating circulation path of FIG. 5 and is interposed between the indoor evaporator 4 and the outdoor heat exchanger 5, and further reduces the pressure of the low-pressure refrigerant discharged from the indoor evaporator 4.

また、車両用空気調和システム1には、室内エバポレータ4を通過した冷媒温度を検知する第1冷媒温度センサS1と、室外熱交換器5を通過した冷媒温度を検知する第2冷媒温度センサS2と外気温度を検知する外気温度センサS3が設けられている。これらセンサS1,S2,S3の検知温度情報とユーザ指令(空調スイッチのオン・オフ、空調モード(冷房、除湿暖房、暖房)、設定温度など)に基づいてコンプレッサ2の駆動、第1膨張弁6及び第2膨張弁7の絞り、三方弁8a,8b,8c、開閉弁9等が制御される。   The vehicle air conditioning system 1 also includes a first refrigerant temperature sensor S1 that detects the refrigerant temperature that has passed through the indoor evaporator 4, and a second refrigerant temperature sensor S2 that detects the refrigerant temperature that has passed through the outdoor heat exchanger 5. An outside air temperature sensor S3 that detects the outside air temperature is provided. Based on the detected temperature information of these sensors S1, S2, S3 and user commands (ON / OFF of air conditioning switch, air conditioning mode (cooling, dehumidifying heating, heating), set temperature, etc.), driving of compressor 2, first expansion valve 6 The throttle of the second expansion valve 7, the three-way valves 8a, 8b, 8c, the on-off valve 9 and the like are controlled.

次に、車両用空気調和システム1の動作を説明する。   Next, the operation of the vehicle air conditioning system 1 will be described.

冷房モードが選択されると、図2に示す冷房用循環経路に切り替えられる。コンプレッサ2からの高温高圧の冷媒は、室外熱交換器5、室内コンデンサ3、第1膨張弁6、室内エバポレータ4を通ってコンプレッサ2に戻る。室外熱交換器5は、冷凍サイクルの高圧側に配置され、コンデンサ(放熱器)として機能する。これによって、車室内に導かれる送風は、室内エバポレータ4と必要に応じて室内コンデンサ3を通過し、所望温度の冷風とされて車室内に導かれる。そして、冷房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサ3と室外熱交換器5の双方で放熱するため、室内エバポレータ4では吸熱量が室内コンデンサ3より大きく、高い冷房性能を発揮することができる。   When the cooling mode is selected, it is switched to the cooling circulation path shown in FIG. The high-temperature and high-pressure refrigerant from the compressor 2 returns to the compressor 2 through the outdoor heat exchanger 5, the indoor condenser 3, the first expansion valve 6, and the indoor evaporator 4. The outdoor heat exchanger 5 is disposed on the high-pressure side of the refrigeration cycle and functions as a condenser (heat radiator). As a result, the air blown into the vehicle interior passes through the indoor evaporator 4 and the indoor condenser 3 as necessary, and is guided into the vehicle interior as cold air at a desired temperature. When looking at the heat exchange of the refrigerant in the cooling operation, the refrigerant dissipates heat in both the indoor condenser 3 and the outdoor heat exchanger 5, and therefore the indoor evaporator 4 has a larger heat absorption than the indoor condenser 3 and exhibits high cooling performance. can do.

除湿暖房モードが選択されると、図3に示す除湿暖房用循環経路に切り替えられる。コンプレッサ2からの高温高圧の冷媒は、室内コンデンサ3、第1膨張弁6、室内エバポレータ4を通ってコンプレッサ2に戻る。室外熱交換器5は、冷凍サイクルの循環経路より外れた位置とされる。車室内に導かれる送風は、室内エバポレータ4と室内コンデンサ3を通過し、所望温度の暖房とされて車室内に導かれる。又、車室内に導かれる送風は、室内エバポレータ4を通過する際に凝縮水を発生するため、車室内を除湿暖房することができる。   When the dehumidifying and heating mode is selected, the mode is switched to the dehumidifying and heating circulation path shown in FIG. The high-temperature and high-pressure refrigerant from the compressor 2 returns to the compressor 2 through the indoor condenser 3, the first expansion valve 6, and the indoor evaporator 4. The outdoor heat exchanger 5 is located at a position outside the circulation path of the refrigeration cycle. The air blown into the vehicle interior passes through the indoor evaporator 4 and the indoor condenser 3, is heated to a desired temperature, and is guided into the vehicle interior. Further, since the air blown into the vehicle interior generates condensed water when passing through the interior evaporator 4, the vehicle interior can be dehumidified and heated.

暖房モードが選択されると、図4に示す暖房用循環経路に切り替えられる。コンプレッサ2からの高温高圧の冷媒は、室内コンデンサ3、第1膨張弁6、室内エバポレータ4、第2膨張弁7、室外熱交換器5を通ってコンプレッサ2に戻る。室外熱交換器5は、冷凍サイクルの低圧側に配置されてエバポレータ(吸熱器)として機能する。これによって、室内に導かれる送風は、室内エバポレータ4と必要に応じて室内コンデンサ3を通過し、所望温度の温風とされて車室内に導かれる。車室内に導かれる送風は、室内エバポレータ4を通過する際に凝縮水を発生するため、車室内を除湿暖房することができる。そして、暖房運転における冷媒の熱の授受を見ると、冷媒は室内コンデンサ3でのみ放熱し、室内エバポレータ4と室外熱交換器5の双方で吸熱するため、図5に示すように、コンプレッサ2の動力に相当する熱量と室外熱交換器5の吸熱に相当する熱量が暖房熱量となる。   When the heating mode is selected, the mode is switched to the heating circulation path shown in FIG. The high-temperature and high-pressure refrigerant from the compressor 2 returns to the compressor 2 through the indoor condenser 3, the first expansion valve 6, the indoor evaporator 4, the second expansion valve 7, and the outdoor heat exchanger 5. The outdoor heat exchanger 5 is disposed on the low-pressure side of the refrigeration cycle and functions as an evaporator (heat absorber). As a result, the air blown into the room passes through the indoor evaporator 4 and the indoor condenser 3 as necessary, is heated to a desired temperature, and is led into the vehicle interior. The air blown into the vehicle interior generates condensed water when passing through the interior evaporator 4, so that the vehicle interior can be dehumidified and heated. When looking at the heat exchange of the refrigerant in the heating operation, the refrigerant radiates heat only in the indoor condenser 3 and absorbs heat in both the indoor evaporator 4 and the outdoor heat exchanger 5, so that the compressor 2 The amount of heat corresponding to the power and the amount of heat corresponding to the heat absorbed by the outdoor heat exchanger 5 are the amount of heating heat.

以上より、冷房運転と暖房運転ができるシステムにあって、暖房運転では除湿暖房ができ、しかも、高い暖房性能を発揮することができる。   As described above, in the system capable of cooling operation and heating operation, dehumidifying heating can be performed in the heating operation, and high heating performance can be exhibited.

この実施形態では、室外熱交換器5が室内エバポレータ4の下流に直列に配置される冷媒の循環経路(暖房用循環経路)では、室内エバポレータ4と室外熱交換器5との間に第2膨張弁7が介在される。従って、第2膨張弁7によって室内エバポレータ4の冷媒蒸発温度より室外熱交換器5の冷媒蒸発温度を低く設定できるため、室外熱交換器5は外気温度が低い時でも外気からの吸熱を行うことができ、外気が低温でも優れた暖房性能を発揮することができる。特に、この実施形態では、冷媒として超臨界冷媒を使用している。従って、外気が超低温(例えばマイナス20℃程度)であり、室外熱交換器5の冷媒蒸発温度を外気温より低温に設定してもコンプレッサ2の入口側(低圧側)の冷媒圧力が大気圧以下にならないため、外気が超低温でも不具合なくエバポレータ(吸熱器)として機能する。   In this embodiment, in the refrigerant circulation path (heating circulation path) in which the outdoor heat exchanger 5 is arranged in series downstream of the indoor evaporator 4, the second expansion is performed between the indoor evaporator 4 and the outdoor heat exchanger 5. A valve 7 is interposed. Therefore, since the refrigerant expansion temperature of the outdoor heat exchanger 5 can be set lower than the refrigerant evaporation temperature of the indoor evaporator 4 by the second expansion valve 7, the outdoor heat exchanger 5 absorbs heat from the outside air even when the outside air temperature is low. It can exhibit excellent heating performance even when the outside air is at a low temperature. In particular, in this embodiment, a supercritical refrigerant is used as the refrigerant. Therefore, even if the outside air is extremely low temperature (for example, about minus 20 ° C.) and the refrigerant evaporation temperature of the outdoor heat exchanger 5 is set lower than the outside air temperature, the refrigerant pressure on the inlet side (low pressure side) of the compressor 2 is below atmospheric pressure. Therefore, even if the outside air is at a very low temperature, it functions as an evaporator (heat absorber) without any problems.

尚、この実施形態では、第2膨張弁7が設けられているが、第2膨張弁を設けなくてもシステムとして成立する。   In addition, in this embodiment, although the 2nd expansion valve 7 is provided, even if it does not provide a 2nd expansion valve, it is materialized as a system.

この実施形態では、室外熱交換器5は、冷媒が循環されない位置に切り替えできる。つまり、上記したように除湿暖房運転が可能である。この除湿暖房運転における冷媒の熱の授受を見ると、冷媒の熱は室内コンデンサ3でのみ放熱し、室内エバポレータ4でのみ吸熱するため、コンプレッサ2の動力に相当する熱量だけが暖房熱量となる。以上より、暖房性能が低く、除湿を主目的とした除湿暖房運転が可能である。   In this embodiment, the outdoor heat exchanger 5 can be switched to a position where the refrigerant is not circulated. That is, the dehumidifying heating operation is possible as described above. Looking at the transfer of heat of the refrigerant in the dehumidifying heating operation, the heat of the refrigerant is radiated only by the indoor condenser 3 and is absorbed only by the indoor evaporator 4, so only the amount of heat corresponding to the power of the compressor 2 becomes the amount of heating heat. As described above, the heating performance is low and the dehumidifying heating operation mainly for dehumidification is possible.

本発明の一実施形態を示し、車両用空気調和システムの構成図である。1 shows an embodiment of the present invention and is a configuration diagram of a vehicle air conditioning system. FIG. 本発明の一実施形態を示し、冷房運転時の冷媒の流れを示す図である。It is a figure which shows one Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation. 本発明の一実施形態を示し、除湿暖房運転時の冷媒の流れを示す図である。It is a figure which shows one Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of dehumidification heating operation. 本発明の一実施形態を示し、暖房運転時の冷媒の流れを示す図である。It is a figure which shows one Embodiment of this invention and shows the flow of the refrigerant | coolant at the time of heating operation. 本発明の一実施形態を示し、P−h線上に本実施形態に係る冷凍サイクルの状態を示した図である。FIG. 5 is a diagram showing an embodiment of the present invention and showing the state of the refrigeration cycle according to the present embodiment on the Ph line. 従来例の空気調和システムの構成図である。It is a block diagram of the air conditioning system of a prior art example. P−h線上に従来例に係る冷凍サイクルの状態を示した図である。It is the figure which showed the state of the refrigerating cycle which concerns on a prior art example on Ph line.

符号の説明Explanation of symbols

1 車両用空気調和システム(空気調和システム)
2 コンプレッサ
3 室内コンデンサ
4 室内エバポレータ
5 室外熱交換器
6 第1膨張弁(第1減圧手段)
7 第2膨張弁(第2減圧手段)
1 Vehicle Air Conditioning System (Air Conditioning System)
2 Compressor 3 Indoor condenser 4 Indoor evaporator 5 Outdoor heat exchanger 6 First expansion valve (first decompression means)
7 Second expansion valve (second decompression means)

Claims (3)

冷媒を圧縮して冷媒を高温高圧の冷媒とするコンプレッサ(2)と、高温高圧の冷媒と室内に導く送風との間で熱交換させる室内コンデンサ(3)と、前記室内コンデンサ(3)で冷却された冷媒を減圧して低圧の冷媒とする第1減圧手段(6)と、低圧の冷媒と室内に導く送風との間で熱交換させる室内エバポレータ(4)と、冷媒と外気との間で熱交換させる室外熱交換器(5)とを備えた空気調和システム(1)であって、
前記室外熱交換器(5)が前記室内コンデンサ(3)と共に冷凍サイクルの高圧側に接続される冷媒の循環経路と、前記室外熱交換器(5)が前記室内エバポレータ(4)と共に冷凍サイクルの低圧側で、且つ、前記室内エバポレータ(4)の下流に直列に接続される冷媒の循環経路に切り替えできることを特徴とする空気調和システム(1)。
Cooling is performed by the compressor (2) that compresses the refrigerant to convert the refrigerant into a high-temperature and high-pressure refrigerant, the indoor condenser (3) that exchanges heat between the high-temperature and high-pressure refrigerant and the air blown into the room, and the indoor condenser (3). Between the refrigerant and the outside air, the first decompression means (6) that depressurizes the generated refrigerant into a low-pressure refrigerant, the indoor evaporator (4) that exchanges heat between the low-pressure refrigerant and the air blown into the room. An air conditioning system (1) comprising an outdoor heat exchanger (5) for heat exchange,
The outdoor heat exchanger (5) is connected to the high-pressure side of the refrigeration cycle together with the indoor condenser (3), and the outdoor heat exchanger (5) is connected to the indoor evaporator (4) of the refrigeration cycle. An air conditioning system (1) characterized in that it can be switched to a refrigerant circulation path connected in series on the low pressure side and downstream of the indoor evaporator (4).
請求項1記載の空気調和システム(1)であって、
前記室外熱交換器(5)が前記室内エバポレータ(4)の下流に配置される冷媒の循環経路では、前記室内エバポレータ(4)と室外熱交換器(5)との間に第2減圧手段(7)が介在されることを特徴とする空気調和システム(1)。
An air conditioning system (1) according to claim 1,
In the refrigerant circulation path in which the outdoor heat exchanger (5) is arranged downstream of the indoor evaporator (4), a second decompression means (between the indoor evaporator (4) and the outdoor heat exchanger (5)). 7) An air conditioning system (1) characterized in that intervening.
請求項1又は請求項2に記載の空気調和システム(1)であって、
前記室外熱交換器(5)は、冷媒が循環されない位置に切り替えできることを特徴とする空気調和システム(1)。
An air conditioning system (1) according to claim 1 or claim 2, wherein
The air conditioning system (1), wherein the outdoor heat exchanger (5) can be switched to a position where the refrigerant is not circulated.
JP2008081991A 2008-03-26 2008-03-26 Air-conditioning system Pending JP2009234388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081991A JP2009234388A (en) 2008-03-26 2008-03-26 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081991A JP2009234388A (en) 2008-03-26 2008-03-26 Air-conditioning system

Publications (1)

Publication Number Publication Date
JP2009234388A true JP2009234388A (en) 2009-10-15

Family

ID=41248899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081991A Pending JP2009234388A (en) 2008-03-26 2008-03-26 Air-conditioning system

Country Status (1)

Country Link
JP (1) JP2009234388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347832A (en) * 2018-12-24 2020-06-30 长城汽车股份有限公司 Vehicle heat exchange system and vehicle with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745997B2 (en) * 1992-09-14 1998-04-28 日産自動車株式会社 Heat pump type air conditioner for vehicles
JPH11139154A (en) * 1997-11-07 1999-05-25 Tgk Co Ltd Air conditioner for automobile
JP2001050572A (en) * 1999-08-06 2001-02-23 Calsonic Kansei Corp Air conditioner for automobile
JP2002333235A (en) * 2001-05-08 2002-11-22 Hitachi Ltd Air conditioner
JP2004218853A (en) * 2003-01-09 2004-08-05 Denso Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745997B2 (en) * 1992-09-14 1998-04-28 日産自動車株式会社 Heat pump type air conditioner for vehicles
JPH11139154A (en) * 1997-11-07 1999-05-25 Tgk Co Ltd Air conditioner for automobile
JP2001050572A (en) * 1999-08-06 2001-02-23 Calsonic Kansei Corp Air conditioner for automobile
JP2002333235A (en) * 2001-05-08 2002-11-22 Hitachi Ltd Air conditioner
JP2004218853A (en) * 2003-01-09 2004-08-05 Denso Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347832A (en) * 2018-12-24 2020-06-30 长城汽车股份有限公司 Vehicle heat exchange system and vehicle with same
CN111347832B (en) * 2018-12-24 2022-12-02 长城汽车股份有限公司 Vehicle heat exchange system and vehicle with same

Similar Documents

Publication Publication Date Title
JP5646681B2 (en) Refrigerant circuit of air conditioner with heat pump and reheating function
JP2009264661A (en) Air conditioning system
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
JP2004161267A (en) Combination of cooling plant with heat pump for automobile for performing cooling, heating and dehumidification in cabin
JP2009274517A (en) Air conditioning system
JP2003291635A (en) Air-conditioner
JP2007327740A (en) Vehicular air-conditioning unit, and its using method
JPH0939542A (en) Heat pump air-conditioning dehumidifier for electric car
US10207566B2 (en) Air conditioning system for vehicle including two condensers and a control door within a duct to selectively control airflow through said two condensers
JP2009198060A (en) Air-conditioning system
JP2009190579A (en) Air conditioning system
CN107074069A (en) Heat-pump-type vehicle air-conditioning systems
JPH06143974A (en) Air conditioner
JPH08216667A (en) Air-conditioning and dehumidification device in heat pump for electric vehicle
JP5108606B2 (en) Air conditioning system
KR101622631B1 (en) Heat pump system for vehicle and its control method
JP2009192155A (en) Air conditioning system for vehicle
JP2010042698A (en) Air conditioner for vehicle
KR100954015B1 (en) HVAC for Bus
EP3361171B1 (en) High efficiency integrated air conditioning system
JP2006194525A (en) Multi-chamber type air conditioner
JP2009234388A (en) Air-conditioning system
JP2020041770A (en) Heat pump type hot water supply air conditioning device
JP4972022B2 (en) Air conditioning apparatus and control method thereof
JP2007322037A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100910

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529