JP2009228200A - Functional fiber - Google Patents

Functional fiber Download PDF

Info

Publication number
JP2009228200A
JP2009228200A JP2009048134A JP2009048134A JP2009228200A JP 2009228200 A JP2009228200 A JP 2009228200A JP 2009048134 A JP2009048134 A JP 2009048134A JP 2009048134 A JP2009048134 A JP 2009048134A JP 2009228200 A JP2009228200 A JP 2009228200A
Authority
JP
Japan
Prior art keywords
acid
fiber
functional fiber
metal
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009048134A
Other languages
Japanese (ja)
Other versions
JP5333988B2 (en
Inventor
Kazuaki Ohashi
和彰 大橋
Kyo Kasai
杏 笠井
Kazuhiro Sato
一弘 佐藤
Daisuke Hiratsuka
大佑 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2009048134A priority Critical patent/JP5333988B2/en
Publication of JP2009228200A publication Critical patent/JP2009228200A/en
Application granted granted Critical
Publication of JP5333988B2 publication Critical patent/JP5333988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive functional fiber which is good in appearance, is excellent in formability, and has sufficient adsorbability and microprotein-inactivating property, and to provide a nonwoven fabric using the fiber. <P>SOLUTION: Provided is the functional fiber in which a core layer 2 comprises a thermoplastic resin, and a sheath layer 3 comprises a thermoplastic resin containing fine metal particles having a bond between an organic acid component and the metal. The metal is selected from specific metals such as Cu, Ag, Au, In, and Pd. The organic acid component is preferably a 3-30C fatty acid. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、吸着性、微小蛋白質不活性化等の効果を有する機能性繊維であって、例えば、不織布、フィルタや衣類等などに使用する繊維に関する。   The present invention relates to a functional fiber having effects such as adsorptivity and microprotein inactivation, and relates to a fiber used for, for example, a nonwoven fabric, a filter, clothing, and the like.

近年、生活様式の変化によって社会の生活空間には様々な細菌やかびが存在し、微生物や生ゴミ等の腐敗臭、花粉症などのアレルギーによる生活習慣病を抱える人口が増えている。
一方、繊維からなる製品は、布、紙、フィルムの用途のかなりの部分をカバーし、さまざまな機能を付与して、発展性の大きな多用途素材として注目されている。例えば、衣料、防護・保護衣、建築、車両・自動車内装、生理用品の繊維製品に幅広く使用されており、これら繊維製品中に抗菌剤、或いは消臭剤等の機能性材料を混合或いは含有させてそれらの機能を付与させることが以下に提案されている。樹脂原料にステアリン酸銀の熱分解温度以下で混合したコロイド状粒子を含有する抗菌性繊維が提案されている(特許文献1)。また、繊維の耐久性、抗菌剤の使用量制限の観点から、鞘層に銀イオン、ゼオライト、リン酸ジルコニウム等の機能性材料を含有させた芯鞘型繊維が提案されている(特許文献2〜5)。
In recent years, there are various bacteria and molds in the living space of society due to changes in lifestyles, and an increasing number of people have lifestyle-related diseases caused by allergies such as spoiled odors such as microorganisms and garbage and pollinosis.
On the other hand, products made of fibers are attracting attention as a versatile material with a large degree of development, covering a considerable part of the use of cloth, paper and film and providing various functions. For example, it is widely used in textile products such as clothing, protective and protective clothing, construction, vehicles and automobile interiors, sanitary products, and functional materials such as antibacterial agents or deodorants are mixed or contained in these textiles. It is proposed below to give these functions. An antibacterial fiber containing colloidal particles mixed with a resin raw material at a temperature lower than the thermal decomposition temperature of silver stearate has been proposed (Patent Document 1). Further, from the viewpoint of durability of the fiber and restriction of the amount of antibacterial agent used, a core-sheath fiber in which a functional material such as silver ion, zeolite, zirconium phosphate or the like is contained in the sheath layer has been proposed (Patent Document 2). ~ 5).

上記特許文献に記載された消臭性、抗菌性を有する物質を繊維に含有させても、消臭性或いは抗菌性物質の従来の優れた効果が樹脂中で発現しがたく、もしくは、消臭或いは抗菌サイトが飽和状態になることにより、消臭効果等が低下する、或いは不十分であるという問題がある。
このような観点から、本発明者等は、樹脂中に吸着性、微小蛋白質を不活性化し得る金属超微粒子を分散して成る成形体を提案した(WO2008/29932、WO2008/69034)。
Even if the deodorant and antibacterial substances described in the above patent documents are contained in the fiber, the conventional excellent effects of the deodorant or antibacterial substances are hardly expressed in the resin, or the deodorant Or there exists a problem that a deodorizing effect etc. fall or it is inadequate because an antimicrobial site will be saturated.
From such a point of view, the present inventors have proposed a molded body in which ultrafine metal particles capable of desorbing adsorptive and microproteins are dispersed in a resin (WO 2008/29932, WO 2008/69034).

特開2005−48031号公報JP 2005-48031 A 特許第3071594号公報Japanese Patent No. 3071594 特開平09−87928号公報Japanese Patent Laid-Open No. 09-87928 特開平11−61569号公報JP-A-11-61569 特開平11−189919号公報Japanese Patent Laid-Open No. 11-189919

上記特許文献の消臭剤、抗菌剤はコロイド状であることから、特に極細繊維では単糸強力が著しく小さいので、糸切れが発生したり、繊維径が安定しない。さらに、粒子径は繊維径よって制限され、粒子径が大きいと極細繊維成形性に劣り、十分な効果を得るためには含有量を多くする必要があり、コスト高になるという問題があった。
また、多孔性物質を利用したものは、臭気成分或いは揮発性有機化合物(Volatile Organic Compounds以下「VOC」という)を吸着して吸着効果(消臭効果)等を発現するため、その吸着サイトが飽和状態になるとその効果は消失するという問題がある。
Since the deodorant and antibacterial agent of the above-mentioned patent document are colloidal, the single yarn strength is extremely small particularly in the case of ultrafine fibers, so that yarn breakage occurs and the fiber diameter is not stable. Furthermore, the particle diameter is limited by the fiber diameter. If the particle diameter is large, the ultrafine fiber moldability is inferior, and in order to obtain a sufficient effect, it is necessary to increase the content, resulting in a high cost.
In addition, those using porous materials adsorb odorous components or volatile organic compounds (hereinafter referred to as “VOC”) to develop an adsorption effect (deodorization effect), etc., so the adsorption site is saturated. There is a problem that the effect disappears when the state is reached.

更に、金属超微粒子を樹脂に配合して使用する場合には、金属超微粒子の表面が直接樹脂と接触するため樹脂が分解されてしまい、成形性が著しく阻害されてしまうという問題があると共に、ハンドリング性の点から金属超微粒子を形成させるためにアルコール等の分散液が必要であり、繊維、特に極細繊維に配合し成形するには充分に満足するものではなかった。   Further, when using the ultrafine metal particles mixed with the resin, the surface of the ultrafine metal particles is in direct contact with the resin, so that the resin is decomposed and the moldability is remarkably hindered. In order to form ultrafine metal particles from the viewpoint of handling properties, a dispersion liquid of alcohol or the like is necessary, and it was not fully satisfactory for blending and molding into fibers, particularly ultrafine fibers.

上記問題を解決すべく、本発明では、芯層が熱可塑性樹脂、鞘層が有機酸成分と金属間で結合を有する超微粒子を含有する熱可塑性樹脂で構成されており、さらに、
1.金属が、Cu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Sn、Ru及びRhからなる群から選択される少なくとも1種からなること
2.有機酸成分が、炭素数が3乃至30の脂肪酸であること、
3.鞘層が300乃至700nmのプラズモン吸収を有すること、
4.機能性繊維が吸着性、微小蛋白質不活性化を有すること、
5.機能性繊維からなる不織布であることが好ましい。
In order to solve the above problem, in the present invention, the core layer is made of a thermoplastic resin, the sheath layer is made of a thermoplastic resin containing ultrafine particles having a bond between an organic acid component and a metal,
1. 1. The metal is made of at least one selected from the group consisting of Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co, Zn, Nb, Sn, Ru, and Rh. The organic acid component is a fatty acid having 3 to 30 carbon atoms;
3. The sheath layer has a plasmon absorption of 300 to 700 nm,
4). The functional fiber has adsorptive and microprotein inactivation;
5. A nonwoven fabric composed of functional fibers is preferred.

本発明によれば、繊維の鞘層に金属超微粒子が均一分散され、外観が良好でかつ成形性に優れ、吸着性、微小蛋白質不活性化を有する安価な機能性繊維を提供するものである。さらに、耐離脱性、耐洗濯性において優れる。
特に本発明の繊維は不織布に好適に利用される。
According to the present invention, there is provided an inexpensive functional fiber in which ultrafine metal particles are uniformly dispersed in the sheath layer of the fiber, the appearance is excellent, the moldability is excellent, the adsorptivity and the microprotein inactivation are provided. . Furthermore, it is excellent in detachment resistance and washing resistance.
Especially the fiber of this invention is utilized suitably for a nonwoven fabric.

前述したとおり、本発明によれば、芯層が熱可塑性樹脂、鞘層が有機酸成分と金属間で結合を有する金属超微粒子を含有する熱可塑性樹脂で構成されている機能性繊維は、吸着物質、アレルギー物質等と接する表面積を大きくすることができるので、吸着物質との反応に優れ、通常の粒子よりも大きな吸着性、アレルギー物質等の微小蛋白質不活性化に優れる。また、有機酸成分と金属間で結合を有する金属超微粒子が芯鞘層に含有しても良いが、微小蛋白質不活性化は、繊維表面近傍に存在する金属超微粒子が大きく関与するため、特に鞘層に分散されていることが重要で、芯層を熱可塑性樹脂とする構成と相まって、糸切れが発生しにくく、安定した成形ができるという作用効果を有する。   As described above, according to the present invention, the functional fiber composed of the thermoplastic resin including the core layer of the thermoplastic resin and the sheath layer including the ultrafine metal particles having a bond between the organic acid component and the metal is adsorbed. Since the surface area in contact with the substance, allergic substance, etc. can be increased, the reaction with the adsorbing substance is excellent, the adsorbability is greater than that of normal particles, and the inactivation of microproteins such as allergic substances is excellent. In addition, metallic ultrafine particles having a bond between the organic acid component and the metal may be contained in the core-sheath layer, but the microprotein inactivation is particularly concerned because the metallic ultrafine particles present in the vicinity of the fiber surface are greatly involved. It is important to be dispersed in the sheath layer, and in combination with the configuration in which the core layer is made of a thermoplastic resin, there is an effect that thread breakage hardly occurs and stable molding can be performed.

また、本発明は、有機酸と金属とが結合した金属超微粒子であることが重要な特徴であって、金属超微粒子の平均粒子径は1乃至100nmであることが好ましく、さらに、1乃至20nmであることが好ましい。なお、本明細書でいう平均粒子径とは、金属と金属の間に隙間がないものを1つの粒子としその平均値をいう。   In addition, the present invention has an important feature that the ultrafine metal particles are a combination of an organic acid and a metal, and the average particle size of the ultrafine metal particles is preferably 1 to 100 nm, and more preferably 1 to 20 nm. It is preferable that In addition, the average particle diameter referred to in the present specification refers to an average value of particles having no gap between metals as one particle.

本発明の繊維の鞘層は、300〜700nmにプラズモン吸収の現象を示すことが吸着性、微小蛋白質不活性化を有している点で好ましい。前記プラズモン吸収によって金属超微粒子が熱可塑性樹脂中に分散されていることを示しており、一方、プラズモン吸収の現象を示さない場合は金属超微粒子が分散されていないか、或いは、金属超微粒子が形成されていないことが確認できる。また、プラズモン吸収波長は金属の種類に固有のものであり、銀超微粒子の場合には、波長420nm付近に吸収の現象を示す。   The sheath layer of the fiber of the present invention preferably exhibits a plasmon absorption phenomenon at 300 to 700 nm in that it has adsorptivity and microprotein inactivation. The plasmon absorption indicates that the metal ultrafine particles are dispersed in the thermoplastic resin. On the other hand, when the plasmon absorption phenomenon is not exhibited, the metal ultrafine particles are not dispersed, or the metal ultrafine particles are not dispersed. It can be confirmed that it is not formed. The plasmon absorption wavelength is specific to the type of metal. In the case of silver ultrafine particles, an absorption phenomenon is observed near the wavelength of 420 nm.

本発明の繊維の成形温度は、有機酸金属塩が繊維の原料となる樹脂中で熱分解する温度とすることが好ましく、有機酸金属塩が樹脂中で熱分解することにより、樹脂中に金属超微粒子が形成され、均一分散される。一方、成形温度が、有機酸金属塩が樹脂中で熱分解しない温度であると、樹脂中で金属超微粒子が形成されない。   The molding temperature of the fiber of the present invention is preferably a temperature at which the organic acid metal salt is thermally decomposed in the resin used as the raw material of the fiber. Ultra fine particles are formed and uniformly dispersed. On the other hand, when the molding temperature is such that the organic acid metal salt is not thermally decomposed in the resin, ultrafine metal particles are not formed in the resin.

本発明の有機酸成分と金属間で結合する金属成分としては、特に制限はされないがCu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Nb、Sn、Ru、Rh等を挙げることができる。特に、Ag、Au、Pt、Sn等が好ましい。これらの単体、混合物、合金等であってもよい。   Although it does not restrict | limit especially as a metal component couple | bonded between the organic acid component and metal of this invention, Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co, Nb, Sn, Ru, Rh etc. are mentioned. be able to. In particular, Ag, Au, Pt, Sn and the like are preferable. These simple substance, a mixture, an alloy, etc. may be sufficient.

本発明の有機酸成分は金属と結合をしているおり、有機酸成分としては炭素数が3乃至30の脂肪酸が好ましく、ミリスチン酸、ステアリン酸、オレイン酸、パルチミン酸、n−デカン酸、パラトイル酸、コハク酸、マロン酸、酒石酸、リンゴ酸、グルタミン酸、アジピン酸、酢酸等の脂肪族カルボン酸、フタル酸、マレイン酸、イソフタル酸、テレフタル酸、安息香酸、ナフタレン酸等のカルボン酸、シクロヘキサンジカルボン酸等の脂環式カルボン酸等を挙げることができる。
本発明においては、特にミリスチン酸、ステアリン酸、オレイン酸、パルミチン酸が好ましい。
The organic acid component of the present invention is bonded to a metal, and the organic acid component is preferably a fatty acid having 3 to 30 carbon atoms. Myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoyl Acid, succinic acid, malonic acid, tartaric acid, malic acid, glutamic acid, adipic acid, acetic acid and other aliphatic carboxylic acids, phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid, naphthalenic acid and other carboxylic acids, cyclohexanedicarboxylic acid Examples thereof include alicyclic carboxylic acids such as acids.
In the present invention, myristic acid, stearic acid, oleic acid, and palmitic acid are particularly preferable.

本発明の繊維に吸着する物質としては、アンモニア、トリメチルアミン、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチル、アセトアルデヒド、スチレン、プロピオン酸、ノルマン酪酸、ノルマン吉草酸、イソ吉草酸、トルエン、キシレン、酢酸エチル、メチルイソブチルケトン、イソブタノール、プロピオンアルデヒド、ノルマルブチルアルデヒド、イソブチルアルデヒド、ノルマルバレルアルデヒド、イソバレルアルデヒドが挙げられる。その中でも特に、硫黄成分を含有する臭気に対して有効に作用する。   Substances adsorbed on the fibers of the present invention include ammonia, trimethylamine, hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, acetaldehyde, styrene, propionic acid, norman butyric acid, norman valeric acid, isovaleric acid, toluene, xylene, Examples include ethyl acetate, methyl isobutyl ketone, isobutanol, propionaldehyde, normal butyraldehyde, isobutyraldehyde, normal valeraldehyde, and isovaleraldehyde. Among these, it acts effectively on odors containing sulfur components.

本発明の繊維が微小蛋白質不活性化するものとしては、花粉、カビ、ウィルス、菌、真菌等が挙げられ、蛋白質に含まれるジスルフィド結合を有効に分解することで、抗体による免疫反応が過剰に働くことを抑制する。   The fiber of the present invention inactivates microproteins such as pollen, mold, virus, fungus, fungus, etc., and effectively decomposes the disulfide bond contained in the protein, resulting in an excessive immune reaction by the antibody. Suppress working.

本発明の繊維直径は、1〜100μmが好ましく、芯層断面の直径は5〜99μmの範囲が好ましい。繊維直径が100μmより大きいと表面積が少ないので吸着性、微小蛋白質不活性化に優れなく、繊維直径が1μmより小さいと、糸切れが発生し安定して成形することができない。   The fiber diameter of the present invention is preferably 1 to 100 μm, and the diameter of the cross section of the core layer is preferably 5 to 99 μm. If the fiber diameter is larger than 100 μm, the surface area is small, so that the adsorptivity and microprotein inactivation are not excellent. If the fiber diameter is smaller than 1 μm, yarn breakage occurs and stable molding cannot be performed.

本発明の金属超微粒子を含有する鞘層及び芯層の熱可塑性樹脂としては、溶融成形が可能な熱可塑性樹脂であれば従来公知のものをすべて使用でき、例えば、低−,中−,高−密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、プロピレン−エチレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体等のオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン6,10等のポリアミド樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、メタクリル樹脂等を挙げることができる。
芯層の熱可塑性樹脂は、鞘層の熱可塑性樹脂より高融点の樹脂を使用することが好ましく、耐久性の観点からポリプロピレン樹脂、ポリエステル樹脂が好適に使用される。
As the thermoplastic resin of the sheath layer and the core layer containing the ultrafine metal particles of the present invention, any conventionally known one can be used as long as it is a thermoplastic resin that can be melt-molded. For example, low-, medium-, high -Density polyethylene, linear low density polyethylene, linear ultra-low density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene -1 copolymer, ethylene-propylene-butene-1 copolymer and other olefin resins, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and other polyester resins, nylon 6, nylon 6,6, nylon 6,10 and the like Polyamide resin, polycarbonate resin, polyvinyl alcohol Lumpur resins, methacrylic resins.
The thermoplastic resin of the core layer is preferably a resin having a melting point higher than that of the thermoplastic resin of the sheath layer, and a polypropylene resin and a polyester resin are preferably used from the viewpoint of durability.

本発明の繊維からなる製品は、不織布、衣料、防護・保護衣、建築、車両・自動車内装、おむつ、掃除用ワイパー、歯ブラシ、ペット用トイレ、ペット用手入れ用品、パックシート、軟失禁用品、カーテン、椅子張り、寝装具、ウェットティッシュ、換気扇フィルタ、硫化物フィルタ、水処理フィルタベッドマットレス、シートベルト、マット、クッション、ホース、ワイピングクロス、ファブリック製品、化粧品用パフ、マスク、生理用品、救急用品、家具、フィルタ・空調フィルタ、農業・園芸、ビニールハウスシート、人工皮革用基布、生活資材、工業資材、包材、電子材料、医療、アラミド繊維、炭素繊維、活性短繊維、中空糸膜等に用いることができる。特に、本発明の繊維からなる不織布製品としては、エアーフィルタ、マスクとして使用することが好適である。また不織布製品は、単層構造の不織布を構成することもできるが、複数のシートとの多層構成とすることもできる。   Products made of the fibers of the present invention are nonwoven fabrics, clothing, protective and protective clothing, architecture, vehicles and automobile interiors, diapers, wipers for cleaning, toothbrushes, pet toilets, pet care products, pack sheets, soft incontinence products, curtains Chair upholstery, bedding, wet tissue, ventilation fan filter, sulfide filter, water treatment filter bed mattress, seat belt, mat, cushion, hose, wiping cloth, fabric product, cosmetic puff, mask, sanitary product, first aid, For furniture, filters / air-conditioning filters, agriculture / horticulture, greenhouse sheets, artificial leather fabrics, living materials, industrial materials, packaging materials, electronic materials, medical treatment, aramid fibers, carbon fibers, active short fibers, hollow fiber membranes, etc. Can be used. In particular, as a nonwoven fabric product made of the fiber of the present invention, it is preferable to use it as an air filter or a mask. In addition, the nonwoven fabric product can constitute a nonwoven fabric having a single layer structure, but can also have a multilayer construction with a plurality of sheets.

(脂肪酸金属塩)
本発明の繊維における金属超微粒子の形成に使用される有機酸金属塩の金属成分は、特に制限されないが、Cu,Ag,Au,In,Pd,Pt,Fe,Ni,Co,Nb,Sn,Ru,Rh等を挙げることができ、中でもAu,Ag,Cu,Pt,Sn、特にAgが好適である。
また脂肪酸としては、ミリスチン酸,ステアリン酸,オレイン酸,パルミチン酸,n−デカン酸,パラトイル酸,コハク酸,マロン酸,酒石酸,リンゴ酸,グルタル酸,アジピン酸、酢酸等の脂肪族カルボン酸、シクロヘキサンジカルボン酸等の脂環式カルボン酸等を挙げることができる。
本発明において、用いる脂肪酸は、ミリスチン酸、ステアリン酸、パルミチン酸等の炭素数が3乃至30の高級脂肪酸であることが特に好ましく、共に炭素数の多いものであることにより、脂肪酸成分自体も臭気成分或いはVOCを吸着することができ、吸着性、(消臭効果)、微小蛋白質不活性化をより向上することが可能となる。
最も好適な有機酸金属塩としては、ミリスチン酸銀、ステアリン酸銀等を挙げることができ、平均粒子径が1乃至100μm、特に20乃至80μmの範囲にあることが樹脂中に均一分散される点で好ましい。
(Fatty acid metal salt)
The metal component of the organic acid metal salt used for forming the ultrafine metal particles in the fiber of the present invention is not particularly limited, but Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co, Nb, Sn, Ru, Rh, etc. can be mentioned, among which Au, Ag, Cu, Pt, Sn, and particularly Ag is preferred.
In addition, as fatty acids, aliphatic carboxylic acids such as myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoylic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, acetic acid, Examples include alicyclic carboxylic acids such as cyclohexanedicarboxylic acid.
In the present invention, the fatty acid to be used is particularly preferably a higher fatty acid having 3 to 30 carbon atoms such as myristic acid, stearic acid, palmitic acid and the like. A component or VOC can be adsorbed, and the adsorptivity, (deodorizing effect), and microprotein inactivation can be further improved.
Examples of the most suitable organic acid metal salt include silver myristate, silver stearate and the like, and an average particle diameter of 1 to 100 μm, particularly 20 to 80 μm is uniformly dispersed in the resin. Is preferable.

(不織布製造方法)
本発明の繊維から成る芯鞘型繊維は、公知の方法で作製することができ、溶融紡績法、湿式紡糸法、乾式紡糸法等が挙げられる。一般的には、ポリマーを加熱し、圧力をかけてノイズから出しながら、冷却して繊維を作製する溶融紡績法で作製することができる。
また、本発明の前記芯鞘繊維からなる不織布は、公知の方法で作製することができ、スパンボンド法、メルトブロー法、乾式不織布法としてケミカルボンド、ニードルパンチ、湿式不織布法が挙げられる。スパンボンド法は、芯鞘それぞれの樹脂をフィーダー投入し、二軸押出機にて加熱混練させ、ギアーポンプ、スピンヘッドを介してノズルから吐出された芯鞘型の糸状樹脂は、クーリングエアーで冷却された後エアーエジェクター内を通過し延伸される。延伸された糸状樹脂がコンベアー上にウエブを形成し、コンパクションロール、エンボスロールで加熱圧縮成形されることで不織布が得られる。また、メルトブロー法は、樹脂をノズルから噴出すことで、10μm以下の超極細繊維からなる不織布を得ることができるので、吸着性、微小蛋白質不活性化に有効に作用する。
(Nonwoven fabric manufacturing method)
The core-sheath fiber made of the fiber of the present invention can be produced by a known method, and examples thereof include a melt spinning method, a wet spinning method, and a dry spinning method. In general, the polymer can be produced by a melt spinning method in which a polymer is heated and pressure is applied to remove the noise while cooling to produce a fiber.
Moreover, the nonwoven fabric which consists of the said core-sheath fiber of this invention can be produced by a well-known method, A chemical bond, a needle punch, and a wet nonwoven fabric method are mentioned as a spun bond method, a melt blow method, and a dry nonwoven fabric method. In the spunbond method, each core-sheath resin is fed into a feeder and heated and kneaded by a twin-screw extruder, and the core-sheath type thread-like resin discharged from the nozzle via a gear pump and a spin head is cooled by cooling air. After that, it passes through the air ejector and is drawn. The stretched filamentous resin forms a web on a conveyor and is heat-compressed with a compaction roll or embossing roll to obtain a nonwoven fabric. In addition, the melt blow method can effectively obtain a non-woven fabric made of ultrafine fibers of 10 μm or less by ejecting a resin from a nozzle, and therefore effectively acts on the adsorptivity and inactivation of minute proteins.

本発明の機能性繊維の製造方法においては、一般に二軸押出機で原料である脂肪酸金属塩と熱可塑性樹脂を混合加熱することにより行われており、一般に脂肪酸金属塩が分解し、金属超微粒子を形成するためには、脂肪酸金属塩の分解開始温度以上の温度で加熱することが必要である。脂肪酸金属塩の分解開始温度は、脂肪酸部分が金属部分から脱離あるいは分解し始める温度であり、一般的に開始温度はJIS K 7120により定義されている。これによれば、有機化合物(脂肪酸金属塩)の質量を計測し、熱重量測定装置を用いて不活性雰囲気下で昇温した際の重量変化を測定する熱重量測定(TG)を行う。測定により得られた熱重量曲線(TG曲線)から分解開始温度を算出する。試験加熱開始前の質量を通る横軸に平行な線とTG曲線における屈曲点間の勾配が最大になるような接線とが交わる点の温度を開始温度とすると定義づけられている。しかし、本発明は上記に定義される脂肪酸金属塩の分解開始温度以上の温度で加熱することを必要としない。なぜならば、実際には二軸押出機の設定温度以外にスクリューによる剪断発熱、或いは滞留時間等による影響を受けるため、本発明においては、脂肪酸金属塩の分解開始温度未満の温度で加熱する一方で、滞留時間や加熱時間、スクリュー回転数等の加工条件を調整することで、脂肪酸金属塩を分解し、金属超微粒子を形成する。   In the method for producing a functional fiber of the present invention, it is generally carried out by mixing and heating a fatty acid metal salt and a thermoplastic resin as raw materials in a twin-screw extruder, and the fatty acid metal salt is generally decomposed to produce ultrafine metal particles. It is necessary to heat at a temperature equal to or higher than the decomposition start temperature of the fatty acid metal salt. The decomposition start temperature of the fatty acid metal salt is a temperature at which the fatty acid portion begins to desorb or decompose from the metal portion, and the start temperature is generally defined by JIS K 7120. According to this, the mass of the organic compound (fatty acid metal salt) is measured, and thermogravimetry (TG) is performed to measure the change in weight when the temperature is raised in an inert atmosphere using a thermogravimetry apparatus. The decomposition start temperature is calculated from the thermogravimetric curve (TG curve) obtained by the measurement. It is defined that the temperature at the point where the line parallel to the horizontal axis passing through the mass before the start of test heating and the tangent line at which the gradient between the bending points in the TG curve becomes maximum is the starting temperature. However, the present invention does not require heating at a temperature higher than the decomposition start temperature of the fatty acid metal salt defined above. This is because, in practice, in the present invention, while being heated at a temperature lower than the decomposition start temperature of the fatty acid metal salt, it is affected by the shear heat generation by the screw or the residence time in addition to the set temperature of the twin screw extruder. The fatty acid metal salt is decomposed to form ultrafine metal particles by adjusting processing conditions such as residence time, heating time, and screw rotation speed.

脂肪酸金属塩の加工条件は一概に限定することはできないが、例えば、上述のJISの定義により分解開始温度が220℃であるステアリン酸を脂肪酸として有するステアリン酸銀を使用した場合で、140℃乃至220℃未満の温度で、この範囲内の温度における二軸押出機の設定温度にもよるが、5乃至1800秒、特に10乃至300秒の加熱時間で加熱混合を行うことが好適である。   Although the processing conditions of the fatty acid metal salt cannot be generally limited, for example, when silver stearate having a decomposition start temperature of 220 ° C. as a fatty acid is used as the fatty acid according to the above JIS definition, It is preferable to perform heating and mixing at a temperature of less than 220 ° C. and a heating time of 5 to 1800 seconds, particularly 10 to 300 seconds, depending on the set temperature of the twin screw extruder at a temperature within this range.

1.分光透過率測定
実施例で得られた不織布を温度150℃でホットプレスすることにより厚み50μmのシート状に成形し、該シートの分光透過率を測定し300〜700nmのプラズモン吸収の有無を確認した。
1. Spectral transmittance measurement The nonwoven fabric obtained in the example was hot-pressed at a temperature of 150 ° C. to form a sheet having a thickness of 50 μm, and the spectral transmittance of the sheet was measured to confirm the presence or absence of plasmon absorption at 300 to 700 nm. .

2.未消臭時メチルメルカプタン濃度の測定
口部をゴム栓で密封した窒素ガス置換した500mlガラス製瓶内に、悪臭物質メチルメルカプタン5μlをマイクロシリンジにて注入し、その濃度が10ppmになるように調整し、室温(25℃)で1日放置した。1日放置後、瓶中へガステック社製検知管を挿入し残存メチルメルカプタン濃度を測定し未消臭時メチルメルカプタン濃度(A)とした。
2. Measurement of undeodorized methyl mercaptan concentration 5 μl of malodorous methyl mercaptan was injected with a microsyringe into a 500 ml glass bottle filled with nitrogen gas with the mouth sealed with a rubber stopper, and the concentration was adjusted to 10 ppm. And left at room temperature (25 ° C.) for 1 day. After leaving for 1 day, a detector tube manufactured by Gastec Co., Ltd. was inserted into the bottle, and the residual methyl mercaptan concentration was measured to obtain the methyl mercaptan concentration (A) when not deodorized.

3.消臭後メチルメルカプタン量の測定
熱可塑性樹脂に金属超微粒子を鞘層に含有させた繊維からなる不織布(繊維径16μm、目付量50g/m)を、50mm四方に切り出し、窒素ガス置換した500mlガラス製瓶内に入れてゴム栓で密封した後、前記瓶内に悪臭物質メチルメルカプタン5μlをマイクロシリンジにて注入し、その濃度が10ppmになるように調整し、室温(25℃)で1日放置した。1日放置後、瓶中へガステック社製検知管を挿入し残存メチルメルカプタン濃度を測定し、消臭後メチルメルカプタン濃度(B)とした。
3. Measurement of the amount of methyl mercaptan after deodorization A 500 ml glass in which a nonwoven fabric (fiber diameter 16 μm, basis weight 50 g / m) made of a thermoplastic resin containing ultrafine metal particles in a thermoplastic resin was cut into a 50 mm square and replaced with nitrogen gas After putting in a bottle and sealing with a rubber stopper, 5 μl of malodorous methyl mercaptan is injected into the bottle with a microsyringe, adjusted to a concentration of 10 ppm, and left at room temperature (25 ° C.) for 1 day. did. After leaving for 1 day, a detector tube manufactured by Gastec Co., Ltd. was inserted into the bottle, the residual methyl mercaptan concentration was measured, and the methyl mercaptan concentration (B) was obtained after deodorization.

4.メチルメルカプタン消臭率の算出
前記未消臭時メチルメルカプタン濃度(A)から消臭後メチルメルカプタン濃度(B)を引いた値を未消臭時メチルメルカプタン濃度(A)で割り百分率で表した値を消臭率とした。
4). Calculation of deodorization rate of methyl mercaptan Value obtained by subtracting the deodorized methyl mercaptan concentration (B) from the undeodorized methyl mercaptan concentration (A) and dividing it by the undeodorized methyl mercaptan concentration (A) as a percentage Was defined as a deodorization rate.

(実施例1)
低密度ポリエチレン樹脂に、ステアリン酸銀が5wt%の含有率となるように配合したものを樹脂投入口から投入し、一次成形温度180℃で二軸押出機にて押し出しマスターバッチを作製した。次いで、芯層にポリプロピレン樹脂、鞘層には低密度ポリエチレン樹脂にステアリン酸銀の含有量が1重量%になるように前記マスターバッチを配合し、二次成形温度を200℃で二軸押出機にて混練し、ノズル径600μmから押出し、エアーエジェクターにて延伸させ、エンボスロールで加熱圧着し、芯層と鞘層比率が3:7である繊維径16μmからなる不織布を作製した。得られた不織布の消臭率の算出、分光透過率の測定を行った。
Example 1
A low-density polyethylene resin blended with a silver stearate content of 5 wt% was introduced from a resin inlet, and an extrusion master batch was produced by a twin-screw extruder at a primary molding temperature of 180 ° C. Next, the master batch was blended so that the core layer had a polypropylene resin, the sheath layer had a low density polyethylene resin and the silver stearate content was 1% by weight, and the secondary molding temperature was 200 ° C. Kneaded, extruded from a nozzle diameter of 600 μm, stretched with an air ejector, and heat-pressed with an embossing roll to prepare a nonwoven fabric having a fiber diameter of 16 μm with a core layer / sheath layer ratio of 3: 7. Calculation of the deodorization rate of the obtained nonwoven fabric and measurement of spectral transmittance were performed.

(実施例2)
二次成形温度を180℃とした以外は実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Example 2)
A nonwoven fabric was prepared in the same manner as in Example 1 except that the secondary molding temperature was 180 ° C., and the deodorization rate was calculated and measured.

(実施例3)
鞘層のステアリン酸銀の含有量が0.5重量%とした以外は実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Example 3)
A nonwoven fabric was prepared in the same manner as in Example 1 except that the content of silver stearate in the sheath layer was 0.5% by weight, and the deodorization rate was calculated and measured.

(実施例4)
二次成形温度を220℃とした以外は実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
Example 4
A nonwoven fabric was prepared in the same manner as in Example 1 except that the secondary molding temperature was 220 ° C., and the deodorization rate was calculated and measured.

(実施例5)
鞘層のステアリン酸銀の含有量を1.5重量%とした以外は実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Example 5)
A nonwoven fabric was prepared in the same manner as in Example 1 except that the content of silver stearate in the sheath layer was 1.5% by weight, and the deodorization rate was calculated and measured.

(実施例6)
ミリスチン酸銀を使用した以外は実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Example 6)
A nonwoven fabric was prepared in the same manner as in Example 1 except that silver myristate was used, and the deodorization rate was calculated and measured.

(比較例1)
ステアリン酸銀を、不活性ガス雰囲気下温度250℃で加熱して得られた粒子径100nmのステアリン酸銀を5重量%となるようにマスターバッチを作製した以外は、実施例1と同様に不織布を製作し、消臭率の算出、測定を行った。
(Comparative Example 1)
Nonwoven fabric as in Example 1 except that a master batch was prepared so that silver stearate having a particle size of 100 nm obtained by heating silver stearate at a temperature of 250 ° C. in an inert gas atmosphere was 5% by weight. The deodorization rate was calculated and measured.

(比較例2)
ゼオライトの含有量が5重量%になるよう配合してマスターバッチを作製し、鞘層にゼオライトにした以外は、実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Comparative Example 2)
A master batch was prepared by blending so that the zeolite content was 5% by weight, and a nonwoven fabric was prepared in the same manner as in Example 1 except that the sheath layer was made of zeolite, and the deodorization rate was calculated and measured. .

(比較例3)
無機系消臭剤(東亜合成(株):登録商標「ケスモン」)の含有量が5重量%になるよう配合してマスターバッチを作製し、鞘層に無機系消臭剤を配合した以外は、実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Comparative Example 3)
A master batch was prepared by blending so that the content of the inorganic deodorant (Toa Gosei Co., Ltd .: registered trademark “Kesmon”) was 5% by weight, and an inorganic deodorant was blended in the sheath layer. A nonwoven fabric was produced in the same manner as in Example 1, and the deodorization rate was calculated and measured.

(比較例4)
銀(粒径4.5μm)の含有量が5重量%になるよう配合してマスターバッチを作製し、鞘層に銀を配合した以外は、実施例1と同様に不織布を作製し、消臭率の算出、測定を行った。
(Comparative Example 4)
A non-woven fabric was prepared in the same manner as in Example 1 except that a master batch was prepared by blending so that the content of silver (particle size: 4.5 μm) was 5% by weight, and silver was blended in the sheath layer, and the deodorization rate Was calculated and measured.

上記結果を表1に示す。以上の結果から実施例1〜6については優れた消臭効果を有することがわかる。また、微小蛋白質不活性化の評価を行っていないが、消臭効果と同様に微小蛋白質不活性化を有するものと考えられる。
The results are shown in Table 1. From the above results, it can be seen that Examples 1 to 6 have an excellent deodorizing effect. Moreover, although evaluation of microprotein inactivation was not performed, it is thought that it has microprotein inactivation like a deodorizing effect.

芯鞘型繊維の断面図を示す。Sectional drawing of a core sheath type fiber is shown.

1 繊維
2 芯層
3 鞘層
1 Fiber 2 Core layer 3 Sheath layer

本発明の機能性繊維は、繊維の鞘層に金属超微粒子が均一分散され、外観が良好でかつ成形性に優れ、吸着性、微小蛋白質不活性化に優れた機能性繊維を提供できる。また、容易に成形できるために、不織布、衣料、防護・保護衣、建築、車両・自動車内装、おむつ、掃除用ワイパー、歯ブラシ、ペット用トイレ、ペット用手入れ用品、パックシート、軟失禁用品、カーテン、椅子張り、寝装具、ウェットティッシュ、換気扇フィルタ、硫化物フィルタ、水処理フィルタベッドマットレス、シートベルト、マット、クッション、ホース、ワイピングクロス、ファブリック製品、化粧品用パフ、マスク、生理用品、救急用品、家具、フィルタ・空調フィルタ、農業・園芸、ビニールハウスシート、人工皮革用基布、生活資材、工業資材、包材、電子材料、医療、アラミド繊維、炭素繊維、活性短繊維、中空糸膜等さまざま製品に利用可能である。   The functional fiber of the present invention can provide a functional fiber in which ultrafine metal particles are uniformly dispersed in the sheath layer of the fiber, the appearance is excellent, the moldability is excellent, the adsorptivity and the microprotein inactivation are excellent. In addition, because it can be easily molded, non-woven fabrics, clothing, protective and protective clothing, architecture, vehicles and automobile interiors, diapers, wipers for cleaning, toothbrushes, pet toilets, pet care products, pack sheets, soft incontinence products, curtains Chair upholstery, bedding, wet tissue, ventilation fan filter, sulfide filter, water treatment filter bed mattress, seat belt, mat, cushion, hose, wiping cloth, fabric product, cosmetic puff, mask, sanitary product, first aid, Furniture, filters / air conditioning filters, agriculture / horticulture, plastic house sheets, artificial leather base fabrics, living materials, industrial materials, packaging materials, electronic materials, medical treatment, aramid fibers, carbon fibers, active short fibers, hollow fiber membranes, etc. Available for products.

Claims (6)

芯層が熱可塑性樹脂、鞘層が有機酸成分と金属間で結合を有する金属超微粒子を含有する熱可塑性樹脂で構成されていることを特徴とする機能性繊維。 A functional fiber, wherein the core layer is composed of a thermoplastic resin, and the sheath layer is composed of a thermoplastic resin containing ultrafine metal particles having a bond between the organic acid component and the metal. 前記金属が、Cu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Sn、Ru及びRhからなる群から選択される少なくとも1種からなる請求項1に記載の機能性繊維。 The function according to claim 1, wherein the metal is made of at least one selected from the group consisting of Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co, Zn, Nb, Sn, Ru, and Rh. Sex fibers. 前記有機酸成分が、炭素数が3乃至30の脂肪酸である請求項1又は2に記載の機能性繊維。 The functional fiber according to claim 1 or 2, wherein the organic acid component is a fatty acid having 3 to 30 carbon atoms. 前記鞘層が300乃至700nmにプラズモン吸収を有する請求項1乃至3の何れかに記載の機能性繊維。 The functional fiber according to claim 1, wherein the sheath layer has plasmon absorption at 300 to 700 nm. 前記機能性繊維が吸着性、微小蛋白質不活性化を有する請求項1乃至4の何れかに記載の機能性繊維。 The functional fiber according to claim 1, wherein the functional fiber has adsorptivity and microprotein inactivation. 請求項1乃至5に記載の機能性繊維からなることを特徴とする不織布。 A non-woven fabric comprising the functional fiber according to claim 1.
JP2009048134A 2008-02-29 2009-03-02 Functional fiber Active JP5333988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048134A JP5333988B2 (en) 2008-02-29 2009-03-02 Functional fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008051304 2008-02-29
JP2008051304 2008-02-29
JP2009048134A JP5333988B2 (en) 2008-02-29 2009-03-02 Functional fiber

Publications (2)

Publication Number Publication Date
JP2009228200A true JP2009228200A (en) 2009-10-08
JP5333988B2 JP5333988B2 (en) 2013-11-06

Family

ID=41243907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048134A Active JP5333988B2 (en) 2008-02-29 2009-03-02 Functional fiber

Country Status (1)

Country Link
JP (1) JP5333988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063289A (en) * 2018-01-11 2022-04-21 東洋製罐グループホールディングス株式会社 Ultrafine copper particle-containing fiber or nonwoven fabric, and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310935A (en) * 1997-04-30 1998-11-24 Chisso Corp Antimicrobial fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310935A (en) * 1997-04-30 1998-11-24 Chisso Corp Antimicrobial fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063289A (en) * 2018-01-11 2022-04-21 東洋製罐グループホールディングス株式会社 Ultrafine copper particle-containing fiber or nonwoven fabric, and production method thereof

Also Published As

Publication number Publication date
JP5333988B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
KR101821446B1 (en) Material such as film, fiber, woven and nonwoven fabric with adsorbancy
KR100665980B1 (en) Composite molding and process for the production of the same
MXPA01012196A (en) Anti-microbial fiber and fibrous products.
US7794737B2 (en) Odor absorbing extrudates
JP4948556B2 (en) Masterbatch, production method thereof, and molding method
JP5415784B2 (en) Adsorbent composition and adsorbent molded body
US20080009560A1 (en) Articles for reducing atmospheric odors
CN106999620B (en) Deodorant, deodorant composition, and deodorant processed product
JP6520957B2 (en) Deodorant and deodorant products
JP2008206802A (en) Deodorant antibacterial carpet
JP5333988B2 (en) Functional fiber
JPH08280781A (en) Deodorant, deodorant fiber and their production as well as deodorization processed body
WO2015111172A1 (en) Functional air filter
KR100643515B1 (en) Polypropylene spunbond non-woven fabrics having excellent antibacterial and deodorizible effects
DE102007003648A1 (en) Copper-containing molding compound of polyester, its preparation and use
JP2009228201A (en) Functional fiber
WO1998030621A1 (en) Scented plastics
WO2019161678A1 (en) Antibacterial bactericidal negative-ion releasing washable cushion and preparation method therefor
DE102007003662A1 (en) Antimicrobial polyester molding composition, useful e.g. for producing fibers, films or shaped articles, contains monovalent copper and aromatic, aliphatic and/or cycloaliphatic polyester(s)
KR101325967B1 (en) Activated carbon filter paper
DE102007003649A1 (en) Polyester-based molding material containing divalent copper, used for production of blends, powder, molded parts, film, fabric or fibres with an antimicrobial action, e.g. for medical products
CN107262058A (en) A kind of in-car air cleaning material and its preparation technology containing nano titanium oxide
JP2012036282A (en) Silver-containing resin composition, and method for producing the same
JP4518650B2 (en) Front filter for air conditioner or air purifier
JP3571554B2 (en) Deodorant / antibacterial agent composition, deodorant / antibacterial resin composition and deodorant / antibacterial resin molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5333988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130721