JP2009228102A - Method for treating residue in converter after tapping - Google Patents

Method for treating residue in converter after tapping Download PDF

Info

Publication number
JP2009228102A
JP2009228102A JP2008078138A JP2008078138A JP2009228102A JP 2009228102 A JP2009228102 A JP 2009228102A JP 2008078138 A JP2008078138 A JP 2008078138A JP 2008078138 A JP2008078138 A JP 2008078138A JP 2009228102 A JP2009228102 A JP 2009228102A
Authority
JP
Japan
Prior art keywords
converter
furnace
slag
residue
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008078138A
Other languages
Japanese (ja)
Inventor
Yuma Igarashi
佑馬 五十嵐
Nobukazu Komine
伸万 小峰
Keiichiro Kai
圭一郎 甲斐
Takahiko Maeda
孝彦 前田
Kimio Inagaki
公男 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008078138A priority Critical patent/JP2009228102A/en
Publication of JP2009228102A publication Critical patent/JP2009228102A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating residue in a converter after tapping, with which the residual molten steel at the last refining time is not shifted to a slag ladle side as far as possible while removing the slag at the last refining time, and thus, a steel-making yield in the converter, that is, [1-(the charged iron source-tapping quantity)/(the charged iron source)], is improved. <P>SOLUTION: After cooling the residue in the furnace by charging a solid iron source as the cooling material to the residue in the furnace remaining in the converter after tapping, the remaining molten steel in the above residue in the furnace, is stuck and solidified to the furnace bottom and the furnace wall of the converter by swinging the furnace body of the converter while maintaining the remaining slag in the molten state and thereafter, the molten slag is discharged by tilting the converter. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、出鋼後転炉内に残留した残留溶鋼と溶融スラグを主成分とする炉内残留物の処理方法に関する。また、本発明は、出鋼後転炉炉内に残留する残留溶鋼を次回の転炉操業の鉄源として直接再利用する転炉製鋼方法に関する。   The present invention relates to a method for treating in-furnace residue mainly composed of residual molten steel and molten slag remaining in a converter after steelmaking. The present invention also relates to a converter steelmaking method in which residual molten steel remaining in a converter furnace after steel is output is directly reused as an iron source for the next converter operation.

転炉出鋼後、転炉内には転炉スラグとともに、溶鋼が残留している。これら出鋼後の炉内残留物は、通常、いわゆるノロ鍋に移され、さらにノロ処理場で冷却される。この際、転炉内に残留していた溶鋼は目標の成分組成を有しているのにも拘らず、いわゆる地金となり、製鋼歩留りを低下させる原因になる。したがって、このようなノロ鍋側に移行する溶鋼量を最小限度に抑えることが、転炉における製鋼歩留り、すなわち(1−(装入鉄源−出鋼量)/(装入鉄源))を向上させることにつながる。   After the converter steel is discharged, molten steel remains in the converter together with the converter slag. These in-furnace residues after steel are usually transferred to a so-called Noro pot and further cooled in a Noro treatment plant. At this time, the molten steel remaining in the converter becomes a so-called bare metal despite the fact that it has a target component composition, which causes a reduction in steelmaking yield. Therefore, minimizing the amount of molten steel that moves to the side of such a ladle is to make the steelmaking yield in the converter, that is, (1- (input iron source-outgoing steel amount) / (input iron source)). It leads to improvement.

出鋼後の転炉内残留物の処理方法として、特許文献1には、溶銑の出鋼を終えた際に、脱炭処理によって生成した脱炭スラグを精錬容器に残したまま出鋼し、精錬容器内に固体鉄源を装入した後、この精錬容器を前後に複数回傾動してスラグを固体鉄源の表面に絡みつかせるように固化させて次回の脱炭精錬に利用する方法が開示されている。   As a method for treating the residue in the converter after the steel is discharged, Patent Document 1 discloses that when the molten steel is discharged, the decarburized slag generated by the decarburization process is left in the refining vessel, and the steel is left. After charging the solid iron source into the smelting vessel, this smelting vessel is tilted back and forth several times to solidify the slag so as to be entangled with the surface of the solid iron source and used for the next decarburization and refining. It is disclosed.

また、転炉内残留物の処理方法に関するものではないが、特許文献2には、製鉄精錬容器から排出される溶融スラグを受滓し運搬する受滓容器内表面に付着した固化スラグを毎回剥離することなく複数回受滓する受滓容器内における溶融スラグの処理方法が開示されている。   Moreover, although it does not relate to the processing method of the residue in the converter, Patent Document 2 discloses that every time the solidified slag adhered to the inner surface of the receiving vessel that receives and transports the molten slag discharged from the iron refining vessel is peeled off. Disclosed is a method for treating molten slag in a receiving container that is received a plurality of times without being performed.

特開2004−256839号公報JP 2004-256839 A 特開2003−294376号公報JP 2003-294376 A

しかしながら、特許文献1によって開示された手段によるときは、精錬を終えた前チャージの残留スラグ及び残留溶鋼がすべて次回の精錬時に再利用されることになるが、残留スラグの排出を伴わないため、次回精錬の鋼種によっては、この手段を利用できないことがある。次回の精錬を考慮すれば、前回精錬時のスラグを極力排出することが求められている。また、特許文献2に開示された手段を利用して、前回精錬時のスラグ及び溶鋼を転炉内にそのまま残して、次回精錬用の溶銑を受銑することも考えられるが、特許文献1と同様の問題がある。   However, when the means disclosed by Patent Document 1 is used, all of the residual slag and residual molten steel of the previous charge after refining will be reused at the next refining, but without the discharge of residual slag, Depending on the steel type of the next refining, this means may not be available. Considering the next refining, it is required to discharge the slag from the previous refining as much as possible. Further, using the means disclosed in Patent Document 2, it may be possible to leave the slag and molten steel from the previous refining as they are in the converter and accept the hot metal for the next refining. There is a similar problem.

本発明は、前回精錬時のスラグを排滓しながら前回精錬時の残留溶鋼が極力ノロ鍋側に移行しないようにして、転炉における製鋼歩留り、すなわち(1−(装入鉄源−出鋼量)/(装入鉄源))を向上させる出鋼後転炉内残留物の処理方法を提案することを目的とする。   The present invention eliminates the slag from the previous refining and prevents the residual molten steel from the previous refining from moving to the side of the pan as much as possible, so that the steelmaking yield in the converter, that is, (1- (charged iron source-outlet steel). It is an object of the present invention to propose a method for treating residues in a post-steel converter that improves (quantity) / (charged iron source)).

本発明に係る出鋼後転炉内残留物の処理方法は、出鋼後転炉内に残留した炉内残留物に対して固体鉄源を冷却材として投入して炉内残留物を冷却した後、残留スラグを溶融状態に維持しつつ、転炉炉体を揺動して前記炉内残留物のうち残留溶鋼を少なくとも転炉炉底に付着・固化せしめ、しかる後、転炉を傾動して溶融スラグを排出するものである。   In the method for treating a residue in a post-steel converter according to the present invention, a solid iron source is added as a coolant to the in-furnace residue remaining in the post-steel converter to cool the in-furnace residue. After that, while maintaining the residual slag in a molten state, the converter furnace body is swung to adhere and solidify at least the residual molten steel on the bottom of the converter furnace, and then tilt the converter. The molten slag is discharged.

前記発明において、冷却材として固体鉄源とともに生ドロマイトを投入することが好ましい。   In the said invention, it is preferable to introduce | transduce raw dolomite with a solid iron source as a coolant.

また、固体鉄源が、差渡し寸法:1〜150mmに破砕された製鋼工程発生地金を用いるのが好ましい。なお、その平均値が20〜80mmであることが好ましい。   Moreover, it is preferable to use the steelmaking process generation | occurence | production metal | metal | money by which the solid iron source was crushed by the delivery dimension: 1-150mm. In addition, it is preferable that the average value is 20-80 mm.

前記各発明における転炉炉体を揺動に当たって、転炉炉底から冷却ガスの吹き込みを行うのが好ましい。   It is preferable that cooling gas is blown from the bottom of the converter furnace when the converter furnace body in each of the inventions is swung.

前記各発明における冷却材の投入後、溶融スラグの排出に至るまで溶融スラグの粘度は10Pに維持することが好ましい。
前記各発明の処理方法により炉内残留物の処理された転炉を溶銑を装入し脱炭精錬を行うことができる。
It is preferable to maintain the viscosity of the molten slag at 10 P until the molten slag is discharged after the coolant is charged in each of the inventions.
Decarburization and refining can be performed by charging molten iron into the converter in which the residue in the furnace has been treated by the treatment method of each invention.

本発明により、前回精錬時のスラグを排滓しながら前回精錬時の残留溶鋼が極力ノロ鍋側に移行しないようにして、転炉における製鋼歩留り、すなわち(1−(装入鉄源−出鋼量)/(装入鉄源))を向上させることができる。また、併せて転炉炉底レンガの損耗量を低下させることができる。   According to the present invention, while the slag from the previous smelting is removed, the residual molten steel from the previous smelting is prevented from moving to the side of the pan as much as possible, so that the steelmaking yield in the converter, that is, (1- (charged iron source-outgoing steel) Quantity) / (charged iron source)). In addition, the wear amount of the converter furnace bottom brick can be reduced.

本発明を適用するに当たっては、まず、転炉操業を通常の方式にしたがって行い、出鋼作業も通常どおり、例えば、ダーツ投入によって出鋼取鍋中へのスラグの移行を極力抑制しながら行われる。出鋼後の転炉中における溶融スラグ及び溶鋼の残留量は、装入鉄源量に対し、溶融スラグが5〜10%、残留溶鋼が0.5〜2%(いずれも質量比)程度とすればよい。また、その温度は、出鋼終了時において、残留スラグ:1600〜1700℃、残留溶鋼:1550〜1600℃である。   In applying the present invention, first, the converter operation is performed according to a normal method, and the steel output operation is performed as usual, for example, while suppressing the transition of the slag into the steel output ladle by introducing a dart. . The residual amount of molten slag and molten steel in the converter after steel is about 5 to 10% for molten slag and 0.5 to 2% for residual molten steel (both mass ratio) with respect to the amount of charged iron. do it. Moreover, the temperature is the residual slag: 1600-1700 degreeC and the residual molten steel: 1550-1600 degreeC at the time of completion | finish of steel production.

出鋼後の転炉内に炉内残留物として上記の溶融スラグ及び残留溶鋼が残っている転炉中に固体鉄源が投入される。固体鉄源としては鋼板端板などの鉄スクラップ、出鋼取鍋の鍋付地金、連鋳タンディッシュガラ地金や製鋼スラグの回収地金などを利用できる。但し、この固体地金は残留溶鋼の温度を低下させ、転炉内で残留溶鋼を固化させることを目的として投入するものであるから、そのC含有量は低い方がよく、例えば銑鉄の脱硫スラグ回収地金は本発明の固体鉄源として適当ではない。   A solid iron source is put into the converter in which the molten slag and the residual molten steel remain as furnace residues in the converter after steel output. As solid iron sources, steel scrap such as steel plate end plates, bullion with a ladle for a steel ladle, continuous cast tundish glass bullion, steel slag collection bullion, etc. can be used. However, since this solid metal is introduced for the purpose of lowering the temperature of the residual molten steel and solidifying the residual molten steel in the converter, its C content should be low, for example, desulfurization slag of pig iron The recovered metal is not suitable as the solid iron source of the present invention.

上記固体鉄源は、差渡し寸法:1〜150mmに破砕されたものとするのがよい。そのサイズが差渡し1mm未満のものは、転炉中に投入されたとき、溶融スラグに留まり、その下部にある残留溶鋼に到達することができず、残留溶鋼を効果的に冷却することができない。これに対して、そのサイズが差し渡り寸法で150mm超であると、投入の際に溶融スラグ層からのスプラッシュの発生が大きくなり、また、残留溶鋼中での冷却効果が局部的になって後の転炉の揺動による転炉炉底への残留溶鋼の固化・付着が均一に行われ難くなる。この固体鉄源はその寸法を、できれば、差渡し寸法の平均で20〜80mmとするのがよく、上記目的を達することができれば、差渡し寸法で10mm未満のものが混入することも許容される。   The solid iron source is preferably crushed to a passing dimension of 1 to 150 mm. When the size is less than 1 mm, the molten steel stays in the molten slag when it is put into the converter, cannot reach the residual molten steel below it, and cannot effectively cool the residual molten steel. . On the other hand, if the size is over 150 mm, the occurrence of splash from the molten slag layer becomes large at the time of charging, and the cooling effect in the residual molten steel becomes localized later. This makes it difficult to uniformly solidify and adhere the residual molten steel to the bottom of the converter furnace due to the oscillation of the converter. The solid iron source should preferably have a dimension of 20 to 80 mm as an average of the dimension of the delivery, if possible, and if it can achieve the above-mentioned purpose, it is allowed to have a dimension of less than 10 mm in the dimension of the delivery. .

上記の固体鉄源の投入に当たっては、固体鉄源とともに生ドロマイトを投入するのがよい。冷却材として固体鉄源、特に破砕された製鋼スラグの回収地金を利用するときには、酸素リッチの残留溶鋼の温度低下により、いわゆるリムド反応
C+O→CO
反応が生じ、その活発なガス発生により回収地金に付着しているダストなどが吹き上げられる粉塵発生が認められるが、固体鉄源とともに生ドロマイトを投入するときには、かかる粉塵発生が抑制される。その原因は定かでないが、生ドロマイトの投入により溶融スラグの温度が低下するとともにその塩基度の上昇に伴って粘度が上昇し、ガス発生に伴って生ずるダストが溶融スラグ中で捕捉されるためであると推定される。
In charging the solid iron source, raw dolomite is preferably charged together with the solid iron source. When using a solid iron source as a coolant, especially recovered metal from crushed steelmaking slag, the so-called rim reaction C + O → CO is caused by the temperature drop of the residual oxygen-rich molten steel.
Although the reaction occurs and the generation of the gas, the dust generated by the dust adhering to the recovered metal is blown up by the active gas generation, the generation of the dust is suppressed when the raw dolomite is introduced together with the solid iron source. Although the cause is not clear, the temperature of the molten slag decreases with the addition of raw dolomite and the viscosity increases with the increase in basicity, and the dust generated as a result of gas generation is trapped in the molten slag. Presumed to be.

生ドロマイトの投入量は残留スラグ量(推定値)に対して3〜8%(質量比)とすればよく、その粒度は差渡し径の平均で5〜10mmであることが好ましい。これら冷却材の投入完了時における溶融スラグの温度は、推定で1530〜1560℃となる。また、この時点における残留スラグの粘度を10P(ポアズ)以下に維持することが望ましい。なお、残留スラグの残留量の測定は目視観察により行うことができる。 The input amount of raw dolomite may be 3 to 8% (mass ratio) with respect to the residual slag amount (estimated value), and the particle size is preferably 5 to 10 mm on the average of the passing diameter. The temperature of the molten slag at the completion of charging of these coolants is estimated to be 1530 to 1560 ° C. Moreover, it is desirable to maintain the viscosity of the residual slag at this time to 10 P (poise) or less. The residual amount of residual slag can be measured by visual observation.

図1は冷却材投入後の残留スラグの粘度と炉口からの排出率との関係図である。ここに排出率は、
((残留スラグ量(kg)−(炉口からの溶融スラグ排出量(kg))/(残留スラグ量(kg)
により算出される。図1から明らかなように、残留スラグの粘度が10P以下ではスラグの炉口からの排出率が60%以上となるが、それを超えると排出率が低下し、次回の精錬に支障を生ずる。なお、残留スラグの粘度は、サンプルスラグの炉前における流動試験の結果を標準物質と対比して得た推定値であり、溶融スラグ排出量は、看貫又は目視観察により決定されたものである。
FIG. 1 is a graph showing the relationship between the viscosity of residual slag after charging the coolant and the discharge rate from the furnace port. The emission rate here is
((Residual slag amount (kg)-(melted slag discharge from the furnace port (kg)) / (residual slag amount (kg)
Is calculated by As apparent from FIG. 1, when the residual slag viscosity is 10 P or less, the discharge rate of the slag from the furnace port is 60% or more, but when it exceeds the discharge rate, the discharge rate is lowered, which hinders the next refining. The viscosity of the residual slag is an estimated value obtained by comparing the result of the flow test of the sample slag before the furnace with the standard material, and the molten slag discharge amount is determined by inspection or visual observation. .

一方、冷却材投入完了時における溶融溶鋼の温度は、推定で1450〜1500℃程度となる。この温度は残留溶鋼の凝固温度の直上温度に相当し、後述する転炉炉体の揺動により残留溶鋼を転炉炉底・炉壁に付着・固化せしめることが可能になる。逆からいえば、冷却材の投入量は、投入後の残留スラグ及び残留溶鋼の状態が上記状態を満足するように選定することが重要である。   On the other hand, the temperature of the molten molten steel at the completion of the charging of the coolant is estimated to be about 1450 to 1500 ° C. This temperature corresponds to a temperature immediately above the solidification temperature of the residual molten steel, and the residual molten steel can be adhered to and solidified on the converter furnace bottom and the furnace wall by swinging the converter furnace body described later. In other words, it is important to select the amount of the coolant to be charged so that the state of the residual slag and the residual molten steel after the injection satisfies the above state.

上記のように冷却材を投入して残留スラグ及び残留溶鋼の状態を調整した後、転炉炉体を揺動する操作を行う。この転炉炉体の揺動操作は、前記炉内残留物のうち残留溶鋼を少なくとも転炉炉底に、さらには転炉炉壁に付着・固化せしめるように行えばよく、一般には転炉を炉前側へ50〜65°、炉裏側へ35〜45°傾動する操作を繰返し、3〜5回行えば十分である。   After the coolant is added as described above to adjust the state of residual slag and residual molten steel, an operation of swinging the converter furnace body is performed. The swinging operation of the converter furnace body may be performed so that the molten steel in the furnace residue adheres to and solidifies at least on the converter furnace bottom and further on the converter furnace wall. It is sufficient to repeat the operation of tilting 50 to 65 ° toward the front of the furnace and 35 to 45 ° toward the back of the furnace and performing 3 to 5 times.

上記揺動操作は、特に、転炉形式が、図2に示すように、転炉本体1の炉底2に単管の底吹ガス吹込み羽口3を有するものにあっては、該底吹ガス吹込み羽口から不活性ガス、例えば窒素ガス、の吹込みを行いながら吹き込みながら行うのがよい。これによって、残留溶鋼の冷却と炉底への付着・固化が円滑に行われるようになり、また、ガス吹込み羽口の残留溶鋼による閉塞事故などを防止することができる。なお、溶鋼の固化・付着は、後に説明するガス吹き込みレンガの保護に寄与せしめるためには、少なくとも転炉炉底、特に吹き込み羽口の存在域に亘って行うことが必要であるが、さらに転炉炉壁に及んでもよい。   The above swinging operation is particularly effective when the converter type has a single-tube bottom blowing gas tuyere 3 at the furnace bottom 2 of the converter body 1 as shown in FIG. It is preferable to carry out while blowing an inert gas, for example, nitrogen gas, from the blowing gas blowing tuyere. As a result, the molten molten steel can be smoothly cooled and adhered to the furnace bottom and solidified, and a gas blowdown tuyere can be prevented from being blocked by the molten molten steel. It should be noted that the solidification / adhesion of the molten steel is required to be performed at least over the bottom of the converter furnace, particularly the region where the blown tuyere exists, in order to contribute to the protection of the gas blown brick described later. It may extend to the furnace wall.

上記のようにして転炉の揺動を行った後、転炉を傾動して溶融スラグを排出する。この操作は、通常の排滓操作と同様に行えばよい。   After the converter is rocked as described above, the converter is tilted to discharge the molten slag. This operation may be performed in the same manner as a normal evacuation operation.

図3は、かかる炉底からのガス吹込みを併用して行い、スラグを排出した後の炉底・炉壁への残留溶鋼の付着・固化状態を示した炉底の模式図である。ここに示すように炉底に一様に残留溶鋼の固化・付着物4が認められる。このような転炉炉底・炉壁への残留溶鋼の固化・付着状態が達成されることにより、炉底のガス吹き込みレンガの保護が強化され、転炉炉底の羽口レンガの損耗量が激減するという効果が得られる。事実、転炉を5000回使用したときの羽口レンガの残存厚さは、本発明実施前には450mmであったが、本発明(炉底ガス吹き込み併用)の実施により700mmとなった。   FIG. 3 is a schematic view of the bottom of the furnace showing the state of adhesion and solidification of the residual molten steel to the furnace bottom and the furnace wall after the slag is discharged by using the gas blowing from the furnace bottom together. As shown here, solidification and deposits 4 of residual molten steel are observed uniformly on the furnace bottom. By achieving solidification and adhesion of residual molten steel to the converter furnace bottom and furnace wall, the protection of the gas blowing bricks at the furnace bottom is strengthened, and the amount of wear of tuyere bricks at the converter furnace bottom is reduced. The effect of drastically decreasing is obtained. In fact, the remaining thickness of tuyere bricks when the converter was used 5000 times was 450 mm before the present invention was implemented, but became 700 mm by the implementation of the present invention (combined with furnace bottom gas blowing).

上述のように転炉出鋼後の炉内残留物が処理され、少なくとも炉底に残留溶鋼が固化・付着し、スラグが排出された転炉には、新たに溶銑等鉄源を装入して次回の精錬操業に付することができる。これにより、前回転炉操業のとき炉内に残留していた溶鋼を再び鉄源として利用できることになり、その分、出鋼量が増加して転炉創業における出鋼歩留りが向上する。すなわち、従来操業では、転炉出鋼歩留りが
1−(装入鉄源−出鋼量)/(装入鉄源)・・・(1)
であったものが、本発明では、固化・付着により再利用される残留溶鋼量をK(kg)として、下記(2)式のとおり補正されることになり、歩留りの向上が得られるのである。
(1−(装入鉄源+K)−(出鋼量+K))/(装入鉄源+K)
=(1−(装入鉄源−出鋼量)/(装入鉄源+K)・・・(2)
As described above, the furnace residue after the steel from the converter is treated, and at least the residual molten steel solidifies and adheres to the bottom of the furnace and slag is discharged. Can be used for the next refining operation. As a result, the molten steel remaining in the furnace during the previous rotary furnace operation can be used again as an iron source, and the amount of steel output increases accordingly, and the steel output yield at the establishment of the converter is improved. That is, in the conventional operation, the yield of converter steel is 1- (input iron source-output amount) / (input iron source) (1)
However, in the present invention, the amount of residual molten steel reused by solidification / adhesion is assumed to be K (kg), and is corrected as shown in the following equation (2), thereby improving the yield. .
(1- (charge iron source + K) − (steel output + K)) / (charge iron source + K)
= (1- (Feed iron source-Steel output) / (Feed iron source + K) (2)

公称300転炉を用い、低炭素鋼の溶製を行い、吹止温度1650℃で吹止めた後、スラグダーツを用いて出鋼した。出鋼後の転炉中にはスラグ24t、溶鋼3tが残留していた。また、その温度は、残留スラグ:1620℃、残留溶鋼:1580℃であった。上記状態の出鋼後炉内残留物に対し、冷却材として平均80mmに破砕した転炉滓回収地金:1500kg(出鋼後炉内残留物に対し5.6%)、生ドロマイト:1500kg(出鋼後炉内残留物に対し5.6%)を投入した。投入後の凝固した溶鋼及びスラグの状態は下記のとおりであった。なお、投入時の発塵は僅かであった。   Using a nominal 300 converter, low-carbon steel was melted and blown at a blowing temperature of 1650 ° C., and then steel was produced using a slag dart. 24t of slag and 3t of molten steel remained in the converter after steel output. Moreover, the temperature was residual slag: 1620 degreeC and residual molten steel: 1580 degreeC. For the residue in the post-steeling furnace in the above state, the converter slag recovered to an average of 80 mm as a coolant: 1500 kg (5.6% of the post-steeling furnace residue), raw dolomite: 1500 kg ( 5.6%) of the residue in the furnace after steeling. The state of the solidified molten steel and slag after charging was as follows. In addition, dust generation at the time of charging was slight.

凝固した溶鋼温度:1090℃(推定値)
スラグ温度:1470℃,スラグ粘度:7P
但し、スラグ粘度は炉内から採集したスラグサンプルを回転粘度計を用い、転炉内のスラグ温度と同じである1470℃に再加熱して測定した値である。
Solidified molten steel temperature: 1090 ° C (estimated value)
Slag temperature: 1470 ° C, slag viscosity: 7P
However, the slag viscosity is a value measured by reheating a slag sample collected from the furnace to 1470 ° C., which is the same as the slag temperature in the converter, using a rotational viscometer.

上記状態を確認した後、転炉を炉前側へ60°、炉裏側へ40°傾動する操作を3回繰り返した後、転炉を傾動して溶融スラグを排出した。スラグの排出量は25tであり、同時に排出された地金は認められなかった。スラグ排出後の炉底への残留溶鋼の固化・付着状況を観察したところ、ほぼ炉底全面にほぼ一様に残留溶鋼の固化・付着していることが確認された。   After confirming the above state, the operation of tilting the converter 60 ° toward the front of the furnace and 40 ° toward the back of the furnace was repeated three times, and then the converter was tilted to discharge the molten slag. The amount of slag discharged was 25t, and no bullion was discharged at the same time. Observation of the solidification and adhesion of the residual molten steel to the furnace bottom after slag discharge confirmed that the residual molten steel was almost uniformly solidified and adhered to the entire furnace bottom.

このようにして、出鋼後転炉内残留物が処理された転炉に対し、新たに溶銑等の鉄源及び副原料を装入して脱炭精錬を行った。その結果、得られた出鋼量は300tとなった。この量は、本発明を適用しない場合に比べて3tの増加となっており、その分の歩留りも向上は1%である。   Thus, decarburization refining was carried out by newly charging an iron source such as hot metal and auxiliary materials to the converter in which the residue in the converter was treated after steel output. As a result, the steel output obtained was 300 t. This amount is increased by 3t compared to the case where the present invention is not applied, and the yield is improved by 1%.

冷却材投入後の溶融スラグの粘度と炉口からの排出率との関係図である。It is a related figure of the viscosity of the molten slag after cooling material injection | throwing-in, and the discharge rate from a furnace port. 本発明が適用される底吹ガス羽口の羽口配列を示す模式図である。It is a schematic diagram which shows the tuyere arrangement | sequence of the bottom blowing gas tuyere to which this invention is applied. 本発明を、ガス吹込みを併用して行ったときの炉底への残留溶鋼の付着・固化状態を示した炉底の模式図である。It is the schematic diagram of the furnace bottom which showed the adhesion and solidification state of the residual molten steel to the furnace bottom when performing this invention together with gas blowing.

符号の説明Explanation of symbols

1:転炉本体
2:炉底
3:ガス吹き込み羽口
4:固化・付着溶鋼
1: Converter body 2: Furnace bottom 3: Gas blowing tuyere 4: Solidified / adhered molten steel

Claims (6)

出鋼後転炉内に残留した炉内残留物に対して固体鉄源を冷却材として投入して炉内残留物を冷却した後、残留スラグを溶融状態に維持しつつ、転炉炉体を揺動して前記炉内残留物のうち残留溶鋼を少なくとも転炉炉底に付着・固化せしめ、しかる後、転炉を傾動して溶融スラグを排出することを特徴とする出鋼後転炉内残留物の処理方法。   The solid iron source is added as a coolant to the in-furnace residue remaining in the converter after steelmaking, and after cooling the in-furnace residue, the converter furnace body is maintained while maintaining the residual slag in a molten state. The inside of the post-steel converter is characterized by swinging to adhere and solidify at least the residual molten steel to the bottom of the converter furnace, and then tilting the converter to discharge molten slag. Residue treatment method. 冷却材として固体鉄源とともに生ドロマイトを投入することを特徴とする請求項1記載の出鋼後転炉内残留物の処理方法。   Raw dolomite is put together with a solid iron source as a coolant, and the processing method of the residue in the post-steering converter of Claim 1 characterized by the above-mentioned. 固体鉄源が、差渡し寸法:1〜150mmに破砕された製鋼工程発生地金であることを特徴とする請求項1又は2記載の出鋼後転炉内残留物の処理方法。   3. The method for treating residues in a post-steeling converter according to claim 1 or 2, wherein the solid iron source is a steelmaking process generated metal crushed to a passing dimension of 1 to 150 mm. 転炉炉体を揺動に当たって、転炉炉底から冷却ガスの吹き込みが行われることを特徴とする請求項1〜3の何れかに記載の出鋼後転炉内残留物の処理方法。   4. The method for treating residues in a post-steeling converter according to any one of claims 1 to 3, wherein cooling gas is blown from the bottom of the converter furnace when the converter body is swung. 冷却材の投入後、溶融スラグの排出に至るまで溶融スラグの粘度を10P以下に維持することを特徴とする請求項1〜4の何れかに記載の出鋼後転炉内残留物の処理方法。   The method for treating a residue in a post-steeling converter according to any one of claims 1 to 4, wherein the viscosity of the molten slag is maintained at 10 P or less after the coolant is charged until the molten slag is discharged. . 請求項1〜5の何れかに記載の処理方法により炉内残留物の処理された転炉を溶銑を装入し脱炭精錬を行うことを特徴とする転炉製鋼方法。   A converter steelmaking method, wherein the converter treated with the residue in the furnace is charged with hot metal and decarburized and refined by the processing method according to claim 1.
JP2008078138A 2008-03-25 2008-03-25 Method for treating residue in converter after tapping Withdrawn JP2009228102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078138A JP2009228102A (en) 2008-03-25 2008-03-25 Method for treating residue in converter after tapping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078138A JP2009228102A (en) 2008-03-25 2008-03-25 Method for treating residue in converter after tapping

Publications (1)

Publication Number Publication Date
JP2009228102A true JP2009228102A (en) 2009-10-08

Family

ID=41243824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078138A Withdrawn JP2009228102A (en) 2008-03-25 2008-03-25 Method for treating residue in converter after tapping

Country Status (1)

Country Link
JP (1) JP2009228102A (en)

Similar Documents

Publication Publication Date Title
KR101560512B1 (en) Steel slag reduction method
JP5954551B2 (en) Converter steelmaking
JP5772339B2 (en) Reuse method of slag in ladle
JP4829225B2 (en) Chromium reduction method for metallurgical slag
JP4743078B2 (en) Method for improving slag evacuation after dephosphorization and method for dephosphorizing hot metal using the slag
JP4977870B2 (en) Steel making method
JP4790489B2 (en) Converter steelmaking
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
TWI637062B (en) Method for manufacturing molten steel
JP3885499B2 (en) Converter steelmaking method
JP2010261062A (en) Method for producing stainless steel
JP6223249B2 (en) Desiliconization, dephosphorization, and decarburization methods that reuse desiliconized slag
JP2009228102A (en) Method for treating residue in converter after tapping
JP2001115205A (en) Method for dephosphorizing molten iron
JP3158912B2 (en) Stainless steel refining method
JP7243185B2 (en) Hot slag recycling method
JP2012017521A (en) Dephosphorization method of molten iron using dust
JP6538522B2 (en) Reuse method of tundish refractories for continuous casting
JP7107099B2 (en) Hot metal refining method
JP2006336077A (en) Method for repairing refractory in converter
JP2001294926A (en) Refining method using chromium oxide containing slag
JP6627642B2 (en) How to reduce iron ore
KR100925597B1 (en) Method for Refining Molten Steel by Converter
JP3770076B2 (en) Slag coating method for dedicated dephosphorization furnace
JP3726599B2 (en) Method for refining molten steel using refractory scrap containing carbon

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100715

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607