JP2009227171A - Hybrid system for vehicle - Google Patents

Hybrid system for vehicle Download PDF

Info

Publication number
JP2009227171A
JP2009227171A JP2008076779A JP2008076779A JP2009227171A JP 2009227171 A JP2009227171 A JP 2009227171A JP 2008076779 A JP2008076779 A JP 2008076779A JP 2008076779 A JP2008076779 A JP 2008076779A JP 2009227171 A JP2009227171 A JP 2009227171A
Authority
JP
Japan
Prior art keywords
battery
hybrid system
driving
engine
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008076779A
Other languages
Japanese (ja)
Other versions
JP5216953B2 (en
Inventor
Yukinobu Mori
幸信 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008076779A priority Critical patent/JP5216953B2/en
Priority to PCT/JP2009/055241 priority patent/WO2009119397A1/en
Publication of JP2009227171A publication Critical patent/JP2009227171A/en
Application granted granted Critical
Publication of JP5216953B2 publication Critical patent/JP5216953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/34Silver oxide or hydroxide electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel-efficient hybrid system which uses a high capacity density battery as a secondary battery for wheel motor driving to be used for a hybrid system for a vehicle, reduces the load of an engine and increases the load of a battery, and is excellent in fuel consumption, and to provide a hybrid system using a lead-free battery adaptable to environmental preservation. <P>SOLUTION: Engine driving is performed by a front wheel driving part, and wheel motor driving by a battery is performed by a rear wheel driving part, and a motor drive battery with high performance well-balanced with an engine load is used, and when a power is temporarily necessary in rapid acceleration or slope, engine driving is performed, and when a vehicle travels at a low speed in a city or travels at a high speed in a long time, battery driving is performed so that fuel consumption can be set to almost at least 70 km/l. Especially, the driving switching means of an engine and a battery is performed in a drive mode and a neutral mode of a gear shift. Thus, it is possible to provide a highly efficient hybrid system by the program means of the computer system of a controller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジンで駆動する前輪駆動部と駆動用バッテリによりホイールインモータで駆動する後輪部とを少なくとも設けた車両用ハイブリッドシステムに関する。とくに駆動用バッテリに従来より高性能、高容量の高密度2次電池を使用した鉛フリーの環境保護に適した車両用ハイブリッドシステムに関する。   The present invention relates to a vehicle hybrid system including at least a front wheel drive unit driven by an engine and a rear wheel unit driven by a wheel-in motor by a drive battery. More particularly, the present invention relates to a hybrid system for vehicles suitable for lead-free environmental protection using a high-performance, high-capacity high-density secondary battery as a driving battery.

従来の車両用ハイブリッドシステムにはシリーズハイブリッド方式、パラレルハイブリッド方式、シリーズ・パラレルハイブリッド方式等各種のハイブリッドシステムがあった。
いずれにしても、エンジンと、バッテリにより駆動するモータとが併用され、協調しながら少ない燃料で効率よく走行するシステムとして考案されてきた。
Conventional hybrid systems for vehicles include various hybrid systems such as a series hybrid system, a parallel hybrid system, and a series / parallel hybrid system.
In any case, an engine and a motor driven by a battery are used in combination, and the system has been devised as a system that travels efficiently with less fuel in cooperation.

しかしながら、ハイブリッドシステムの弱点がバッテリにあり、その性能がエンジンと協調できる程度のものでなかった。
従来から車両用に鉛電池が使用されていたが、以下のような種々の問題があった。ひとつには、単位容積あたりのエネルギー容量が低く、車両用に使用するに当たっては重く、大きな容積となるという問題があった。
However, the weak point of the hybrid system lies in the battery, and its performance cannot be coordinated with the engine.
Conventionally, lead batteries have been used for vehicles, but there are various problems as follows. For one, there is a problem that the energy capacity per unit volume is low, it is heavy when used for vehicles, and has a large volume.

さらに加えて、電解液として硫酸を用いることによって、一般に性能を高めるとサルフレーション(硫化)が起こりやすくなり、電池の内部抵抗増加が避けられなかった。
そのサルフレーションが進行すると、イオンの移動が難しくなり、動作不能となって廃棄に至るが、電解液の硫酸と電極の鉛の公害物質の廃棄処理が容易でなかった。
In addition, by using sulfuric acid as the electrolytic solution, when performance is generally improved, sulfuration (sulfurization) tends to occur, and an increase in the internal resistance of the battery cannot be avoided.
As the sulfuration progresses, it becomes difficult for ions to move, and it becomes impossible to operate and is discarded, but disposal of pollutants such as sulfuric acid in the electrolyte and lead in the electrode is not easy.

特に車両用鉛電池は重負荷で使用されるので、極板及び電解液も共に減耗するが、シールドタイプ電池の場合は、極板の取替え、電解液の補充はできない。
材料固有の公害物資としての危険要因も回避できない状態であった。
In particular, since a lead battery for a vehicle is used under heavy load, both the electrode plate and the electrolyte solution wear out. However, in the case of a shield type battery, the electrode plate cannot be replaced and the electrolyte solution cannot be replenished.
Risk factors as material-specific pollution materials cannot be avoided.

例えば、車両用の重負荷に耐えられるように、鉛電池内部構造の改良に関して特許文献1には、電解液槽の上部に触媒を配した制御弁を設け、電池内で発生するガスを効率よく触媒反応させて、生成した水を還流すると共に負極のサルフレーションを防止する技術が開示されている。鉛電池は以上のように問題点を解決しても、そのため用途及び使用方法が限定されることが多かった。
鉛電池の有する前述の問題点をある程度回避できるリチウムイオン電池が最近携帯機器に使用されている。リチウムイオン電池は、エネルギー密度が高く、小型軽量で公害性が低い。
For example, in order to improve the internal structure of a lead battery so that it can withstand heavy loads for vehicles, Patent Document 1 provides a control valve in which a catalyst is arranged on the upper part of an electrolyte tank so that gas generated in the battery can be efficiently generated. A technique is disclosed in which the generated water is refluxed by a catalytic reaction, and the sulfurization of the negative electrode is prevented. Even if the lead battery solves the problems as described above, the use and the method of use are often limited.
Recently, lithium ion batteries that can avoid the above-mentioned problems of lead batteries to some extent have been used in portable devices. Lithium ion batteries have high energy density, small size and light weight, and low pollution.

しかしながら、リチウムイオン電池は製造コストが高く、さらにサイクル壽命が300回程度と、鉛電池の1000回程度に較べて低いので、ランニングコストがより高価になるという問題があった。
又、リチウムイオン電池は、過放電と過充電に対して耐力がなく、車両用として利用するには適していなかった。特に過充電を行うと電池が過熱し、約130℃を越えると電池が破裂し、電解液の吐出に到る大きな問題があった。
However, the lithium ion battery has a high manufacturing cost, and the cycle life is about 300 times, which is lower than about 1000 times of the lead battery, so that there is a problem that the running cost becomes more expensive.
Further, the lithium ion battery has no resistance to overdischarge and overcharge, and is not suitable for use as a vehicle. In particular, when overcharging is performed, the battery overheats, and when the temperature exceeds about 130 ° C., the battery bursts, resulting in a serious problem in discharging the electrolyte.

そこで、電池の内部が高温で破裂直前になると、封入部のガスケットの一部からガスを逃がす方法や、蓋部分(正極端子)が飛出すことでガスを逃がす方法や、内部セパレータを破壊して短絡することでガスの発生を抑える方法などが開発されている。
又、特許文献2にはこれらの問題を解決するため、ゲル状の非水系電解液を用いることで、可燃性の有機溶媒を電解液の溶剤として用いて火災の危険性を減少させる技術が開示されているが、車両用にリチウムイオン電池を使用することは難しいものであった。
Therefore, when the inside of the battery is about to burst at high temperature, the method of letting gas escape from a part of the gasket of the enclosing part, the method of letting the gas escape by the lid part (positive electrode terminal) jumping out, or destroying the internal separator A method for suppressing gas generation by short-circuiting has been developed.
In order to solve these problems, Patent Document 2 discloses a technique for reducing the risk of fire by using a flammable organic solvent as a solvent for an electrolytic solution by using a gel-like nonaqueous electrolytic solution. However, it has been difficult to use lithium ion batteries for vehicles.

そこで、その弱点とするバッテリの性能を有効に利用するために、ホイールインモータに使用されるコイルの発熱を効果的に冷却する構成(特許文献3)、バッテリの完全放電を実行しメモリ効果にする出力電圧低下を回復させる充放電システム(特許文献4)などが考えられていた。
特開2001−148256号公報(第2、3頁、第1図) 特開平09−270271号公報(第2、3頁、第1図) 開2006―246678号公報 特開2008−30559号公報
Therefore, in order to effectively use the performance of the battery as its weak point, a configuration that effectively cools the heat generated by the coil used in the wheel-in motor (Patent Document 3), the battery is completely discharged to achieve a memory effect. The charge / discharge system (patent document 4) etc. which recover the output voltage fall which performs is considered.
JP 2001-148256 A (2nd, 3rd page, FIG. 1) JP 09-270271 A (2nd, 3rd page, FIG. 1) No. 2006-246678 JP 2008-30559 A

本発明の目的は、車両用ハイブリッドシステムに用いる2次電池として、前述の各種の問題を解決されたホイールモータ駆動用バッテリを使用しエンジンの負荷を減らし、バッテリの負荷を増やし、燃費のよいハイブリッドシステムを提供する。   An object of the present invention is to use a wheel motor driving battery in which the above-mentioned various problems are solved as a secondary battery used in a vehicle hybrid system, to reduce the engine load, increase the battery load, and improve the fuel efficiency. Provide a system.

このホイールモータ駆動用バッテリは公害要因である鉛と硫酸を使用せず、鉛電池より高性能(急速充電に対しては立ち上がりが速く急速放電に対しては、その放電時間が長い)であり、高容量(高エネルギー密度の2次電池)の環境保護対応の高容量鉛フリーバッテリとした車両用ハイブリッドシステムを提供する。   This battery for driving the wheel motor does not use lead and sulfuric acid, which are pollution factors, and has higher performance than the lead battery (fast rise for fast charge and fast discharge time for rapid discharge) Provided is a vehicle hybrid system using a high-capacity (secondary battery with high energy density) environment-friendly high-capacity lead-free battery.

前記課題を解決するため、本発明の車両用ハイブリッドシステムは、エンジンで駆動する前輪駆動部と、駆動用バッテリによりホイールモータで駆動する後輪駆動部とを少なくとも設けた車両用ハイブリッドシステムであって、
前記エンジンから伝達される機械的エネルギーを交流に変換する交流発電機と、その発生した交流を直流電力に変換する整流器とからなり、それらをエンジンに接続したオルタネータと、
車両用に用い、オルタネータからの充電のため接続された12v汎用バッテリと、
前記ホイールモータに放電し、後輪を駆動するため前記オルタネータに接続した単位セルバッテリを複数個直列接続して形成した同一電圧、容量の複数n組の第1・・・第nの駆動用バッテリと、
ギアシフトが車両を駆動するドライブモードから、ニュートラルモードに切替ったか、或いはその逆かのいずれかをセンサー信号で中央制御部が受けて、ドライブモードに切替ってと判定しときは、エンジンに駆動信号を送り前輪を駆動し、ニュートラルモードに切替ったと判定したときは、第1・・・第nの駆動用バッテリに接続信号を送りホイールモータを駆動し、すなわち後輪駆動させる切替手段を少なくとも有するコンピュータからなるコントローラと、を備え、
前記コントローラの切替手段に加えて、急傾斜面登坂時、急加速時の一時的にパワーが必要な場合は、エンジンに自動的にその時間のみ駆動信号を送ると共に、その間ホイールモータを駆動せずに、オルタネータから第1・・・第nの駆動用バッテリを充電するための回路接続信号を送り、充電し、
さらに、低速で市街地走行時、接続的に一定高速走行時のパワーが必要でない場合は、第1・・・第nの駆動用バッテリを前記ホイールモータに自動的に接続して後輪駆動させると共に、エンジンにはアイドリング状態を維持させて、そのアイドリング状態で前記オルタネータを駆動させその出力を前記第1・・・第nの駆動用バッテリへ充電させる手段を備えることを特徴とする。
In order to solve the above problems, a vehicle hybrid system of the present invention is a vehicle hybrid system provided with at least a front wheel drive unit driven by an engine and a rear wheel drive unit driven by a wheel motor by a drive battery. ,
An alternator comprising an alternator for converting mechanical energy transmitted from the engine into alternating current, and a rectifier for converting the generated alternating current into direct current power, and connecting them to the engine;
12v general-purpose battery used for vehicles and connected for charging from an alternator;
A plurality of n first to nth drive batteries of the same voltage and capacity formed by connecting a plurality of unit cell batteries connected to the alternator to discharge to the wheel motor and drive the rear wheels in series. When,
When the central control unit receives a sensor signal from the drive mode in which the gear shift drives the vehicle and switches to the neutral mode or vice versa, the drive is driven to the engine. When it is determined that the front wheel has been driven and switched to the neutral mode, a connection signal is sent to the first to nth driving batteries to drive the wheel motor, that is, at least switching means for driving the rear wheels. A controller comprising a computer having,
In addition to the controller switching means, when power is temporarily required when climbing a steep slope or during a sudden acceleration, a drive signal is automatically sent to the engine only during that time, and the wheel motor is not driven during that time. A circuit connection signal for charging the first to nth driving batteries from the alternator, and charging,
In addition, when driving at a low speed in an urban area, when power for constant high speed driving is not necessary, the first to nth driving batteries are automatically connected to the wheel motor to drive the rear wheels. The engine is provided with means for maintaining the idling state, driving the alternator in the idling state, and charging the output to the first to nth driving batteries.

また、前記ホイールモータは中空車軸の空間内に配置され、コイルが巻き付けられた電磁極を有するステータとそのステータに対して回転するロータからなり、前記コントローラを介して第1・・・第nの駆動用バッテリを接続されていることを特徴とする。
また、前述記載の前輪を後輪に替え、後輪を前輪に変えたことを特徴とする。
また、前記複数n組の第1・・・第n駆動用バッテリの各単位セルは、カルシウム、酸化銀、カーボンの所定配合比にバインダーを入れ混合し、ペースト材として塗布、乾燥され形成して陽極側電極と、亜鉛、カーボンの各成分に別々にバインダーを入れ、それぞれ混合して二種類のペースト材を所定面積比に分離して塗布、乾燥され形成した陰極側電極と、前記陽・陰極電極各対向面間に水酸イオンを選択的に通過させるセパレータと、その電極間に配するアルカリ水溶液とからなり、
前記陰極側電極面に亜鉛が含まれる第1の領域と陰極側電極面にカーボンが含まれる第2の領域とが等価的に並列に接続することにより高エネルギー密度の2次電池を形成し、
前記駆動用バッテリは、鉛と硫酸を使用せず、しかも高エネルギー密度の軽容量で急速充放電性能の良い環境保護に対応したことを特徴とする。
また、前記陽極側電極基材に塗布する材料のカルシウムと酸化銀とカーボンの前記配合比は、カルシウム40〜60%、酸化銀20〜30%、カーボン10〜40%の範囲に入ることを特徴とする。
また、前記陰極側電極基材に亜鉛のみの材料とカーボンのみの材料とを分離して塗布する前記面積比は、亜鉛のみの塗布の第1の領域面積の60〜90%、カーボンのみ塗布の第2の領域面積の10〜40%の範囲に入ることを特徴とする。
また、前記陽極側と陰極側との電極基材が、共に、メッシュ状の場合は、高容量とするために、そのメッシュ状電極基材の陽極材料面と陰極材料面のそれぞれの両面を効率よく対向させるように、前記陽極と陰極を交互に複数枚(M)配置した構造であることを特徴とする。
また、前記陽極側と陰極側との電極基材が、共に、金属が蒸着された薄膜フィルム状の場合は、高容量とするために、電極基材は長巻フィルムの構造とし、陽極側と陰極側の電極基材のフィルム形状を同一寸法とし、陽極側電極基材のフィルムには前記混合ペースト材を塗布・乾燥させ、陰極側の電極基材のフィルムには前記2種類のペースト材を前記第1、第2の領域に分離して塗布乾燥させ、その間に長巻の前記セパレータを挟み、所定のピッチ長で長巻フィルムを折り曲げる構造、又は、巻き取る構造であることを特徴とする。
また、前記陰極側電極基材に亜鉛材料とカーボン材料とに分離して所定面積比塗布するに際して、前記電極基材がメッシュ状の場合は、メッシュ状電極基材毎に縦方向又は横方向に所定パターン周期N(整数)で亜鉛材料領域とカーボン材料領域が繰返された分離パターンであることを特徴とする。
また、前記陰極側電極基材に亜鉛材料とカーボン材料とに分離して所定面積比に塗布するに際して、前記電極基材が長巻フィルムの場合は、そのフィルム電極基材に対し長手方向又は幅方向に所定パターン周期N(整数)で亜鉛材料領域とカーボン材料領域が繰返された分離パターンであることを特徴とする。
The wheel motor is disposed in a space of a hollow axle, and includes a stator having an electromagnetic pole around which a coil is wound, and a rotor that rotates with respect to the stator. A drive battery is connected.
Further, the front wheel described above is replaced with a rear wheel, and the rear wheel is changed to a front wheel.
Each unit cell of the plurality of n sets of first to n-th driving batteries is formed by applying a binder into a predetermined blending ratio of calcium, silver oxide, and carbon, and applying and drying as a paste material. An anode side electrode, a cathode side electrode formed by separately adding a binder to each component of zinc and carbon, mixing and separating two types of paste materials in a predetermined area ratio, and drying, and the positive and negative electrodes It consists of a separator that selectively allows hydroxide ions to pass between the opposing surfaces of each electrode, and an alkaline aqueous solution disposed between the electrodes,
A high energy density secondary battery is formed by equivalently connecting a first region containing zinc on the cathode side electrode surface and a second region containing carbon on the cathode side electrode surface,
The drive battery does not use lead and sulfuric acid, and corresponds to environmental protection with high capacity and light capacity and good rapid charge / discharge performance.
The compounding ratio of calcium, silver oxide, and carbon as materials applied to the anode side electrode base material is in the range of 40-60% calcium, 20-30% silver oxide, and 10-40% carbon. And
In addition, the area ratio in which the zinc-only material and the carbon-only material are separately applied to the cathode-side electrode base material is 60 to 90% of the first region area of the zinc-only application, It is in the range of 10 to 40% of the second area area.
Further, in the case where both the anode side and the cathode side electrode base materials are mesh-shaped, in order to increase the capacity, both the anode material surface and the cathode material surface of the mesh-shaped electrode base material are efficiently used. A plurality of (M) anodes and cathodes are alternately arranged so as to be opposed to each other.
Further, in the case where the electrode base on both the anode side and the cathode side is in the form of a thin film on which a metal is deposited, in order to increase the capacity, the electrode base has a long roll film structure, The film shape of the electrode substrate on the cathode side has the same dimensions, and the mixed paste material is applied and dried on the film on the anode side electrode substrate, and the two types of paste materials are applied on the film on the cathode side electrode substrate. The first and second regions are separated and coated and dried, the long-winding separator is sandwiched between them, and a long-winding film is bent at a predetermined pitch length, or a winding structure. .
In addition, when the electrode base material is mesh-shaped when the cathode-side electrode base material is separated into a zinc material and a carbon material and applied in a predetermined area ratio, each mesh-shaped electrode base material is longitudinally or laterally arranged. It is a separation pattern in which a zinc material region and a carbon material region are repeated at a predetermined pattern period N (integer).
In addition, when the electrode base material is a long film when the zinc side material and the carbon material are separated and applied to the cathode side electrode base material in a predetermined area ratio, the longitudinal direction or the width with respect to the film electrode base material It is a separation pattern in which a zinc material region and a carbon material region are repeated in a direction at a predetermined pattern period N (integer).

本発明の車両用ハイブリッドシステムは、以下の効果を奏する。
エンジン駆動で前輪駆動部を動作させるか、或いは、バッテリによりホイールモータで後輪駆動部を動作させるかの切替は、運動者が判断して行うことにより、より効率を向上させることができる。
The vehicle hybrid system of the present invention has the following effects.
Switching between whether the front wheel drive unit is operated by engine driving or the rear wheel drive unit is operated by a battery by a battery is performed by an exerciser's judgment, so that the efficiency can be further improved.

バッテリは鉛電池より高性能、高容量なので、システムとして、従来とは反対にエンジンに対する負荷よりバッテリに対する負荷を大きくする切替手段をコントローラに与えることができるので、その結果、燃費は、市販のハイブリッド車のガソリンエンジンのみの場合の13km/l、ハイブリッドの場合の18km/lに比べて、本システムでは最低70km/lにすることができる。
バッテリは鉛電池を使用しないので、環境保護対応とするハイブリッドシステムとなる。
Since the battery has higher performance and higher capacity than the lead battery, the system can provide the controller with a switching means that makes the load on the battery larger than the load on the engine as opposed to the conventional system. Compared to 13 km / l for a car gasoline engine alone and 18 km / l for a hybrid, this system can achieve a minimum of 70 km / l.
Since the battery does not use a lead battery, it becomes a hybrid system for environmental protection.

バッテリは高容量なので、容積・重量を鉛電池に対して少なくできる。具体的には容積は1/3、重量は1/5とすることができる。
バッテリはメモリ効果がないので、継ぎ足し充電が可能である。走行中バッテリでホイールモータを駆動しながら、エンジンアイドリングでいつでもそのバッテリに充電することができる。
Since the battery has a high capacity, the volume and weight can be reduced compared to the lead battery. Specifically, the volume can be 1/3 and the weight can be 1/5.
Since the battery has no memory effect, it can be recharged. While the wheel motor is driven by the battery while traveling, the battery can be charged at any time by engine idling.

2組以上の駆動バッテリの切替を任意に行い走行中片方ずつエンジンアイドリングによる補充充電することもできる。
1セル当たりの電圧は鉛電池(1セル2.0v)より高く、約2.5vあるため、所定電圧を求める場合のセル数が少なく済み、小型軽量化ができる。
Two or more sets of drive batteries can be arbitrarily switched and one side can be replenished and charged by engine idling one by one during traveling.
Since the voltage per cell is higher than that of a lead battery (1 cell 2.0 v) and is about 2.5 v, the number of cells for obtaining a predetermined voltage can be reduced, and the size and weight can be reduced.

電池内部構造は、シンプルで低重量且つ材料費が安価であり製造コストが低い。外囲器も小重量構造でよく材料費が安価となる。   The battery internal structure is simple, low weight, low material cost, and low manufacturing cost. The envelope also has a small weight structure and the material cost is low.

以下、本発明の車両用ハイブリッドシステムを図に基づいて説明する。
図1には、そのハイブリッドシステム一実施例を示す。
Hereinafter, a vehicle hybrid system of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the hybrid system.

ここで、10はエンジン、20はエンジン10から伝達される機械的回転エネルギーを電気的交流エネルギーに変換する交流発電機21とその発生した交流電力を直流電力に変換する整流器22とからなるオルタネータである。
40はホイールモータを示し、そのホイールモータ40は中空車軸の空間内に配置されてホイールインモータ40を形成する。
Here, 10 is an engine, 20 is an alternator comprising an AC generator 21 that converts mechanical rotational energy transmitted from the engine 10 into electrical AC energy, and a rectifier 22 that converts the generated AC power into DC power. is there.
Reference numeral 40 denotes a wheel motor, and the wheel motor 40 is disposed in the space of the hollow axle to form the wheel-in motor 40.

すなわち、コイルが巻き付けれられた電磁極を有するステータ41と、そのステータ41に対して回転するロータ42からなる。
31、32はホイルーモータ40の駆動用バッテリを示し、図1では2組の駆動用バッテリ31、32で図示されているが、2組より多い複数の組であってもよい。
That is, it includes a stator 41 having an electromagnetic pole around which a coil is wound, and a rotor 42 that rotates with respect to the stator 41.
Reference numerals 31 and 32 denote driving batteries for the wheel drive motor 40, which are illustrated in FIG. 1 as two sets of driving batteries 31 and 32, but may be a plurality of sets greater than two sets.

39は従来からある車両用汎用の12vバッテリを示す。
31、32、39の各バッテリはいずれもオルタネータ20から充電される回路に接続される。尚、この接続のON/OFFは後述するコントローラ50からの信号による。
Reference numeral 39 denotes a conventional general-purpose 12v battery for vehicles.
Each of the batteries 31, 32, and 39 is connected to a circuit charged from the alternator 20. This connection ON / OFF is based on a signal from the controller 50 described later.

ホイールモータ40の駆動用バッテリ31、32は、並列接続されホイールモータ40の入力端子に接続される。尚、この回路の接続のON/OFFはコントローラ50からの信号による。
コントローラ50は、中央制御部51、車両のギアシフトが車両を駆動するドライブモードになっているか、或いはニュートラルモードになっているかについてのギアシフト部からのセンサー信号をI/Fを介して受信する入力端子部52、オルタネータ20とモータ駆動用バッテリ31、32との間の充電回路に対するON/FF信号をI/Fを介して送信する出力端子部53、モータ駆動用バッテリ31、32と、ホイールモータ40との間の放電駆動回路に対するON/OFF信号をI/Fを介して送信する出力端子部54、記憶装置55、表示部56、保守信号入力部57等を少なくとも備えるコンピュータシステムである。(図2参照)
The battery batteries 31 and 32 for driving the wheel motor 40 are connected in parallel and connected to the input terminal of the wheel motor 40. The connection of this circuit is turned on / off by a signal from the controller 50.
The controller 50 has an input terminal for receiving, via the I / F, a central control unit 51 and a sensor signal from the gear shift unit as to whether the gear shift of the vehicle is in a drive mode for driving the vehicle or in a neutral mode. Unit 52, output terminal unit 53 for transmitting an ON / FF signal to the charging circuit between the alternator 20 and the motor drive batteries 31 and 32 via the I / F, the motor drive batteries 31 and 32, and the wheel motor 40 The computer system includes at least an output terminal unit 54 that transmits an ON / OFF signal to the discharge drive circuit between the first and second terminals via an I / F, a storage device 55, a display unit 56, a maintenance signal input unit 57, and the like. (See Figure 2)

そのコントローラ50は以下に示す制御手段60を記憶装置55に記録され、中央制御部51により車両の状態に対応して制御手段60のプログラムが実行される。
コントローラ50の電源が入り、コンピュータが起動すると、中央制御部51は、車両ギアシフト部からのセンサー信号を受信し、ニュートラルモードからドライブモードに切替ったと判定したときは、エンジン10に駆動信号を送り、エンジン前輪駆動状態とする。
The controller 50 records the following control means 60 in the storage device 55, and the central control unit 51 executes the program of the control means 60 in accordance with the state of the vehicle.
When the controller 50 is turned on and the computer is started, the central control unit 51 receives a sensor signal from the vehicle gear shift unit, and sends a drive signal to the engine 10 when it is determined that the neutral mode is switched to the drive mode. The engine front wheel is driven.

センサー信号を受信し、ドライブモードからニュートラルモードに切替ったと判定したときは、第1、第2の駆動用バッテリ31、32に回路接続信号を送りホイールモータ40を駆動させる。すなわち後輪駆動状態とする。
以上の切替手段61がコンピュータにより常時に実行されている。
When the sensor signal is received and it is determined that the drive mode is switched to the neutral mode, a circuit connection signal is sent to the first and second drive batteries 31 and 32 to drive the wheel motor 40. That is, the rear wheel drive state is set.
The above switching means 61 is always executed by the computer.

このコントローラ50の切替手段61に加えて、以下のプログラムが実行される。
急斜面登坂時、追越しなどの急加速時の一時的にパワーが必要な場合は、エンジン10に自動的にコントローラ50から信号を送り、その時間のみ駆動信号を送信し前輪駆動状態とすると共に、その間ホイールモータ40を駆動しないで、オルタネータ20から第1、第2のモータ駆動バッテリ31、32を充電するための回路接続信号を送り充電する一時的加速時手段62を備える。尚、予め定めた時間を経過したとき或は前記切替手段61によりバッテリによるホイールモータ駆動となりこの手段62は終る。
In addition to the switching means 61 of the controller 50, the following program is executed.
When power is required temporarily during sudden acceleration, such as when climbing a steep slope or overtaking, a signal is automatically sent from the controller 50 to the engine 10 and a drive signal is sent only during that time to set the front wheel drive state. Temporary acceleration means 62 is provided for charging by sending a circuit connection signal for charging the first and second motor drive batteries 31 and 32 from the alternator 20 without driving the wheel motor 40. When a predetermined time elapses or the wheel means is driven by the battery by the switching means 61, the means 62 is terminated.

さらに、低速度で市街地走行時、持続的に一定高速走行時で長時間パワーが必要でない場合は第1、第2のモータ駆動用バッテリ31、32を前記ホイールモータ40に自動的に接続して後輪駆動状態とするとともに、エンジン30にはアイドリング状態を維持させて、そのアイドリング状態で前記オルタネータ20を駆動させて、その直流出力を第1、第2モータ駆動用バッテリ31、32へ充電させる長時間一定速度時手段63を備える。尚、この間前記切替手段61により、この手段63は終る。
以上のように切替手段60に加えて、一時的加速時手段61と長時間一定速度時手段62が併用して実行される。
Further, when driving at a low speed in an urban area, or at a constant high speed, and when no power is required for a long time, the first and second motor driving batteries 31, 32 are automatically connected to the wheel motor 40. The engine 30 is set in the rear wheel drive state, and the engine 30 is maintained in the idling state, and the alternator 20 is driven in the idling state to charge the first and second motor driving batteries 31 and 32 with the DC output. Means 63 is provided for a long time at a constant speed. During this time, the switching means 61 terminates the means 63.
As described above, in addition to the switching means 60, the temporary acceleration means 61 and the long time constant speed means 62 are executed in combination.

ホイールモータは中空車軸の空間内に配置されて、ホイールインモータを形成した機構がよい。
コイルが巻き付けられた電磁極を有するステータが車軸に取付けられ、車軸に取付けられたロータとからなり、特許文献3などに改良された機構が公開されている。
The wheel motor is preferably arranged in the space of the hollow axle to form a wheel-in motor.
A stator having an electromagnetic pole around which a coil is wound is attached to an axle and includes a rotor attached to the axle. An improved mechanism is disclosed in Patent Document 3 and the like.

尚、図1においてエンジン駆動は前輪駆動で行いバッテリによるホイールモータ駆動は後輪駆動で行うように図示されているが、エンジン駆動で後輪駆動を行い、バッテリによるホイールモータ駆動は前輪駆動で行うようにしてもよい。
次に、ホイールモータ40を駆動するため放電する駆動用バッテリ31、32について説明する。
In FIG. 1, the engine is driven by front wheel drive and the wheel motor driven by battery is driven by rear wheel drive. However, the rear wheel drive is driven by engine drive, and the wheel motor drive by battery is driven by front wheel drive. You may do it.
Next, the drive batteries 31 and 32 that are discharged to drive the wheel motor 40 will be described.

前述した問題点でも述べたように、車両用ハイブリッドシステムの弱点はバッテリにあった。
すなわち、ハイブリッドシステムはエンジン駆動とバッテリによるホイールモータ駆動の性能が、併合して協調しなければならないのにバッテリの性能が少し低いので、どうしても駆動制御する従来のプログラム手段はエンジン10に対する負荷が大きくなる。よって、このような従来のプログラム手段による車両用ハイブリッドシステムは、燃費を特に良くすることができない。
As described in the above-mentioned problem, the weak point of the hybrid system for vehicles is the battery.
That is, in the hybrid system, the performance of the engine and the wheel motor driven by the battery must be combined and coordinated, but the performance of the battery is a little low. Become. Therefore, such a conventional hybrid system for a vehicle using a program means cannot improve fuel efficiency.

本車両用ハイブリッドシステムは、できるだけエンジン10に対する負荷を、必要最少時間内として、高性能のバッテリ31、32の負荷を大きくする。よって、本発明のプログラム切替手段による車両用ハイブリッドシステムは燃費を従来と比較して大きく良くすることができる。
そこで、その高性能バッテリ31、32について以下に説明する。
This vehicle hybrid system increases the load on the high-performance batteries 31 and 32 by setting the load on the engine 10 within the minimum necessary time as much as possible. Therefore, the vehicle hybrid system using the program switching means of the present invention can greatly improve fuel efficiency compared with the conventional system.
The high performance batteries 31 and 32 will be described below.

図3には高性能バッテリ31、32の単位セルの構造を示す。この実施例の単位セルの構造は電極基板がメッシュ状の場合を示す。
図3はその上部に高性能バッテリ31、32として高容量(密度)鉛フリーバッテリの単位セルの原理的な組立構造図を示す。
FIG. 3 shows the structure of the unit cells of the high performance batteries 31 and 32. The structure of the unit cell of this embodiment shows a case where the electrode substrate is mesh-shaped.
FIG. 3 shows a basic assembly structure diagram of a unit cell of a high capacity (density) lead-free battery as the high performance batteries 31 and 32 at the upper part.

ここでaは陽極端子、6は陰極端子、cは陰極側電極材料、coはその材料を塗布などする電極基材、dは陽極側電極材料、doはその材料の電極基材を示す。
fは陰極電極材料cと陽極電極材料dとの中間部にあり、水酸化イオンを選択的に通過させるセパレータである。eは陽極陰極間に配した電解質溶液であり、ここではアルカリ水溶液を用いる。尚、gはそれらを収容する外囲器を示す。
Here, a is an anode terminal, 6 is a cathode terminal, c is a cathode side electrode material, co is an electrode base material to which the material is applied, d is an anode side electrode material, and do is an electrode base material of the material.
f is a separator in the middle part between the cathode electrode material c and the anode electrode material d and selectively allows hydroxide ions to pass through. e is an electrolyte solution disposed between the anode and the cathode, and an alkaline aqueous solution is used here. In addition, g shows the envelope which accommodates them.

図3(a)は陽極側のメッシュ状の電極基材doに電極材料dを塗布・乾燥する製造の流れ図を示す。
ここで電極基材doはメッシュ状(金属格子状)の場合と金属が蒸着された誘電体フィルム膜状の場合がある。図3、図4はメッシュ状の場合であり、図5、図6はフィルム膜状の電極基材doを示す。
FIG. 3A shows a flow chart of manufacturing in which the electrode material d is applied to the mesh electrode substrate do on the anode side and dried.
Here, the electrode substrate do may have a mesh shape (metal lattice shape) or a dielectric film film on which a metal is deposited. FIGS. 3 and 4 show a mesh-like case, and FIGS. 5 and 6 show a film-film-like electrode substrate do.

図3(a)に戻り、陽極側電極基材doは、白銅板メッシュ或いは白銅格子の構造からなる。このメッシュdoに対して、CaとAgOとカーボンとを混合してさらにバインダを入れた混合ペースト状にして塗布を行う。次に焼き付けて陽極側電極材料が完成する。
ここで、CaAgOカーボンの配合比はそれぞれ40〜60%、20〜30%、10〜40%の範囲に入るようにする。
Returning to FIG. 3A, the anode side electrode base material do has a structure of a white copper plate mesh or a white copper lattice. The mesh do is applied in the form of a mixed paste in which Ca, Ag 2 O, and carbon are mixed and a binder is further added. Next, baking is performed to complete the anode side electrode material.
Here, the compounding ratio of CaAg 2 O carbon is in the range of 40 to 60%, 20 to 30%, and 10 to 40%, respectively.

図3(b)では、陰極側電極基材coは亜鉛板メッシュ或いは亜鉛格子の構造からなる。このメッシュcoに対してZnとカーボンを混合せずに、それぞれにバインダを入れてペースト状にして、分離した領域に塗布し、次に焼き付けて陰極側電極材料が完成する。
図3(b)の実施例では単位電極基材毎に横方向に分離し、上部はZnにバインダを入れて塗布した領域であり、下部はカーボンにバインダを入れて塗布した領域である。
In FIG.3 (b), the cathode side electrode base material co consists of a structure of a zinc plate mesh or a zinc lattice. Without mixing Zn and carbon with this mesh co, a binder is put in each of the mesh co to form a paste, which is applied to the separated region and then baked to complete the cathode-side electrode material.
In the embodiment of FIG. 3B, the unit electrode base material is separated in the lateral direction, the upper part is an area coated with Zn in a binder, and the lower part is an area coated with a binder in carbon.

ここで、Zn領域とカーボン領域の面積比はそれぞれ60〜90%、カーボン10〜40%の範囲に入るようにする。例えばZn領域が60%ならば、カーボン領域は40%、Zn領域が70%ならば、カーボン領域は30%とする。
尚、図3(b)は横方向にパターン周期1回だけでありN=1の場合である。パターン周期をN回繰返してもよい。
Here, the area ratio of the Zn region and the carbon region is set to be in the range of 60 to 90% and carbon of 10 to 40%, respectively. For example, if the Zn region is 60%, the carbon region is 40%, and if the Zn region is 70%, the carbon region is 30%.
FIG. 3B shows a case where the pattern period is only once in the horizontal direction and N = 1. The pattern period may be repeated N times.

図3(c)は縦方向にパターン周期N=2の場合を示した。縦方向分離型である。
図3のようなメッシュ状の電極基材co、doを用いた場合、単位面積当りの容量を増加させるため、電極基材co、do面上に焼き付けられた電極材料の両面が対向するように効率のよい配置をした実施例を図4に示す。
FIG. 3C shows a case where the pattern period N = 2 in the vertical direction. Vertical separation type.
When the mesh-shaped electrode base materials co and do as shown in FIG. 3 are used, in order to increase the capacity per unit area, both surfaces of the electrode material baked on the electrode base materials co and do faces each other. An embodiment having an efficient arrangement is shown in FIG.

図4は電極基材がメッシュ状の場合、その容量を所定量まで増加させるため、複数枚の電極基材co、doを配置した構成例を示す。
すなわち、陰極材料cと陽極材料dはその両面が使用できるので、陰極側と陽極側それぞれ交互に配置して、それぞれの材料面が対向するように構成する。
FIG. 4 shows a configuration example in which a plurality of electrode base materials co and do are arranged in order to increase the capacity to a predetermined amount when the electrode base material has a mesh shape.
That is, since both surfaces of the cathode material c and the anode material d can be used, the cathode material and the anode material are alternately arranged so that the material surfaces face each other.

図4では陰極材料cを3枚陽極材料dを3枚合計M=6枚用いて交互配置を行っている。
以上の配置構成を2.5v1セルとして、その1セルを5個直列にしたものが、DC12v60ah仕様を示してある。尚、図1のモータ駆動用バッテリ31、32は、その1セルを20個直列にしてDC48v60ah仕様とした。
In FIG. 4, three cathode materials c, three anode materials d, and a total of M = 6 sheets are used alternately.
A DC12v60ah specification is shown in which the above arrangement configuration is a 2.5v1 cell, and five cells are connected in series. The motor drive batteries 31 and 32 in FIG. 1 have a DC48v60ah specification in which 20 cells are connected in series.

図5、図6は電極基材co、doが薄膜フィルム状の場合の高容量(密度)鉛フリーバッテリとした構成のバッテリを実施例で示す。
ここで、図5は縦方向分離陰極電極材料であり、図6の横方向分離陰極電極材料である。
FIG. 5 and FIG. 6 show an embodiment of a battery having a high capacity (density) lead-free battery when the electrode base materials co and do are in the form of a thin film.
Here, FIG. 5 shows the longitudinally separated cathode electrode material and the transversely separated cathode electrode material of FIG.

図5(a)には、陰極側電極基材Coが長巻フィルム(或は長尺フィルム)の上面に亜鉛と蒸着した薄膜層が構成されていることを示す。
さらに、その薄膜金属の上面に図に示すようにカーボンのみ含んだペースト材料と亜鉛のみ含んだペースト材料と亜鉛のみ含んでペースト材料とは所定の面積比で交互に塗布されている。(縦方向分離型)
FIG. 5 (a) shows that a cathode-side electrode substrate Co has a thin film layer deposited with zinc on the upper surface of a long roll film (or long film).
Further, as shown in the drawing, a paste material containing only carbon, a paste material containing only zinc, and a paste material containing only zinc are applied alternately at a predetermined area ratio on the upper surface of the thin film metal. (Vertical separation type)

例えばカーボン領域と亜鉛の領域とは、それぞれ40%、60%の面積比などである。
次に、図5(b)には、陽極側電極基材doが長巻フィルム(或は長尺フィルム)の上面に白銅を蒸着した薄膜層が構成されていることを示す。
For example, the carbon region and the zinc region have an area ratio of 40% and 60%, respectively.
Next, FIG. 5B shows that the anode side electrode base material do comprises a thin film layer in which white copper is vapor-deposited on the upper surface of the long roll film (or long film).

さらに、その薄膜金属の上面に図に示すようにCaとAgOとカーボンを含んだ混合ペースト材料が塗布されている。
以上のように、陰極電極材料cは2種類のペーストを所定面積比で分離塗布し、陽極電極材料dは混合したペースト材料を全面に塗布した構成である。
Further, a mixed paste material containing Ca, Ag 2 O and carbon is applied to the upper surface of the thin film metal as shown in the figure.
As described above, the cathode electrode material c has a configuration in which two types of pastes are separately applied at a predetermined area ratio, and the anode electrode material d has a mixed paste material applied to the entire surface.

以上の陰極電極材料cと陽極電極材料dの間に同一寸法の長尺のセパレータfを挟み、図5(c)に示すように所定のピッチ長で折り曲げ、各材料c、dの各面はセパレータを介して対向する。以上のように折り合わせる。
材料c、dの対抗面でない外側は絶縁フィルムであるので折り曲げられ、材料c、dの面が接触しても特性に無関係であり、また、完全に折りたたまれて圧縮され、コンパクトな形状とすることができる。
A long separator f having the same dimensions is sandwiched between the cathode electrode material c and the anode electrode material d, and is bent at a predetermined pitch length as shown in FIG. 5 (c). Opposing through the separator. Fold as above.
The outside of the materials c and d that are not the opposing surfaces is an insulating film, so it is bent, and even if the surfaces of the materials c and d are in contact with each other, it is irrelevant to the characteristics, and is completely folded and compressed to form a compact shape. be able to.

また、図5(c)の折り曲げ構造でなく、図5(d)に示すようにコイル状に巻取り構造でもよい。
この構造は小形電池などに見られるものである。
尚、図5(c)の折り曲げ構造は、その折り曲げピッチ長と、亜鉛及びカーポンのパターンの繰返しがN=1の場合と同一の実験例を示す。
Further, instead of the folding structure of FIG. 5C, a coiled winding structure as shown in FIG. 5D may be used.
This structure is found in small batteries.
Note that the bending structure of FIG. 5C shows the same experimental example as when the bending pitch length and the repetition of the zinc and carpon patterns are N = 1.

必ずしも、ピッチ長と繰返しパターン長を一致させる必要はない。しかし、繰返しパターン長はなるべくピッチ長又はその長さより短く設計することが望ましい。
次に、図6には、図5と同様、電極基材coが薄膜フィルムの場合の高容量(密度)鉛フリーバッテリとした高性能バッテリである。但し、陰極電極材料cが横方向分離型である。
It is not always necessary to match the pitch length with the repeated pattern length. However, it is desirable that the repeated pattern length is designed to be as short as possible or shorter than the pitch length.
Next, FIG. 6 shows a high-performance battery that is a high-capacity (density) lead-free battery when the electrode substrate co is a thin film, as in FIG. However, the cathode electrode material c is a laterally separated type.

図6(a)は長尺フィルムが面上に亜鉛を蒸着した金属層を設け、その面上にさらにカーボンペースト材料と亜鉛ペースト材料を分離した領域にそれぞれ塗布した状態を示す。但し、その分離領域は、横方向分離型の場合である。また、そのパターン周期がN=1の場合である。
図6(b)には、そのパターン周期がN=3の場合である。
FIG. 6A shows a state in which a long film is provided with a metal layer on which zinc is vapor-deposited on a surface, and a carbon paste material and a zinc paste material are further coated on the surface. However, the separation region is a case of a lateral separation type. The pattern period is N = 1.
FIG. 6B shows a case where the pattern period is N = 3.

いずれにしても、(a)(b)は長手方向に一定の幅で連続して2種類のペースト材料が塗布されているので横方向分離型は製造工程が容易になる。
以上のように陰極電極材料Cが2種類のペースト材を分離して塗布し乾燥させて製造した分離型の特徴とする高容量(密度)鉛フリーバッテリとした高性能バッテリの動作は以下のようになる。
In any case, in (a) and (b), two types of paste materials are continuously applied with a constant width in the longitudinal direction, so that the lateral separation type facilitates the manufacturing process.
As described above, the operation of the high-performance battery as a high-capacity (density) lead-free battery, which is characterized by the separation type, in which the cathode electrode material C is manufactured by separating and applying two types of paste materials and drying them, is as follows. become.

陰極電極材料Cが2種類のペースト材で分離している場合、それらペースト材の面とセパレータfを介して対向して、陽極電極材料d面とから構成される2つの異なる領域が並列に接続している2個の2次電池と考えることができる。
陰極面のペースト材に亜鉛が含まれている第1の領域内では、従来ある銀亜鉛電池として動作する。
When the cathode electrode material C is separated by two types of paste materials, two different regions composed of the anode electrode material d surface are connected in parallel so as to face each other through the separator f. The two secondary batteries can be considered.
In the first region where the paste material on the cathode surface contains zinc, it operates as a conventional silver-zinc battery.

すなわち、電極の反応式は以下のようになって負極から電子2eが正極へ流れる。
正極 AgO+HO+2e→ 2Ag+2OH
負極 Zn+2OH→ ZnO+HO+2e
That is, the reaction formula of the electrode is as follows, and the electrons 2e flow from the negative electrode to the positive electrode.
Positive electrode Ag 2 O + H 2 O + 2e → 2Ag + 2OH
Negative electrode Zn + 2OH → ZnO + H 2 O + 2e

ここで、正極で生成された水酸化イオン2OHはセパレータを通り負極へ移動する。
一方、陰極面のペースト材にカーボンが含まれる第2の領域内では以下のようにカルシウムイオンCaが反応する。
Here, the hydroxide ion 2OH produced at the positive electrode moves to the negative electrode through the separator.
On the other hand, in the second region where carbon is contained in the paste material on the cathode surface, calcium ions Ca + react as follows.

充電時にはCaが陽極電極材料d面から放電され、負極電極材料cのカーボンに吸着される。
又、放電時には、負極電極材料cに吸着されたカルシウムイオンCaがカーボンより離脱され陽極電極材料dに戻る。
カルシウムイオンCaは、イオン半径が大きいので、充電時にそのイオンを格納する負極電極材が性能に大きく依存する。よって負極電極材にカーボンを分離した第2の領域を設けることにより、そのカルシウムイオンCaを多く吸着させることができる。
At the time of charging, Ca + is discharged from the surface of the anode electrode material d and is adsorbed by the carbon of the anode electrode material c.
At the time of discharge, calcium ions Ca adsorbed on the negative electrode material c are separated from the carbon and returned to the anode electrode material d.
Since calcium ions Ca + have a large ionic radius, the negative electrode material that stores the ions during charging largely depends on the performance. Therefore, by providing the second region in which the carbon is separated in the negative electrode material, a large amount of the calcium ions Ca + can be adsorbed.

また、カルシウムイオンCaは2価の陽イオンであるので、第2の領域内における電池は高電圧(1セル当たり1.8V〜3.0V):高容量とエネルギー密度が高い。
以上のように第1の領域と第2の領域に分離することにより、それぞれエネルギー密度が高い電池となり鉛電池に比較しても分離型鉛フリーバッテリはそのエネルギー密度は数倍となる。よって、小型・軽量化が実現できる。
Further, since the calcium ion Ca + is a divalent cation, the battery in the second region has a high voltage (1.8 V to 3.0 V per cell): high capacity and high energy density.
By separating into the first region and the second region as described above, the battery has a high energy density, and the energy density of the separated lead-free battery is several times higher than that of the lead battery. Therefore, reduction in size and weight can be realized.

次に、鉛フリーバッテリにおいて、特に陰極電極材料cに、亜鉛とカーボンをそれぞれ別々にバインダを入れて混合し、亜鉛のみのペースト材とカーボンのみのペースト材を作り図3〜図6に示すように分離して塗布・乾燥して電極材料cを製造したときは、分離しない場合に対してどのように性能が向上するかの実施例を図7、図8に示す。
図7は充放電特性比較図であり、従来の鉛電池及び陰極分離型でない鉛フリーバッテリに対して、本発明の陰極分離型の高エネルギー密度鉛フリーバッテリの実測値と比較してある。いずれの曲線も40Ah容量の場合で比較している。
Next, in a lead-free battery, zinc and carbon are separately mixed and mixed with the cathode electrode material c, respectively, to produce a zinc-only paste material and a carbon-only paste material, as shown in FIGS. FIG. 7 and FIG. 8 show examples of how the performance is improved when the electrode material c is produced by separating and coating and drying.
FIG. 7 is a charge / discharge characteristic comparison diagram, which compares the conventional lead battery and a non-cathode-separated lead-free battery with the measured values of the cathode-separated high-energy density lead-free battery of the present invention. Both curves are compared in the case of 40 Ah capacity.

(a)は充電特性を比較した図であり、高容量タイプは、陰極分離型の鉛フリーバッテリを示し、非分離型は陰極分離型でない(亜鉛とカーボンを混合したペースト)鉛フリーバッテリを示す。いずれも40Ah容量とし10.8Vでスタートして12.5Vになるまでの時間の差を示す。
分離型の高容量密度鉛フリーバッテリ(高容量タイプ)は他の非分離型、鉛電池比較して非常に充電時間が短い。
(A) is a diagram comparing the charging characteristics, the high capacity type indicates a cathode-separated lead-free battery, and the non-separable type indicates a cathode-free battery (a paste in which zinc and carbon are mixed). . In each case, the capacity is 40 Ah and the time difference from 10.8V to 12.5V is shown.
The separation type high capacity density lead-free battery (high capacity type) has a very short charging time compared to other non-separation type lead batteries.

(b)は放電特性を比較した図であり、高容量タイプは陰極分離型を示す。いずれも12.5Vから10Aの定電流放電により終始電圧10.8Vになる時間を、それぞれ示している。陰極分離型は7.2H、分離型でない鉛フリーは3.5H、鉛電池は2.2Hであり、陰極分離型のフリーバッテリは、放電特性も他より大きいことを示す。
以上の充放電特性は車両用ハイブリッドシステムで2組に分けて充放電を交互に行ないながら走行する場合は大いに有利であることはいうまでもない。
(B) is the figure which compared the discharge characteristic, and a high capacity | capacitance type shows a cathode separation type. In each case, the time required for the constant voltage discharge from 12.5 V to 10 A to be 10.8 V throughout is shown. The cathode separation type is 7.2H, the non-separation type lead-free is 3.5H, the lead battery is 2.2H, and the cathode separation type free battery shows that the discharge characteristics are also larger than others.
Needless to say, the above charge / discharge characteristics are greatly advantageous when the vehicle hybrid system is divided into two groups and is charged and discharged alternately.

図8は陰極電極材料分離型の鉛フリーバッテリ(高容量)が分離型でない鉛フリーバッテリ(鉛フリー)及び鉛電池、A、Bに対して如何に容量が大きくなるかを示す表である。
陰極分離型(高容量)は分離しない場合に比較して約2倍程度増加することが分かる。
FIG. 8 is a table showing how the capacity of the cathode electrode material separation type lead-free battery (high capacity) increases with respect to the lead-free battery (lead-free) and lead batteries A and B which are not separation type.
It can be seen that the cathode separation type (high capacity) increases about twice as compared with the case where no separation is performed.

また、陰極分離しない場合でも、同程度の容積の鉛電池と比較して高容量の高エネルギー密度を示していることが分かる。
尚、図3、図5、図6で単位長あたりのパターン周期Nは大になる程非分離型の鉛フリーバッテリの特性に近づくので、パターン周期Nを余り大きくするのは意味がない。
Moreover, even when not carrying out cathode separation, it turns out that the high energy density of a high capacity | capacitance is shown compared with the lead battery of the comparable volume.
3, 5, and 6, the pattern period N per unit length becomes closer to the characteristics of the non-separable lead-free battery, so it is meaningless to make the pattern period N too large.

車両用ハイブリッドシステムの構成図Configuration diagram of a hybrid system for vehicles コントローラ50のコンピュータシステムの構成図Configuration diagram of computer system of controller 50 高性能バッテリの単位セル構造図(メッシュ状)Unit cell structure diagram of high performance battery (mesh) 高性能バッテリの直列接続構造図(メッシュ状)High-performance battery series connection structure (mesh) 高性能バッテリ(フィルム状・縦方向分離)High-performance battery (film-like / vertical separation) 高性能バッテリ(フィルム状・横方向分離High-performance battery (film-like / lateral separation) 高容量(密度)2次電池の充放電特性比較図Comparison of charge / discharge characteristics of high capacity (density) secondary battery 陰極材料分離型により容量の増大を示す表Table showing the increase in capacity by the cathode material separation type

符号の説明Explanation of symbols

10 エンジン(前輪駆動部)
20 オルタネータ
21 交流発電機
22 整流器
30、31、32、・・・ モータ駆動用バッテリ、高容量(密度)鉛フリーバッテリ
39 車両用汎用12vバッテリ
40 ホイールモータ(後輪駆動部)
41 ステータ
42 ロータ
50 コントローラ
51 中央制御部(CPU)
52 入力端子部 53、54 出力端子部
60 制御手段
61 切替手段
10 Engine (front wheel drive unit)
DESCRIPTION OF SYMBOLS 20 Alternator 21 Alternator 22 Rectifier 30, 31, 32, ... Motor drive battery, high capacity (density) lead-free battery 39 General-purpose 12v battery for vehicle 40 Wheel motor (rear wheel drive unit)
41 Stator 42 Rotor 50 Controller 51 Central Control Unit (CPU)
52 Input terminal portion 53, 54 Output terminal portion 60 Control means
61 Switching means

Claims (10)

エンジンで駆動する前輪駆動部と、駆動用バッテリによりホイールモータで駆動する後輪駆動部とを少なくとも設けた車両用ハイブリッドシステムであって、
前記エンジンから伝達される機械的エネルギーを交流に変換する交流発電機と、その発生した交流を直流電力に変換する整流器とからなり、それらをエンジンに接続したオルタネータと、
車両用に用い、オルタネータからの充電のため接続された12v汎用バッテリと、
前記ホイールモータに放電し、後輪を駆動するため前記オルタネータに接続した単位セルバッテリを複数個直列接続して形成した同一電圧、容量の複数n組の第1・・・第nの駆動用バッテリと、
ギアシフトが車両を駆動するドライブモードから、ニュートラルモードに切替ったか、或いはその逆かのいずれかをセンサー信号で中央制御部が受けて、ドライブモードに切替ってと判定しときは、エンジンに駆動信号を送り前輪を駆動し、ニュートラルモードに切替ったと判定したときは、第1・・・第nの駆動用バッテリに接続信号を送りホイールモータを駆動し、すなわち後輪駆動させる切替手段を少なくとも有するコンピュータからなるコントローラと、を備え、
前記コントローラの切替手段に加えて、急傾斜面登坂時、急加速時の一時的にパワーが必要な場合は、エンジンに自動的にその時間のみ駆動信号を送ると共に、その間ホイールモータを駆動せずに、オルタネータから第1・・・第nの駆動用バッテリを充電するための回路接続信号を送り、充電し、
さらに、低速で市街地走行時、接続的に一定高速走行時のパワーが必要でない場合は、第1・・・第nの駆動用バッテリを前記ホイールモータに自動的に接続して後輪駆動させると共に、エンジンにはアイドリング状態を維持させて、そのアイドリング状態で前記オルタネータを駆動させその出力を前記第1・・・第nの駆動用バッテリへ充電させる手段を備えることを特徴とする車両用ハイブリッドシステム。
A vehicle hybrid system provided with at least a front wheel drive unit driven by an engine and a rear wheel drive unit driven by a wheel motor by a drive battery,
An alternator comprising an alternator for converting mechanical energy transmitted from the engine into alternating current, and a rectifier for converting the generated alternating current into direct current power, and connecting them to the engine;
12v general-purpose battery used for vehicles and connected for charging from an alternator;
A plurality of n first to nth drive batteries of the same voltage and capacity formed by connecting a plurality of unit cell batteries connected to the alternator to discharge to the wheel motor and drive the rear wheels in series. When,
When the central control unit receives a sensor signal from the drive mode in which the gear shift drives the vehicle and switches to the neutral mode or vice versa, the drive is driven to the engine. When it is determined that the front wheel has been driven and switched to the neutral mode, a connection signal is sent to the first to nth driving batteries to drive the wheel motor, that is, at least switching means for driving the rear wheels. A controller comprising a computer having,
In addition to the controller switching means, when power is temporarily required when climbing a steep slope or during a sudden acceleration, a drive signal is automatically sent to the engine only during that time, and the wheel motor is not driven during that time. A circuit connection signal for charging the first to nth driving batteries from the alternator, and charging,
In addition, when driving at a low speed in an urban area, when power for constant high speed driving is not necessary, the first to nth driving batteries are automatically connected to the wheel motor to drive the rear wheels. The vehicle hybrid system includes means for maintaining the engine in an idling state, driving the alternator in the idling state, and charging the output to the first to n-th driving batteries. .
前記ホイールモータは中空車軸の空間内に配置され、コイルが巻き付けられた電磁極を有するステータとそのステータに対して回転するロータからなり、前記コントローラを介して第1・・・第nの駆動用バッテリを接続されていることを特徴とする請求項1記載の車両用ハイブリッドシステム。   The wheel motor is disposed in a space of a hollow axle, and includes a stator having an electromagnetic pole wound with a coil, and a rotor that rotates with respect to the stator. The hybrid system for a vehicle according to claim 1, wherein a battery is connected. 請求項1記載の前輪を後輪に替え、後輪を前輪に変えたことを特徴とする車両用ハイブリッドシステム。   A hybrid system for a vehicle, wherein the front wheel according to claim 1 is replaced with a rear wheel, and the rear wheel is replaced with a front wheel. 前記複数n組の第1・・・第n駆動用バッテリの各単位セルは、カルシウム、酸化銀、カーボンの所定配合比にバインダを入れ混合し、ペースト材として塗布、乾燥され形成して陽極側電極と、亜鉛、カーボンの各成分に別々にバインダを入れ、それぞれ混合して二種類のペースト材を所定面積比に分離して塗布、乾燥され形成した陰極側電極と、前記陽・陰極電極各対向面間に水酸イオンを選択的に通過させるセパレータと、その電極間に配するアルカリ水溶液とからなり、
前記陰極側電極面に亜鉛が含まれる第1の領域と陰極側電極面にカーボンが含まれる第2の領域とが等価的に並列に接続することにより高エネルギー密度の2次電池を形成し、
前記駆動用バッテリは、鉛と硫酸を使用せず、しかも高エネルギー密度の軽容量で急速充放電性能の良い環境保護に対応したことを特徴とする請求項1又は3記載の車両用ハイブリッドシステム。
Each unit cell of the plurality of n sets of first to n-th driving batteries is formed by applying a binder to a predetermined blending ratio of calcium, silver oxide, and carbon, and applying and drying as a paste material. A cathode side electrode formed by separately adding a binder to each component of the electrode, zinc and carbon, mixing and separating the two types of paste materials in a predetermined area ratio, and drying, and each of the positive and cathode electrodes It consists of a separator that selectively allows hydroxide ions to pass between opposing surfaces, and an alkaline aqueous solution disposed between the electrodes,
A high energy density secondary battery is formed by equivalently connecting a first region containing zinc on the cathode side electrode surface and a second region containing carbon on the cathode side electrode surface,
4. The vehicle hybrid system according to claim 1 or 3, wherein the driving battery does not use lead and sulfuric acid, and corresponds to environmental protection with high energy density, light capacity and good rapid charge / discharge performance.
前記陽極側電極基材に塗布する材料のカルシウムと酸化銀とカーボンの前記配合比は、カルシウム40〜60%、酸化銀20〜30%、カーボン10〜40%の範囲に入ることを特徴とする請求項4記載の車両用ハイブリッドシステム。   The compounding ratio of calcium, silver oxide, and carbon as a material applied to the anode side electrode base material is in the range of 40-60% calcium, 20-30% silver oxide, and 10-40% carbon. The vehicle hybrid system according to claim 4. 前記陰極側電極基材に亜鉛のみの材料とカーボンのみの材料とを分離して塗布する前記面積比は、亜鉛のみの塗布の第1の領域面積の60〜90%、カーボンのみ塗布の第2の領域面積の10〜40%の範囲に入ることを特徴とする請求項4又は5記載の車両用ハイブリッドシステム。   The area ratio in which the zinc-only material and the carbon-only material are separately applied to the cathode-side electrode base material is 60 to 90% of the first area area of the zinc-only application, and the second area of the carbon-only application. 6. The vehicle hybrid system according to claim 4, wherein the vehicle hybrid system falls within a range of 10 to 40% of the area of the vehicle. 前記陽極側と陰極側との電極基材が、共に、メッシュ状の場合は、高容量とするために、そのメッシュ状電極基材の陽極材料面と陰極材料面のそれぞれの両面を効率よく対向させるように、前記陽極と陰極を交互に複数枚(M)配置した構造であることを特徴とする請求項4又は6記載の車両用ハイブリッドシステム。   When both the anode side and cathode side electrode base materials are mesh-shaped, in order to increase the capacity, the anode material surface and the cathode material surface of the mesh electrode base material are efficiently opposed to each other. The vehicle hybrid system according to claim 4 or 6, wherein a plurality of (M) anodes and cathodes are alternately arranged. 前記陽極側と陰極側との電極基材が、共に、金属が蒸着された薄膜フィルム状の場合は、高容量とするために、電極基材は長巻フィルムの構造とし、陽極側と陰極側の電極基材のフィルム形状を同一寸法とし、陽極側電極基材のフィルムには前記混合ペースト材を塗布・乾燥させ、陰極側の電極基材のフィルムには前記2種類のペースト材を前記第1、第2の領域に分離して塗布乾燥させ、その間に長巻の前記セパレータを挟み、所定のピッチ長で長巻フィルムを折り曲げる構造、又は、巻き取る構造であることを特徴とする請求項4又は6記載の車両用ハイブリッドシステム。   In the case where the electrode base on the anode side and the cathode side are both in the form of a thin film film on which a metal is deposited, the electrode base has a long roll film structure in order to increase the capacity, and the anode side and the cathode side The electrode substrate film has the same dimensions, the mixed paste material is applied to the anode side electrode substrate film and dried, and the two types of paste materials are applied to the cathode side electrode substrate film. A structure in which a long-winding film is folded at a predetermined pitch length, or a structure in which a long-winding separator is sandwiched between the first and second regions, coated and dried, and wound up. The hybrid system for vehicles according to 4 or 6. 前記陰極側電極基材に亜鉛材料とカーボン材料とに分離して所定面積比塗布するに際して、前記電極基材がメッシュ状の場合は、メッシュ状電極基材毎に縦方向又は横方向に所定パターン周期N(整数)で亜鉛材料領域とカーボン材料領域が繰返された分離パターンであることを特徴とする請求項4又は7記載の車両用ハイブリッドシステム。   When the electrode base material is mesh-like when the cathode-side electrode base material is separated into a zinc material and a carbon material and applied in a predetermined area ratio, a predetermined pattern is formed in the vertical direction or the horizontal direction for each mesh electrode base material. The hybrid system for a vehicle according to claim 4 or 7, wherein the hybrid system is a separation pattern in which a zinc material region and a carbon material region are repeated at a cycle N (integer). 前記陰極側電極基材に亜鉛材料とカーボン材料とに分離して所定面積比に塗布するに際して、前記電極基材が長巻フィルムの場合は、そのフィルム電極基材に対し長手方向又は幅方向に所定パターン周期N(整数)で亜鉛材料領域とカーボン材料領域が繰返された分離パターンであることを特徴とする請求項4又は8記載の車両用ハイブリッドシステム。
When the electrode base material is a long roll film when it is applied to the cathode side electrode base material in a predetermined area ratio by separating it into a zinc material and a carbon material, the longitudinal direction or the width direction with respect to the film electrode base material 9. The vehicle hybrid system according to claim 4 or 8, wherein the hybrid system is a separation pattern in which a zinc material region and a carbon material region are repeated at a predetermined pattern period N (integer).
JP2008076779A 2008-03-24 2008-03-24 Hybrid system for vehicles Expired - Fee Related JP5216953B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008076779A JP5216953B2 (en) 2008-03-24 2008-03-24 Hybrid system for vehicles
PCT/JP2009/055241 WO2009119397A1 (en) 2008-03-24 2009-03-18 Hybrid system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076779A JP5216953B2 (en) 2008-03-24 2008-03-24 Hybrid system for vehicles

Publications (2)

Publication Number Publication Date
JP2009227171A true JP2009227171A (en) 2009-10-08
JP5216953B2 JP5216953B2 (en) 2013-06-19

Family

ID=41113594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076779A Expired - Fee Related JP5216953B2 (en) 2008-03-24 2008-03-24 Hybrid system for vehicles

Country Status (2)

Country Link
JP (1) JP5216953B2 (en)
WO (1) WO2009119397A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895176B2 (en) 2012-04-30 2014-11-25 Samsung Sdi Co., Ltd. Lithium rechargeable battery module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216953B2 (en) * 2008-03-24 2013-06-19 幸信 森 Hybrid system for vehicles
FR3040158B1 (en) * 2015-08-17 2017-09-15 Peugeot Citroen Automobiles Sa METHOD FOR DISTRIBUTING A TORQUE ASSISTANCE SET FOR A THERMAL DEPOLLUTION FUNCTION FOR A HYBRID VEHICLE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203428A (en) * 1987-02-18 1988-08-23 Aisin Warner Ltd Four-wheel-drive vehicle with electric motor
JPH1075505A (en) * 1996-08-29 1998-03-17 Honda Motor Co Ltd Auxiliary driving force controller of vehicle
JP2004112851A (en) * 2002-09-13 2004-04-08 Toyota Motor Corp Hybrid vehicle
JP2004253159A (en) * 2003-02-18 2004-09-09 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2007074703A1 (en) * 2005-12-28 2007-07-05 Yukinobu Mori Lead-free battery and vehicle system using the same
WO2009119397A1 (en) * 2008-03-24 2009-10-01 Mori Yukinobu Hybrid system for vehicles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173436B2 (en) * 1997-09-22 2001-06-04 三菱自動車工業株式会社 Hybrid electric vehicle
JP3817516B2 (en) * 2002-12-26 2006-09-06 本田技研工業株式会社 Drive control apparatus for hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203428A (en) * 1987-02-18 1988-08-23 Aisin Warner Ltd Four-wheel-drive vehicle with electric motor
JPH1075505A (en) * 1996-08-29 1998-03-17 Honda Motor Co Ltd Auxiliary driving force controller of vehicle
JP2004112851A (en) * 2002-09-13 2004-04-08 Toyota Motor Corp Hybrid vehicle
JP2004253159A (en) * 2003-02-18 2004-09-09 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2007074703A1 (en) * 2005-12-28 2007-07-05 Yukinobu Mori Lead-free battery and vehicle system using the same
WO2009119397A1 (en) * 2008-03-24 2009-10-01 Mori Yukinobu Hybrid system for vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895176B2 (en) 2012-04-30 2014-11-25 Samsung Sdi Co., Ltd. Lithium rechargeable battery module

Also Published As

Publication number Publication date
JP5216953B2 (en) 2013-06-19
WO2009119397A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
Sharma et al. Storage technologies for electric vehicles
JP4100341B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery using the same
JP5822089B2 (en) Sealed lithium secondary battery
JP2019079817A (en) Electronic device
KR101724720B1 (en) Lithium ion air battery
EP3635805B1 (en) Lead-acid battery
WO2011108175A1 (en) Lead storage battery
JP2016085965A (en) Electrode for storage battery and manufacturing method thereof, storage battery, and electronic device
JP2010129332A (en) Nonaqueous electrolyte secondary battery
JP5326679B2 (en) Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle
JP5910730B2 (en) Active material, electrode using the same, and lithium ion secondary battery
CA2604457C (en) Lead-free battery and vehicle system using lead-free battery
JP2005129437A (en) Electrode structure for nonaqueous electrolyte secondary battery and its manufacturing method, as well as nonaqueous electrolyte secondary battery equipped with electrode structure and its manufacturing method
JP5216953B2 (en) Hybrid system for vehicles
JP5835617B2 (en) Sealed lithium secondary battery
JP2008243489A (en) Lead acid storage battery
JP6618183B2 (en) Secondary battery, charging device and discharging device
WO2014087895A1 (en) Accumulation device, hybrid vehicle, and electric vehicle
JP2012028366A (en) Power storage device
JP2011142040A (en) Solid-state battery module
CN103035938A (en) Secondary battery
Loupe et al. Electrochemical energy storage: Current and emerging technologies
WO2013179807A1 (en) Metal-air secondary battery
JP2008123916A (en) Fuel cell power generation system
JP2000040499A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5216953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees