JP2009224538A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2009224538A
JP2009224538A JP2008067151A JP2008067151A JP2009224538A JP 2009224538 A JP2009224538 A JP 2009224538A JP 2008067151 A JP2008067151 A JP 2008067151A JP 2008067151 A JP2008067151 A JP 2008067151A JP 2009224538 A JP2009224538 A JP 2009224538A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor element
light
refractive index
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067151A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kobayashi
良貴 小林
Masahiro Fukuda
福田  匡広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2008067151A priority Critical patent/JP2009224538A/en
Publication of JP2009224538A publication Critical patent/JP2009224538A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device, wherein high luminance is attained by reducing reflected light on a boundary surface between a compound semiconductor element and a light-transmissive sealing material so as to improve light extraction efficiency, and deterioration, such as discoloration, of the electrode surface is prevented by suppressing reaching, to an electrode surface, of an oxidative gas and sulfur from air passing through the light-transmissive sealing material so as to have a longer life. <P>SOLUTION: After the compound semiconductor element is mounted on an electrode, the compound semiconductor element is electrically connected by using wire bonding etc. Then a gas barrier type transparent thin film layer which has a refractive index smaller than the refractive index of the compound semiconductor element and larger than the refractive index of the light-transmissive sealing material is formed on the compound semiconductor element and electrode by using vacuum thin-film formation technique such as sputtering, CVD, etc. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、化合物半導体装置に関し、特に、劣化防止に伴う長寿命化、及び光取り
出し効率向上に関する。
The present invention relates to a compound semiconductor device, and in particular, relates to a long life accompanying prevention of deterioration and an improvement in light extraction efficiency.

従来の半導体発光装置の断面図を図3に示す。       A cross-sectional view of a conventional semiconductor light emitting device is shown in FIG.

図3は表面実装型の半導体発光装置で、セラミックや樹脂等で成形した凹部の中に
化合物半導体素子13を実装し、凹部にエポキシやシリコーン等の透光性樹脂材料11を
封入する。凹部内側の面は反射板12の機能を有し、上方に広がるように傾斜を持たせ
て指向性を高めている。
FIG. 3 shows a surface-mount type semiconductor light emitting device in which a compound semiconductor element 13 is mounted in a recess formed of ceramic or resin, and a light-transmitting resin material 11 such as epoxy or silicone is sealed in the recess. The inner surface of the recess has the function of the reflecting plate 12 and is inclined so as to spread upward to enhance directivity.

白色光を得る場合、透光性樹脂材料11の中に蛍光物質を分散させる。       In order to obtain white light, a fluorescent substance is dispersed in the translucent resin material 11.

入出力電極や化合物半導体素子を搭載する電極14は、樹脂基板の場合には銅合金に
金めっきや銀めっきし、セラミック基板の場合にはタングステンやモリブデンに金め
っきや銀めっきを施す。
The electrode 14 on which the input / output electrodes and the compound semiconductor element are mounted is plated with gold or silver on a copper alloy in the case of a resin substrate, and is plated with gold or silver on tungsten or molybdenum in the case of a ceramic substrate.

しかし、透光性樹脂材料11は空気を透過しやすい為、空気中の酸化性ガスや硫黄が
銀めっき上に到達すると、変色をきたしその性能が劣化してしまうことが知られてい
る。
However, since the translucent resin material 11 is easy to transmit air, it is known that when an oxidizing gas or sulfur in the air reaches the silver plating, it causes discoloration and deteriorates its performance.

また、化合物半導体素子13の屈折率は、例えば、GaAsやGaAlAs等の屈折率は約
3.5、GaNでも2.5程度といずれも高屈折率であるが、その反面透光性樹脂材料11の
屈折率は約1.4であるのでその屈折率差は必然的に大きくなってしまい、化合物半導
体素子13と透光性樹脂材料11との境界面において入射光の一部が反射するという、い
わゆるフレネル損失が生じてしまう。試みに、屈折率の媒質(化合物半導体素子13) から屈折率の媒質(透光性樹脂材料11)に垂直光が進む場合の強度反射率を計算する と、約18(%)となる。
In addition, the refractive index of the compound semiconductor element 13 is approximately the refractive index of GaAs, GaAlAs, etc.
Both 3.5 and GaN have a high refractive index of about 2.5, but on the other hand, the translucent resin material 11
Since the refractive index is about 1.4, the difference in refractive index inevitably increases, and the compound semiconductor
Part of the incident light is reflected at the boundary surface between the body element 13 and the translucent resin material 11.
A so-called Fresnel loss will occur. In an attempt, when calculating the intensity reflectance when vertical light travels from the refractive index medium (compound semiconductor element 13) to the refractive index medium (translucent resin material 11), it is about 18 (%).

加えて、屈折率が大きい媒質から小さい媒質に光が入射する場合、その境界面で光
が全て反射されるという、いわゆる全反射が起こる。前述の場合の臨界角は約24度で
あり、境界面の法線方向に対してこの角度以上で入射する光は全反射を起こし、外部
に取り出すことが出来なくなる。
In addition, when light enters a small medium from a medium having a large refractive index, so-called total reflection occurs in which all the light is reflected at the boundary surface. In the above case, the critical angle is about 24 degrees, and light incident above this angle with respect to the normal direction of the boundary surface undergoes total reflection and cannot be extracted outside.

さらに、化合物半導体素子13として、例えば青色光を発するようなものでは、無色
透明なサファイヤ基板上や透光性の窒化ガリウム基板上に窒化ガリウム化合物を複数
積層し、その積層構造の工夫により発光層を形成し、電圧を印加することで発光層か
ら発光させるような素子構造となっている。このように、発光層を形成する為に用い
られる基板材料が透光性である為に、発光層からの光が化合物半導体素子13の基板内
を透過し、化合物半導体素子13の裏面側に出射する光も存在する為、このような光を
半導体発光装置の前面に出射することは、高輝度化を図る為には欠かせない。
Further, as the compound semiconductor element 13 that emits blue light, for example, a plurality of gallium nitride compounds are stacked on a colorless and transparent sapphire substrate or a light-transmitting gallium nitride substrate, and the light emitting layer is devised by devising the stacked structure. The element structure is such that light is emitted from the light emitting layer by applying a voltage. Thus, since the substrate material used to form the light emitting layer is translucent, light from the light emitting layer is transmitted through the substrate of the compound semiconductor element 13 and emitted to the back side of the compound semiconductor element 13. Therefore, emitting such light to the front surface of the semiconductor light emitting device is indispensable for achieving high brightness.

この問題点を改善する方法として、パッケージ基板の上に光反射層、透明絶縁層を
順次積層し、透明絶縁層上に化合物半導体素子を搭載して、搭載部の周辺からパッケ
ージ基板の側面または下面にかけて配線導体を形成する手法が提案されている(たと
えば、特許文献1参照。)。
特開2005-244152号公報(6頁)
As a method for solving this problem, a light reflecting layer and a transparent insulating layer are sequentially laminated on a package substrate, and a compound semiconductor element is mounted on the transparent insulating layer, and the side surface of the package substrate from the periphery of the mounting portion. Alternatively, a method of forming a wiring conductor over the lower surface has been proposed (for example, see Patent Document 1).
JP 2005-244152 A (page 6)

しかしながら、透明絶縁層は配線導体の下部に設けられている為、配線導体の表面
は保護されず、劣化が生じてしまうものと考えられる。
However, since the transparent insulating layer is provided under the wiring conductor, the surface of the wiring conductor is not protected, and it is considered that deterioration occurs.

また、光反射層と配線導体との間で多重反射を繰り返す光も存在するため、それに
伴って光強度が減衰し、さらに場合によっては光反射層と配線導体の間に光が閉じ込
められて外部に出射せず、輝度の低下を招いてしまう。
In addition, since there is light that repeatedly undergoes multiple reflections between the light reflecting layer and the wiring conductor, the light intensity decreases accordingly, and in some cases, the light is confined between the light reflecting layer and the wiring conductor. In other words, the light is not emitted to the outside and the brightness is lowered.

加えて、透明絶縁層を特定の膜厚で積層すると、その上面で反射する光と下面で反
射する光が互いに打ち消し合うように干渉してしまい、かえって反射強度が低下する
ことも考えられる。
In addition, when the transparent insulating layer is laminated with a specific film thickness, the light reflected on the upper surface and the light reflected on the lower surface interfere with each other so as to cancel each other, and the reflection intensity may decrease.

本発明の半導体発光装置は、電極上に化合物半導体素子が実装され、化合物半導体
素子の発光によって励起され蛍光を発する蛍光物質を含有した透光性封止材料を有す
る半導体発光装置であって、化合物半導体素子上、及び、少なくとも透光性封止材料
側の電極の上面に化合物半導体素子が実装されている部分を除いて、透明薄膜層を有
することを特徴とするものである。
The semiconductor light-emitting device of the present invention is a semiconductor light-emitting device having a translucent sealing material containing a fluorescent substance that has a compound semiconductor element mounted on an electrode and is excited by light emission of the compound semiconductor element to emit fluorescence. In addition, a transparent thin film layer is provided except for a portion where the compound semiconductor element is mounted on the compound semiconductor element and at least on the upper surface of the electrode on the translucent sealing material side.

また、本発明の半導体発光装置は、化合物半導体素子からの光を反射させる反射板
を有することが好ましい。
In addition, the semiconductor light emitting device of the present invention preferably has a reflector that reflects light from the compound semiconductor element.

また、本発明の半導体発光装置は、透明薄膜層は酸化物系セラミックスであること
が好ましい。
In the semiconductor light emitting device of the present invention, the transparent thin film layer is preferably an oxide ceramic.

また、本発明の半導体発光装置は、酸化物系セラミックスがシリカまたはアルミナ
で構成されることが好ましい。
In the semiconductor light emitting device of the present invention, the oxide ceramic is preferably composed of silica or alumina.

また、本発明の半導体発光装置は、透明薄膜層は、屈折率が透光性封止材料の屈折
率より大きく、化合物半導体素子の屈折率よりも小さい値であることが好ましい。
In the semiconductor light emitting device of the present invention, the transparent thin film layer preferably has a refractive index greater than the refractive index of the translucent sealing material and smaller than the refractive index of the compound semiconductor element.

本発明の半導体発光装置によれば、電極基板、及び化合物半導体素子上にシリカや
アルミナ等の酸化物系セラミックスで構成される薄膜を積層している。シリカやアル
ミナ等の酸化物系セラミックスは、水蒸気や種々のガスを遮蔽するバリア性を有して
いる為、これらを用いたガスバリア性の透明薄膜層を積層することで、銀等で形成さ
れる電極面に達する空気中の酸化性ガスや硫黄を妨げることができ、電極面の劣化防
止が図れる。
According to the semiconductor light emitting device of the present invention, a thin film made of an oxide ceramic such as silica or alumina is laminated on the electrode substrate and the compound semiconductor element. Oxide ceramics such as silica and alumina have a barrier property to shield water vapor and various gases. Therefore, they are formed of silver or the like by laminating a transparent thin film layer having a gas barrier property using these. Therefore, it is possible to prevent oxidative gas and sulfur in the air reaching the electrode surface and prevent deterioration of the electrode surface.

また、本発明の半導体発光装置によれば、化合物半導体素子の屈折率の値より小さ
く、透光性封止材料の屈折率より大きい値の屈折率を有する透明薄膜層を化合物半導
体素子上に積層することで、各境界面での屈折率差を緩和することができ、結果とし
て表面反射率を低減させて輝度を向上させることができる。
Further, according to the semiconductor light emitting device of the present invention, the transparent thin film layer having a refractive index smaller than the refractive index value of the compound semiconductor element and larger than the refractive index of the light-transmitting sealing material is provided as the compound semiconductor element. By laminating on top, the refractive index difference at each interface can be relaxed, and as a result, the surface reflectance can be reduced and the luminance can be improved.

また、本発明の半導体発光装置によれば、化合物半導体素子の屈折率の値より小さ
く、透光性封止材料の屈折率の値より大きい値の屈折率を有する透明薄膜層を化合物
半導体素子上に積層することで、各境界面での屈折率差を緩和することができ、結果
として臨界角の値が大きくなり、境界面での全反射を低減し、輝度の向上を図ること
ができる。
In addition, according to the semiconductor light emitting device of the present invention, the transparent thin film layer having a refractive index smaller than the refractive index value of the compound semiconductor element and larger than the refractive index value of the light-transmitting sealing material is added to the compound semiconductor element. By stacking on top, the refractive index difference at each interface can be relaxed. As a result, the value of the critical angle is increased, total reflection at the interface is reduced, and brightness can be improved. .

また、本発明の半導体発光装置によれば、電極基板、及び化合物半導体素子上にガ
スバリア性の透明薄膜層を積層していることから、透明薄膜層の厚みを適宜調整する
ことにより、透明薄膜層の上面反射光と下面反射光が干渉効果により反射強度が低下
し、光取り出し効率が改善し、輝度の向上が図れる。
In addition, according to the semiconductor light emitting device of the present invention, since the gas barrier transparent thin film layer is laminated on the electrode substrate and the compound semiconductor element, the transparent thin film layer can be appropriately adjusted by adjusting the thickness of the transparent thin film layer. The reflection intensity of the upper surface reflected light and the lower surface reflected light of the layer is reduced by the interference effect, the light extraction efficiency is improved, and the luminance can be improved.

図1は本発明の一実施の形態よりなる半導体発光装置の断面図であり、反射板を用
いた例として示す。
FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention, and shows an example using a reflector.

図1において、化合物半導体素子4は液晶ポリマー、またはセラミック等で構成さ
れたパッケージ基板3の電極5上に銀ペースト等でダイボンドされ、ボンディングワ
イヤー7で電極5とワイヤーボンドされている。その後、化合物半導体素子4、及び 電極5上に透明薄膜層6を積層し、透光性封止材料である透光性樹脂材料1でそれら を封止する。すなわち、化合物半導体素子4上、および、透光性樹脂材料1側におけ る電極5上に化合物半導体素子4が実装されている部分を除いて、透明薄膜層6を有 する。また、化合物半導体素子4からの光を反射させる反射板2を有する。
In FIG. 1, a compound semiconductor element 4 is die-bonded with a silver paste or the like on an electrode 5 of a package substrate 3 made of liquid crystal polymer or ceramic, and bonded to a bonding wafer.
It is wire-bonded to the electrode 5 at the ear 7. Thereafter, a transparent thin film layer 6 is laminated on the compound semiconductor element 4 and the electrode 5, and they are sealed with a translucent resin material 1 which is a translucent sealing material. That is, the transparent thin film layer 6 is provided except for the portion where the compound semiconductor element 4 is mounted on the compound semiconductor element 4 and on the electrode 5 on the translucent resin material 1 side. In addition, it has a reflector 2 that reflects light from the compound semiconductor element 4.

化合物半導体素子4は窒化ガリウム系化合物半導体を利用した高輝度青色発光のLE
D素子である。この化合物半導体素子4は、サファイヤ基板の表面に、例えば窒化ガ
リウムのn型層、インジウムガリウム窒素の活性層及び窒化ガリウムのp型層を積層 したものである。次にp型層の一部をドライエッチングにて除去しn型層を露出させ 、この露出したn型層の表面にn型電極を形成し、p型層の表面にはp型電極を形成 し、これらのn側及びp側の電極に金を利用したボンディングワイヤー7でワイヤー ボンドしている。
Compound semiconductor device 4 is a high-luminance blue light-emitting LE using a gallium nitride compound semiconductor.
D element. This compound semiconductor element 4 is formed on the surface of a sapphire substrate, for example
It is a laminate of an n-type layer of palladium, an active layer of indium gallium nitrogen, and a p-type layer of gallium nitride. Next, a part of the p-type layer is removed by dry etching to expose the n-type layer, and an n-type electrode is formed on the surface of the exposed n-type layer, and a p-type electrode is formed on the surface of the p-type layer These n-side and p-side electrodes are wire-bonded with bonding wires 7 using gold.

透明薄膜層6はスパッタリング法やCVD法等の真空薄膜形成技術を用いて形成する
。その際、透明薄膜層6としては、化合物半導体素子4(屈折率2.5〜3.5)と透光性樹 脂材料1(約1.4)の屈折率差を緩和させる為に、可視域において化合物半導体素子の屈 折率の値より小さく、透光性封止材料の屈折率の値より大きい屈折率を持つ物質が好 ましく、酸化物系セラミックスであるシリカ(屈折率約1.48)、アルミナ(屈折率約 1.63)等が好ましい。
The transparent thin film layer 6 is formed using a vacuum thin film forming technique such as sputtering or CVD.
. At that time, as the transparent thin film layer 6, in order to reduce the refractive index difference between the compound semiconductor element 4 (refractive index 2.5 to 3.5) and the translucent resin material 1 (about 1.4), A substance having a refractive index smaller than the refractive index value and larger than the refractive index value of the light-transmitting sealing material is preferred, and oxide ceramics such as silica (refractive index of about 1.48) and alumina (refractive index of about 1.63) and the like are preferable.

また、透明薄膜層6は、化合物半導体素子4からの光のうち、透明薄膜層6の上面
反射光と下面反射光が干渉効果によりその反射強度を低下させるような膜厚を有する
ように形成する。
Also, the transparent thin film layer 6 is the upper surface of the transparent thin film layer 6 out of the light from the compound semiconductor element 4.
The reflected light and the lower surface reflected light have such a film thickness that their reflection intensity is reduced by the interference effect.
To form.

一例として、図2に透明薄膜層6としてシリカを成膜した場合の膜厚と強度反射率
の結果を示す。透光性樹脂材料1としては、シリコーン樹脂(屈折率1.43)を用いた
。また、光線の入射角度は0度としている。
As an example, FIG. 2 shows the results of film thickness and intensity reflectance when silica is formed as the transparent thin film layer 6. As the translucent resin material 1, a silicone resin (refractive index 1.43) was used.
. The incident angle of the light beam is 0 degree.

図2の結果により、シリカ被膜の膜厚が80nm、230nm等のときの強度反射率が約5.
77%となり、シリカを成膜していない場合の強度反射率約7.41%に比べておよそ22%
も低減することが出来る。その分だけ化合物半導体素子側に反射する光が減少して光
取り出し効率が改善し、半導体発光装置の輝度向上に繋がる。
According to the result of FIG. 2, the intensity reflectance when the thickness of the silica coating is 80 nm, 230 nm, etc. is about 5.
77%, approximately 22% compared to the intensity reflectance of approximately 7.41% when no silica film is formed
Can also be reduced. The amount of light reflected toward the compound semiconductor device side is reduced accordingly.
The extraction efficiency is improved, leading to an increase in luminance of the semiconductor light emitting device.

透光性樹脂材料1は、ディスペンサ等を用いてポッティング法により液状の樹脂を
反射板2の内側に流し込んで成形し、熱硬化させる。この透光性樹脂材料1は、化合
物半導体素子4及び透明薄膜層6を保護すると共に強固に密着させる機能を有し、熱 硬化性のエポキシ樹脂や不飽和ポリエステル樹脂、シリコーン樹脂、ユリア・メラミ ン樹脂等からなる。
The translucent resin material 1 is molded by pouring a liquid resin into the inside of the reflector 2 by a potting method using a dispenser or the like, and thermosetting. This translucent resin material 1 is a compound
It has a function to protect and firmly adhere to the physical semiconductor element 4 and the transparent thin film layer 6, and is made of a thermosetting epoxy resin, an unsaturated polyester resin, a silicone resin, a urea melamine resin, or the like.

半導体発光装置から白色発光を得る場合、透光性樹脂材料1の中に化合物半導体素
子4からの光を吸収して、より長波長の光を発する波長変換物質を混練しておく。波
長変換物質としては、白色発光に変換する場合、化合物半導体素子4の発光色である
青色と捕色の関係を持つものであれば良く、蛍光染料、蛍光顔料、蛍光体などが利用
でき、セリウムをドープしたイットリウム・アルミニウム・ガーネット等が好ましい
When white light emission is obtained from the semiconductor light emitting device, a wavelength conversion substance that absorbs light from the compound semiconductor element 4 and emits light having a longer wavelength is mixed in the translucent resin material 1. As the wavelength converting substance, when it is converted into white light emission, it may be any substance that has a color-catching relationship with blue, which is the emission color of the compound semiconductor element 4, and fluorescent dyes, fluorescent pigments, phosphors, etc. can be used. Cerium-doped yttrium, aluminum, garnet, etc. are preferred.

本発明の半導体発光装置によれば、上記構成の透明薄膜層6を化合物半導体素子4
、及び電極5上に積層することにより、透光性樹脂材料を透過して電極に到達する酸
化性ガスや硫黄を妨げることにより、劣化を防止して半導体発光装置の長寿命化を図
ることが出来る。さらに、透明薄膜層の膜厚を適宜調整することで化合物半導体素子
4から発せられる光を効率良く取り出すことが出来るので、輝度の高い半導体発光装
置を実現することが出来る。
According to the semiconductor light-emitting device of the present invention, the transparent thin film layer 6 having the above-described configuration is replaced with the compound semiconductor element 4.
And an acid that passes through the translucent resin material and reaches the electrode by being laminated on the electrode 5
Preventing degradation gases and sulfur to prevent deterioration and extend the life of semiconductor light-emitting devices
Rukoto can. Furthermore, the compound semiconductor element can be obtained by appropriately adjusting the film thickness of the transparent thin film layer.
Since the light emitted from 4 can be extracted efficiently, a semiconductor light-emitting device with high brightness
Can be realized.

本発明の一実施の形態の半導体発光装置の断面図である。It is sectional drawing of the semiconductor light-emitting device of one embodiment of this invention. 本発明の一実施の形態の透明薄膜層の膜厚と強度反射率との関係を示す 図である。It is a figure which shows the relationship between the film thickness of a transparent thin film layer of one embodiment of this invention, and an intensity | strength reflectance. 従来の半導体発光装置の断面図である。It is sectional drawing of the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

1 透光性樹脂材料
2 反射板
3 パッケージ基板
4 化合物半導体素子
5 電極
6 透明薄膜層
7 ボンディングワイヤー
11 透光性樹脂材料
12 反射板
13 化合物半導体素子
14電極
DESCRIPTION OF SYMBOLS 1 Translucent resin material 2 Reflector 3 Package substrate 4 Compound semiconductor element 5 Electrode 6 Transparent thin film layer 7 Bonding wire 11 Translucent resin material 12 Reflector 13 Compound semiconductor element
14 electrodes

Claims (5)

電極上に化合物半導体素子が実装され、該化合物半導体素子の発光によって励起され蛍光を発する蛍光物質を含有した透光性封止材料を有する半導体発光装置であって、前記化合物半導体素子上、および、前記透光性封止材料側における前記電極上に前記化合物半導体素子が実装されている部分を除いて、透明薄膜層を有する半導体発光装置。     A semiconductor light emitting device comprising a compound semiconductor element mounted on an electrode, and having a translucent sealing material containing a fluorescent substance that emits fluorescence when excited by light emission of the compound semiconductor element, on the compound semiconductor element, and The semiconductor light-emitting device which has a transparent thin film layer except the part in which the said compound semiconductor element is mounted on the said electrode in the said translucent sealing material side. 前記化合物半導体素子からの光を反射させる反射板を有することを特徴とする請求項1に記載の半導体発光装置。     The semiconductor light emitting device according to claim 1, further comprising a reflector that reflects light from the compound semiconductor element. 前記透明薄膜層は、酸化物系セラミックスであることを特徴とする請求項1または請求項2に記載の半導体発光装置。     The semiconductor light-emitting device according to claim 1, wherein the transparent thin film layer is an oxide-based ceramic. 前記透明薄膜層は、シリカまたはアルミナで構成されていることを特徴とする請求項3に記載の半導体発光装置。     The semiconductor light-emitting device according to claim 3, wherein the transparent thin film layer is made of silica or alumina. 前記透明薄膜層は、屈折率が前記透光性封止材料の屈折率より大きく、前記化合物半導体素子の屈折率よりも小さい値であることを特徴とする請求項1から請求項4のいずれか一項に記載の半導体発光装置。     5. The transparent thin film layer according to claim 1, wherein a refractive index of the transparent thin film layer is larger than a refractive index of the translucent sealing material and smaller than a refractive index of the compound semiconductor element. The semiconductor light emitting device according to one item.
JP2008067151A 2008-03-17 2008-03-17 Semiconductor light emitting device Pending JP2009224538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067151A JP2009224538A (en) 2008-03-17 2008-03-17 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067151A JP2009224538A (en) 2008-03-17 2008-03-17 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2009224538A true JP2009224538A (en) 2009-10-01

Family

ID=41241016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067151A Pending JP2009224538A (en) 2008-03-17 2008-03-17 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2009224538A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187962A (en) * 2010-03-09 2011-09-22 Lg Innotek Co Ltd Light-emitting device
JP2011204986A (en) * 2010-03-26 2011-10-13 Showa Denko Kk Lamp and method for manufacturing the same
JP2011238819A (en) * 2010-05-12 2011-11-24 Toyoda Gosei Co Ltd Light-emitting device and package
EP2423989A2 (en) 2010-08-25 2012-02-29 Nichia Corporation Coated reflective film for a light emitting device and method of manufacturing thereof
JP2012079790A (en) * 2010-09-30 2012-04-19 Nichia Chem Ind Ltd Light emitting device
JP2012209512A (en) * 2011-03-30 2012-10-25 Kyocera Corp Light emitting device and lighting device using the same
WO2013183705A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
WO2013183706A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device
JP2014129549A (en) * 2010-03-23 2014-07-10 Asahi Rubber Inc Silicone resin reflective substrate, method for manufacturing the same, and raw material composition used in the reflective substrate
EP2793278A2 (en) 2013-04-18 2014-10-22 Nichia Corporation Package for a light emitting device, and light emitting device including the same
JP2015149468A (en) * 2014-02-05 2015-08-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Light-emitting diode package and method of manufacturing the same
US9728690B2 (en) 2015-09-30 2017-08-08 Nichia Corporation Light emitting device and method of manufacturing the same
WO2017220746A1 (en) * 2016-06-23 2017-12-28 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187962A (en) * 2010-03-09 2011-09-22 Lg Innotek Co Ltd Light-emitting device
US8546835B2 (en) 2010-03-09 2013-10-01 Lg Innotek Co., Ltd. Light emitting device
JP2014129549A (en) * 2010-03-23 2014-07-10 Asahi Rubber Inc Silicone resin reflective substrate, method for manufacturing the same, and raw material composition used in the reflective substrate
JP2011204986A (en) * 2010-03-26 2011-10-13 Showa Denko Kk Lamp and method for manufacturing the same
JP2011238819A (en) * 2010-05-12 2011-11-24 Toyoda Gosei Co Ltd Light-emitting device and package
EP2423989A2 (en) 2010-08-25 2012-02-29 Nichia Corporation Coated reflective film for a light emitting device and method of manufacturing thereof
CN102386288A (en) * 2010-08-25 2012-03-21 日亚化学工业株式会社 Method of manufacturing a light emitting device
TWI616000B (en) * 2010-08-25 2018-02-21 日亞化學工業股份有限公司 Light emitting device and method of manufacturing thereof
CN106684233A (en) * 2010-08-25 2017-05-17 日亚化学工业株式会社 A manufacturing method of a light-emitting device
US8679871B2 (en) 2010-08-25 2014-03-25 Nichia Corporation Method of manufacturing light emitting device that includes using atomic layer deposition to form protective film on reflective film
US9087966B2 (en) 2010-08-25 2015-07-21 Nichia Corporation Light emitting device that includes reflective film surface covered with protective film having uniform thickness
US9306127B2 (en) 2010-08-25 2016-04-05 Nichia Corporation Light emitting device that includes protective film having uniform thickness
JP2012079790A (en) * 2010-09-30 2012-04-19 Nichia Chem Ind Ltd Light emitting device
JP2012209512A (en) * 2011-03-30 2012-10-25 Kyocera Corp Light emitting device and lighting device using the same
US9634210B2 (en) 2012-06-06 2017-04-25 Hitachi Chemical Company, Ltd Optical semiconductor device production method and optical semiconductor device
JPWO2013183705A1 (en) * 2012-06-06 2016-02-01 日立化成株式会社 Optical semiconductor device manufacturing method and optical semiconductor device
JPWO2013183706A1 (en) * 2012-06-06 2016-02-01 日立化成株式会社 Optical semiconductor device
US9525114B2 (en) 2012-06-06 2016-12-20 Hitachi Chemical Company, Ltd. Optical semiconductor device
WO2013183706A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device
WO2013183705A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
EP2793278A2 (en) 2013-04-18 2014-10-22 Nichia Corporation Package for a light emitting device, and light emitting device including the same
US9048390B2 (en) 2013-04-18 2015-06-02 Nichia Corporation Package for light emitting device, and light emitting device
JP2015149468A (en) * 2014-02-05 2015-08-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Light-emitting diode package and method of manufacturing the same
US9728690B2 (en) 2015-09-30 2017-08-08 Nichia Corporation Light emitting device and method of manufacturing the same
US10103299B2 (en) 2015-09-30 2018-10-16 Nichia Corporation Light emitting device
US10361347B2 (en) 2015-09-30 2019-07-23 Nichia Corporation Light emitting device
WO2017220746A1 (en) * 2016-06-23 2017-12-28 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component

Similar Documents

Publication Publication Date Title
JP2009224538A (en) Semiconductor light emitting device
JP5044329B2 (en) Light emitting device
JP4773755B2 (en) Chip-type semiconductor light emitting device
US8232118B2 (en) Light emitting device and method for manufacturing the same
TWI478370B (en) A light-emitting semiconductor device and package with a wavelength conversion structure
TWI446586B (en) Light emitting device
JP2007242856A (en) Chip-type semiconductor light emitting device
JP5531575B2 (en) Group III nitride compound semiconductor light emitting device
US20140054633A1 (en) Light emitting device
US10535804B2 (en) Light-emitting device package
US8729568B2 (en) Light emitting device
CN112103273B (en) Light emitting device
US11545595B2 (en) Contact structures for light emitting diode chips
JP2001217461A (en) Compound light-emitting device
JP2016082229A (en) Light-emitting element, light-emitting element package, and lighting system including package
JPH0964421A (en) Nitride semiconductor light emitting diode
US10868228B2 (en) Semiconductor device
US20120104418A1 (en) Light-emitting module and alternating current light-emitting device
JP4004514B2 (en) White semiconductor light emitting device
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
TWI505499B (en) Semiconductor light emitting device
US8455882B2 (en) High efficiency LEDs
JP5677371B2 (en) Light emitting device
KR101722623B1 (en) Light-emitting element and Light-emitting element package
JP2006352038A (en) White semiconductor light emitting element and its manufacturing method