JP2009233842A - Wire electric discharge machining method - Google Patents

Wire electric discharge machining method Download PDF

Info

Publication number
JP2009233842A
JP2009233842A JP2008086943A JP2008086943A JP2009233842A JP 2009233842 A JP2009233842 A JP 2009233842A JP 2008086943 A JP2008086943 A JP 2008086943A JP 2008086943 A JP2008086943 A JP 2008086943A JP 2009233842 A JP2009233842 A JP 2009233842A
Authority
JP
Japan
Prior art keywords
workpiece
machining
wire
electric discharge
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008086943A
Other languages
Japanese (ja)
Inventor
Takashi Mitsuyasu
隆 光安
Yoshihiro Ito
世史弘 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Electric and Machinery Co Ltd
Original Assignee
Seibu Electric and Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Electric and Machinery Co Ltd filed Critical Seibu Electric and Machinery Co Ltd
Priority to JP2008086943A priority Critical patent/JP2009233842A/en
Publication of JP2009233842A publication Critical patent/JP2009233842A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire electric discharge machining method which improves the straightness of a workpiece in its through-thickness direction by the oscillation machining of the workpiece. <P>SOLUTION: The wire electric discharge machining method oscillation-machines the workpiece 2 with respect to a machining advancement direction for the electric discharge machining of the workpiece 2 into a predetermined machining shape which is decided beforehand by oscillation-advancing a wire electrode 1 or the workpiece 2 obliquely to the machining advancement direction by a predetermined width, thereby improving the accuracy of finishing in the straightness of the workpiece 2 in the through-thickness direction. This wire electric discharge machining method performs appropriate oscillation machining only without changing machining conditions, thereby achieving electric discharge machining stably at a high degree of accuracy without reduction in machining speed. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は,ワイヤ電極と工作物との間に加工電圧を印加して発生する放電エネルギーによって工作物を放電加工するワイヤ放電加工方法に関する。   The present invention relates to a wire electric discharge machining method for electric discharge machining a workpiece by electric discharge energy generated by applying a machining voltage between a wire electrode and the workpiece.

従来,ワイヤ放電加工機は,図1及び図2に示すように,ベースであるベッド17上にY軸テーブル30がY軸方向に移動可能に設けられ,Y軸テーブル30上にX軸テーブル31がX軸方向に移動可能に設けられている。機械本体におけるヘッド33には上ワイヤヘッド3が設けられ,機械本体における下アーム28には下ワイヤヘッド4が設けられており,上ワイヤヘッド3は,ワイヤ電極1を工作物2に形成されたスタートホール24や加工スリット36へ供給する機能を果たし,下ワイヤヘッド4は,上ワイヤヘッド3の下方に対向して工作物2を加工した後のワイヤ電極1を受け取る機能を果たす。また,ワイヤ放電加工機は,下ワイヤヘッド4から繰り出される放電加工を行った消耗したワイヤ電極1を案内するため,下ワイヤヘッド4の下方に設置されたガイドローラ5,ガイドローラ5からのワイヤ電極1を送り出すため設けられたワイヤガイドパイプ6,及びワイヤガイドパイプ6の出口に近接して設けられたワイヤ電極1を引き出す引出しローラ7を有している。また,ワイヤ放電加工機におけるワイヤ自動供給装置9は,ワイヤ電極1が巻き上げられているソースボビン37,ソースボビン37から送り出されるワイヤ送り系でのワイヤ電極の方向を転換するガイドローラ20,方向転換ローラ22,送り出されるワイヤ電極1にテンションを付与するテンションローラ19,及びテンションが付与されたワイヤ電極1に良好に繰り出されるようにブレーキをかけるブレーキローラ29を備えている。ワイヤ供給系における方向転換ローラ22を通過したワイヤ電極1は,ヘッド33に設けられた一対のガイドローラ,ワイヤ電極送りローラである一対のアニールローラ10と一対のコモンローラ11とを通過し,そこで,それらの間で給電子を通じて加工電源からの電流が与えられ,ワイヤ電極1がアニールされ,次いで上ワイヤヘッド3へ送り込まれる。また,アニールローラ10とコモンローラ11との間には,ワイヤ電極1の先端を良好にしたり,ワイヤ電極1の断線時にワイヤ電極1を切断するカッタ13が設けられている。上ワイヤヘッド3を通過したワイヤ電極1は,工作物2との間で加工電圧が印加され,工作物2を加工した後に,上ワイヤヘッド3の下方に対向した下ワイヤヘッド4に受け取られ,次いで,下ワイヤヘッド4から繰り出された消耗したワイヤ電極1は,ガイドローラ5を経て,出口に噴流を排出する排出口23を設けた噴流ガイドパイプ6へと送り込まれる。ワイヤ電極1は,噴流ガイドパイプ6の後流に設けた引出しローラ7及び該引出しローラ7の後流に設けた吸引装置等によって吸引され,最後に廃ワイヤホッパに回収される。   Conventionally, as shown in FIGS. 1 and 2, in a wire electric discharge machine, a Y-axis table 30 is provided on a bed 17 as a base so as to be movable in the Y-axis direction, and an X-axis table 31 is provided on the Y-axis table 30. Is provided so as to be movable in the X-axis direction. The head 33 in the machine body is provided with the upper wire head 3, and the lower arm 28 in the machine body is provided with the lower wire head 4. The upper wire head 3 has the wire electrode 1 formed on the workpiece 2. The lower wire head 4 functions to supply to the start hole 24 and the processing slit 36, and the lower wire head 4 functions to receive the wire electrode 1 after processing the workpiece 2 facing the lower side of the upper wire head 3. The wire electric discharge machine also guides the consumed wire electrode 1 that has been subjected to electric discharge machining from the lower wire head 4, so that the wire from the guide roller 5 and the guide roller 5 installed below the lower wire head 4 is used. A wire guide pipe 6 provided for feeding out the electrode 1 and a drawing roller 7 for drawing out the wire electrode 1 provided in the vicinity of the outlet of the wire guide pipe 6 are provided. The wire automatic supply device 9 in the wire electric discharge machine includes a source bobbin 37 around which the wire electrode 1 is wound up, a guide roller 20 that changes the direction of the wire electrode in the wire feed system that is fed from the source bobbin 37, and a direction change. A roller 22, a tension roller 19 that applies tension to the wire electrode 1 that is fed out, and a brake roller 29 that applies a brake so that the wire electrode 1 to which tension is applied are fed out satisfactorily. The wire electrode 1 that has passed through the direction changing roller 22 in the wire supply system passes through a pair of guide rollers and a pair of annealing rollers 10 that are wire electrode feed rollers provided in the head 33 and a pair of common rollers 11. A current from a machining power source is applied between them through a power supply, the wire electrode 1 is annealed, and then fed into the upper wire head 3. Further, a cutter 13 is provided between the annealing roller 10 and the common roller 11 to improve the tip of the wire electrode 1 or to cut the wire electrode 1 when the wire electrode 1 is disconnected. The wire electrode 1 that has passed through the upper wire head 3 is received by the lower wire head 4 facing the lower side of the upper wire head 3 after a machining voltage is applied to the workpiece 2 and the workpiece 2 is machined. Next, the consumed wire electrode 1 fed out from the lower wire head 4 is fed through a guide roller 5 to a jet guide pipe 6 provided with a discharge port 23 for discharging a jet at the outlet. The wire electrode 1 is sucked by a drawing roller 7 provided in the wake of the jet guide pipe 6 and a suction device provided in the wake of the drawing roller 7 and is finally collected in a waste wire hopper.

また,ワイヤ放電加工装置として,ワイヤ放電加工に特有の太鼓形状の発生を防止し,真直方向の加工精度,コーナー部における加工精度を向上させるものが知られている。該ワイヤ放電加工装置は,放電電流を供給する加工電源と,加工中の放電電極間の平均電圧を検出する電圧検出回路と,平均電流を検出する電流検出回路と,放電電圧及び放電電流を制御する制御装置を備え,平均電圧値が一定となるように加工送り速度を制御する場合は,制御装置は加工送り速度に反比例して平均電流が変化するように放電電流のオフタイム又はパルス周期等を制御し,平均電流値は一定となるように加工送り速度を制御する場合は,制御装置は加工送り速度に比例して平均電圧が変化するように放電電圧又はパルス周期等オフタイムを制御するものである。また,特許文献1には,従来,ワイヤ放電加工には,被加工物の真直方向が太鼓形状及び湾曲量は加工板厚,加工条件により変化し,また,被加工物の真直方向の真直精度を向上させるために,一般的に荒加工(ファーストカット)では被加工物が太鼓形状になっているので,荒加工を行った後に,高精度の仕上加工(セカンドカット)が行われていることが記載されている。それらの課題を解決するため,上記ワイヤ放電加工装置は,送り速度,平均電流,平均電圧等を制御することによって,放電により発生する放電反発力とワイヤ電極と被加工物間の静電吸引力とを相殺させて加工中のワイヤ電極を真直状態に保ち,太鼓形状の発生を抑制するものである(例えば,特許文献1参照)。   Also, as a wire electric discharge machining apparatus, a device that prevents the occurrence of a drum shape peculiar to wire electric discharge machining and improves the machining accuracy in the straight direction and the machining accuracy in the corner portion is known. The wire electric discharge machining apparatus includes a machining power supply for supplying a discharge current, a voltage detection circuit for detecting an average voltage between discharge electrodes being machined, a current detection circuit for detecting an average current, and controlling the discharge voltage and the discharge current. When the machining feed rate is controlled so that the average voltage value is constant, the control device must set the discharge current off-time or pulse cycle so that the average current changes in inverse proportion to the machining feed rate. When the machining feed rate is controlled so that the average current value is constant, the control device controls the off time such as the discharge voltage or the pulse cycle so that the average voltage changes in proportion to the machining feed rate. Is. Further, in Patent Document 1, conventionally, in wire electric discharge machining, the straight direction of the work piece has a drum shape and the amount of bending changes depending on the thickness of the work plate and the processing conditions, and the straightness accuracy of the work piece in the straight direction is also disclosed. In general, in roughing (first cut), the workpiece has a drum shape, so high-precision finishing (second cut) must be performed after roughing. Is described. In order to solve these problems, the above-mentioned wire electric discharge machining apparatus controls the feed speed, average current, average voltage, etc., and thereby the discharge repulsive force generated by the discharge and the electrostatic attraction force between the wire electrode and the workpiece. And the wire electrode being processed is kept in a straight state to suppress the occurrence of a drum shape (for example, see Patent Document 1).

また,被加工物を切断する際に,ワイヤと被加工物を相対移動させる切断方法が知られている。該切断方法は,所定の切断経路と,該切断経路と直角の方向の振動運動とに従って,一方の電極となるワイヤ及び他方の電極となる被加工物の相対移動を行わせ,ワイヤにより被加工物を侵食放電加工することにより,被加工物を切断するものであって,切断経路と直角の変異の瞬時振幅を制御することと,瞬時振幅が最大値まで増大したときは放電エネルギーを最小値に減少させ,瞬時振幅が最小値まで減少したときは放電エネルギーを最大値に増大させるものである。また,上記切断方法は,ワイヤと被加工物を相対移動させる際に,振幅の大きさと放電エネルギーの強弱とを制御して,切断工程と同時に仕上げ工程を行うことにより,被加工物の全加工時間を短縮するものである(例えば,特許文献2参照)。   In addition, a cutting method is known in which a wire and a workpiece are relatively moved when the workpiece is cut. The cutting method is such that a wire serving as one electrode and a workpiece serving as the other electrode are moved relative to each other according to a predetermined cutting path and a vibration motion in a direction perpendicular to the cutting path. The workpiece is cut by erosion electrical discharge machining, and the instantaneous amplitude of the variation perpendicular to the cutting path is controlled. When the instantaneous amplitude increases to the maximum value, the discharge energy is reduced to the minimum value. When the instantaneous amplitude decreases to the minimum value, the discharge energy is increased to the maximum value. In the above cutting method, when the wire and the workpiece are moved relative to each other, the magnitude of the amplitude and the strength of the discharge energy are controlled, and the finishing process is performed simultaneously with the cutting process. Time is shortened (for example, refer patent document 2).

また,ワイヤ放電加工方法として,任意の間隙の2面を同時加工し得るようにしたものが知られている。該ワイヤ放電加工方法は,加工液中でワイヤ電極と被加工物との間に間欠放電を発生させて加工する際に,各被加工物の形状を示す軌跡にオフセット量を加えて設定された2つの加工軌跡を揺動端として,加工位置を周期的に移動させる揺動軌跡を設定し,揺動軌跡に沿ってワイヤ電極を移動させて加工するものであって,揺動軌跡をワイヤ電極の軸心が各加工軌跡上を交互に移動する区間と,各被加工面の形状を示す軌跡と交差する方向に,一方の加工軌跡上から他方の加工軌跡上の既加工区間における軸心の最後の到達位置へ移動させる区間で設定したものである。即ち,上記ワイヤ放電加工方法は,揺動加工することで,加工拡大代寸法をワイヤ電極の直径寸法に比して格段に大きくすることができるものである(例えば,特許文献3参照)。   Further, as a wire electric discharge machining method, a method capable of simultaneously machining two surfaces with an arbitrary gap is known. The wire electric discharge machining method was set by adding an offset amount to the locus indicating the shape of each workpiece when machining by generating an intermittent discharge between the wire electrode and the workpiece in the machining fluid. Using two machining loci as the rocking ends, a rocking locus for periodically moving the machining position is set, and the wire electrode is moved along the rocking locus for machining. The axis of the existing machining section on the other machining trajectory from one machining trajectory in the direction intersecting the trajectory alternately moving on each machining trajectory and the trajectory indicating the shape of each work surface. It is set in the section to move to the last arrival position. That is, in the wire electric discharge machining method, the machining enlargement allowance can be remarkably increased as compared with the diameter dimension of the wire electrode by performing rocking machining (see, for example, Patent Document 3).

また,従来のワイヤ放電加工方法は,ワイヤ電極と被加工物との極間に放電を発生させて被加工物を加工するものであって,加工液中で放電加工を行う第1の工程と,ミスト中で放電加工を行う第2の工程と,気体中で放電加工を行う第3の工程からなり,被加工物の真直度が所定の値となった場合に前記工程間の切り換えを行うものである(例えば,特許文献4参照)。
特開平5−8122号公報 特開昭58−186533号公報 特許第2912416号公報 WO02/000383公報
Further, the conventional wire electric discharge machining method is a method of machining a workpiece by generating an electric discharge between the electrode between the wire electrode and the workpiece, and includes a first step of performing electric discharge machining in a machining liquid, , Comprising a second step of performing electric discharge machining in mist and a third step of performing electric discharge machining in gas, and switching between the steps when the straightness of the workpiece reaches a predetermined value (For example, see Patent Document 4).
JP-A-5-8122 JP 58-186533 A Japanese Patent No. 2912416 WO02 / 000383 publication

ところで,従来のワイヤ放電加工機について,工作物に対する荒加工即ちファーストカットでは,真直精度を向上させるためにはワイヤ電極が受ける放電反発力,静電引力,或いは噴流等を低減させるため,加工速度を極端に遅くする必要があった。また,従来の特許文献1のように,ワイヤ電極と工作物の極間状態を検出して,送り速度,平均電流,平均電圧を変化させて制御することで寸法差を少なくする方法では,工作物に対する加工条件の変化により,制御結果が変わり,安定して寸法差を得ることは困難であると思料され,問題があった。そこで,ワイヤ放電加工方法として,工作物に対する放電加工で真直精度を向上させつつ,加工速度を落とす必要がないようにするには如何に構成すればよいかの課題があった。   By the way, with a conventional wire electric discharge machine, in rough machining, that is, first cut, on a workpiece, in order to improve straightness accuracy, the electric repulsion force, electrostatic attraction, or jet flow received by the wire electrode is reduced. Needed to be extremely slow. In addition, as in the conventional patent document 1, the method of reducing the dimensional difference by detecting the inter-electrode state between the wire electrode and the workpiece and changing the feed rate, the average current, and the average voltage, Due to changes in the processing conditions for the workpiece, the control results changed, and it was considered difficult to obtain a dimensional difference stably, which was problematic. Therefore, as a wire electric discharge machining method, there is a problem of how to configure the electric discharge machining for a workpiece so as to improve the straightness accuracy and not to reduce the machining speed.

本出願人は,ワイヤ放電加工機において放電加工を行う際に,進行方向に対し直角方向に一定の振幅を与えながら放電加工を行う方法,ワイヤ電極に一定の円運動を与えながら放電加工を行う方法,或いは工作物又はワイヤ電極に与える相対振幅は上下同位相の場合と上下反転位相での加工を行う方法に着眼し,ファーストカットにおける真直精度を低減させることを行った。   The present applicant, when performing electric discharge machining on a wire electric discharge machine, performs electric discharge machining while giving a constant amplitude in a direction perpendicular to the traveling direction, and performs electric discharge machining while giving a constant circular motion to the wire electrode. The method, or the relative amplitude given to the workpiece or wire electrode, focused on the case of processing in the same phase up and down and the method of processing in the upside down phase, and the straightness accuracy in the first cut was reduced.

この発明の目的は,上記の課題を解決することであり,ワイヤ放電加工機において,工作物を放電加工する際に,荒加工即ちファーストカットに際して加工速度を極端に低下させることなく,真直精度を向上させることができることを特徴とするワイヤ放電加工方法を提供することである。   An object of the present invention is to solve the above-described problems, and in a wire electric discharge machine, when performing electrical discharge machining of a workpiece, straightness accuracy is improved without extremely reducing the machining speed during rough machining, that is, first cutting. It is an object of the present invention to provide a wire electric discharge machining method characterized by being able to be improved.

この発明は,ソースボビンから送り出されるワイヤ電極をワイヤ電極送りローラを駆動して供給パイプを通じて上ワイヤヘッド,該上ワイヤヘッドの下方に設置された工作物,及び該工作物の下方で前記上ワイヤヘッドに対向して配置された下ワイヤヘッドへ供給し,前記工作物を前記ワイヤ電極に対して相対移動させて前記工作物を放電加工するワイヤ放電加工方法において,
前記工作物を予め決められた所定の加工形状に放電加工する加工進行方向に対して,前記ワイヤ電極又は前記工作物を前記加工進行方向に所定の幅で揺動進行させて前記工作物を揺動加工し,前記工作物の板厚方向の真直度の加工精度をアップさせることを特徴とするワイヤ放電加工方法に関する。
According to the present invention, a wire electrode fed from a source bobbin drives a wire electrode feed roller to drive an upper wire head through a supply pipe, a workpiece installed below the upper wire head, and the upper wire below the workpiece. In a wire electric discharge machining method for supplying electric power to a lower wire head disposed opposite to the head and moving the workpiece relative to the wire electrode to electric discharge machining the workpiece,
The wire electrode or the workpiece is swung in the machining progress direction with a predetermined width with respect to a machining progress direction in which the workpiece is subjected to electric discharge machining into a predetermined machining shape, and the workpiece is shaken. The present invention relates to a wire electric discharge machining method characterized in that the machining accuracy of the straightness in the plate thickness direction of the workpiece is increased by dynamic machining.

このワイヤ放電加工方法において,前記ワイヤ電極又は前記工作物を加工進行方向に揺動させる前記所定の幅は,進行方向中心から片側寸法で0.1±0.02mmの揺動幅であることが好ましい。また,前記ワイヤ電極又は前記工作物を加工進行方向に進む予め決められたピッチは,1μm〜10μmであることが好ましい。更に,前記加工進行方向に所定の幅での前記揺動加工は,前記加工進行方向に対して前記工作物を斜め状,円形状又は角形状に揺動進行させることで達成できる。   In this wire electric discharge machining method, the predetermined width for swinging the wire electrode or the workpiece in the machining progress direction is a swing width of 0.1 ± 0.02 mm in one dimension from the center in the progress direction. preferable. Moreover, it is preferable that the predetermined pitch which advances the said wire electrode or the said workpiece in a process advancing direction is 1 micrometer-10 micrometers. Further, the rocking process with a predetermined width in the machining progress direction can be achieved by causing the workpiece to swing and advance in an oblique, circular or square shape with respect to the machining progress direction.

また,このワイヤ放電加工方法において,前記工作物に対する前記揺動加工は,前記ワイヤ電極に対して前記加工進行方向に対し直角方向に上下同位相振動を前記工作物に与えて行われる。又は,前記工作物に対する前記揺動加工は,前記ワイヤ電極に対して加工進行方向に対し直角方向に上下逆位相振動を前記工作物に与えて行われる。   Further, in this wire electric discharge machining method, the rocking process on the workpiece is performed by applying vertical and in-phase vibrations to the workpiece in a direction perpendicular to the machining progress direction with respect to the wire electrode. Alternatively, the oscillating process on the workpiece is performed by applying an up / down antiphase vibration to the workpiece in a direction perpendicular to the machining progress direction with respect to the wire electrode.

また,このワイヤ放電加工方法は,前記工作物に対する前記揺動加工における前記ワイヤ電極に対して前記加工進行方向に対し直角方向に前記工作物に与える上側位相振動はU軸とV軸を作動し,下側位相振動はX軸とY軸を作動して行われるものである。   Further, in this wire electric discharge machining method, the upper phase vibration applied to the workpiece in a direction perpendicular to the machining progress direction with respect to the wire electrode in the swing machining with respect to the workpiece operates the U axis and the V axis. , Lower phase vibration is performed by operating the X axis and the Y axis.

また,このワイヤ放電加工方法において,前記工作物に対する前記揺動加工を行うワイヤ放電加工機におけるX軸スライドユニット,Y軸スライドユニット,及びUV軸ユニットを作動する駆動装置は,振動速度を速くするためリニアモータがあることが好ましい。   Further, in this wire electric discharge machining method, the drive device that operates the X-axis slide unit, the Y-axis slide unit, and the UV axis unit in the wire electric discharge machine that performs the swing machining on the workpiece increases the vibration speed. Therefore, it is preferable that there is a linear motor.

このワイヤ放電加工方法は,上記のように,工作物を予め決められた所定の加工形状に放電加工する加工進行方向に対して,ワイヤ電極又は工作物を加工進行方向に所定の幅で揺動させて揺動加工するので,工作物の板厚方向の真直度の加工精度をアップさせることができる。また,従来のワイヤ放電加工機では,真直度を向上させるため,送り速度,平均電流,平均電圧を制御して加工条件を変化させているが,本願発明のワイヤ放電加工方法は,適正な揺動加工を行うのみで,加工条件を変化させないので,安定した高精度に放電加工を達成できる。また,従来のワイヤ放電加工機では,一般的に,工作物に対する荒加工(ファーストカット)の後に,仕上げ加工即ちセカンドカットによって寸法差を低減させているが,本願発明によるワイヤ放電加工方法は,揺動加工によって真直精度をアップさせるものであり,セカンドカットをする必要がなく,工作物に対する放電加工の全加工時間を短縮することができる。更に,工作物に対してセカンドカットするとしても,真直精度の寸法差が小さいので,セカンドカットの加工時間を短縮することができる。   In this wire electric discharge machining method, as described above, the wire electrode or the workpiece is swung with a predetermined width in the machining progress direction with respect to the machining progress direction in which the workpiece is subjected to the electric discharge machining in a predetermined machining shape. Therefore, the machining accuracy of straightness in the thickness direction of the workpiece can be improved. Further, in the conventional wire electric discharge machine, in order to improve the straightness, the machining conditions are changed by controlling the feed rate, the average current, and the average voltage. Since only machining is performed and the machining conditions are not changed, electric discharge machining can be achieved with high accuracy and stability. Further, in the conventional wire electric discharge machine, generally, after the rough machining (first cut) on the workpiece, the dimensional difference is reduced by finishing, that is, the second cut. The straightness is improved by oscillating machining, so there is no need to make a second cut, and the total machining time of EDM for the workpiece can be shortened. Furthermore, even if a second cut is made on the workpiece, the dimensional difference in straightness is small, so that the second cut machining time can be shortened.

以下,図面を参照して,この発明によるワイヤ放電加工方法を達成するためのワイヤ放電加工機について説明する。このワイヤ放電加工機では,加工液の飛散を防止するための加工槽18は,例えば,ボルト及びナットのような固着具によってX軸スライド31に取り付けられている。このワイヤ放電加工機は,工場の床面,土台等のベースに機台等のベッド17が設置されている。このワイヤ放電加工機は,X軸スライド31と一体的な加工槽18,加工槽18が載置され且つ加工槽18の移動方向(X軸方向)に対して直角方向(Y軸方向)に移動可能なクロスサドルであるY軸スライド30,加工槽18の相対移動に対して下アーム28が貫通するため長孔に対向する孔が形成された遮蔽板を備えている。このワイヤ放電加工機は,工作物2に対して所定の加工形状にワイヤ放電加工を行うため,ワイヤ電極1がワイヤ電極供給源のソースボビンから加工機本体を構成するコラム16に設けられているガイドローラ20等を備えた自動ワイヤ供給装置9によって工作物2の加工領域に供給される。ワイヤ電極1は,工作物2との間に極間電圧を印加されて工作物2を加工するものであり,工作物2を加工した後には下アーム28の廃ワイヤ通路を通って回収される。   A wire electric discharge machine for achieving the wire electric discharge machining method according to the present invention will be described below with reference to the drawings. In this wire electric discharge machine, the processing tank 18 for preventing the scattering of the machining fluid is attached to the X-axis slide 31 by a fixing tool such as a bolt and a nut, for example. In this wire electric discharge machine, a bed 17 such as a machine base is installed on a floor of a factory, a base such as a base. In this wire electric discharge machine, the processing tank 18 and the processing tank 18 integrated with the X-axis slide 31 are placed and moved in a direction perpendicular to the moving direction (X-axis direction) of the processing tank 18 (Y-axis direction). Since the lower arm 28 penetrates relative to the relative movement of the Y-axis slide 30 and the processing tank 18 which are possible cross saddles, a shielding plate having a hole facing the long hole is provided. In this wire electric discharge machine, in order to perform wire electric discharge machining on the workpiece 2 in a predetermined machining shape, the wire electrode 1 is provided in a column 16 constituting the machine body from a source bobbin of a wire electrode supply source. It is supplied to the machining area of the workpiece 2 by an automatic wire feeder 9 provided with a guide roller 20 and the like. The wire electrode 1 applies a voltage between the workpiece 2 and processes the workpiece 2, and after the workpiece 2 is processed, the wire electrode 1 is collected through the waste wire passage of the lower arm 28. .

クロスサドルに組み込まれたY軸スライド30は,ベッド17との間に設けられたY軸スライドユニットを介してベッド17に対してY軸方向に往復移動するように構成されている。また,加工槽18と一体のX軸スライド31は,クロスサドルであるY軸スライド30との間に設けられたX軸スライドユニットを介してクロスサドルのY軸スライド30に対してX軸方向に往復移動するように構成されている。X軸スライドユニットは,X軸スライド31に固定された複数のスライダがY軸スライド30に固定された一対の軌道レール34上を相対移動することによって,加工槽18がY軸スライド30に対してX軸方向に往復移動するものである。また,Y軸スライドユニットは,Y軸スライド30に固定された複数のスライダがベッド17に固定された一対の軌道レール35上を相対移動することによって,Y軸スライド30がベッド17に対してY軸方向に往復移動するものである。   The Y-axis slide 30 incorporated in the cross saddle is configured to reciprocate in the Y-axis direction with respect to the bed 17 via a Y-axis slide unit provided between the bed 17 and the Y-axis slide. Further, the X-axis slide 31 integrated with the processing tank 18 is arranged in the X-axis direction with respect to the Y-axis slide 30 of the cross saddle via an X-axis slide unit provided between the Y-axis slide 30 and the cross saddle. It is configured to reciprocate. In the X-axis slide unit, a plurality of sliders fixed to the X-axis slide 31 move relative to each other on a pair of track rails 34 fixed to the Y-axis slide 30, so that the processing tank 18 moves relative to the Y-axis slide 30. It reciprocates in the X axis direction. Further, the Y-axis slide unit moves the Y-axis slide 30 relative to the bed 17 by moving the plurality of sliders fixed to the Y-axis slide 30 on the pair of track rails 35 fixed to the bed 17. It reciprocates in the axial direction.

この放電加工機は,床や土台に設置されているベースを構成するベッド17,ベッド17から立設した加工機本体を構成するコラム16,ベッド17上にY軸方向に往復移動するY軸スライドユニットのY軸スライド30,Y軸スライド30上でX軸方向に往復移動するX軸スライド31と一体構造に構成された加工槽18,コラム16の上部に設けられたUV軸ユニット32,UV軸ユニット32に設けられたZ軸ユニット12,Z軸ユニット12に設けられた上ワイヤヘッド3,コラム16から延びる下アーム28に設けられた下ワイヤヘッド4,及び上ワイヤヘッド3と下ワイヤヘッド4との間で加工槽18内に設置された工作物2を備えている。このワイヤ放電加工機は,加工槽18内に設置された工作物2をコラム16に設けたワイヤ電極供給源(図示せず)から供給されるワイヤ電極1によって加工するため,工作物2とワイヤ電極1との間に加工電圧を印加して発生させた放電エネルギーによって放電加工するものである。更に,このワイヤ放電加工機は,コラム16の上部に設けられたUV軸ユニット32,及びコラム16の上部でUV軸ユニット32に設けられたZ軸ユニット12を備えており,更に工作物2に対して広範囲の加工領域を確保して高精度の加工を行うことができるものである。   This electric discharge machine is composed of a bed 17 constituting a base installed on a floor or a base, a column 16 constituting a main body of a machining machine erected from the bed 17, and a Y-axis slide unit reciprocating in the Y-axis direction on the bed 17. The Y-axis slide 30, the processing tank 18 configured integrally with the X-axis slide 31 that reciprocates in the X-axis direction on the Y-axis slide 30, the UV axis unit 32 provided on the column 16, and the UV axis unit Z-axis unit 12 provided in 32, upper wire head 3 provided in Z-axis unit 12, lower wire head 4 provided in lower arm 28 extending from column 16, and upper wire head 3 and lower wire head 4 The workpiece 2 installed in the machining tank 18 is provided. In this wire electric discharge machine, the workpiece 2 installed in the machining tank 18 is machined by the wire electrode 1 supplied from a wire electrode supply source (not shown) provided in the column 16, so that the workpiece 2 and the wire Electric discharge machining is performed by electric discharge energy generated by applying a machining voltage between the electrode 1 and the electrode 1. The wire electric discharge machine further includes a UV axis unit 32 provided on the upper part of the column 16 and a Z axis unit 12 provided on the UV axis unit 32 on the upper part of the column 16. On the other hand, it is possible to secure a wide machining area and perform high-precision machining.

このワイヤ放電加工機では,ワイヤ電極1は,コラム16に取り付けられたUV軸ユニット32に支持された上ワイヤヘッド3と,コラム32から加工槽18の長孔を貫通して横方向に延びた下アーム28に支持された下ワイヤヘッド4とによって案内される。上ワイヤヘッド3には,従来と同様に,ワイヤ送出口,ダイスガイド,噴流ノズル,給電子,及び給電子押え等が組み込まれており,ワイヤ電極1を工作物2の放電加工部位に送り出す。給電子が組み込まれた下ワイヤヘッド4は,上ワイヤヘッド3と同様の構造を有しており,上ワイヤヘッド3に対向した位置に設けられており,上ワイヤヘッド3から繰り出されたワイヤ電極1を受け入れる。上ワイヤヘッド3の給電子と下ワイヤヘッド4の給電子とをリード線が結んでおり,リード線には,リード線に接続された極とは反対の極が与えられている。工作物2に対して放電加工を行なったワイヤ電極1は,下ワイヤヘッド4に受け入れられた後,ガイドローラを通じて加工槽18から下アーム28の内部の廃ワイヤ通路を通って引出しローラ7で引き出されて外部へ排出される。   In this wire electric discharge machine, the wire electrode 1 extends laterally from the upper wire head 3 supported by the UV axis unit 32 attached to the column 16 and the long hole of the processing tank 18 from the column 32. It is guided by the lower wire head 4 supported by the lower arm 28. The upper wire head 3 incorporates a wire delivery port, a die guide, a jet nozzle, a feed electron, a feed electron presser, and the like as in the prior art, and feeds the wire electrode 1 to an electric discharge machining portion of the workpiece 2. The lower wire head 4 incorporating the power supply has the same structure as the upper wire head 3, is provided at a position facing the upper wire head 3, and is a wire electrode fed from the upper wire head 3. Accept 1 A lead wire connects the power supply of the upper wire head 3 and the power supply of the lower wire head 4, and the lead wire is given a pole opposite to the pole connected to the lead wire. After the wire electrode 1 that has been subjected to electric discharge machining on the workpiece 2 is received by the lower wire head 4, the wire electrode 1 is drawn by the drawing roller 7 from the machining tank 18 through the waste wire passage inside the lower arm 28 through the guide roller. And discharged to the outside.

このワイヤ放電加工方法は,上記のワイヤ放電加工機を用いて達成できるものであり,特に,ワイヤ電極1と工作物2とを相対移動させて放電加工を行うものであり,工作物2に予め決められた所定の形状を放電加工する進行方向に対して,工作物2又はワイヤ電極1が相対的に加工進行方向に所定の幅で斜めに揺動進行させて揺動加工することによって,工作物2の板厚方向の真直度の加工精度を向上させたものである。この実施例では,工作物2をワイヤ電極1に対してX軸スライドユニットのX軸スライド31とY軸スライドユニットのY軸スライド30とを用いて揺動させ,また,ワイヤ電極1を工作物2に対してUV軸ユニット32を用いて揺動させるものである。   This wire electric discharge machining method can be achieved by using the above-mentioned wire electric discharge machine, and in particular, the electric discharge machining is performed by relatively moving the wire electrode 1 and the workpiece 2. The workpiece 2 or the wire electrode 1 is oscillated obliquely with a predetermined width in the processing advance direction relative to the progress direction in which the predetermined shape is determined by electric discharge machining. The processing accuracy of straightness in the thickness direction of the object 2 is improved. In this embodiment, the workpiece 2 is swung with respect to the wire electrode 1 using the X-axis slide 31 of the X-axis slide unit and the Y-axis slide 30 of the Y-axis slide unit, and the wire electrode 1 is moved to the workpiece. 2 is swung using the UV axis unit 32.

このワイヤ放電加工方法において,ワイヤ電極1又は工作物2を加工進行方向に揺動させる所定の幅は,進行方向中心から片側寸法で0.1±0.02mmの揺動幅であることが真直度をアップさせることができ,好ましいものである。更に,このワイヤ放電加工方法は,ワイヤ電極1に対して工作物2を加工進行方向に斜めジグザグに揺動進行させて工作物2を放電加工するものである。この時,ワイヤ電極1又は工作物2を加工進行方向に進む予め決められたピッチは,1μmであることが,真直度をアップさせることができ,好ましいものである。   In this wire electric discharge machining method, the predetermined width for swinging the wire electrode 1 or the workpiece 2 in the machining progress direction is straightly set to be a swing width of 0.1 ± 0.02 mm in one side dimension from the center in the progress direction. The degree can be increased, which is preferable. Further, in this wire electric discharge machining method, the workpiece 2 is oscillated in an oblique zigzag manner in the machining progression direction with respect to the wire electrode 1 and the workpiece 2 is subjected to electric discharge machining. At this time, it is preferable that the predetermined pitch for moving the wire electrode 1 or the workpiece 2 in the machining progress direction is 1 μm because the straightness can be increased.

また,このワイヤ放電加工方法において,工作物2に対する放電揺動加工は,ワイヤ電極1に対して加工進行方向に対し直角方向に上下同位相振動を工作物2に与えて行われる。又は,工作物2に対する放電揺動加工は,ワイヤ電極1に対して加工進行方向に対し直角方向に上下逆位相振動を工作物2に与えて行われるものである。更に,このワイヤ放電加工方法は,工作物2に対する放電揺動加工におけるワイヤ電極1に対して加工進行方向に対し直角方向に工作物2に与える上側位相振動はUV軸ユニット32を作動し,下側位相振動はX軸スライドユニットのX軸スライド31とY軸スライドユニットのY軸スライド30を作動して行われるものである。   Further, in this wire electric discharge machining method, the electric discharge oscillating machining for the workpiece 2 is performed by giving the workpiece 2 vertical and in-phase vibrations perpendicular to the machining progress direction with respect to the wire electrode 1. Alternatively, the electric discharge oscillating process on the workpiece 2 is performed by applying an up / down antiphase vibration to the workpiece 2 in a direction perpendicular to the machining progress direction with respect to the wire electrode 1. Furthermore, in this wire electric discharge machining method, the upper phase vibration applied to the workpiece 2 in the direction perpendicular to the machining progress direction with respect to the wire electrode 1 in the electric discharge oscillation machining for the workpiece 2 operates the UV axis unit 32, The side phase vibration is performed by operating the X-axis slide 31 of the X-axis slide unit and the Y-axis slide 30 of the Y-axis slide unit.

次に,図3〜図7を参照して,このワイヤ放電加工方法によって工作物2をワイヤ電極1で放電加工した状態を説明する。このワイヤ放電加工方法において,図3には,加工進行方向に揺動無しの放電加工を行う状態が示されている。また,図4には,加工進行方向に相対揺動する放電加工を行う状態が示されている。揺動加工テストにおいて,揺動無しは,一般的に,ワイヤ放電加工の荒加工即ちファーストカット時の工作物2の真直精度を示している。ワイヤ放電加工方法における真直精度は,加工条件,工作物2の板厚によって数値が異なる。   Next, with reference to FIG. 3 to FIG. 7, a state in which the workpiece 2 is subjected to electric discharge machining with the wire electrode 1 by this wire electric discharge machining method will be described. In this wire electric discharge machining method, FIG. 3 shows a state in which electric discharge machining is performed without oscillation in the machining progress direction. FIG. 4 shows a state in which electric discharge machining is performed that swings relative to the machining progress direction. In the oscillating machining test, “no oscillating” generally indicates the straightness accuracy of the workpiece 2 at the time of rough machining of wire electric discharge machining, that is, the first cut. The straightness accuracy in the wire electric discharge machining method varies depending on the machining conditions and the thickness of the workpiece 2.

このワイヤ放電加工方法について,ワイヤ電極1に対して工作物2をX軸とY軸の移動による揺動加工を行った。揺動条件は,図4にも示すように次のとおりである。
揺動幅片側寸法Wは0.1mmであり,進行方向に沿うピッチPは1μmである。
また,進行方向への斜めジグザグの揺動進行は,符号a→b→c→d→eの順にX軸とY軸への移動による揺動加工である。その結果を図5,図6,及び図7に示す。
In this wire electric discharge machining method, the workpiece 2 was rocked by moving the X-axis and the Y-axis with respect to the wire electrode 1. The rocking conditions are as follows as shown in FIG.
The swing width one-side dimension W is 0.1 mm, and the pitch P along the traveling direction is 1 μm.
In addition, the swinging movement of the oblique zigzag in the traveling direction is a swinging process by moving to the X axis and the Y axis in the order of symbols a → b → c → d → e. The results are shown in FIG. 5, FIG. 6, and FIG.

この実施例では,工作物2の板厚が50mm,100mm,200mmのものに対して揺動無しと揺動加工とを行った。
図5には,50mmの工作物2を放電加工した状態を示しており,(a)が揺動加工をしない状態の加工軌跡25Aを示し,(b)が揺動加工を行った状態の加工軌跡25Bを示している。
図6には,100mmの工作物2を放電加工した状態を示しており,(a)が揺動加工をしない状態の加工軌跡26Aを示し,(b)が揺動加工を行った状態の加工軌跡26Bを示している。
図7には,200mmの工作物2を放電加工した状態を示しており,揺動加工をしない状態の加工軌跡27Aを示している。
In this example, the workpiece 2 having a thickness of 50 mm, 100 mm, and 200 mm was subjected to no swing and swing processing.
FIG. 5 shows a state in which a 50 mm workpiece 2 is subjected to electric discharge machining, where (a) shows a machining locus 25A in a state where no rocking machining is performed, and (b) shows a machining in a state where rocking machining is performed. A locus 25B is shown.
FIG. 6 shows a state in which the 100 mm workpiece 2 has been subjected to electric discharge machining, where (a) shows a machining locus 26A in a state where no rocking machining is performed, and (b) shows a machining in a state where rocking machining has been performed. A locus 26B is shown.
FIG. 7 shows a state in which the 200 mm workpiece 2 has been subjected to electric discharge machining, and shows a machining locus 27A in a state in which rocking machining is not performed.

次に,このワイヤ放電加工方法について,次の加工条件で,(1)板厚50mm,
(2)板厚100mm,及び(3)板厚200mmの工作物2の揺動加工を行った。
工作物2に対する放電加工は,進行方向に対し,直角方向に一定の幅で揺動しながら行った。ワイヤ電極1は,黄銅製材料であり,直径がφ0.2mmであり,また,工作物2は,鋼(SKD11)製材料である。
Next, regarding this wire electric discharge machining method, under the following machining conditions, (1) a plate thickness of 50 mm,
The workpiece 2 having a plate thickness of 100 mm and (3) a plate thickness of 200 mm was oscillated.
The electric discharge machining for the workpiece 2 was performed while swinging with a constant width in a direction perpendicular to the traveling direction. The wire electrode 1 is a brass material and has a diameter of 0.2 mm, and the workpiece 2 is a steel (SKD11) material.

(1)工作物2の板厚50mmに対して揺動幅Wは,揺動幅片側寸法0.07mm,
0.10mm,0.12mm,及び0.2mmで行い,ピッチPは全て1 μmで行った。 加工条件は,次のとおりである。
放電パルス(IP)−ON:0.9μsec
放電パルス(IP)−OFF:6μsec
ワイヤ電極1の送り速度:11m/min
ワイヤ電極1の張力:1.1kg
工作物2のワイヤ放電加工後の工作物2の左右の寸法を7箇所で測定した。
その結果を,表1に示す。
(1) The swing width W with respect to the thickness of the workpiece 2 is 50 mm, the swing width one-side dimension is 0.07 mm,
It was performed at 0.10 mm, 0.12 mm, and 0.2 mm, and the pitch P was all performed at 1 μm. The processing conditions are as follows.
Discharge pulse (IP) -ON: 0.9 μsec
Discharge pulse (IP) -OFF: 6 μsec
Wire electrode 1 feed rate: 11 m / min
Wire electrode 1 tension: 1.1 kg
The left and right dimensions of the workpiece 2 after wire electric discharge machining of the workpiece 2 were measured at seven locations.
The results are shown in Table 1.

Figure 2009233842
Figure 2009233842

(2)工作物2の板厚100mmに対して揺動幅Wは,揺動幅片側寸法0.07mm,0.10mm,0.12mm,及び0.2mmで行い,ピッチPは全て1 μmで行った。 加工条件は,次のとおりである。
放電パルス(IP)−ON:0.8μsec
放電パルス(IP)−OFF:8μsec
ワイヤ電極1の送り速度:12m/min
ワイヤ電極1の張力:1.1kg
工作物2のワイヤ放電加工後の工作物2の左右の寸法を9箇所で測定した。
その結果を,表2に示す。
(2) The rocking width W is 0.07 mm, 0.10 mm, 0.12 mm, and 0.2 mm on one side of the rocking width with respect to the plate thickness 100 mm of the workpiece 2 and the pitch P is all 1 μm. went. The processing conditions are as follows.
Discharge pulse (IP) -ON: 0.8μsec
Discharge pulse (IP) -OFF: 8μsec
Wire electrode 1 feed rate: 12 m / min
Wire electrode 1 tension: 1.1 kg
The left and right dimensions of the workpiece 2 after wire electric discharge machining of the workpiece 2 were measured at nine locations.
The results are shown in Table 2.

Figure 2009233842
Figure 2009233842

(3)工作物2の板厚200mmに対して,揺動幅Wは,揺動幅片側寸法0.1mm,及び0.2mmで行い,ピッチPは全て1 μmで行った。
加工条件は,次のとおりである。
放電パルス(IP)−ON:0.7μsec
放電パルス(IP)−OFF:10μsec
ワイヤ電極1の送り速度:14m/min
ワイヤ電極1の張力:1.1kg
工作物2のワイヤ放電加工後の工作物2の左右の寸法を9箇所で測定した。
その結果を,表3に示す。
(3) For the workpiece 2 having a thickness of 200 mm, the swinging width W was set to 0.1 mm and 0.2 mm on one side of the swinging width, and the pitch P was all set to 1 μm.
The processing conditions are as follows.
Discharge pulse (IP) -ON: 0.7 μsec
Discharge pulse (IP) -OFF: 10 μsec
Wire electrode 1 feed rate: 14 m / min
Wire electrode 1 tension: 1.1 kg
The left and right dimensions of the workpiece 2 after wire electric discharge machining of the workpiece 2 were measured at nine locations.
The results are shown in Table 3.

Figure 2009233842
Figure 2009233842

このワイヤ放電加工方法では,上記の揺動加工テスト結果から工作物2の板厚50mm,板厚100mm,及び板厚200mmの板厚に関係なく,揺動幅片側寸法0.1±0.02mmの揺動幅の範囲が真直度をアップさせることが分かった。また,工作物2の板厚事に加工条件が異なっていることは,揺動加工することによって加工条件が変化しても真直精度に影響が少ないことが確認できた。それ故に,本願発明によるワイヤ放電加工方法によれば,工作物2の揺動加工によって真直精度をアップさせることができ,セカンドカットをする必要がなく,放電加工を工作物2の全加工時間を短縮することができる。更に,工作物2に対してセカンドカットするとしても,真直精度の寸法差が小さいので,セカンドカットの加工時間を短縮することができる。   In this wire electric discharge machining method, the oscillating width one-side dimension 0.1 ± 0.02 mm regardless of the plate thickness of the workpiece 2 of 50 mm, 100 mm and 200 mm from the above oscillating machining test results. It has been found that the range of the swing width increases the straightness. In addition, the fact that the machining conditions differ depending on the thickness of the workpiece 2 has confirmed that the straightness accuracy is less affected even if the machining conditions change by rocking machining. Therefore, according to the wire electric discharge machining method according to the present invention, the straightness accuracy can be improved by the swing machining of the workpiece 2, there is no need to make a second cut, and the total machining time of the workpiece 2 can be reduced. It can be shortened. Further, even if the workpiece 2 is second cut, the dimensional difference in straightness is small, so that the second cut machining time can be shortened.

この発明によるワイヤ放電加工方法は,上記実施例では,工作物2の揺動進行についてピッチPを1 μmで行ったが,その他,ピッチPを5μm及び10μmでテストを行ったがピッチPを1 μmの場合と同様に板厚方向の真直精度を向上させることが確認できた。従って,ピッチPは,1μm〜10μmの範囲であれば,板厚方向の真直精度を向上させることができる。また,上記実施例では,加工進行方向に所定の幅での揺動加工において,加工進行方向に対して工作物2を斜め状に揺動進行させるたが,揺動加工は,加工進行方向に対して工作物2を円形状又は角形状に揺動進行させても,同様に板厚方向の真直精度を得ることが確認できた。   In the above-described embodiment, the wire electric discharge machining method according to the present invention was performed at a pitch P of 1 μm for the rocking progress of the workpiece 2, but in addition, a test was performed at a pitch P of 5 μm and 10 μm. As in the case of μm, it was confirmed that the straightness accuracy in the thickness direction was improved. Therefore, if the pitch P is in the range of 1 μm to 10 μm, the straightness accuracy in the thickness direction can be improved. In the above embodiment, the workpiece 2 is caused to swing obliquely with respect to the machining progress direction in the swing machining with a predetermined width in the machining progress direction. On the other hand, it was confirmed that the straightness accuracy in the thickness direction was obtained even when the workpiece 2 was swung into a circular shape or a square shape.

このワイヤ放電加工方法は,ワイヤ電極と工作物との間に加工電圧を印加して発生する放電エネルギで工作物を放電加工するワイヤ放電加工機に適用して使用される。   This wire electric discharge machining method is used by being applied to a wire electric discharge machine that performs electric discharge machining on a workpiece with electric discharge energy generated by applying a machining voltage between a wire electrode and the workpiece.

この発明によるワイヤ放電加工方法を達成するワイヤ放電加工機を説明する斜視図である。It is a perspective view explaining the wire electric discharge machine which achieves the wire electric discharge machining method by this invention. 図1のワイヤ放電加工機の要部を示す拡大説明図である。FIG. 2 is an enlarged explanatory view showing a main part of the wire electric discharge machine of FIG. 1. 図1のワイヤ放電加工機で工作物をワイヤ電極で放電加工する状態を示す説明図である。It is explanatory drawing which shows the state which carries out the electrical discharge machining of the workpiece with a wire electrode with the wire electrical discharge machine of FIG. このワイヤ放電加工方法で工作物を放電加工する状態を示す拡大説明図である。It is expansion explanatory drawing which shows the state which carries out electric discharge machining of the workpiece with this wire electric discharge machining method. 50mmの工作物を放電加工した状態を示し,(a)が揺動加工をしない状態の加工軌跡を示し,(b)が揺動加工を行った状態の加工軌跡を示す説明図である。It is an explanatory view showing a machining trajectory in a state in which a 50 mm workpiece is subjected to electrical discharge machining, (a) showing a machining trajectory in a state where rocking machining is not performed, and (b) showing a machining trajectory in a state where rocking machining is performed. 100mmの工作物を放電加工した状態を示し,(a)が揺動加工をしない状態の加工軌跡を示し,(b)が揺動加工を行った状態の加工軌跡を示す説明図である。It is an explanatory view showing a state where a 100 mm workpiece is subjected to electric discharge machining, (a) showing a machining locus in a state where rocking machining is not performed, and (b) showing a machining locus in a state where rocking machining is performed. 200mmの工作物を放電加工した状態を示し,揺動加工をしない状態の加工軌跡を示す説明図である。It is explanatory drawing which shows the state which carried out the electric discharge machining of the 200 mm workpiece, and shows the machining locus in the state which does not perform rocking machining.

符号の説明Explanation of symbols

1 ワイヤ電極
2 工作物
3 上ワイヤヘッド
4 下ワイヤヘッド
28 下アーム
30 Y軸スライドユニット
31 X軸スライドユニット
32 UV軸ユニット
DESCRIPTION OF SYMBOLS 1 Wire electrode 2 Work piece 3 Upper wire head 4 Lower wire head 28 Lower arm 30 Y axis slide unit 31 X axis slide unit 32 UV axis unit

Claims (8)

ソースボビンから送り出されるワイヤ電極をワイヤ電極送りローラを駆動して供給パイプを通じて上ワイヤヘッド,該上ワイヤヘッドの下方に設置された工作物,及び該工作物の下方で前記上ワイヤヘッドに対向して配置された下ワイヤヘッドへ供給し,前記工作物を前記ワイヤ電極に対して相対移動させて前記工作物を放電加工するワイヤ放電加工方法において,
前記工作物を予め決められた所定の加工形状に放電加工する加工進行方向に対して,前記ワイヤ電極又は前記工作物を前記加工進行方向に所定の幅で揺動進行させて前記工作物を揺動加工を行い,前記工作物の板厚方向の真直度の加工精度をアップさせることを特徴とするワイヤ放電加工方法。
The wire electrode fed out from the source bobbin is opposed to the upper wire head through the supply pipe by driving the wire electrode feed roller, the workpiece installed below the upper wire head, and the workpiece below the workpiece. In a wire electric discharge machining method for supplying electric power to a lower wire head arranged in an electric field and moving the workpiece relative to the wire electrode to electric discharge machining the workpiece,
The wire electrode or the workpiece is swung in the machining progress direction with a predetermined width with respect to a machining progress direction in which the workpiece is subjected to electric discharge machining into a predetermined machining shape, and the workpiece is shaken. A wire electrical discharge machining method characterized by performing dynamic machining and increasing the straightness accuracy of the workpiece in the thickness direction.
前記ワイヤ電極又は前記工作物を加工進行方向に揺動させる前記所定の幅は,進行方向中心から片側寸法で0.1±0.02mmの揺動幅であることを特徴とする請求項1に記載のワイヤ放電加工方法。 2. The predetermined width for swinging the wire electrode or the workpiece in the machining progress direction is a swing width of 0.1 ± 0.02 mm in one-side dimension from the center in the progress direction. The wire electric discharge machining method described. 前記ワイヤ電極又は前記工作物を加工進行方向に進む予め決められたピッチは,1μm〜10μmの範囲であることを特徴とする請求項1又は2に記載のワイヤ放電加工方法。 3. The wire electric discharge machining method according to claim 1, wherein a predetermined pitch for moving the wire electrode or the workpiece in a machining progress direction is in a range of 1 μm to 10 μm. 前記加工進行方向に所定の幅での前記揺動加工は,前記加工進行方向に対して前記工作物を斜め状,円形状又は角形状に揺動進行させることを特徴とする請求項1〜3のいずれか1項に記載のワイヤ放電加工方法。 4. The rocking machining with a predetermined width in the machining progress direction causes the workpiece to rock and advance in an oblique, circular or angular shape with respect to the machining progression direction. The wire electric discharge machining method according to any one of the above. 前記工作物に対する前記揺動加工は,前記ワイヤ電極に対して前記加工進行方向に対し直角方向に上下同位相振動を前記工作物に与えて行われることを特徴とする請求項1〜4のいずれか1項に記載のワイヤ放電加工方法。 5. The oscillating process for the workpiece is performed by applying vertical and in-phase vibrations to the workpiece in a direction perpendicular to the machining direction with respect to the wire electrode. The wire electric discharge machining method according to claim 1. 前記工作物に対する前記揺動加工は,前記ワイヤ電極に対して加工進行方向に対し直角方向に上下逆位相振動を前記工作物に与えて行われることを特徴とする請求項1〜4のいずれか1項に記載のワイヤ放電加工方法。 5. The oscillating process on the workpiece is performed by applying an up / down anti-phase vibration to the workpiece in a direction perpendicular to a machining progress direction with respect to the wire electrode. The wire electric discharge machining method according to claim 1. 前記工作物に対する前記揺動加工における前記ワイヤ電極に対して前記加工進行方向に対し直角方向に前記工作物に与える上側位相振動はU軸とV軸を作動し,下側位相振動はX軸とY軸を作動して行われることを特徴とする請求項5又は6に記載のワイヤ放電加工方法。 The upper phase vibration applied to the workpiece in a direction perpendicular to the machining progress direction with respect to the wire electrode in the oscillating machining for the workpiece operates the U axis and the V axis, and the lower phase vibration is applied to the X axis. The wire electric discharge machining method according to claim 5, wherein the wire electric discharge machining method is performed by operating the Y axis. 前記工作物に対する前記揺動加工を行うワイヤ放電加工機におけるX軸スライドユニット,Y軸スライドユニット,及びUV軸ユニットを作動する駆動装置は,振動速度を速くするためリニアモータであることを特徴とする請求項1〜7のいずれか1項に記載のワイヤ放電加工方法。 The drive device for operating the X-axis slide unit, the Y-axis slide unit, and the UV-axis unit in the wire electric discharge machine that performs the rocking process on the workpiece is a linear motor to increase the vibration speed. The wire electric discharge machining method according to any one of claims 1 to 7.
JP2008086943A 2008-03-28 2008-03-28 Wire electric discharge machining method Pending JP2009233842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086943A JP2009233842A (en) 2008-03-28 2008-03-28 Wire electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086943A JP2009233842A (en) 2008-03-28 2008-03-28 Wire electric discharge machining method

Publications (1)

Publication Number Publication Date
JP2009233842A true JP2009233842A (en) 2009-10-15

Family

ID=41248448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086943A Pending JP2009233842A (en) 2008-03-28 2008-03-28 Wire electric discharge machining method

Country Status (1)

Country Link
JP (1) JP2009233842A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295180A2 (en) 2009-09-11 2011-03-16 Fanuc Corporation Wire electric discharge machining method, apparatus therefor, wire electric discharge machining program creating device, and computer-readable recording medium in which program for creating wire electric discharge machining program is stored
JP2013000829A (en) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp Wire electric discharge machining method, program generation device, and wire electric discharge machining device
EP2878408A2 (en) 2013-11-28 2015-06-03 Fanuc Corporation Wire electric discharge machine
KR101555952B1 (en) * 2015-05-29 2015-09-25 오재식 Movable wire-cut discharge machine
CN106270847A (en) * 2016-08-31 2017-01-04 深圳天珑无线科技有限公司 A kind of wire cutting method
CN109128408A (en) * 2018-11-12 2019-01-04 厦门大学 A kind of low-frequency vibration device of auxiliary electric spark linear cutter
EP3446820A1 (en) 2017-08-22 2019-02-27 Agie Charmilles SA Wire electrical discharge machining method
CN115815719A (en) * 2022-10-31 2023-03-21 东莞市品固精密五金制品有限公司 High-precision metal wire cutting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186533A (en) * 1982-04-22 1983-10-31 アトリエ・デ・シヤルミ−ユ・ソシエテ・アノニム Cutting method and its device
JPS62114828A (en) * 1985-11-14 1987-05-26 Fanuc Ltd Wire-cut electro-discharge machining and device thereof
JPH042415A (en) * 1990-04-17 1992-01-07 Hitachi Seiko Ltd Wire electric discharge machining
JPH08318433A (en) * 1995-05-23 1996-12-03 Fanuc Ltd Wire cut electrical discharge machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186533A (en) * 1982-04-22 1983-10-31 アトリエ・デ・シヤルミ−ユ・ソシエテ・アノニム Cutting method and its device
JPS62114828A (en) * 1985-11-14 1987-05-26 Fanuc Ltd Wire-cut electro-discharge machining and device thereof
JPH042415A (en) * 1990-04-17 1992-01-07 Hitachi Seiko Ltd Wire electric discharge machining
JPH08318433A (en) * 1995-05-23 1996-12-03 Fanuc Ltd Wire cut electrical discharge machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295180A2 (en) 2009-09-11 2011-03-16 Fanuc Corporation Wire electric discharge machining method, apparatus therefor, wire electric discharge machining program creating device, and computer-readable recording medium in which program for creating wire electric discharge machining program is stored
JP2013000829A (en) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp Wire electric discharge machining method, program generation device, and wire electric discharge machining device
EP2878408A2 (en) 2013-11-28 2015-06-03 Fanuc Corporation Wire electric discharge machine
KR101555952B1 (en) * 2015-05-29 2015-09-25 오재식 Movable wire-cut discharge machine
CN106270847A (en) * 2016-08-31 2017-01-04 深圳天珑无线科技有限公司 A kind of wire cutting method
EP3446820A1 (en) 2017-08-22 2019-02-27 Agie Charmilles SA Wire electrical discharge machining method
US11161189B2 (en) 2017-08-22 2021-11-02 Agie Charmilles Sa Wire electrical discharge machining method
CN109128408A (en) * 2018-11-12 2019-01-04 厦门大学 A kind of low-frequency vibration device of auxiliary electric spark linear cutter
CN115815719A (en) * 2022-10-31 2023-03-21 东莞市品固精密五金制品有限公司 High-precision metal wire cutting device

Similar Documents

Publication Publication Date Title
JP2009233842A (en) Wire electric discharge machining method
JP5490255B2 (en) Wire electrical discharge machining apparatus and semiconductor wafer manufacturing method
JP5893732B2 (en) Workpiece welding method during wire electrical discharge machining
US8642915B2 (en) Wire electric discharge machining apparatus
WO2006043688A1 (en) Method of processing electrically conductive workpiece and combined processing apparatus
JP2013119154A (en) Wire electric discharge machine
US6744002B1 (en) Method and apparatus for electrodischarge wire machining
US20080277383A1 (en) Apparatus for removing debris from the cutting gap of a work piece on a wire electronic discharge machine and method therefor
JP2009184032A (en) Method and apparatus for electric discharge machining
CN109414776B (en) Wire electric discharge machining apparatus, guide unit, and wire electric discharge machining method
Puri Advancements in micro wire-cut electrical discharge machining
JP2020116680A (en) Wire electric discharge machine, processing program editor, wire electrode moving method, and edition method of processing program
JP5361101B2 (en) Wire electric discharge machine and wire electric discharge machining method
JP2018075583A (en) Welding device and welding method
JP2000084743A (en) Wire cut electrical discharge machining method and device
Chen et al. Study of an ultrafine w-EDM technique
JP2732293B2 (en) Small hole electrical discharge machining method
WO2023127901A1 (en) Control method of wire electric discharge machine and wire electric discharge machine
JP2019104071A (en) Wire electric discharge machine
JP2009214248A (en) Discharge working machine, jump control method for discharge working machine, discharge working method, and discharge working program
JP2002301625A (en) Fine hole electric discharge machining method and device
JP2013146824A (en) Composite machining method and composite machining apparatus
JP5488889B2 (en) Electrolytic processing apparatus, electrolytic processing method, and machine tool and assembly machine equipped with electrolytic processing apparatus
JP2559219B2 (en) Perforation electric discharge machine
RU2009141098A (en) METHOD OF ELECTROEROSION PROCESSING OF PRODUCTS BY WIRE ELECTRODE-TOOL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625