JP2009225504A - Manufacturing method of divided stator core - Google Patents

Manufacturing method of divided stator core Download PDF

Info

Publication number
JP2009225504A
JP2009225504A JP2008064596A JP2008064596A JP2009225504A JP 2009225504 A JP2009225504 A JP 2009225504A JP 2008064596 A JP2008064596 A JP 2008064596A JP 2008064596 A JP2008064596 A JP 2008064596A JP 2009225504 A JP2009225504 A JP 2009225504A
Authority
JP
Japan
Prior art keywords
core
cylindrical body
core body
manufacturing
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008064596A
Other languages
Japanese (ja)
Other versions
JP5109737B2 (en
Inventor
Motoki Hiraoka
基記 平岡
Takasuke Kaneda
敬右 金田
Toshimitsu Takahashi
利光 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008064596A priority Critical patent/JP5109737B2/en
Publication of JP2009225504A publication Critical patent/JP2009225504A/en
Application granted granted Critical
Publication of JP5109737B2 publication Critical patent/JP5109737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a divided stator core which is suppressed in the deterioration of its magnetic characteristic caused by a pressing force acting at shrink-fit processing without causing an increase of manufacturing cost. <P>SOLUTION: The manufacturing method of the divided stator core is composed of: a first process for thermally expanding a cylindrical body 20 by preparing an annular sidewall 21 having an internal hollow diameter having a magnitude larger than a diameter of a core body 100 composed of divided cores 10 and having an internal hollow height lower than the height of the core body 100, flanges 22 protruding toward the inside of the radial direction at both ends of the annular sidewall 21, and the cylindrical body 20; a second process for forming the circular ring-shaped core body 100 in the cylindrical body 20 while being thermally expanded; and a third process for fastening the core body 100 by imparting a pressing force in the height direction to the core body 100 by using the flanges 22 by shrinking the cylindrical body 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電動機のステータコアの製造方法にかかり、特に、分割コアをその外周から締結することで形成される分割ステータコアの製造方法に関する。   The present invention relates to a method for manufacturing a stator core of an electric motor, and more particularly to a method for manufacturing a split stator core formed by fastening a split core from its outer periphery.

電動機を構成するステータコアは、円環状のヨークからその径方向内側に突出する複数のティースを備えた形状で電磁鋼板等を打ち抜き加工し、かかる鋼板を所定高さに積層させることによって製造されるのが一般的である。かかる製造方法による場合、略円環状に打ち抜かれた後の鋼板を廃棄処分することなく、複数のティースの先端にて画成される略円環状の鋼板部分がロータ製造用に用いられている。   A stator core constituting an electric motor is manufactured by punching a magnetic steel sheet or the like in a shape having a plurality of teeth protruding radially inward from an annular yoke, and laminating such steel sheets to a predetermined height. Is common. In the case of such a manufacturing method, a substantially annular steel plate portion defined by the tips of a plurality of teeth is used for rotor manufacture without discarding the steel plate after being punched into a substantially annular shape.

ところで、ステータに比してロータにおける磁束密度の変動は極めて少ないことから、ロータ製造に使用される素材鋼板は、必ずしもステータ製造に使用される素材鋼板に要求される磁気特性を備えている必要はない。しかし、既述するステータコアの製造方法によれば、材料の廃棄処分量の低減を図る観点から、ステータと同様の比較的高価な電磁鋼板等の材料を使用せざるを得ず、結果として電動機の製造コストを不要に高騰させることとなっていた。   By the way, since the fluctuation of the magnetic flux density in the rotor is extremely small compared to the stator, the material steel plate used for rotor manufacture does not necessarily have to have the magnetic characteristics required for the material steel plate used for stator manufacture. Absent. However, according to the stator core manufacturing method described above, from the viewpoint of reducing the amount of material disposal, it is necessary to use a relatively expensive material such as an electromagnetic steel plate similar to the stator, and as a result, Manufacturing costs were unnecessarily increased.

上記する従来の課題に対し、鋼板の廃棄処分量を低減するとともにステータとロータを別素材の鋼板から効率的に製造する技術として、複数の分割ステータを周方向に繋ぎ合わせてステータコアを形成する製造技術が開発され、一般に知られるところとなっている。この製造方法によれば、例えば電磁鋼板から分割ステータ用の分割ピースを可及的に隙間なく打ち抜き加工できるため、鋼板の廃棄処分を回避するために打ち抜き加工後に残った鋼板部分をロータ用に使用する必要はなくなる。すなわち、電磁鋼板等の比較的高価な鋼板はステータ製造用に適用され、ロータ製造用の鋼板としては電磁鋼板よりも安価な軟磁性材からなる鋼板などを使用できることとなる。   As a technology to reduce the amount of steel sheet disposal and efficiently manufacture the stator and rotor from different steel sheets, manufacturing a stator core by joining a plurality of divided stators in the circumferential direction as a technology to reduce the amount of steel sheet disposal. Technology has been developed and is generally known. According to this manufacturing method, for example, a split piece for a split stator can be punched out as much as possible from an electromagnetic steel plate, so that the steel plate portion remaining after punching is used for the rotor in order to avoid disposal of the steel plate. There is no need to do it. That is, a relatively expensive steel plate such as an electromagnetic steel plate is applied for stator production, and a steel plate made of a soft magnetic material that is cheaper than the electromagnetic steel plate can be used as a steel plate for rotor production.

また、分割コアからステータを製造する他のメリットとして、コイル成形までをも含めたステータ製造全体の歩留まりの向上を挙げることができる。これは、分割コア用ピースを積層して分割コアを製造し、各分割コアのティースまわりにコイルを形成した後に分割コアを周方向に繋いでステータを製造することができるため、既に円環状に製造されたステータコアの比較的狭い隙間(スロット)にコイルを後加工する際の製造手間を省くことができ、製造時間を格段に向上できるというものである。   Another advantage of manufacturing the stator from the split core is an improvement in the yield of the entire stator manufacturing including the coil forming. This is because the divided core pieces are laminated to produce the divided core, and the stator is produced by connecting the divided cores in the circumferential direction after forming the coil around the teeth of each divided core. It is possible to save manufacturing labor when post-processing the coil in a relatively narrow gap (slot) of the manufactured stator core, and to significantly improve the manufacturing time.

ところで、分割コアからステータコアを形成する方法においては、分割コア同士の強固な接続が必須となる。かかる分割コア同士の接続ないしは拘束のために、従来は、円筒体(ケース)の内部に円環状に組み付けられたステータコアが焼き嵌め処理等されることにより、ステータが製造されている。この焼き嵌めは、分割コアの外周からその径方向に圧縮力を作用させることでおこなわれることから、分割コア(を構成する鋼板)に面内方向の圧縮応力が作用し、鋼板内での磁区の向きが乱されたり、磁壁の動きが妨げられることとなり、このことは鋼板内における磁気流れを阻害する要因となっていた。したがって、この焼き嵌め時に作用する応力に起因する鉄損増加を如何に抑止できるかが大きな課題となっていた。   By the way, in the method of forming the stator core from the split cores, it is essential to firmly connect the split cores. In order to connect or constrain such divided cores, a stator is conventionally manufactured by shrink fitting a stator core assembled in an annular shape inside a cylindrical body (case). This shrink fitting is performed by applying a compressive force in the radial direction from the outer periphery of the split core, so that the compressive stress in the in-plane direction acts on the split core (the steel plate constituting the split core), and the magnetic domain in the steel plate. The direction of the magnetic field is disturbed and the movement of the domain wall is hindered, which has been a factor that hinders the magnetic flow in the steel plate. Therefore, how to suppress an increase in iron loss due to the stress acting at the time of shrink fitting has been a major issue.

上記する課題に対し、コア材に応力緩和用の貫通孔を設けておく磁石モータが特許文献1に開示されている。このモータによれば、焼き嵌め時の応力を効果的に緩和できるものの、コア材に貫通孔を設けることでステータコア等の強度低下や磁気特性が阻害されること、さらには、磁路に磁気抵抗の大きな空隙を設けることで電動機の回転性能が低下することは理解に易い。   To solve the above-described problem, Patent Document 1 discloses a magnet motor in which a core material is provided with a through hole for stress relaxation. According to this motor, although stress at the time of shrink fitting can be effectively relieved, by providing a through-hole in the core material, the strength reduction and magnetic characteristics of the stator core and the like are hindered, and further, the magnetic resistance in the magnetic path It is easy to understand that the rotational performance of the motor is reduced by providing a large gap.

そこで、特許文献1に開示の磁石モータの有する上記課題を解決する技術として、特許文献2に開示の電動機が発案されている。この電動機は、ケースの側壁内部に段部を設けてこれにステータコア(固定子)を載置し、固定子の上端をケースにボルト固定された平板にて押圧することで固定子をケース内に固定するものである。   Therefore, an electric motor disclosed in Patent Document 2 has been proposed as a technique for solving the above-described problems of the magnet motor disclosed in Patent Document 1. In this electric motor, a stepped portion is provided inside the side wall of the case, a stator core (stator) is placed on the stepped portion, and the upper end of the stator is pressed by a flat plate fixed to the case by a bolt, whereby the stator is placed in the case. It is to be fixed.

特開2002−136013号公報JP 2002-136003 A 特開2005−304106号公報JP-A-2005-304106

特許文献2に開示の電動機によれば、押圧力によって固定子に作用する応力を少なくできるとともに、固定子に応力緩和用の貫通孔も存在しないことから電動機の回転性能が低減されることもない。しかし、ケースの内部に固定子載置用の段部を形成したり、固定子載置後に平板を介してケースにボルト固定するなど、製造手間がかかるとともに部品点数も多く、電動機の製造コストの高騰は否めない。   According to the electric motor disclosed in Patent Document 2, the stress acting on the stator due to the pressing force can be reduced, and since the stator does not have a stress relief through hole, the rotational performance of the electric motor is not reduced. . However, such as forming a step for mounting the stator inside the case, or bolting the case to the case via a flat plate after mounting the stator, it takes a lot of manufacturing work and the number of parts is large. Soaring is undeniable.

本発明は、上記する問題に鑑みてなされたものであり、周方向に組み付けられた分割コアを締結して分割ステータコアを製造する方法にかかり、簡易な製造方法、特に簡易な締結方法にて、しかも、締結時に作用する押圧力にてコア材の鉄損が増加されることのない、分割ステータコアの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and relates to a method of manufacturing a split stator core by fastening a split core assembled in the circumferential direction.In a simple manufacturing method, particularly a simple fastening method, And it aims at providing the manufacturing method of a division | segmentation stator core in which the iron loss of a core material is not increased by the pressing force which acts at the time of fastening.

前記目的を達成すべく、本発明による分割ステータコアの製造方法は、分割コアを周方向に組み付けてなる円環状のコア体をその外周から円筒体にて締め付けることにより、電動機の分割ステータコアを製造する方法であって、前記コア体の直径以上の大きさの内空径を有し、かつ、前記コア体の高さ未満の内空高さを有する環状側壁と、該環状側壁の両端において径方向内側へ突出するフランジと、を備えた前記円筒体を用意し、該円筒体を熱膨張させる第1の工程と、熱膨張した姿勢の前記円筒体の内部に前記円環状のコア体を形成する第2の工程と、前記円筒体を収縮させ、前記フランジにて前記コア体に高さ方向の押圧力を付与して該コア体を締め付ける第3の工程と、からなるものである。   In order to achieve the above object, a method of manufacturing a split stator core according to the present invention manufactures a split stator core of an electric motor by fastening an annular core body formed by assembling the split core in the circumferential direction with a cylindrical body from the outer periphery. An annular side wall having an inner air diameter larger than the diameter of the core body and having an inner air height less than the height of the core body, and radial directions at both ends of the annular side wall A cylindrical body having a flange projecting inward is prepared, a first step of thermally expanding the cylindrical body, and forming the annular core body inside the cylindrical body in a thermally expanded posture And a third step of contracting the cylindrical body and applying a pressing force in the height direction to the core body by the flange to tighten the core body.

本発明は周方向に複数に分割された分割コアを周方向に組付けて平面視円環状のコア体を形成し、その外周部を円筒体(ケース)にて焼き嵌めることによって分割ステータコアを製造する製造方法に関するものである。   The present invention manufactures a divided stator core by assembling a plurality of divided cores in the circumferential direction in the circumferential direction to form an annular core body in plan view and shrink-fitting the outer peripheral portion with a cylindrical body (case). It relates to a manufacturing method.

各分割コアは、例えば電磁鋼板からなる鋼板積層体であって、円弧状のヨークと該ヨークから円弧中心方向に突出するとともに間隔を置いて配設された複数のティースまたは単数のティースとからなる分割ピースを、所定高さに積層することによって構成される。なお、軟磁性金属粉末を成形型内にて同様の形状に加圧成形してなる圧粉磁心から成形されてもよいが、本発明の製造方法によれば、鋼板積層体から分割コアが形成されたコア体に特に大きな効果が奏される。   Each divided core is a steel sheet laminate made of, for example, electromagnetic steel sheets, and includes an arc-shaped yoke and a plurality of teeth or a single tooth that protrude from the yoke toward the center of the arc and are spaced apart from each other. It is configured by stacking the divided pieces at a predetermined height. The soft magnetic metal powder may be molded from a powder magnetic core formed by pressure-molding in a similar shape in a mold, but according to the manufacturing method of the present invention, a split core is formed from a steel sheet laminate. A particularly large effect is exerted on the core body.

各分割コアは、熱膨張した姿勢の円筒体内に随時収容され、該円筒体内で周方向に組み付けられて円環状のコア体が形成される。   Each divided core is accommodated as needed in a thermally expanded cylindrical body, and is assembled in the circumferential direction in the cylindrical body to form an annular core body.

ここで、コア体を囲繞する円筒体は、コア体の直径以上の大きさの内空径を有し、コア体の高さ未満の内空高さを有する環状側壁と、該環状側壁の両端において径方向内側へ突出するフランジと、がたとえば一体に成形された部材である。   Here, the cylindrical body surrounding the core body has an inner air diameter larger than the diameter of the core body, an annular side wall having an inner air height less than the height of the core body, and both ends of the annular side wall And a flange protruding radially inward are, for example, integrally molded members.

この円筒体が熱膨張されることで、該円筒体は高さ方向および径方向に膨張し、この状態でその内部に円環状のコア体が組み付けられた後に、円筒体が自然に、もしくは人為的にクーリングされて収縮することにより、コア体に押圧力を付与して焼き嵌めがおこなわれる。   When the cylindrical body is thermally expanded, the cylindrical body expands in the height direction and the radial direction, and after the annular core body is assembled in this state, the cylindrical body naturally or artificially When the core body is cooled and contracted, a pressing force is applied to the core body and shrink fitting is performed.

円筒体の内空径はコア体の直径よりも大きいことから、この円筒体が収縮した際にコア体(を構成する鋼板)に円筒体から面内方向への押圧力(圧縮力)は作用しない。その一方で、円筒体の内空高さ(両端のフランジ間の距離)はコア体の高さよりも低いことから、円筒体が収縮した際には両フランジからコア体に高さ方向の押圧力(圧縮力)が作用する。   Since the inner air diameter of the cylindrical body is larger than the diameter of the core body, when this cylindrical body contracts, the pressing force (compression force) from the cylindrical body to the in-plane direction acts on the core body (the steel plate that constitutes the core body). do not do. On the other hand, since the inner height of the cylinder (the distance between the flanges at both ends) is lower than the height of the core, when the cylinder contracts, the pressing force in the height direction from both flanges to the core (Compressive force) acts.

本発明者等によれば、コア体を構成する鋼板に面内方向へ圧縮応力が作用することで該鋼板の磁気特性が低下する一方で、鋼板に対して垂直方向に圧縮応力が作用しても該鋼板の磁気特性の低下が殆ど認められないことが特定されている。   According to the present inventors, the compressive stress acts in the in-plane direction on the steel sheet constituting the core body, thereby reducing the magnetic properties of the steel sheet, while the compressive stress acts on the steel sheet in the vertical direction. In addition, it is specified that almost no deterioration of the magnetic properties of the steel sheet is observed.

上記する本発明の製造方法によれば、分割コアからなる円環状のコア体を円筒体にて焼き嵌め処理するに際し、該コア体の高さ方向にのみ押圧力を作用させるだけの処理にて、コア体を強固に焼き嵌め処理できるとともに、従来の焼き嵌め処理の際に生じていたコア体の磁気特性の低下を効果的に抑止することができる。   According to the manufacturing method of the present invention described above, when the annular core body composed of the divided cores is shrink-fitted in the cylindrical body, the processing is performed only by applying a pressing force only in the height direction of the core body. The core body can be firmly shrink-fitted, and the deterioration of the magnetic properties of the core body that has occurred during the conventional shrink-fitting process can be effectively suppressed.

また、本発明による分割ステータコアの製造方法の他の実施の形態は、前記コア体の端部もしくは前記フランジの一方に突起が設けられ、他方の該突起に対応する位置に凹溝が設けられており、少なくとも前記円筒体が収縮した際に前記凹溝に前記突起が嵌め合いされるものである。なお、コア体に形成される突起もしくは凹溝は、該コア体の両端に設けられる形態以外にも、上下いずれか一端にのみ設けられる形態であってもよく、この場合には対応する一方のフランジに凹溝もしくは突起が設けられることになる。   In another embodiment of the method for manufacturing a split stator core according to the present invention, a protrusion is provided at one end of the core body or the flange, and a groove is provided at a position corresponding to the other protrusion. In addition, at least when the cylindrical body contracts, the projection is fitted into the concave groove. In addition to the form provided at both ends of the core body, the protrusions or concave grooves formed on the core body may be provided only at one of the upper and lower ends. A concave groove or a projection is provided on the flange.

たとえばコア体を構成する各分割コアの両端に一組の凹溝を設けておき、円筒体を構成するフランジの内側面(コア体側の面)の各凹溝に対応する位置に該凹溝に係合する突起を設けておくことにより、熱膨張した姿勢の円筒体内に分割コアを位置決めする際に対応する凹溝と突起を係合していくことができ、加工効率性を高めることができる。   For example, a set of concave grooves is provided at both ends of each split core constituting the core body, and the concave grooves are formed at positions corresponding to the concave grooves on the inner side surface (surface on the core body side) of the flange constituting the cylindrical body. By providing the engaging protrusions, it is possible to engage the corresponding recessed grooves and protrusions when positioning the split core in the thermally expanded cylindrical body, and to improve the processing efficiency. .

また、凹溝と突起が係合していることにより、焼き嵌め処理後のたとえば電動機駆動時にコア体と円筒体との間で相対的なずれが生じる危険性を無くすることができ、より強固なコア体と円筒体との組み付け加工を実現できる。   In addition, the engagement between the groove and the protrusion can eliminate the risk of relative displacement between the core body and the cylindrical body when the motor is driven after the shrink fitting process, for example. Assembly of a simple core body and cylindrical body can be realized.

上記する本発明の製造方法によって製造された分割ステータコアを具備するステータを備えた電動機は、インナーロータ型のあらゆる形態の電動機をその対象としており、例えば、シンクロナスリラクタンスモータやインダクションモータ、ブラシレスモータ、IPMモータなど、電動機一般を包含するものである。   The motor including the stator having the divided stator core manufactured by the manufacturing method of the present invention described above is intended for all types of motors of the inner rotor type, for example, a synchronous reluctance motor, an induction motor, a brushless motor, It includes general motors such as IPM motors.

この電動機は、その構成部材であるステータコアを構成する分割コアの磁気特性が焼き嵌め処理の際に劣化していないことから、鉄損増加が抑止され、その回転性能、トルク性能に優れたものとなる。また、ステータコアが分割コアから構成されることで製造歩留まりの向上、および鋼板材料の廃棄処分量の低減とそれに起因する製造コストの低減、さらには、コア体と円筒体同士の接続強度が十分に確保されることによる耐久性の向上を実現できる。   In this electric motor, since the magnetic characteristics of the split core constituting the stator core that is a constituent member thereof is not deteriorated during the shrink fitting process, an increase in iron loss is suppressed, and the rotational performance and torque performance are excellent. Become. In addition, the stator core is composed of split cores to improve the manufacturing yield, reduce the amount of steel plate material discarded, reduce the manufacturing cost resulting from it, and provide sufficient connection strength between the core body and the cylindrical body. It is possible to improve the durability by ensuring.

以上の説明から理解できるように、本発明の分割ステータコアの製造方法によれば、焼き嵌め用の円筒体と複数の分割コアからなるコア体相互の寸法を調整し、従来の焼き嵌め処理方法と同様の方法によって分割ステータコアを製造するものであり、製造コストを高騰させることなく、焼き嵌め処理時に作用する押圧力にてその磁気特性が低下されることのない分割ステータコアを製造することができる。   As can be understood from the above description, according to the split stator core manufacturing method of the present invention, by adjusting the size of the core body composed of the cylindrical body for shrink fitting and the plurality of split cores, A split stator core is manufactured by the same method, and a split stator core whose magnetic characteristics are not deteriorated by a pressing force acting during shrink fitting can be manufactured without increasing the manufacturing cost.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明の製造方法によって製造されたステータとロータとからなる電動機を示した斜視図であり、図2は分割コアの一実施の形態と円筒体の一実施の形態を分解した縦断面図である。図3は円筒体を熱膨張した姿勢の円筒体内に分割コアからなるコア体を組み付けた状態を示す縦断面図であり、図4は図3に続き、円筒体が収縮して焼き嵌めされた状態のステータコアを示す縦断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an electric motor composed of a stator and a rotor manufactured by the manufacturing method of the present invention, and FIG. 2 is an exploded vertical section of one embodiment of a split core and one embodiment of a cylindrical body. FIG. FIG. 3 is a longitudinal sectional view showing a state in which a core body composed of divided cores is assembled in a cylindrical body in a posture in which the cylindrical body is thermally expanded. FIG. 4 is a continuation of FIG. It is a longitudinal cross-sectional view which shows the stator core of a state.

図1は、本発明の製造方法によって製造された分割ステータコアとロータとからなる電動機を模式的に示した図である。この電動機は、周方向に複数に分割された分割コア10,…が円筒体20内で組み付けられて円環状のコア体100を成し、円筒体20を焼き嵌め処理することでコア体100と円筒体20が一体に形成されてステータコアを成し、このステータコアの内部に円柱状のロータ30が配設されてインナーロータ型の電動機が形成されるものである。なお、図示例では、各ティース外周に形成されるコイルの図示が省略されている。   FIG. 1 is a diagram schematically showing an electric motor composed of a divided stator core and a rotor manufactured by the manufacturing method of the present invention. In this electric motor, the divided cores 10,... Divided into a plurality in the circumferential direction are assembled in the cylindrical body 20 to form an annular core body 100, and the cylindrical body 20 is shrink-fitted to obtain the core body 100. A cylindrical body 20 is integrally formed to form a stator core, and a cylindrical rotor 30 is disposed inside the stator core to form an inner rotor type electric motor. In the illustrated example, the illustration of coils formed on the outer periphery of each tooth is omitted.

各分割コア10は、円弧状のヨークと該ヨークから径方向に突出する一つのティースとからなる形状に切断加工された電磁鋼板が所定高さに積層され、溶接等にて一体に形成されたものである。   Each of the split cores 10 is formed of a magnetic steel sheet cut into a shape including an arc-shaped yoke and one tooth projecting radially from the yoke at a predetermined height and integrally formed by welding or the like. Is.

次に、図2〜4に基づいてステータコアの製造方法を概説する。   Next, a method for manufacturing a stator core will be outlined based on FIGS.

既述する方法にて磁極数に応じた所定数の分割コア10,…を製造し、さらに、アルミやその合金などの非導電性の適宜素材からなる円筒体20を用意する。   A predetermined number of split cores 10 according to the number of magnetic poles are manufactured by the method described above, and a cylindrical body 20 made of a suitable non-conductive material such as aluminum or an alloy thereof is prepared.

円筒体20は、環状側壁21とその両端で径方向に突出する一組のリング状のフランジ22,22とが一体に成形されたものであり、その中央開口23から各分割コア10、…を順次挿入し、円筒体20の内部で円環状のコア体100が組み付けられるものである。   The cylindrical body 20 is formed by integrally forming an annular side wall 21 and a pair of ring-shaped flanges 22, 22 projecting radially at both ends thereof, and the divided cores 10,. The annular core body 100 is assembled inside the cylindrical body 20 by being sequentially inserted.

ここで、円筒体20の内空高さはh1、内空径はφ1であり、分割コア10(コア体100)の高さはh2であって、h1<h2の関係に設定されている。   Here, the inner air height of the cylindrical body 20 is h1, the inner air diameter is φ1, the height of the split core 10 (core body 100) is h2, and the relationship of h1 <h2 is set.

円筒体20内に分割コア10を挿入するに際し、まず、円筒体20を高温雰囲気下にて熱膨張させ、図3で示すように、径方向および高さ方向に全体寸法を拡大させておく(X1方向およびY1方向)。   When inserting the split core 10 into the cylindrical body 20, first, the cylindrical body 20 is thermally expanded in a high temperature atmosphere, and the overall dimensions are expanded in the radial direction and the height direction as shown in FIG. X1 direction and Y1 direction).

熱膨張した姿勢の円筒体20内に、不図示のコイルがティース外周に形成された各分割コア10,…を順次挿入して円周方向に組み付け、円環状のコア体100を形成する。   In the cylindrical body 20 in a thermally expanded posture, the respective split cores 10... Having coils (not shown) formed on the outer periphery of the teeth are sequentially inserted and assembled in the circumferential direction to form the annular core body 100.

ここで、形成されたコア体100の高さは分割コア10と同様にh2であり、その直径はφ2である。   Here, the height of the formed core body 100 is h2 like the divided core 10, and its diameter is φ2.

この円環状のコア体100の直径:φ2は図2で示す常温時(もしくは収縮時)の円筒体20の内空径:φ1よりも小さく設定されている(φ2<φ1)。   The diameter of the annular core body 100: φ2 is set smaller than the inner air diameter: φ1 of the cylindrical body 20 at normal temperature (or contraction) shown in FIG. 2 (φ2 <φ1).

円筒体20内にコア体100が形成された後に、円筒体20を自然冷却もしくはファン等で人為的に冷却することにより、図4で示すように、熱膨張していた円筒体20が収縮して(X2方向およびY2方向)円筒体20によるコア体100の焼き嵌め処理がおこなわれる。   After the core body 100 is formed in the cylindrical body 20, the cylindrical body 20 is naturally cooled or artificially cooled by a fan or the like, so that the thermally expanded cylindrical body 20 contracts as shown in FIG. (X2 direction and Y2 direction) The core body 100 is shrink-fitted by the cylindrical body 20.

この焼き嵌め姿勢において、コア体100の高さは円筒体20の内空高さよりも高く、その直径は円筒体20の内空径よりも小さく設定されていることより、コア体100には円筒体20のフランジ22,22より高さ方向の押圧力Pが作用する。その一方で、コア体100の側面と環状側壁21の内面との間には空隙Gが形成され、コア体100の径方向には環状側壁21からの押圧力が作用しない。   In this shrink-fitting posture, the height of the core body 100 is higher than the inner air height of the cylindrical body 20, and the diameter is set smaller than the inner air diameter of the cylindrical body 20. A pressing force P in the height direction acts from the flanges 22 of the body 20. On the other hand, a gap G is formed between the side surface of the core body 100 and the inner surface of the annular side wall 21, and the pressing force from the annular side wall 21 does not act in the radial direction of the core body 100.

なお、常温時におけるコア体100と環状側壁21の内空径とが同一であってもよく(φ1=φ2で空隙Gが形成されない)、この場合でも、収縮後の円筒体20からコア体100にその径方向に押圧力が作用することはない。   It should be noted that the core body 100 and the inner diameter of the annular side wall 21 at the normal temperature may be the same (φ1 = φ2 and no gap G is formed), and even in this case, the core body 100 is contracted from the contracted cylindrical body 20. The pressing force does not act in the radial direction.

焼き嵌め処理後のコア体を構成する各電磁鋼板にその径方向(面内方向)に押圧力が作用しないことより、従来の焼き嵌め処理の際に面内方向に押圧力が作用して電磁鋼板の磁気特性が劣化し、鉄損が増加していたという課題が効果的に解消される。   Since the pressing force does not act in the radial direction (in-plane direction) on each electromagnetic steel sheet constituting the core body after the shrink-fitting treatment, the pressing force acts in the in-plane direction during the conventional shrink-fitting treatment. The problem that the magnetic properties of the steel sheet have deteriorated and the iron loss has increased is effectively eliminated.

しかも、コア体100と円筒体20とは高さ方向の押圧力Pにて強固に焼き嵌めされていることより、分割ステータコアを構成するコア体100と円筒体20の一体性(接続強度)は十分に担保される。   Moreover, since the core body 100 and the cylindrical body 20 are firmly shrink-fitted with a pressing force P in the height direction, the integrity (connection strength) of the core body 100 and the cylindrical body 20 constituting the split stator core is Fully secured.

図5は、使用する分割コアと円筒体の他の実施の形態を示している。コア体を形成する各分割コア10Aには、その両端にたとえば一組の凹溝11が形成されており、円筒体20Aを構成するフランジ22の内側面(コア体側の面)の各凹溝11に対応する位置に、該凹溝11に係合する突起24,…が設けてある。   FIG. 5 shows another embodiment of the split core and cylindrical body used. For example, a set of concave grooves 11 is formed at both ends of each divided core 10A forming the core body, and each concave groove 11 on the inner side surface (surface on the core body side) of the flange 22 constituting the cylindrical body 20A. Are provided at the positions corresponding to the groove 11.

熱膨張した姿勢の円筒体20A内に各分割コア10A、…を位置決めする際に、対応する凹溝11と突起24を係合していくことで分割コア10の組み付け効率性を高めることができる。なお、この凹溝11の孔長さは極めて短くてよく、凹溝11を形成することでコア体100の磁気特性が阻害されない程度でよい。   When positioning the divided cores 10A,... In the thermally expanded cylindrical body 20A, the assembling efficiency of the divided cores 10 can be improved by engaging the corresponding concave grooves 11 and the protrusions 24. . In addition, the hole length of this concave groove 11 may be very short, and the magnetic characteristic of the core body 100 may not be inhibited by forming the concave groove 11.

この凹溝11と突起24が係合した姿勢で円筒体20Aが収縮して焼き嵌めされることにより、高さ方向のみの押圧力にてコア体と円筒体20Aとが一体となる分割ステータコアにおいて、該コア体と円筒体20Aとの位置ずれ等の発生を抑止でき、より高い接続強度の分割ステータコアを得ることができる。   In the split stator core in which the core body and the cylindrical body 20A are integrated with the pressing force only in the height direction by shrinking and shrink-fitting the cylindrical body 20A in a posture in which the concave groove 11 and the protrusion 24 are engaged. The occurrence of misalignment between the core body and the cylindrical body 20A can be suppressed, and a split stator core with higher connection strength can be obtained.

上記する本発明の分割ステータコアの製造方法は、コア体と円筒体双方の寸法を調整するだけの簡易な構成にて、従来の焼き嵌め処理加工とその方法は何等変わるものではないことから、製造コストを高騰させることなく、磁気特性に優れた分割ステータコアを製造することができるものである。   The above-described method for manufacturing a split stator core according to the present invention is a simple configuration that only adjusts the dimensions of both the core body and the cylindrical body, and the conventional shrink-fit processing and the method thereof are not changed. A split stator core having excellent magnetic properties can be manufactured without increasing the cost.

上記する分割ステータコアを備えた電動機は、それを構成する電磁鋼板の磁気特性が阻害されていないことより、焼き嵌め処理に起因する鉄損の増加が抑止され、その回転性能やトルク性能を向上させることが可能となる。かかる高性能な電動機は、近時その生産が拡大しており、その駆動用電動機の高性能化を急務の課題としている電気自動車やハイブリッド車等への適用に特に好適である。   The electric motor having the above-described split stator core is prevented from increasing the iron loss due to the shrink-fitting process, and the rotational performance and torque performance are improved because the magnetic properties of the magnetic steel sheets constituting the electric motor are not hindered. It becomes possible. Such a high-performance electric motor has recently been expanded in production, and is particularly suitable for application to an electric vehicle, a hybrid vehicle, and the like in which improvement in the performance of the driving motor is an urgent issue.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

本発明の製造方法によって製造されたステータとロータとからなる電動機を示した斜視図。The perspective view which showed the electric motor which consists of a stator and a rotor manufactured by the manufacturing method of this invention. 分割コアの一実施の形態と円筒体の一実施の形態を分解した縦断面図である。It is the longitudinal cross-sectional view which decomposed | disassembled one Embodiment of the split core, and one Embodiment of a cylindrical body. 円筒体を熱膨張した姿勢の円筒体内に分割コアからなるコア体を組み付けた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which assembled | attached the core body which consists of a split core in the cylindrical body of the attitude | position which thermally expanded the cylindrical body. 図3に続き、円筒体が収縮して焼き嵌めされた状態のステータコアを示す縦断面図である。FIG. 4 is a longitudinal sectional view showing the stator core in a state in which the cylindrical body is contracted and shrink-fitted following FIG. 3. 分割コアの他の実施の形態と円筒体の他の実施の形態を分解した縦断面図である。It is the longitudinal cross-sectional view which decomposed | disassembled other embodiment of a split core, and other embodiment of a cylindrical body.

符号の説明Explanation of symbols

10,10A…分割コア、11…凹溝、20…円筒体、21…環状側壁、22…フランジ、23…中央開口、24…突起、30…ロータ、100…コア体   DESCRIPTION OF SYMBOLS 10,10A ... Split core, 11 ... Groove, 20 ... Cylindrical body, 21 ... Annular side wall, 22 ... Flange, 23 ... Center opening, 24 ... Protrusion, 30 ... Rotor, 100 ... Core body

Claims (2)

分割コアを周方向に組み付けてなる円環状のコア体をその外周から円筒体にて締め付けることにより、電動機の分割ステータコアを製造する方法であって、
前記コア体の直径以上の大きさの内空径を有し、かつ、前記コア体の高さ未満の内空高さを有する環状側壁と、該環状側壁の両端において径方向内側へ突出するフランジと、を備えた前記円筒体を用意し、該円筒体を熱膨張させる第1の工程と、
熱膨張した姿勢の前記円筒体の内部に前記円環状のコア体を形成する第2の工程と、
前記円筒体を収縮させ、前記フランジにて前記コア体に高さ方向の押圧力を付与して該コア体を締め付ける第3の工程と、からなる分割ステータコアの製造方法。
A method of manufacturing a split stator core of an electric motor by tightening an annular core body formed by assembling the split core in the circumferential direction with a cylindrical body from the outer periphery,
An annular side wall having an inner air diameter larger than the diameter of the core body and having an inner air height less than the height of the core body, and a flange protruding radially inward at both ends of the annular side wall And a first step of thermally expanding the cylindrical body,
A second step of forming the annular core body inside the cylindrical body in a thermally expanded posture;
And a third step of tightening the core body by contracting the cylindrical body and applying a pressing force in the height direction to the core body by the flange.
前記コア体の端部もしくは前記フランジの一方に突起が設けられ、他方の該突起に対応する位置に凹溝が設けられており、少なくとも前記円筒体が収縮した際に前記凹溝に前記突起が嵌め合いされる、請求項1に記載の分割ステータコアの製造方法。   A protrusion is provided at one end of the core body or the flange, and a groove is provided at a position corresponding to the other protrusion. At least when the cylindrical body contracts, the protrusion is formed in the groove. The manufacturing method of the division | segmentation stator core of Claim 1 fitted.
JP2008064596A 2008-03-13 2008-03-13 Method for manufacturing split stator core Expired - Fee Related JP5109737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064596A JP5109737B2 (en) 2008-03-13 2008-03-13 Method for manufacturing split stator core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064596A JP5109737B2 (en) 2008-03-13 2008-03-13 Method for manufacturing split stator core

Publications (2)

Publication Number Publication Date
JP2009225504A true JP2009225504A (en) 2009-10-01
JP5109737B2 JP5109737B2 (en) 2012-12-26

Family

ID=41241705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064596A Expired - Fee Related JP5109737B2 (en) 2008-03-13 2008-03-13 Method for manufacturing split stator core

Country Status (1)

Country Link
JP (1) JP5109737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896189B2 (en) 2010-12-28 2014-11-25 Denso Corporation Stator for electric rotating machine and method of manufacturing the same
US9136746B2 (en) 2011-01-11 2015-09-15 Denso Corporation Stator for electric rotating machine and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189129A (en) * 1997-09-12 1999-03-30 Honda Motor Co Ltd Power generation electric motor
JP2005184874A (en) * 2003-12-16 2005-07-07 Hitachi Industrial Equipment Systems Co Ltd Motor compressor
JP2006211846A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Rotating electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189129A (en) * 1997-09-12 1999-03-30 Honda Motor Co Ltd Power generation electric motor
JP2005184874A (en) * 2003-12-16 2005-07-07 Hitachi Industrial Equipment Systems Co Ltd Motor compressor
JP2006211846A (en) * 2005-01-28 2006-08-10 Toyota Motor Corp Rotating electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896189B2 (en) 2010-12-28 2014-11-25 Denso Corporation Stator for electric rotating machine and method of manufacturing the same
US9136746B2 (en) 2011-01-11 2015-09-15 Denso Corporation Stator for electric rotating machine and method of manufacturing the same
US9397541B2 (en) 2011-01-11 2016-07-19 Denso Corporation Stator for electric rotating machine and method of manufacturing the same

Also Published As

Publication number Publication date
JP5109737B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
EP2026448B1 (en) Split core and manufacturing method of the same, and stator core
JP2012023861A (en) Armature core and motor
JP5623498B2 (en) Stator core and stator, electric motor and compressor
JP2010263786A (en) Method of manufacturing rotary electric machine
JP2010148329A (en) Stator core structure of rotating electric machine
JP6113049B2 (en) Rotating electric machine stator
JP2011120392A (en) Stator core, stator, motor, and compressor
JP2008104288A (en) Capacitor motor, and manufacturing method therefor
JP2011147200A (en) Motor armature
JP4568639B2 (en) Stator
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
JP2021029067A (en) Axial gap motor
JP5274496B2 (en) Magnetic metal body and method for manufacturing rotating electrical machine using magnetic metal body
JP5109737B2 (en) Method for manufacturing split stator core
JP2006345636A (en) Spiral stator core for rotary electric machine
EP1341288B1 (en) Electric rotary machine
JP5033320B2 (en) Method for manufacturing stator of electric motor
JP5376262B2 (en) Stator for rotating electric machine and method for manufacturing the same
WO2014136145A1 (en) Stator core of rotating machine, rotating machine and method for manufacturing same
JP6057777B2 (en) Stator, hermetic compressor and rotary machine including the stator, and mold
JP2009106002A (en) Electromagnetic rotating machine
JP2006345672A (en) Stator of rotating electric machine
JP2009100490A (en) Rotary machine and manufacturing method thereof
JP2002315251A (en) Stator of motor and method of manufacturing the same
JP2013169044A (en) Split stator core of motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees