JP2009100490A - Rotary machine and manufacturing method thereof - Google Patents

Rotary machine and manufacturing method thereof Download PDF

Info

Publication number
JP2009100490A
JP2009100490A JP2007266619A JP2007266619A JP2009100490A JP 2009100490 A JP2009100490 A JP 2009100490A JP 2007266619 A JP2007266619 A JP 2007266619A JP 2007266619 A JP2007266619 A JP 2007266619A JP 2009100490 A JP2009100490 A JP 2009100490A
Authority
JP
Japan
Prior art keywords
circumferential direction
rotating machine
space
split
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266619A
Other languages
Japanese (ja)
Inventor
Hideaki Arita
秀哲 有田
Koki Naka
興起 仲
Kazumasa Ito
一将 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007266619A priority Critical patent/JP2009100490A/en
Publication of JP2009100490A publication Critical patent/JP2009100490A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rotor of a rotary machine, capable of keeping the engaging strength between teeth and a rotary shaft at sufficient strength against a centrifugal force by devising the engaging structure between the split teeth and the rotary shaft and enabling the teeth to easily be incorporated into the rotary shaft, and to obtain a manufacturing method thereof. <P>SOLUTION: First and second split cores 21, 28 are disposed adjacently in a circumferential direction in a compressed state on the external circumferential surface of a second shaft portion 4 of a rotary shaft 2 so as to be regulated in the movement in axial and dimensional directions while a fitting groove portion is fitted to a fitting protrusion and to be movable in the circumferential direction. A third split core 36 is disposed movably in an axial direction between the second split cores 28 so as to regulated in the movement in dimensional and circumferential directions by fitting a bulging portion 37a of an internal dimension side of a fastening portion 37 to a first space and fitting it to a fitting concave portion 33 formed on the fastening portion 29 of the second split core 28. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、例えば車載用の発電電動機などの回転機およびその製造方法に関し、特に界磁巻線が回転子鉄心に巻装された回転子構造およびその製造方法に関するものである。   The present invention relates to a rotating machine such as an in-vehicle generator motor and a manufacturing method thereof, and more particularly to a rotor structure in which field windings are wound around a rotor core and a manufacturing method thereof.

例えば、界磁巻線を有する発電電動機は、車両に搭載され、エンジン始動時には、始動電動機として動作し、エンジン駆動中は発電機として動作する。始動電動機として使用する場合には、エンジンを瞬時に再始動させるために、高トルク、高出力が求められる。そして、高トルクを得る手段としては、界磁巻線の占積率を上げることが考えられる。つまり、界磁巻線の占積率を上げることは、界磁巻線の低抵抗化につながり、電源電圧一定の条件下で界磁電流値を増やすことが可能となり、回転子の起磁力が上がり、高出力、高トルクが得られる。   For example, a generator motor having a field winding is mounted on a vehicle and operates as a starter motor when the engine is started and operates as a generator while the engine is being driven. When used as a starter motor, high torque and high output are required to restart the engine instantly. As a means for obtaining a high torque, it is conceivable to increase the space factor of the field winding. In other words, increasing the space factor of the field winding leads to a reduction in the resistance of the field winding, and it becomes possible to increase the field current value under the condition of a constant power supply voltage, and the magnetomotive force of the rotor is reduced. Increases output, high output, and high torque.

従来の電動機では、回転子鉄心は界磁巻線が巻装されるティース毎に分割構成され、分割されたティースは、回転子の径方向内側に突出した係合凸部を持つ第1ティースと、第1ティースの係合凸部が係合される嵌合凹部を持つ第2ティースとからなり、界磁巻線が巻装された第1および第2ティースを、係合凸部と嵌合凹部とを係合させつつ回転子の円周方向に沿って等角度間隔に交互に配列している(例えば、特許文献1参照)。この従来の電動機では、界磁巻線を組立前の第1および第2ティースのそれぞれに巻装できるので、界磁巻線を巻装しやすくなり、界磁巻線の占積率を高めることができる。   In the conventional electric motor, the rotor core is divided and configured for each tooth around which the field winding is wound, and the divided teeth are the first teeth having the engaging protrusions protruding inward in the radial direction of the rotor. The first teeth and the second teeth, each having a fitting concave portion with which the engaging convex portion of the first tooth is engaged, are fitted with the engaging convex portion. They are alternately arranged at equiangular intervals along the circumferential direction of the rotor while engaging the recesses (see, for example, Patent Document 1). In this conventional electric motor, the field winding can be wound around each of the first and second teeth before assembly, which makes it easier to wind the field winding and increases the space factor of the field winding. Can do.

特開2003−134708号公報JP 2003-134708 A

しかしながら、従来の電動機では、第1および第2ティースは、延出方向を径方向内方とする係合突起と溝深さ方向を径方向内方とする嵌合凹部との係合により固着されているので、径方向外側への所定の引き抜き力が係合突起を有する第1ティースに作用すると、第1ティースは引き抜かれてしまう。
この種の回転機においては、回転子に作用する遠心力は、半径比で大きくなることから、従来の電動機における回転子構造では、遠心力に対する十分な強度を保つことができず、大型の回転機には適用できなかった。
However, in the conventional electric motor, the first and second teeth are fixed by the engagement between the engaging protrusion having the extending direction radially inward and the fitting recess having the groove depth direction radially inward. Therefore, when a predetermined pulling force outward in the radial direction acts on the first teeth having the engaging protrusions, the first teeth are pulled out.
In this type of rotating machine, the centrifugal force acting on the rotor increases with the radius ratio, so the rotor structure in the conventional electric motor cannot maintain sufficient strength against the centrifugal force, and the large-sized rotation It was not applicable to the machine.

この発明は、このような課題を解決するためになされたものであり、回転子鉄心を構成する分割鉄心と回転軸との係合構造を工夫し、分割鉄心と回転軸との係合強度を遠心力に対する十分な強度に保つことができ、かつ分割鉄心を回転軸に簡易に組立/分解できる回転機およびその製造方法を得ることを目的とする。   The present invention has been made to solve such a problem, and devised an engagement structure between a split iron core and a rotary shaft constituting the rotor core, thereby increasing the engagement strength between the split iron core and the rotary shaft. It is an object of the present invention to provide a rotating machine that can maintain sufficient strength against centrifugal force and that can easily assemble / disassemble a split iron core on a rotating shaft, and a method for manufacturing the same.

この発明による回転機は、回転軸と、上記回転軸に固着された基部および該基部から放射状に、かつ等角度間隔で延設された複数のティース部を有する回転子鉄心と、上記複数のティース部のそれぞれに巻装された界磁巻線と、を有する回転子と、内径側に開口するスロットが周方向に複数配設され、上記回転子鉄心を囲繞するように配置された円筒状の固定子鉄心と、上記固定子鉄心に巻装された固定子巻線と、を有する固定子と、を備える。上記回転軸は、円柱状の軸部、および該軸部から一体に径方向外方に延出し、かつ周方向に延設され、周方向幅が径方向内方に漸次狭くなる楔状の第1空間が軸方向に穿設された係合突起から構成され、上記回転子鉄心は、上記ティース部、および上記基部を上記ティース部毎に周方向に分割された締結部からなる複数の分割鉄心から構成されている。上記複数の分割鉄心のなかの1つの分割鉄心の締結部の内径側が、上記第1空間の内形形状に適合する外形形状に作製され、上記複数の分割鉄心の残る分割鉄心の締結部の内径側が、上記第1空間の内形形状より小さい外形形状に作製され、上記係合突起に外嵌状態に嵌合される係合溝部が、上記残る分割鉄心のそれぞれの締結部に周方向に穿設されている。そして、上記残る分割鉄心が、軸方向および径方向の移動を規制され、かつ周方向に移動して、上記係合溝部を上記係合突起に嵌合させて、上記軸部の外周面に圧接状態で周方向に隣接して配設され、上記1つの分割鉄心が、径方向および周方向の移動を規制され、かつ軸方向に移動して、上記締結部の内径側を、上記第1空間に嵌合させ、かつ上記残る分割鉄心の周方向両端に位置する分割鉄心の締結部に形成された嵌合凹部に嵌合させて、上記残る分割鉄心の周方向両端に位置する分割鉄心間に配設されている。   The rotating machine according to the present invention includes a rotating shaft, a rotor core having a base portion fixed to the rotating shaft, and a plurality of teeth portions extending radially from the base portion at equal angular intervals, and the plurality of teeth. A rotor having a field winding wound around each of the portions, and a plurality of slots that are open in the circumferential direction in the circumferential direction, and are arranged so as to surround the rotor core A stator having a stator core and a stator winding wound around the stator core. The rotating shaft includes a cylindrical shaft portion, and a wedge-shaped first portion that extends radially outward from the shaft portion, extends in the circumferential direction, and has a circumferential width gradually narrowing radially inward. The rotor core is composed of a plurality of split iron cores including a tooth portion and a fastening portion in which the base portion is divided in the circumferential direction for each tooth portion. It is configured. The inner diameter side of the fastening portion of one divided core among the plurality of divided cores is manufactured to have an outer shape that matches the inner shape of the first space, and the inner diameter of the fastening portion of the divided core that remains in the plurality of divided cores. An engagement groove portion that is made to have an outer shape smaller than the inner shape shape of the first space and is fitted into the engagement protrusion in an outer fitting state is formed in each of the remaining fastening cores in the circumferential direction. It is installed. The remaining split iron core is restricted from moving in the axial direction and the radial direction and moves in the circumferential direction so that the engaging groove is fitted into the engaging protrusion and is pressed against the outer peripheral surface of the shaft. The one split iron core is disposed adjacent to the circumferential direction in a state, the movement in the radial direction and the circumferential direction is restricted, and moves in the axial direction so that the inner diameter side of the fastening portion is disposed in the first space. Between the split cores positioned at both ends in the circumferential direction of the remaining split core. It is arranged.

この発明によれば、1つの分割鉄心が、締結部の内径側を、第1空間に嵌合させ、かつ残る分割鉄心の周方向両端に位置する分割鉄心の締結部に形成された嵌合凹部に嵌合させて径方向および周方向の移動を規制されて、残る分割鉄心の周方向両端に位置する分割鉄心間に軸方向移動可能に配設されている。そこで、回転軸に組み付けられた分割鉄心は径方向外方への引き抜き不能となり、回転子の大径化に伴う遠心力の増加に耐える十分な結合強度が得られる。   According to this invention, one split iron core fits the inner diameter side of the fastening portion into the first space, and the fitting recess formed in the fastening portion of the split core positioned at both circumferential ends of the remaining split core. And the movement in the radial direction and the circumferential direction is restricted, and the remaining divided iron cores are disposed so as to be movable in the axial direction between the divided iron cores located at both ends in the circumferential direction. Therefore, the split iron core assembled to the rotating shaft cannot be pulled out radially outward, and a sufficient coupling strength to withstand an increase in centrifugal force accompanying an increase in the diameter of the rotor can be obtained.

また、残る分割鉄心の締結部の内径側が第1空間より小さくなっているので、残る分割鉄心を第1空間から周方向に移動させることで、係合溝部を係合突起に嵌合させることができる。そして、1つの分割鉄心を軸方向に移動させるだけで、残る分割鉄心の周方向両端の分割鉄心間に組み付けることができ、回転子を簡易に組み立てることができる。
また、1つの分割鉄心が軸方向移動可能になっているので、1つの分割鉄心を軸方向に引き抜くことで、残る分割鉄心の周方向の移動が可能となり、回転子を簡易に分解することができる。
Further, since the inner diameter side of the fastening portion of the remaining split iron core is smaller than the first space, the engaging groove portion can be fitted to the engaging protrusion by moving the remaining split iron core from the first space in the circumferential direction. it can. And only by moving one division | segmentation iron core to an axial direction, it can assemble | attach between the division | segmentation cores of the circumferential direction both ends of a division | segmentation core, and a rotor can be assembled easily.
In addition, since one split iron core is movable in the axial direction, by pulling out one split iron core in the axial direction, the remaining split iron core can be moved in the circumferential direction, and the rotor can be easily disassembled. it can.

実施の形態1.
図1はこの発明の実施の形態1に係る回転機を軸方向一側から見た正面図である。図2はこの発明の実施の形態1に係る回転機の回転子における回転軸の構成を説明する図であり、図2の(a)は断面図、図2の(b)は正面図である。図3はこの発明の実施の形態1に係る回転機の回転子における第1ティースの構成を説明する図であり、図3の(a)は正面図、図3の(b)は側面図である。図4はこの発明の実施の形態1に係る回転機の回転子における第2ティースの構成を説明する図であり、図4の(a)は正面図、図4の(b)は側面図である。図5はこの発明の実施の形態1に係る回転機の回転子における第3ティースの構成を説明する図であり、図5の(a)は正面図、図5の(b)は側面図である。なお、図1では固定子巻線および界磁巻線のスロットからの延出部を省略して示している。
Embodiment 1 FIG.
1 is a front view of a rotating machine according to Embodiment 1 of the present invention as viewed from one axial direction. 2A and 2B are diagrams for explaining a configuration of a rotating shaft in the rotor of the rotating machine according to the first embodiment of the present invention, in which FIG. 2A is a cross-sectional view and FIG. 2B is a front view. . 3A and 3B are diagrams for explaining the configuration of the first teeth in the rotor of the rotating machine according to the first embodiment of the present invention. FIG. 3A is a front view, and FIG. 3B is a side view. is there. 4A and 4B are diagrams for explaining the configuration of the second teeth in the rotor of the rotating machine according to the first embodiment of the present invention. FIG. 4A is a front view, and FIG. 4B is a side view. is there. FIGS. 5A and 5B are diagrams for explaining the configuration of the third teeth in the rotor of the rotating machine according to the first embodiment of the present invention. FIG. 5A is a front view, and FIG. 5B is a side view. is there. In FIG. 1, the extension portions from the slots of the stator winding and the field winding are omitted.

図1において、回転子1は、回転軸2と、回転軸2に同軸に固着された基部11および基部11から一体に放射状に、かつ等角度間隔で延設されたティース部23,30,38を有する回転子鉄心10と、断面円形の導体に絶縁被膜を被覆した素線としてのマグネットワイヤ13を回転子鉄心10のティース部23,30,38に巻回して作製された界磁巻線12と、を備える。回転子鉄心10は、基部11をティース部23,30,38毎に等角度間隔で分割してなる、例えば9個の第1分割鉄心21、2個の第2分割鉄心28、および1個の第3分割鉄心36から構成されている。固定子40は、内径側に開口するスロット42が周方向に等角度ピッチで例えば9個配列された円筒状の固定子鉄心41と、固定子鉄心41に巻装された固定子巻線43と、を有する。   In FIG. 1, the rotor 1 includes a rotating shaft 2, a base portion 11 that is coaxially fixed to the rotating shaft 2, and teeth portions 23, 30, and 38 that extend radially from the base portion 11 at equal angular intervals. And a field winding 12 produced by winding a magnet wire 13 as an element wire in which a conductor having a circular cross section is covered with an insulating film around the teeth portions 23, 30, and 38 of the rotor core 10. And comprising. The rotor core 10 is formed by dividing the base portion 11 at equal angular intervals for each of the tooth portions 23, 30, 38, for example, nine first divided cores 21, two second divided cores 28, and one The third split iron core 36 is used. The stator 40 includes a cylindrical stator core 41 in which, for example, nine slots 42 opened on the inner diameter side are arranged at equal angular pitches in the circumferential direction, and a stator winding 43 wound around the stator core 41. Have.

回転機100は、回転子1が回転軸2を軸支されてケース(図示せず)内に回転自在に配設され、固定子40が回転子1の外周を所定の隙間を持って囲繞するようにケースに保持されて構成される。   In the rotating machine 100, the rotor 1 is rotatably supported in a case (not shown) with the rotating shaft 2 being supported, and the stator 40 surrounds the outer periphery of the rotor 1 with a predetermined gap. It is configured to be held in the case.

つぎに、回転子1の構成を具体的に説明する。
回転軸2は、図2に示されるように、大径の第2軸部4が小径の第1軸部3の軸方向中央部に同軸に、かつ一体に形成された段付き円柱状に作製され、係合突起5が第2軸部4の軸方向中央部から一体に径方向外方に延出し、かつ周方向に延設され、第1空間8が軸方向に穿設された周方向C字状に作製されている。係合突起5は、所定の軸方向長さを有する突起部6、および突起部6より短い軸方向長さを有し、第2軸部4の軸方向中央部と突起部6の軸方向中央部とを連結する基部7を有し、第1軸部3、すなわち回転軸2の軸心を含む平面における断面がT字状に形成されている。第1空間8は、係合突起5のC字状の相対する壁面間に形成され、周方向幅が径方向内方に漸次狭くなる楔状に構成されている。第1空間8は、回転軸2の軸心を中心に係合突起5を周方向に12等分した楔状空間より周方向幅が広くなっている。第2空間9は、第1空間8の径方向内周端より周方向幅を広げた断面楕円形をなし、第1空間8の径方向内端に連結するように第1および第2軸部3,4に凹設されて軸方向に延設されている。
Next, the configuration of the rotor 1 will be specifically described.
As shown in FIG. 2, the rotary shaft 2 is formed in a stepped columnar shape in which the large-diameter second shaft portion 4 is coaxially and integrally formed in the axial central portion of the small-diameter first shaft portion 3. The circumferential direction in which the engagement protrusion 5 is integrally extended radially outward from the axial central portion of the second shaft portion 4 and is extended in the circumferential direction, and the first space 8 is drilled in the axial direction. It is made in a C shape. The engaging protrusion 5 has a protrusion 6 having a predetermined axial length, an axial length shorter than the protrusion 6, and the axial center of the second shaft 4 and the axial center of the protrusion 6. The cross section in the plane containing the axis part of the 1st axial part 3, ie, the rotating shaft 2, is formed in T shape. The first space 8 is formed between the C-shaped opposing wall surfaces of the engagement protrusion 5 and is configured in a wedge shape in which the circumferential width gradually narrows radially inward. The first space 8 has a larger width in the circumferential direction than a wedge-shaped space in which the engagement protrusion 5 is equally divided into 12 in the circumferential direction around the axis of the rotating shaft 2. The second space 9 has an elliptical cross section with a circumferential width wider than the radially inner peripheral end of the first space 8, and the first and second shaft portions are connected to the radially inner end of the first space 8. 3 and 4 are recessed and extend in the axial direction.

第1分割鉄心21は、回転子鉄心10を周方向に12等分した形状に作製されている。つまり、第1分割鉄心21は、図3に示されるように、周方向幅が径方向内方に狭くなる楔状をなし、内径側端面が回転軸2の第2軸部4の外周面に合わせた凹曲面に形成され、第2軸部4の外周面に圧接される締結部22、締結部22から径方向外側に延設され、界磁巻線12が巻装されるティース部23、およびティース部23の先端から周方向に両側に突設された鍔部24から構成されている。そして、係合突起5に外嵌状態に嵌合される係合溝部25が締結部22の軸方向中央部に周方向に穿設されている。この係合溝部25は、回転軸2の軸心を含む平面における係合突起5の外形形状にほぼ一致する内形形状に形成されている。   The 1st division | segmentation iron core 21 is produced in the shape which divided the rotor core 10 into 12 equally in the circumferential direction. That is, as shown in FIG. 3, the first split iron core 21 has a wedge shape in which the circumferential width is narrowed radially inward, and the inner diameter side end surface is aligned with the outer circumferential surface of the second shaft portion 4 of the rotating shaft 2. A fastening portion 22 formed in a concave curved surface and pressed against the outer peripheral surface of the second shaft portion 4; a teeth portion 23 extending radially outward from the fastening portion 22 and wound with the field winding 12; It is comprised from the collar part 24 protruded by the circumferential direction from the front-end | tip of the teeth part 23 on both sides. Then, an engagement groove portion 25 that is fitted to the engagement protrusion 5 in an externally fitted state is formed in the circumferential direction in the central portion in the axial direction of the fastening portion 22. The engagement groove portion 25 is formed in an inner shape that substantially matches the outer shape of the engagement protrusion 5 in a plane including the axis of the rotation shaft 2.

第2分割鉄心28は、図4に示されるように、周方向幅が径方向内方に狭くなる楔状をなし、内径側端面が回転軸2の第2軸部4の外周面に合わせた凹曲面に形成され、第2軸部4の外周面に圧接される締結部29、締結部29から径方向外側に延設され、界磁巻線12が巻装されるティース部30、およびティース部30の先端から周方向に両側に突設された鍔部31から構成されている。そして、係合突起5に外嵌状態に嵌合される係合溝部32が締結部29の軸方向中央部に周方向に穿設されている。そして、係合溝部32は、回転軸2の軸心を含む平面における係合突起5の外形形状にほぼ一致する内形形状に形成されている。締結部29の周方向一側の側面の内径側には、後述する第3分割鉄心36の締結部37の周方向側部の内径側の膨出部37aに合わせた嵌合凹部33が凹設されている。   As shown in FIG. 4, the second split iron core 28 has a wedge shape with a circumferential width narrowing radially inward, and an inner diameter side end surface is a recess that matches the outer circumferential surface of the second shaft portion 4 of the rotary shaft 2. A fastening portion 29 that is formed in a curved surface and is pressed against the outer peripheral surface of the second shaft portion 4, a tooth portion 30 that extends radially outward from the fastening portion 29 and is wound with the field winding 12, and a tooth portion It is comprised from the collar part 31 protrudingly provided by the both sides in the circumferential direction from the front-end | tip of 30. As shown in FIG. Then, an engagement groove portion 32 that is fitted to the engagement protrusion 5 in an externally fitted state is formed in the circumferential direction in the central portion of the fastening portion 29 in the axial direction. The engagement groove 32 is formed in an inner shape that substantially matches the outer shape of the engagement protrusion 5 in a plane including the axis of the rotation shaft 2. On the inner diameter side of the side surface on the circumferential side of the fastening portion 29, a fitting recess 33 is provided in accordance with the bulging portion 37a on the inner diameter side of the circumferential side portion of the fastening portion 37 of the third split iron core 36 to be described later. Has been.

第3分割鉄心36は、図5に示されるように、周方向幅が径方向内方に狭くなる楔状をなし、第2分割鉄心28の締結部29に挟持される締結部37、締結部37から径方向外側に延設され、界磁巻線12が巻装されるティース部38、およびティース部38の先端から周方向に両側に突設された鍔部39から構成されている。そして、係合突起5に対応する締結部37の内径側が周方向に膨出し、回転軸2の軸心を含む平面における第1空間8の内形形状にほぼ一致する外形形状の膨出部37aが形成されている。また、第2空間9の内形形状にほぼ一致する外形形状の嵌入部37bが締結部37の先端に一体に突設されている。   As shown in FIG. 5, the third divided core 36 has a wedge shape in which the circumferential width becomes narrower inward in the radial direction, and is fastened with a fastening portion 37 and a fastening portion 37 sandwiched between fastening portions 29 of the second divided core 28. The teeth portion 38 extends radially outward from the teeth portion 38, and the field winding 12 is wound around, and the flange portion 39 protrudes on both sides in the circumferential direction from the tip of the tooth portion 38. Then, the inner diameter side of the fastening portion 37 corresponding to the engagement protrusion 5 bulges in the circumferential direction, and the bulging portion 37a having an outer shape that substantially matches the inner shape of the first space 8 in the plane including the axis of the rotating shaft 2. Is formed. Further, a fitting portion 37 b having an outer shape substantially coinciding with the inner shape of the second space 9 is integrally projected at the tip of the fastening portion 37.

ここで、締結部29は嵌合凹部33を除いて締結部22と同形状であり、締結部37は膨出部37aおよび嵌入部37bを除いて締結部22と同形状である。締結部37の内径側は、第1空間8と同じ断面形状であり、膨出部37aを形成している分、回転子鉄心10の基部11を周方向に12等分して作製されている第1分割鉄心21の締結部22より周方向幅が広くなっている。この締結部37の内径側の膨出部37aが第2分割鉄心28の締結部29の嵌合凹部33に嵌入される。
また、第1乃至第3分割鉄心21,28,36は、例えば電磁鋼板を積層一体化して作製してもよいし、S10Cなどの低炭素鋼で冷間鍛造製法により作製してもよい。
Here, the fastening portion 29 has the same shape as the fastening portion 22 except for the fitting recess 33, and the fastening portion 37 has the same shape as the fastening portion 22 except for the bulging portion 37a and the fitting portion 37b. The inner diameter side of the fastening part 37 has the same cross-sectional shape as the first space 8 and is produced by dividing the base part 11 of the rotor core 10 into 12 parts in the circumferential direction by the amount of the bulging part 37a. The circumferential width is wider than the fastening portion 22 of the first split iron core 21. The bulging portion 37 a on the inner diameter side of the fastening portion 37 is fitted into the fitting recess 33 of the fastening portion 29 of the second split iron core 28.
Further, the first to third divided iron cores 21, 28, and 36 may be manufactured by stacking and integrating electromagnetic steel plates, for example, or may be manufactured by a cold forging method using low carbon steel such as S10C.

そして、9個の第1分割鉄心21が、界磁巻線12をティース部23に巻装し、締結部22の内径側端面を第2軸部4に当接させ、締結部22の周方向側面同士を当接させ、かつ係合溝部25を係合突起5に嵌合させて、周方向に隣接して配列されている。2個の第2分割鉄心28が、界磁巻線12をティース部30に巻装し、締結部29の内径側端面を第2軸部4に当接させ、締結部29の周方向側面を締結部22の周方向側面に当接させ、かつ係合溝部32を係合突起5に嵌合させて、周方向両側の第1分割鉄心21に隣接して配列されている。さらに、第3分割鉄心36が、界磁巻線12をティース部38に巻装し、締結部37の周方向両側の膨出部37aを締結部29の嵌合凹部33に当接させて第1空間8に嵌め込み、かつ嵌入部37bを第2空間9に嵌め込んで、第2分割鉄心28間に配置され、回転子1が組み立てられている。   Then, the nine first divided iron cores 21 wind the field winding 12 around the tooth portion 23, bring the inner diameter side end face of the fastening portion 22 into contact with the second shaft portion 4, and the circumferential direction of the fastening portion 22 The side surfaces are brought into contact with each other, and the engaging groove portions 25 are fitted into the engaging protrusions 5 so as to be arranged adjacent to each other in the circumferential direction. Two second split iron cores 28 wind the field winding 12 around the tooth portion 30, bring the inner diameter side end surface of the fastening portion 29 into contact with the second shaft portion 4, and the circumferential side surface of the fastening portion 29. It is arranged adjacent to the first divided iron cores 21 on both sides in the circumferential direction by contacting the circumferential side surface of the fastening portion 22 and engaging the engaging groove 32 with the engaging projection 5. Further, the third split iron core 36 winds the field winding 12 around the teeth portion 38, and causes the bulging portions 37 a on both sides in the circumferential direction of the fastening portion 37 to contact the fitting recesses 33 of the fastening portion 29. The rotor 1 is assembled by fitting into the first space 8 and inserting the fitting portion 37b into the second space 9, and being arranged between the second divided cores 28.

このように構成された回転子1では、界磁巻線12が組立前の第1乃至第3分割鉄心21,28,36のティース部23,30,38に巻装されるので、第1乃至第3分割鉄心21,28,36のティース部23,30,38間に形成されるスペース(スロット)に対する界磁巻線12の占める割合である占積率を上げることができ、界磁巻線12の低抵抗化が図られる。そこで、回転子1を組み込んだ回転機100は、電源電圧一定の条件下で界磁電流値を増やすことが可能となり、回転子1の起磁力が上がり、高出力、高トルクを得ることができる。   In the rotor 1 configured as described above, the field winding 12 is wound around the tooth portions 23, 30, and 38 of the first to third divided iron cores 21, 28, and 36 before assembly. The space factor that is the ratio of the field winding 12 to the space (slot) formed between the tooth portions 23, 30, and 38 of the third divided iron cores 21, 28, and 36 can be increased. The resistance of 12 can be reduced. Therefore, the rotating machine 100 incorporating the rotor 1 can increase the field current value under the condition of a constant power supply voltage, the magnetomotive force of the rotor 1 can be increased, and high output and high torque can be obtained. .

第1および第2分割鉄心21,28が係合溝部25,32を断面T字状の係合突起5に嵌合させ、かつ締結部22,29を互いに当接させて周方向に配列されている。さらに、第3分割鉄心36が締結部37の膨出部37aを周方向に相対する締結部29の嵌合凹部33に嵌合させ、かつ嵌入部37bを第2空間9に嵌合させて第2分割鉄心28間に配設されている。そこで、第1乃至第3分割鉄心21,28,36は径方向外方への引き抜き不能となっており、回転子1の大径化に伴う遠心力の増加に耐える回転子鉄心構造を実現できる。   The first and second divided iron cores 21 and 28 are arranged in the circumferential direction with the engagement groove portions 25 and 32 fitted into the engagement protrusions 5 having a T-shaped cross section and the fastening portions 22 and 29 abutting each other. Yes. Furthermore, the third split iron core 36 fits the bulging portion 37a of the fastening portion 37 into the fitting recess 33 of the fastening portion 29 facing in the circumferential direction, and the fitting portion 37b is fitted into the second space 9 to make the second. It is arranged between the two-divided iron cores 28. Therefore, the first to third divided cores 21, 28, and 36 cannot be drawn outward in the radial direction, and a rotor core structure that can withstand an increase in centrifugal force accompanying an increase in the diameter of the rotor 1 can be realized. .

つぎに、このように構成された回転子1の組み立てについて図6および図7を参照しつつ説明する。
まず、界磁巻線12が巻装された第1分割鉄心21の締結部22を回転軸2の第1空間8に差し込む。そして、第1分割鉄心21の係合溝部25を係合突起5に外嵌状態に嵌め込みつつ、図6の(a)および図7の(a)に矢印で示されるように、係合突起5を案内にして第1分割鉄心21を周方向に移動させる。このようにして、9個の第1分割鉄心21を順次回転軸2に装着する。なお、図6の(b)では、3個の第1分割鉄心21が回転軸2に装着された状態を示している。
Next, assembly of the rotor 1 configured as described above will be described with reference to FIGS. 6 and 7.
First, the fastening portion 22 of the first split iron core 21 around which the field winding 12 is wound is inserted into the first space 8 of the rotating shaft 2. Then, while the engagement groove portion 25 of the first split iron core 21 is fitted into the engagement protrusion 5 in an externally fitted state, the engagement protrusion 5 as shown by the arrows in FIGS. 6A and 7A. The first split iron core 21 is moved in the circumferential direction with reference to. In this manner, the nine first divided iron cores 21 are sequentially attached to the rotary shaft 2. FIG. 6B shows a state in which the three first divided iron cores 21 are attached to the rotating shaft 2.

ついで、界磁巻線12が巻装された1個の第2分割鉄心28の締結部29を回転軸2の第1空間8に差し込む。そして、第2分割鉄心28の係合溝部32を係合突起5に外嵌状態に嵌め込みつつ、係合突起5を案内にして第2分割鉄心28を周方向の一側に移動させる。ついで、界磁巻線12が巻装された残る1個の第2分割鉄心28の締結部29を回転軸2の第1空間8に差し込む。そして、第2分割鉄心28の係合溝部32を係合突起5に外嵌状態に嵌め込みつつ、係合突起5を案内にして第2分割鉄心28を周方向の他側に移動させる。これにより、図6の(c)に示されるように、9個の第1分割鉄心21が軸心から放射状に延び、かつ周方向に互いに隣接して配列され、さらに2個の第2分割鉄心28が9個の第1分割鉄心21の周方向両側に隣接して配列される。   Next, the fastening portion 29 of one second split iron core 28 around which the field winding 12 is wound is inserted into the first space 8 of the rotating shaft 2. Then, the second split iron core 28 is moved to one side in the circumferential direction using the engagement protrusion 5 as a guide while fitting the engagement groove 32 of the second split iron core 28 into the engagement protrusion 5 in an externally fitted state. Next, the fastening portion 29 of the remaining one second divided iron core 28 around which the field winding 12 is wound is inserted into the first space 8 of the rotating shaft 2. Then, the second split iron core 28 is moved to the other side in the circumferential direction using the engagement protrusion 5 as a guide while fitting the engagement groove portion 32 of the second split iron core 28 into the engagement protrusion 5 in an outer fitting state. As a result, as shown in FIG. 6C, nine first divided cores 21 extend radially from the axial center and are arranged adjacent to each other in the circumferential direction, and further two second divided cores. 28 are arranged adjacent to both sides in the circumferential direction of the nine first divided iron cores 21.

ついで、界磁巻線12が巻装された第3分割鉄心36を、図7の(b)に示されるように、回転軸2の軸心方向に平行移動させ、締結部37を第1空間8に嵌め込み、かつ膨出部37aを締結部29の嵌合凹部33に嵌め込むと同時に、嵌入部37bを第2空間9に嵌め込み、回転子1が組み立てられる。このとき、締結部37の膨出部37aが第1空間8および嵌合凹部33に圧入され、かつ嵌入部37bが第2空間9に圧入されて、第3分割鉄心36の周方向および径方向の移動が規制されると同時に、第1および第2分割鉄心21,28の周方向の移動が阻止される。また、係合溝部25,32と係合突起5との嵌合により、第1および第2分割鉄心21,28の径方向および軸方向の移動が規制される。さらに、膨出部37aの第1空間8および嵌合凹部33への圧入力、および嵌入部37bの第2空間9への圧入力により、第3分割鉄心36の軸方向の抜き力が調整される。   Next, as shown in FIG. 7B, the third divided core 36 around which the field winding 12 is wound is translated in the axial direction of the rotary shaft 2, and the fastening portion 37 is moved to the first space. 8 and the bulging portion 37a is fitted into the fitting recess 33 of the fastening portion 29, and at the same time, the fitting portion 37b is fitted into the second space 9, and the rotor 1 is assembled. At this time, the bulging portion 37a of the fastening portion 37 is press-fitted into the first space 8 and the fitting concave portion 33, and the fitting portion 37b is press-fitted into the second space 9, so that the circumferential direction and the radial direction of the third divided core 36 are obtained. At the same time, the movement of the first and second split cores 21 and 28 in the circumferential direction is prevented. Further, the engagement between the engagement groove portions 25 and 32 and the engagement protrusion 5 restricts the movement of the first and second divided iron cores 21 and 28 in the radial direction and the axial direction. Further, the axial force of the third divided core 36 is adjusted by the pressure input to the first space 8 and the fitting recess 33 of the bulging portion 37a and the pressure input to the second space 9 of the fitting portion 37b. The

また、回転子1を分解するには、まず、膨出部37aの第1空間8および嵌合凹部33への圧入力および嵌入部37bの第2空間9への圧入力以上の抜き力で第3分割鉄心36を嵌合凹部33および第1および第2空間8,9から軸方向に抜き出す。ついで、第2および第1分割鉄心28,21をそれぞれ周方向に第1空間8まで移動させ、第1空間8から取り出す。これにより、第1乃至第3分割鉄心21,28,36を容易に分解することができる。   Further, in order to disassemble the rotor 1, first, the first force 8 is applied to the first space 8 and the fitting recess 33 of the bulging portion 37a and the drawing force is greater than the pressure input to the second space 9 of the fitting portion 37b. The three-piece iron core 36 is extracted from the fitting recess 33 and the first and second spaces 8 and 9 in the axial direction. Next, the second and first divided iron cores 28 and 21 are moved to the first space 8 in the circumferential direction, respectively, and are taken out from the first space 8. Thereby, the 1st thru | or 3rd division | segmentation iron cores 21, 28, and 36 can be disassembled easily.

ここで、第1乃至第3分割鉄心21,28,36と回転子1とを連結一体化して剛性を高める観点から、係合溝部25,32の内形形状を係合突起5の外形形状より僅かに小さく作製することが好ましく、膨出部37aおよび嵌入部37bの外形形状を嵌合凹部33および第1および第2空間8,9の内形形状より僅かに大きく作製することが好ましい。   Here, from the viewpoint of increasing rigidity by connecting and integrating the first to third divided iron cores 21, 28, 36 and the rotor 1, the inner shape of the engaging groove portions 25, 32 is more than the outer shape of the engaging protrusion 5. It is preferable that the outer shape of the bulging portion 37a and the fitting portion 37b is made slightly larger than the inner shape of the fitting concave portion 33 and the first and second spaces 8 and 9.

そこで、第1および第2分割鉄心21,28を回転軸2に組み付ける工程では、第1および第2分割鉄心21,28をマグネットワイヤ13の絶縁被膜を劣化させない程度の温度まで加熱して、回転軸2に組み付けることが好ましい。この焼き嵌めにより、僅かに小さい内形形状の係合溝部25,32を膨張させて、係合突起5に容易に嵌合できる。そして、第1および第2分割鉄心21,28の温度が常温に戻ると、係合溝部25,32の内径形状が元の形状にまで収縮して係合突起5に強固に固着され、剛性が高くなり、騒音や振動の発生が抑えられる。   Therefore, in the process of assembling the first and second divided iron cores 21 and 28 to the rotary shaft 2, the first and second divided iron cores 21 and 28 are heated to a temperature that does not deteriorate the insulating film of the magnet wire 13 and rotated. It is preferable to assemble to the shaft 2. By this shrink fitting, the engagement grooves 25 and 32 having a slightly smaller inner shape are expanded and can be easily fitted to the engagement protrusion 5. And when the temperature of the 1st and 2nd division | segmentation iron cores 21 and 28 returns to normal temperature, the internal-diameter shape of the engagement groove parts 25 and 32 will shrink | contract to an original shape, and it will adhere firmly to the engagement protrusion 5, and rigidity will be sufficient. Increases the noise and vibration.

また、第3分割鉄心36を回転軸2に組み付ける工程では、第3分割鉄心36を冷却して、回転軸2に組み付けることが好ましい。この冷やし嵌めにより、僅かに大きな外形形状の膨出部37aおよび嵌入部37bを収縮させて、嵌合凹部33および第1および第2空間8,9に容易に嵌合できる。そして、第3分割鉄心36の温度が常温に戻ると、膨出部37aおよび嵌入部37bの外形形状が元の状態にまで膨張して嵌合凹部33および第1および第2空間8,9に強固に固着され、剛性が高くなり、騒音や振動の発生が抑えられる。   In the step of assembling the third divided iron core 36 to the rotating shaft 2, it is preferable to cool the third divided iron core 36 and to assemble it to the rotating shaft 2. By this cold fitting, the bulging portion 37a and the fitting portion 37b having a slightly larger outer shape are contracted, and the fitting can be easily fitted into the fitting recess 33 and the first and second spaces 8 and 9. And when the temperature of the 3rd division | segmentation iron core 36 returns to normal temperature, the external shape of the bulging part 37a and the insertion part 37b will expand | swell to the original state, and it will be in the fitting recessed part 33 and the 1st and 2nd space 8,9. It is firmly fixed, increases its rigidity, and suppresses the generation of noise and vibration.

つぎに、この発明による分割鉄心と回転軸との係合構造における係合強度について図8を参照しつつ説明する。   Next, the engagement strength in the engagement structure between the split iron core and the rotating shaft according to the present invention will be described with reference to FIG.

図8はこの発明における分割鉄心が嵌合する回転軸の係合突起にかかる応力の計算パラメータを説明する断面図である。
図8において、回転軸110は、円柱状の軸部111と、軸部111の外周壁面に一体に形成された係合突起112と、を有する。係合突起112は、軸部111の外周壁面に突設された軸方向幅laを有するリング状の基部113と、基部113の先端に一体に形成された軸方向幅Lで径方向厚みhのリング状の突起部114と、を備え、軸部111の軸心を含む平面における断面がT字状になっている。但し、突起部114の軸方向幅Lは基部113の軸方向幅laより広い。
FIG. 8 is a cross-sectional view for explaining the calculation parameters of the stress applied to the engaging projection of the rotating shaft with which the split iron core is fitted in the present invention.
In FIG. 8, the rotating shaft 110 has a columnar shaft portion 111 and an engagement protrusion 112 formed integrally on the outer peripheral wall surface of the shaft portion 111. The engagement protrusion 112 includes a ring-shaped base 113 having an axial width la projecting from the outer peripheral wall surface of the shaft 111, and an axial width L integrally formed at the tip of the base 113 and having a radial thickness h. And a section in a plane including the axial center of the shaft portion 111 is T-shaped. However, the axial width L of the protrusion 114 is wider than the axial width la of the base 113.

ここで、回転軸110の係合突起112にかかる応力σは、等分布荷重をwとすると、式(1)で表される。
σ=w×(L−l×6/(8×h) ・・・式(1)
Here, the stress σ applied to the engaging protrusion 112 of the rotating shaft 110 is expressed by Expression (1), where w is an evenly distributed load.
σ = w × (L-l a) 2 × 6 / (8 × h 2) ··· Equation (1)

式(1)から、応力σは、突起部114の径方向厚みhが大きくなるほど、或いは突起部114の基部113からの軸方向延出長さ(L−la)が小さくなるほど、小さくなることがいえる。   From Equation (1), the stress σ decreases as the radial thickness h of the protrusion 114 increases or as the axial extension length (L-la) of the protrusion 114 from the base 113 decreases. I can say that.

従来の電動機では、回転子鉄心がティース毎に周方向に分割され、係合凸部および嵌合凹部が分割された各ティースに回転軸の軸方向に延設されているので、係合凸部および嵌合凹部の突片の周方向幅は狭いものとなり、所定の強度を得るためには軸方向長さを短くできない。このことは、遠心力の増大に伴い等分布荷重wが大きくなった場合には、係合凸部および嵌合凹部の突片の軸方向長さを短くして係合凸部および嵌合凹部の突片にかかる応力を小さくことができず、過大な応力が係合凸部および嵌合凹部の突片にかかることを意味する。その結果、従来の電動機の回転子構造では、大径の回転子にかかる大きな遠心力に耐えるに十分な係合強度が得られない。   In the conventional electric motor, the rotor core is divided in the circumferential direction for each tooth, and the engaging convex portion and the fitting concave portion are extended in the axial direction of the rotating shaft to each tooth. In addition, the circumferential width of the projecting piece of the fitting recess is narrow, and the axial length cannot be shortened in order to obtain a predetermined strength. This is because when the uniformly distributed load w increases with an increase in centrifugal force, the axial lengths of the projecting pieces of the engaging convex portion and the fitting concave portion are shortened to reduce the engagement convex portion and the fitting concave portion. This means that the stress applied to the projecting pieces cannot be reduced, and excessive stress is applied to the projecting pieces of the engaging convex part and the fitting concave part. As a result, in the conventional rotor structure of an electric motor, an engagement strength sufficient to withstand a large centrifugal force applied to a large-diameter rotor cannot be obtained.

本発明では、係合突起112を周方向に延設しているので、突起部114の基部113からの軸方向延出長さ(L−la)を小さくしても、所定の強度が得られる。また、構造上、突起部114の径方向厚みhを大きくすることが可能である。そこで、遠心力の増大に伴い等分布荷重wが大きくなった場合には、突起部114の基部113からの軸方向延出長さ(L−la)を小さくして、或いは突起部114の径方向厚みhを大きくして、突起部114にかかる応力を小さくことができ、過大な応力が突起部114にかかることを回避できる。その結果、本発明では、大径の回転子にかかる大きな遠心力に耐えるに十分な係合強度を得ることができる。   In the present invention, since the engagement protrusion 112 extends in the circumferential direction, a predetermined strength can be obtained even if the axial extension length (L-la) of the protrusion 114 from the base 113 is reduced. . In addition, it is possible to increase the radial thickness h of the protrusion 114 due to the structure. Therefore, when the evenly distributed load w increases as the centrifugal force increases, the axial extension length (L-la) of the protrusion 114 from the base 113 is reduced, or the diameter of the protrusion 114 is reduced. By increasing the directional thickness h, the stress applied to the protrusion 114 can be reduced, and it is possible to avoid applying excessive stress to the protrusion 114. As a result, in the present invention, an engagement strength sufficient to withstand a large centrifugal force applied to the large-diameter rotor can be obtained.

実施の形態1では、遠心力により第1乃至第3分割鉄心21,28,36に作用する径方向への引き抜き力は、主に係合溝部25,32と係合突起5との嵌合部で受けられている。当該嵌合部はT字状に構成されていることから、突起部6および基部7が図7のモデルにおける突起部114および基部113に相当する。そこで、この実施の形態1においても、式(1)から突起部6の基部7からの軸方向延出長さを短くする、もしくは突起部6の径方向厚さを厚くすることで、遠心力に対する十分な結合強度を得ることができ、大型の回転機に適用できる。   In the first embodiment, the pulling force in the radial direction acting on the first to third divided iron cores 21, 28, 36 due to the centrifugal force is mainly the fitting portion between the engagement groove portions 25, 32 and the engagement protrusion 5. It has been received at. Since the fitting portion is configured in a T shape, the protrusion 6 and the base 7 correspond to the protrusion 114 and the base 113 in the model of FIG. Therefore, also in the first embodiment, the centrifugal force is reduced by shortening the axial extension length of the protrusion 6 from the base 7 or increasing the radial thickness of the protrusion 6 from the formula (1). It is possible to obtain a sufficient bonding strength with respect to the above, and it can be applied to a large rotating machine.

なお、上記実施の形態1では、1つの断面T字状の係合突起5が第2軸部4に突設されているものとしているが、係合突起5の形状および配置はこれに限定されるものではない。例えば、図9に示されるように、2つの断面T字状の係合突起5を第2軸部4に軸方向に離間して2段に突設してもよい。この場合、2つの係合溝部を軸方向に離間して第1および第2分割鉄心の締結部に穿設することになる。また、図10に示されるように、断面T字状の係合突起を径方向に2段に重ねて第2軸部に突設してもよい。この場合、2つの係合溝部を径方向に2段に重ねて第1および第2ティースの締結部に穿設することになる。   In the first embodiment, it is assumed that one engagement protrusion 5 having a T-shaped cross section is provided on the second shaft portion 4. However, the shape and arrangement of the engagement protrusion 5 are limited to this. It is not something. For example, as shown in FIG. 9, two engaging protrusions 5 having a T-shaped cross section may be provided in two steps so as to be spaced apart from each other in the second shaft portion 4 in the axial direction. In this case, the two engaging groove portions are formed in the fastening portions of the first and second split iron cores while being separated in the axial direction. In addition, as shown in FIG. 10, engagement protrusions having a T-shaped cross section may be provided to protrude from the second shaft portion in two stages in the radial direction. In this case, the two engaging groove portions are overlapped in two stages in the radial direction and drilled in the fastening portions of the first and second teeth.

また、上記実施の形態1では、係合突起5が断面T字状に形成されているものとしているが、係合突起の断面形状は、これに限定されるものではなく、嵌合された締結部の周方向の移動を可能に、かつ径方向および軸方向の移動を規制できればよく、例えば軸方向長さが径方向外方に漸次長くなる断面台形でもよい。なお、断面台形の係合突起の場合、式(1)におけるlaが断面台形の頂辺(短辺)の長さに対応し、Lが底辺(長辺)の長さに対応する。   In the first embodiment, the engagement protrusion 5 is formed in a T-shaped cross section. However, the cross-sectional shape of the engagement protrusion is not limited to this, and the engagement is fastened. It is only necessary to be able to move the portion in the circumferential direction and to restrict movement in the radial direction and the axial direction. For example, a trapezoidal cross section in which the axial length gradually increases outward in the radial direction may be used. In the case of a trapezoidal engagement protrusion, la in equation (1) corresponds to the length of the top (short side) of the cross-section trapezoid, and L corresponds to the length of the bottom (long side).

また、上記実施の形態1では、素線としての導体の表面に絶縁層を被覆形成したマグネットワイヤをティース部に巻回して界磁巻線を作製するものとしているが、素線として導体の表面に絶縁層を被覆し、その絶縁層の表面に融着層をさらに被覆形成した自己融着線を用いてティース部に巻回した後、素線同士を自己融着して一体化するようにしてもよい。この場合、界磁巻線を構成する素線のばらつきがなく、かつ遠心力による界磁巻線の移動も防止できる。
また、上記実施の形態1では、回転子鉄心10が周方向に12分割されているものとしているが、回転子鉄心10の分割数は12に限定されるものではなく、ティース部毎に分割されていればよい。
In the first embodiment, a field wire is manufactured by winding a magnet wire, in which an insulating layer is formed on the surface of a conductor as a strand, around a tooth portion. After coating the insulating layer on the surface of the insulating layer and winding it around the teeth using a self-bonding wire with a further fusion layer formed on the surface of the insulating layer, the wires are self-fused and integrated. May be. In this case, there is no variation in the strands constituting the field winding, and movement of the field winding due to centrifugal force can be prevented.
Moreover, in the said Embodiment 1, although the rotor core 10 shall be divided into 12 in the circumferential direction, the division | segmentation number of the rotor core 10 is not limited to 12, It divides | segments for every teeth part. It only has to be.

実施の形態2.
上記実施の形態1では、素線として断面円形の導体に絶縁被膜を被覆したマグネットワイヤ13を用いるものとしているが、この実施の形態2では、図11に示されるように、素線として断面矩形の導体に絶縁被膜を被覆したマグネットワイヤ14を用いるものとしている。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 2. FIG.
In the first embodiment, the magnet wire 13 in which a conductor having a circular cross section is covered with an insulating film is used as the element wire. In the second embodiment, as shown in FIG. A magnet wire 14 in which an insulating film is coated on the conductor is used.
Other configurations are the same as those in the first embodiment.

この実施の形態2では、断面矩形のマグネットワイヤ13を用いているので、マグネットワイヤ14をティース部23,30,38に隙間無く、整然と巻装することができる。これにより、第1乃至第3分割鉄心21,28,36のティース部23,30,38間に形成されるスペース(スロット)に対する界磁巻線12Aの占める割合である占積率を一層高めることができ、高出力化、高トルク化を図ることができる。   In the second embodiment, since the magnet wire 13 having a rectangular cross section is used, the magnet wire 14 can be neatly wound around the teeth portions 23, 30 and 38 without any gap. Thereby, the space factor which is the ratio which the field winding 12A occupies with respect to the space (slot) formed between the teeth parts 23, 30, and 38 of the 1st thru | or 3rd division | segmentation iron cores 21, 28, 36 is raised further. Therefore, high output and high torque can be achieved.

実施の形態3.
この実施の形態3では、図12に示されるように、第1乃至第3分割鉄心21,28,36の径方向最外周面から突出しないように、永久磁石15を第1乃至第3分割鉄心21,28,36の径方向最外周面に固着している。そして、周方向に隣り合う永久磁石15は、互いに極性が異なるように着磁されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 3 FIG.
In the third embodiment, as shown in FIG. 12, the permanent magnet 15 is disposed in the first to third divided cores so as not to protrude from the radially outermost peripheral surfaces of the first to third divided cores 21, 28, and 36. It adheres to the outermost circumferential surface in the radial direction of 21, 28, 36. The permanent magnets 15 adjacent in the circumferential direction are magnetized so as to have different polarities.
Other configurations are the same as those in the first embodiment.

この実施の形態3では、永久磁石15の磁束が界磁巻線12による磁束に付加されるので、回転子の起磁力が増加し、高出力化、高トルク化を図ることができる。
ここで、永久磁石15としては、例えばネオジウム、サマリウムなどの希土類磁石元素を含む材料で作製された希土類磁石が用いられる。
In the third embodiment, since the magnetic flux of the permanent magnet 15 is added to the magnetic flux generated by the field winding 12, the magnetomotive force of the rotor is increased, so that high output and high torque can be achieved.
Here, as the permanent magnet 15, for example, a rare earth magnet made of a material containing a rare earth magnet element such as neodymium or samarium is used.

実施の形態4.
この実施の形態4では、図13に示されるように、第1乃至第3分割鉄心21,28,36の締結部22,29,37の周方向側面にシム装着溝16を凹設し、回転子の組立時に、シム17をシム装着溝16に装着している。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 4 FIG.
In the fourth embodiment, as shown in FIG. 13, the shim mounting grooves 16 are recessed in the circumferential side surfaces of the fastening portions 22, 29, 37 of the first to third divided iron cores 21, 28, 36, and rotated. When assembling the child, the shim 17 is mounted in the shim mounting groove 16.
Other configurations are the same as those in the first embodiment.

この実施の形態4では、シム17が締結部22,29,37間に介装されているので、シム17の厚みを調整することで、第1乃至第3分割鉄心21,28,36の加工精度のバラツキに起因する第1乃至第3分割鉄心21,28,36の配列ピッチのアンバランスを解消できる。これにより、第1乃至第3分割鉄心21,28,36の配列ピッチのアンバランスによる騒音や振動の発生を抑えることができる。   In the fourth embodiment, since the shim 17 is interposed between the fastening portions 22, 29, and 37, the first to third divided cores 21, 28, and 36 are processed by adjusting the thickness of the shim 17. It is possible to eliminate an imbalance in the arrangement pitch of the first to third divided iron cores 21, 28, and 36 due to variations in accuracy. Thereby, generation | occurrence | production of the noise and vibration by the imbalance of the arrangement pitch of the 1st thru | or 3rd division | segmentation iron cores 21,28,36 can be suppressed.

ここで、シム17は必ずしも隣接する締結部22,29,37間の全てに介装させる必要はなく、第1乃至第3分割鉄心21,28,36の加工精度のバラツキを考慮してシム17の介装数を調整すればよい。これにより、シム17の介装数が少なくなり、低コスト化が図られる。また、第1乃至第3分割鉄心21,28,36の配列ピッチのアンバランスを解消させる観点から、シム17を等角度ピッチに介装することが好ましい。これにより、騒音や振動の発生が抑制される。   Here, the shim 17 does not necessarily need to be interposed between the adjacent fastening portions 22, 29, and 37, and the shim 17 is considered in consideration of variations in processing accuracy of the first to third divided iron cores 21, 28, and 36. The number of interventions may be adjusted. As a result, the number of intervening shims 17 is reduced, and the cost can be reduced. Moreover, it is preferable to interpose the shim 17 at an equiangular pitch from the viewpoint of eliminating the imbalance in the arrangement pitch of the first to third divided cores 21, 28, and 36. Thereby, generation | occurrence | production of a noise and a vibration is suppressed.

また、固定子との間での磁気騒音を低減する観点から、シム17の介装数を、回転子鉄心のティース部の総数の因数で、かつ固定子鉄心のスロットの総数の因数でない数とすることが、好ましい。例えば、回転子鉄心が12個のティース部を有し、固定子鉄心が9個のスロットを有する場合、シム17の介装数は、2、4、6、12となる。
ここで、シムの介装数をスロット数の因数でない数とすることについて説明する。
回転子のバランスを考えると、回転鉄心の総数の因数(1を除く)で等間隔にシムを入れる必要がある。磁気騒音の発生要因となるトルク脈動は、一般的に、スロット数と極数の最小公倍数で発生する。極数というのは固定子側からみると、回転子が発生する磁束の変化の数といえる。それと、同様にシムを入れることにより、回転子鉄心と隣り合う回転子鉄心との幅が異なる箇所が存在するため、回転子周方向に磁束の変化が発生する。シムの介装数としてスロット数の因数である数を選択すると、スロット数との最小公倍数が小さくなることを意味する。そのため、シムの介装数は、スロット数の因数でない数であることが望ましい。
Further, from the viewpoint of reducing magnetic noise between the stator and the stator, the number of shims 17 is a factor of the total number of teeth portions of the rotor core and not a factor of the total number of slots of the stator core. It is preferable to do. For example, when the rotor core has twelve teeth portions and the stator core has nine slots, the number of shims 17 interposed is 2, 4, 6, 12.
Here, a description will be given of setting the number of shim interventions to a number that is not a factor of the slot number.
Considering the balance of the rotor, it is necessary to place shims at regular intervals with a factor (excluding 1) of the total number of rotating cores. Torque pulsation, which is a cause of magnetic noise, generally occurs at the least common multiple of the number of slots and the number of poles. From the stator side, the number of poles can be said to be the number of magnetic flux changes generated by the rotor. In addition, when a shim is inserted in the same manner, there are places where the widths of the rotor core and the adjacent rotor core are different, so that a change in magnetic flux occurs in the circumferential direction of the rotor. If a number that is a factor of the number of slots is selected as the number of shim interposed, it means that the least common multiple with the number of slots is reduced. Therefore, it is desirable that the number of shim interventions is not a factor of the number of slots.

実施の形態5.
この実施の形態5では、図14に示されるように、周方向に隣り合う鍔部24,31,39間の隙間dが界磁巻線12を構成するマグネットワイヤ13の線径より狭くなるように、第1乃至第3分割鉄心21,28,36を作製している。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 5 FIG.
In the fifth embodiment, as shown in FIG. 14, the gap d between the flange portions 24, 31, 39 adjacent in the circumferential direction is narrower than the wire diameter of the magnet wire 13 constituting the field winding 12. In addition, the first to third divided iron cores 21, 28, and 36 are manufactured.
Other configurations are the same as those in the first embodiment.

この実施の形態5によれば、鍔部24,31,39間の隙間dが界磁巻線12を構成するマグネットワイヤ13の線径より狭いので、遠心力が界磁巻線12に作用しても、界磁巻線12の飛び出しが防止できる。これにより、界磁巻線12の保持機構が不要となり、その分低コスト化が図られる。   According to the fifth embodiment, since the gap d between the flanges 24, 31, 39 is narrower than the wire diameter of the magnet wire 13 constituting the field winding 12, the centrifugal force acts on the field winding 12. However, the field winding 12 can be prevented from popping out. Thereby, the holding mechanism of the field winding 12 becomes unnecessary, and the cost can be reduced accordingly.

この発明の実施の形態1に係る回転機を軸方向一側から見た正面図である。It is the front view which looked at the rotary machine which concerns on Embodiment 1 of this invention from the axial direction one side. この発明の実施の形態1に係る回転機の回転子における回転軸の構成を説明する図である。It is a figure explaining the structure of the rotating shaft in the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転機の回転子における第1ティースの構成を説明する図である。It is a figure explaining the structure of the 1st tooth | gear in the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転機の回転子における第2ティースの構成を説明する図である。It is a figure explaining the structure of the 2nd teeth in the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転機の回転子における第3ティースの構成を説明する図である。It is a figure explaining the structure of the 3rd teeth in the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転機の回転子の組み立て工程を説明する正面図である。It is a front view explaining the assembly process of the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転機の回転子の組み立て工程を説明する断面図である。It is sectional drawing explaining the assembly process of the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明における分割鉄心が嵌合する回転軸の係合突起にかかる応力の計算パラメータを説明する断面図である。It is sectional drawing explaining the calculation parameter of the stress concerning the engaging protrusion of the rotating shaft which the division | segmentation iron core fits in this invention. この発明の実施の形態1に係る回転機の回転子に適用される回転軸の実施態様を示す断面図である。It is sectional drawing which shows the aspect of the rotating shaft applied to the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転機の回転子に適用される回転軸の他の実施態様を示す断面図である。It is sectional drawing which shows the other embodiment of the rotating shaft applied to the rotor of the rotary machine which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る回転機の回転子の要部を示す正面図である。It is a front view which shows the principal part of the rotor of the rotary machine which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る回転機の回転子の要部を示す正面図である。It is a front view which shows the principal part of the rotor of the rotary machine which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る回転機の回転子の要部を示す正面図である。It is a front view which shows the principal part of the rotor of the rotary machine which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る回転機の回転子の要部を示す正面図である。It is a front view which shows the principal part of the rotor of the rotary machine which concerns on Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 回転子、2 回転軸、3 第1軸部、4 第2軸部、5 係合突起、8 第1空間、9 第2空間、10 回転子鉄心、11 基部、12,12A 界磁巻線、13,14 マグネットワイヤ(素線)、15 永久磁石、17 シム、21 第1分割鉄心、22 締結部、23 ティース部、24 鍔部、25 係合溝部、28 第2分割鉄心、29 締結部、30 ティース部、31 鍔部、32 係合溝部、33 嵌合凹部、36 第3分割鉄心、37 締結部、37a 膨出部、37b 嵌入部、38 ティース部、39 鍔部、40 固定子、41 固定子鉄心、42 スロット、43 固定子巻線。   DESCRIPTION OF SYMBOLS 1 Rotor, 2 Rotating shaft, 3 1st axis part, 4 2nd axis part, 5 Engagement protrusion, 8 1st space, 9 2nd space, 10 Rotor core, 11 Base, 12, 12A Field winding , 13, 14 Magnet wire (elementary wire), 15 Permanent magnet, 17 Shim, 21 1st split iron core, 22 Fastening part, 23 Teeth part, 24 collar part, 25 Engaging groove part, 28 2nd split iron core, 29 Fastening part , 30 teeth part, 31 collar part, 32 engagement groove part, 33 fitting recess part, 36 third divided core, 37 fastening part, 37a bulging part, 37b fitting part, 38 teeth part, 39 collar part, 40 stator, 41 Stator core, 42 slots, 43 stator windings.

Claims (14)

回転軸と、上記回転軸に固着された基部および該基部から放射状に、かつ等角度間隔で延設された複数のティース部を有する回転子鉄心と、上記複数のティース部のそれぞれに巻装された界磁巻線と、を有する回転子と、
内径側に開口するスロットが周方向に複数配設され、上記回転子鉄心を囲繞するように配置された円筒状の固定子鉄心と、上記固定子鉄心に巻装された固定子巻線と、を有する固定子と、を備えた回転機において、
上記回転軸は、円柱状の軸部、および該軸部から一体に径方向外方に延出し、かつ周方向に延設され、周方向幅が径方向内方に漸次狭くなる楔状の第1空間が軸方向に穿設された係合突起から構成され、
上記回転子鉄心は、上記ティース部、および上記基部を上記ティース部毎に周方向に分割された締結部からなる複数の分割鉄心から構成され、
上記複数の分割鉄心のなかの1つの分割鉄心の締結部の内径側が、上記第1空間の内形形状に適合する外形形状に作製され、
上記複数の分割鉄心の残る分割鉄心の締結部の内径側が、上記第1空間の内形形状より小さい外形形状に作製され、
上記係合突起に外嵌状態に嵌合される係合溝部が、上記残る分割鉄心のそれぞれの締結部に周方向に穿設され、
上記残る分割鉄心が、軸方向および径方向の移動を規制され、かつ周方向に移動して、上記係合溝部を上記係合突起に嵌合させて、上記軸部の外周面に圧接状態で周方向に隣接して配設され、
上記1つの分割鉄心が、径方向および周方向の移動を規制され、かつ軸方向に移動して、上記締結部の内径側を、上記第1空間に嵌合させ、かつ上記残る分割鉄心の周方向両端に位置する分割鉄心の締結部に形成された嵌合凹部に嵌合させて、上記残る分割鉄心の周方向両端に位置する分割鉄心間に配設されていることを特徴とする回転機。
A rotor core having a rotating shaft, a base fixed to the rotating shaft, and a plurality of teeth extending radially from the base at equal angular intervals, and wound around each of the plurality of teeth. A rotor having a magnetic field winding;
A plurality of slots that are open on the inner diameter side in the circumferential direction, a cylindrical stator core disposed so as to surround the rotor core, a stator winding wound around the stator core, A rotating machine comprising a stator having
The rotating shaft includes a cylindrical shaft portion, and a wedge-shaped first portion that extends radially outward from the shaft portion, extends in the circumferential direction, and has a circumferential width gradually narrowing radially inward. The space is composed of engaging protrusions drilled in the axial direction,
The rotor core is composed of a plurality of split cores composed of fastening portions obtained by dividing the teeth portion and the base portion in the circumferential direction for each tooth portion,
The inner diameter side of the fastening portion of one of the plurality of divided iron cores is produced in an outer shape that matches the inner shape of the first space,
The inner diameter side of the fastening portion of the split core where the plurality of split cores remain is produced in an outer shape smaller than the inner shape of the first space,
Engaging groove portions that are fitted to the engaging protrusions in an outer fitting state are formed in the circumferential direction in the respective fastening portions of the remaining split iron cores,
The remaining split iron core is restricted in movement in the axial direction and the radial direction and moves in the circumferential direction, and the engagement groove portion is fitted into the engagement protrusion, and is pressed against the outer peripheral surface of the shaft portion. Arranged adjacent to the circumferential direction,
The one split iron core is restricted from moving in the radial direction and the circumferential direction and moves in the axial direction so that the inner diameter side of the fastening portion is fitted into the first space, and the periphery of the remaining split iron core Rotating machine characterized by being fitted between fitting recesses formed in fastening portions of split cores located at both ends in the direction and disposed between split cores located at both ends in the circumferential direction of the remaining split core .
上記第1空間の径方向内端の周方向幅より広い周方向幅を有する第2空間が上記第1空間の径方向内端に連結されるように上記軸部に軸方向に延設され、
上記第2空間に内嵌状態に嵌入された嵌入突起が上記1つの分割鉄心の締結部の径方向内端に一体に突設されていることを特徴とする請求項1記載の回転機。
A second space having a circumferential width wider than a circumferential width of a radially inner end of the first space is extended in the axial direction to the shaft portion so as to be coupled to a radially inner end of the first space;
2. The rotating machine according to claim 1, wherein an insertion protrusion that is fitted in the second space in an internally fitted state is integrally protruded from a radially inner end of a fastening portion of the one divided core.
上記係合突起および係合溝部が軸方向に多段に形成されていることを特徴とする請求項1又は請求項2記載の回転機。   The rotating machine according to claim 1 or 2, wherein the engaging protrusion and the engaging groove are formed in multiple stages in the axial direction. 上記係合突起および係合溝部が径方向に多段に形成されていることを特徴とする請求項1又は請求項2記載の回転機。   The rotating machine according to claim 1 or 2, wherein the engagement protrusion and the engagement groove are formed in multiple stages in the radial direction. 上記界磁巻線の素線が自己融着巻線であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の回転機。   The rotating machine according to any one of claims 1 to 4, wherein the element wire of the field winding is a self-bonding winding. 上記界磁巻線の素線が断面矩形の巻線であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の回転機。   6. The rotating machine according to claim 1, wherein the element wire of the field winding is a winding having a rectangular cross section. 上記回転子鉄心の周方向に隣り合う上記ティース部の径方向外周部の周方向隙間が上記界磁巻線の素線の線径より狭いことを特徴とする請求項1乃至請求項4のいずれか1項に記載の回転機。   The circumferential gap of the radial outer peripheral part of the tooth part adjacent to the circumferential direction of the rotor core is narrower than the wire diameter of the element wire of the field winding. A rotating machine according to claim 1. 永久磁石が上記複数の分割鉄心のそれぞれの径方向外周面に装着されていることを特徴とする請求項1乃至請求項7のいずれか1項に記載の回転機。   The rotating machine according to any one of claims 1 to 7, wherein a permanent magnet is attached to each of the radially outer peripheral surfaces of the plurality of divided iron cores. シムが周方向に隣り合う上記締結部間の少なくとも1つに介装されていることを特徴とする請求項1乃至請求項8のいずれか1項に記載の回転機。   The rotating machine according to any one of claims 1 to 8, wherein a shim is interposed in at least one of the fastening portions adjacent in the circumferential direction. 上記シムが介装される周方向に隣り合う上記締結部間の数は、上記ティース部の総数の因数であり、かつ上記スロットの総数の因数でないことを特徴とする請求項9記載の回転機。   10. The rotating machine according to claim 9, wherein the number between the fastening portions adjacent to each other in the circumferential direction in which the shim is interposed is a factor of the total number of the tooth portions and is not a factor of the total number of the slots. . 上記シムが等角度ピッチで介装されていることを特徴とする請求項9又は請求項10記載の回転機。   11. The rotating machine according to claim 9, wherein the shims are interposed at an equiangular pitch. 請求項1乃至請求項11のいずれか1項に記載の回転機の製造方法において、
上記残りの分割鉄心のそれぞれの分割鉄心の締結部の内径側を上記回転軸の上記第1空間内に位置させ、ついで上記係合溝部を上記係合突起に嵌合させつつ周方向に移動させて、上記回転軸に組み付ける第1工程と、
上記1つの分割鉄心の締結部を軸方向に移動させ、上記第1空間および上記残りの分割鉄心の周方向両端の分割鉄心の締結部の上記嵌合凹部に嵌合させて、上記回転軸に組み付ける第2工程と、を備えることを特徴とする回転機の製造方法。
In the manufacturing method of the rotating machine according to any one of claims 1 to 11,
The inner diameter side of the fastening portion of each of the remaining split cores is positioned in the first space of the rotating shaft, and then moved in the circumferential direction while fitting the engaging groove with the engaging protrusion. A first step of assembling the rotary shaft;
The fastening portion of the one split iron core is moved in the axial direction, and is fitted into the fitting recesses of the fastening portions of the split cores at both ends in the circumferential direction of the first space and the remaining split cores. And a second step of assembling the rotating machine.
上記第1工程において、上記残りの分割鉄心がそれぞれ加熱された状態で上記回転軸に組み付けられることを特徴とする請求項12記載の回転機の製造方法。   13. The method of manufacturing a rotating machine according to claim 12, wherein in the first step, the remaining divided cores are assembled to the rotating shaft in a heated state. 上記第2工程において、上記1つの分割鉄心が冷却された状態で上記回転軸に組み付けられることを特徴とする請求項12記載の回転機の製造方法。   13. The method of manufacturing a rotating machine according to claim 12, wherein in the second step, the one split iron core is assembled to the rotating shaft in a cooled state.
JP2007266619A 2007-10-12 2007-10-12 Rotary machine and manufacturing method thereof Pending JP2009100490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266619A JP2009100490A (en) 2007-10-12 2007-10-12 Rotary machine and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266619A JP2009100490A (en) 2007-10-12 2007-10-12 Rotary machine and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009100490A true JP2009100490A (en) 2009-05-07

Family

ID=40703005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266619A Pending JP2009100490A (en) 2007-10-12 2007-10-12 Rotary machine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009100490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558349B1 (en) * 2013-05-20 2015-10-08 현대자동차 주식회사 Rotor structure of drive motor
CN112152365A (en) * 2019-06-28 2020-12-29 日本电产株式会社 Motor with a stator having a stator core
CN112600371A (en) * 2020-12-18 2021-04-02 山东理工大学 Production method of locking ring type modular double-excitation driving motor rotor
DE102021208413A1 (en) 2021-08-03 2023-02-09 Mahle International Gmbh Shaft for an electrical machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558349B1 (en) * 2013-05-20 2015-10-08 현대자동차 주식회사 Rotor structure of drive motor
CN112152365A (en) * 2019-06-28 2020-12-29 日本电产株式会社 Motor with a stator having a stator core
CN112152365B (en) * 2019-06-28 2023-03-10 日本电产株式会社 Motor
CN112600371A (en) * 2020-12-18 2021-04-02 山东理工大学 Production method of locking ring type modular double-excitation driving motor rotor
CN112600371B (en) * 2020-12-18 2022-06-21 山东理工大学 Production method of locking ring type modular double-excitation driving motor rotor
DE102021208413A1 (en) 2021-08-03 2023-02-09 Mahle International Gmbh Shaft for an electrical machine

Similar Documents

Publication Publication Date Title
US8334632B2 (en) Stator for a rotating electric machine and rotating electric machine
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
US8760027B2 (en) Stator
JP4286829B2 (en) Manufacturing method of rotating machine
US10333360B2 (en) Iron core member with divided yoke and tooth portions with V-shaped end joint portions
JP6576549B2 (en) Armature manufacturing method, rotating electrical machine manufacturing method, and armature manufacturing apparatus
WO2011007694A1 (en) Permanent-magnet type synchronous motor
JP5496154B2 (en) Outer rotor type stator structure
JP6444497B2 (en) Rotating electric machine and manufacturing method thereof
JP5955451B2 (en) Embedded magnet type rotor, embedded magnet type rotating electrical machine, and manufacturing method of embedded magnet type rotor
JP4297929B2 (en) Motor and motor manufacturing method
US20180351417A1 (en) Rotating electric machine stator, rotating electric machine, and method for manufacturing rotating electric machine stator
EP3166206B1 (en) Electric motor
JP2010115108A (en) Electric motor
CN114128091A (en) Coil, stator, and motor
JP6143076B2 (en) Superconducting rotating electrical machine stator
JP2009100490A (en) Rotary machine and manufacturing method thereof
CN114175464A (en) Electric motor
JP4386909B2 (en) motor
WO2024000243A1 (en) Segmented stator core, motor, and method for manufacturing stator assembly of motor
JP5665362B2 (en) Rotating electric machine
JP2007181259A (en) Brushless motor
JP5109737B2 (en) Method for manufacturing split stator core
JP5496159B2 (en) Cylindrical linear motor and winding method of stator coil of cylindrical linear motor
WO2019146499A1 (en) Stator of dynamo-electric machine and method for manufacturing stator of dynamo-electric machine